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Tree-ring width and Variation of Wood Density in 
Fraxinus excelsior L. and Quercus robur L. Growing in 
Floodplain Forests 
 

Kyriaki Giagli,* Jan Baar, Marek Fajstavr, Vladimir Gryc, and Hanuš Vavrčík 

 
Oven-dry wood density variations are reported for European ash 
(Fraxinus excelsior L.) and English oak (Quercus robur L.) trees growing 
in floodplain mixed forests in South Moravia, Czech Republic. Two sites 
with different water regime conditions were selected along the Dyje (site 
A) and the Morava (site B) Rivers. In total, 20 dominant, healthy trees 
were chosen to determine the tree-ring structure and the oven-dry wood 
density (ρ0) along the radius of the stem cross section. The tree-ring 
width followed the common trend of a general decline as the trees aged. 
After removing the age influence, significant differences were observed 
in the tree-ring structure, recorded several years after water regime 
treatments. The European ash and the English oak ρ0 were found to be 
677.3 kg∙m-3 and 618.2 kg∙m-3, respectively, significantly differing 
between the sites, for both species. High variability of ρ0 was also noticed 
along the stem radius in both species and sites.  
  

Keywords: European ash; English oak; Floodplain forests; Oven-dry density; Tree rings; Variability 

 
Contact information: Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 

61300 Brno, Czech Republic; *Corresponding author: giagli@mendelu.cz 

 

 
INTRODUCTION 

Wood density (or specific gravity) variability highly depends upon environmental 

factors connected with hydrological processes (Martius 1992; Parolin and Worbes 2000; 

Csóka 2016). Kozlowski (1984) claimed that tree growth could be either increased or 

decreased by flooding, depending on the species and various flood traits, while Wertz et 

al. (2013) highlighted the importance of the timing, duration, and the magnitude of the 

flood occurrence in relation with the cambial growth. Trees growing in Amazonian areas 

that were flooded for longer periods were expected to have higher wood density (Martius 

1992). Lawson et al. (2015) reported that high-density wood conveyed mechanical 

strength to the stems, which enabled the trees to tolerate water stress and withstand 

floods.  

Recently, researchers have focused on the tree growth response to long-term 

hydrologic and climatic variability encountered in floodplain forests with altered flood 

regimes (Palta et al. 2012; Keim and Amos 2012; Gee et al. 2014). Astrade and Bégin 

(1997) related the presence of smaller and fewer vessels formed in aspen and English oak 

with lasting floods at the beginning of the growing season, while a previous study 

measured fibers with thinner cell walls and larger lumina in ash trees as a result of floods 

at the end of the growing season (Yanosky 1984). George et al. (2002) found a 

correlation between bur oak vessels and spring floods, while a more recent study defined 

that the response of the average vessel size of the English oak growing in the floodplains 

was negative (Tumajer and Treml 2016). Moreover, significant changes in the vessel 

http://www.sciencedirect.com/science/article/pii/S0378112714005131#b0195
http://www.sciencedirect.com/science/article/pii/S0378112714005131#b0300
http://www.sciencedirect.com/science/article/pii/S0378112714005131#b0165
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lumen area of alder, ash, and Pyrenean oak were correlated with flash flood activity 

(Ballesteros et al. 2010). Nevertheless, the relationship still remains unclear, i.e., previous 

studies have poorly connected wood density with mean annual rainfall, while others have 

correlated wood density and vessel traits with soil moisture content (Weimann and 

Williamson 2002; Preston et al. 2006; Swenson and Enquist 2007). Therefore, the 

fluctuations in the ground level water regulated by water regime treatments should be 

examined as an important driver of wood quality of the floodplain trees.  

The species which are adjusted to growing in floodplain forests are the most 

demonstrative examples to confirm this relationship (Maddock 1976; Yin 1999). Namely, 

European ash (Fraxinus excelsior L.) and English oak (Quercus robur L.) commonly 

appear in floodplain forests, mixed broadleaved forests, moist clay-loam lowlands, or 

even in relatively dry calcareous sites (Dobrowolska et al. 2008). Both species are ring-

porous hardwoods with similar oven-dry wood densities (Kollman 1951; Lexa et al. 

1952; Jane 1956; Matovič 1984; Wagenführ 2000). The average oven-dry density of 

European ash and English oak wood ranges from 650 to 687 kg∙m-3 (Kollman 1951; 

Matovič 1984; Wagenführ 2000) and from 650 kg∙m-3 to 680 kg∙m-3 (Kollman 1951; 

Lexa et al. 1952), respectively. Nevertheless, Zeidler and Borůvka (2016) reported 

remarkably higher values of oven-dry density (707 kg∙m-3) referring to English oak. 

Other studies, focused on oak trees growing in floodplain forests, which resulted in lower 

values of oven-dry wood density, 584 kg∙m-3 and 589 kg∙m-3 (Vichrov 1954; Vavrčík and 

Gryc 2012, respectively).  

European ash trees cover approximately 1.4% of the forested land in the Czech 

Republic, and oak trees cover almost 6.7% (Ministry Report 2014). Both species 

commonly grow within the lowland belt with areas adjacent to large lowland rivers 

[below 210 m above sea level (a.s.l)] which are mostly covered by floodplain forests, 

wetlands, inundated meadows, as well as sandy grasslands and saline habitats (Chytrý 

2012).  

In the medieval period, the emergence of floods in the Czech Republic (South 

Moravia) increased after the deforestation of sub-montane and montane areas (Ložek 

2011; Chytrý 2012). Typically, rivers used to flood after snowmelt in March through 

April, and occasionally after heavy rainfall (mostly during summer, randomly during the 

year). Hence, the riparian areas of the rivers were strongly modified by floods and loamy 

sediment accumulation. In the last century, multiple changes of the hydrological regime 

occurred due to river regulations. Especially, the treatments performed in the 1930’s, 

drastically increased the summer floods. This lasted until 1968–1972, when a new water 

regime treatment of the Dyje River took place, aiming at reducing the groundwater level 

and eliminating the floods. Similar treatments for groundwater level reduction were 

applied at the section of the Morava River later (1976–1977). In due course, the 

groundwater level decreased by around 90 cm (Dyje) and 40 cm (Morava), practically 

eliminating the floods. In 1984, the construction of a highway body affected certain areas 

of the Morava River by increasing the groundwater level again (Maděra and Úradníček 

2001; Prax et al. 2005). Eventually, since 1992, this region has been restored by artificial 

and controlled spring floods (Maděra and Úradníček 2001).  

Klimo et al. (2013) reported that the water regime treatments applied for almost 

20 years (approximately 1972 to 1992) in the Dyje and the Morava Rivers have had an 

apparent ecological impact on the floodplain forest plants. The layer of the shrubs and 

young trees presented a leaf area index decrease, while the herb layer was dramatically 

affected, undergoing a dramatic reduction of its biomass (60 to 70%). Nevertheless, 
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Klimo et al. (2013) underlined that the dominant tree species hardly responded to the 

alterations, from an ecological point of view. In the present work it is hypothesized that 

the influence of the alterations should be apparent from inspection of the wood. The 

objective of this study was to investigate the response of the European ash (Fraxinus 

excelsior L.) and English oak (Quercus robur L.) trees growing in two floodplain forest 

localities close to the Dyje and the Morava River by analyzing the tree-ring structure and 

oven-dry wood density (ρ0).  

 

 

EXPERIMENTAL 
 

Site Characteristics 
Τwo sites along the Dyje and the Morava River in southern Moravia, Czech 

Republic were selected (Fig. 1). The first site (A) was chosen to be close to the Dyje 

River, in Lednice (48.8072483N, 16.7947711E, 174 m a.s.l), where the groundwater 

level was lowered by around 90 cm during the 1970s. The second site (B) was placed in 

Tvrdonice (48.7146003N, 16.9901419E, 168 m a.s.l.) close to the Morava River where 

the water regime treatments were not effective. The most drastic alteration in this area 

occurred with the highway body construction which raised the ground level water again 

in 1984. The forests in both sites are similar i.e., floodplain forest mixed stands of 

European ash and English oak (A: 40% and 60% and B: 30% and 70%, respectively). 

The mean annual temperature in both areas is 9.0 to 9.5 °C, and the annual precipitation 

total is 500 mm (Chytrý 2012). 

 

 
Fig. 1. Sampling localities (A: Lednice; B: Tvrdonice) and method 
 

 
Sampling Method   

Five European ash and five English oak healthy and dominant trees were 

randomly selected per location (20 trees in total). The trees were over 100 years old 

(Table 1). Sample logs 1 m in length were obtained from trees at the breast height (1.3 m) 

with marked cardinal directions (from North to South). The mean diameter of the stems 

at the breast height ranged from 39.5 to 54.0 cm (European ash) and from 30.7 to 47.0 cm 

(English oak).  

Transversal discs from each stem were obtained to measure the tree-ring widths 

(TRW). All samples were measured (at an accuracy of 0.01 mm) using a TimeTable 

device (SCIEM, Vienna, Austria). The obtained TRW series were processed in the 
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PAST4 software (Knibbe 2004) to build mean series for each species/site. The number of 

the tree rings refers to the breast height.  

 
Table 1. Dendrometric Features of the Sample Logs per Site and Species (Age 
Measured at Breast Height; Diameter with the bark included; A: Lednice;  
B: Tvrdonice)  

Tree 

European ash English oak 

A B A B 

Age 
Diameter 

(cm) 
Age 

Diameter 
(cm) 

Age 
Diameter 

(cm) 
Age 

Diameter 
(cm) 

1 
109 50.5 129 45.0 108 45.2 114 46.5 

2 
109 53.5 127 46.0 107 30.7 110 38.0 

3 
107 50.5 130 51.5 107 43.2 111 44.0 

4 
107 39.5 120 54.0 105 45.0 116 47.0 

5 
106 41.5 133 54.0 106 38.0 113 41.0 

 

The TRW data were standardized before the analyses. Time-series standardization 

was made in R (programming environment and script) by using Library dplR 

(Dendrochronology Program Library in R). The authors used standardized tree-ring 

widths (TRWI) per species, to remove the age influence. Thereafter, sliding T-tests were 

compared before and after the water regime treatments to detect differences in the 

TRWIs. Namely, on site A, a 10-year control dataset was selected before the year 1972 

(1963 to 1972) to compare gradually with the following 10-year datasets i.e. 1973 to 

1982; 1974 to 1983; …1992–2001. On site B we compared the control dataset 1975 to 

1984 with the following 10-year datasets 1985 to 1994; 1986 to 1995; … 1995 to 2004. 

Furthermore, central boards were cut into standard specimens (20 × 20 × 30 mm) 

for measuring oven-dry density. The specimens were obtained respecting their position in 

the stem i.e., radially from bark to pith (A through I). Approximately 2000 specimens 

were produced in total.  

The specimens were dried to as much as 0% moisture content in the program oven 

(at 103 ± 2 °C). Each oven-dried specimen was measured in three anatomical directions 

and then weighed. The oven-dry wood density (ρ0; kg∙m-3) of the specimens was 

calculated using Eq. 1,  
 

                                                                                          (1)  

where m0 is the oven-dry weight (kg) and V0 is the oven-dry volume (m3).  

TRWs were measured again per specimen for the correlation analysis. 

R – programming (R Development Core Team, Vienna, Austria) was also used 

for statistical analysis (Student’s t-test, Tukey’s range test) and graphic depiction.  
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RESULTS AND DISCUSSION 
 
Tree-ring growth 

It has been expected that the water regime alterations would be registered on the 

tree-ring structure of both species. The TRW was observed to have undergone a decrease 

along the years but without any obvious differences before and after the treatments for 

both species and sites (Fig. 2). Because the age directly affects the TRW (Hubbard et al. 

1999; Day et al. 2001; Greenwood et al. 2008), as trees grow older and bigger, a general 

decline of TRW is observed, showing a trend that is commonly found in TRW 

chronologies (Esper et al. 2008). Hence, in our study, the decreased TRW was in line 

with the general trend.  

 

 
Fig. 2. The tree-ring widths (TRW) and tree-ring widths standardized analysis (TRWI) of English 
oak and European ash (at breast height). A: 1972 - Year of water regime treatments initiation in 
Lednice; B: 1984 – Year of the highway body construction in Tvrdonice 

 
Kollman (1951) determined that European ash tree-ring width tended to be 

narrower (less than 5 mm) in the first 10 to 15 years, becoming proportionally wider up 

to 40 years of age and then continuously decreasing. In our study, this description fits 

better to the European ash trees growing on site B. English oak followed the same age-

trend on both sites.  



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Giagli et al. (2018). “Tree rings & wood density,” BioResources 13(1), 804-819.  809 

Nevertheless, the TRWI (free from the age influence) eventually revealed some 

significant differences before and after the water regime alterations in both sites. It is 

important to mention that the changes did not occur immediately. Both species responded 

to the alterations in a long-term reaction by forming narrower tree rings.  

On site A, the English oak trees demonstrated a significant long-lasting decrease 

in the TRWIs, which started 11 years after the year of the water regime treatments (1984: 

p=0.012; 1985: p=0.002; 1986: p=0.001; 1987: p=0.000; 1988: p=0.000; 1989: p=0.000; 

1990: p=0.000; 1985: p=0.000). On the contrary, the European ash trees showed no 

differences before or after the treatment. English oak, as a common species in riparian 

forests, can tolerate oxygen deficiency and survive several months of flooding (Blom 

1999; Kreuzwieser et al. 2004). It tolerates a high range of soil pH (from acid to alkaline) 

and moist conditions, including occasionally wet soil and dry clay. It also appears to be 

drought-tolerant, particularly in climates with low humidity (Edward et al. 1994). It is 

known that oaks, among other floodplain tree species, have the adaptive ability to 

develop hypertrophied lenticels and adventitious roots, which allocate oxygen to the roots 

(Schmull and Thomas 2000; Parelle et al. 2006). English oak reacts well to drought stress 

by forming a deep rooting system to overcome dehydration (Abrams 1990; Epron and 

Dreyer 1993; Dickson and Tomlinson 1996; van Hees 1997; Schwanz and Polle 2001; 

Bourtsoukidis et al. 2014). In the present study it was noticed that on site A, where the 

groundwater level was decreased for more than 20 years, English oak was probably 

affected in a very long-term.  

On site B, the exact opposite behavior was observed for the examined species. 

European ash had a significant decrease in the TRWIs, six years after the highway body 

construction (1991: p=0.034; 1992: p=0.020; 1993: p=0.016; 1994: p=0.012; 1995: 

p=0.002), while English oak exhibited no differentiations along the years. European ash 

thrives in a wide range of site types because of its high tolerance of water and nutrient 

conditions (Marigo et al. 2000; Střeštík and Šamonil 2006; Dobrowolska et al. 2011). 

The species withstands short-term floods, although stagnant water with limited oxygen 

supply is rather unfavorable. European ash requirements in high soil moisture have been 

noted in many studies, as well as its high sensitivity against root competition (Wagner 

1999; Kerr and Cahalan 2004). It has been reported that the species is particularly 

sensitive to precipitation deficits in May and June because of budding (Wardle 1961; 

Braun 1977). Furthermore, the soil moisture regime contributes more decisively than the 

soil nutrient regime with respect to height growth (Weber-Blaschke et al. 2008). Many 

studies have insisted on the necessity of a high water supply for 30-year-old to over 100-

year-old European ash stands, while Kerr and Cahalan (2004) underlined that the species 

grew properly when the depth of water ranged between 40 and 100 cm (Knorr 1987; 

Weber-Blaschke et al. 2008). Nevertheless, Vreugdenhil et al. (2006) reported intense 

negative effects of flooding on European ash growth. In this study, European ash formed 

narrower tree rings in a permanently flooded site, six years after the alteration. It still 

remains unclear whether this is an indirect response to the site condition or not.    

 
Oven-dry Wood Density  

The average ρ0 (A and B) of European ash was found to be 677.3 kg∙m-3 

(Coefficient of Variance: CV = 8.7 %), in line with the literature (Kollman 1951; Matovič 

1984; Wagenführ 2000), (Fig. 3a).  

European ash trees showed high average values on site A (689.8 kg∙m-3; CV = 8.9 

%; range: 495.4 to 814.2 kg∙m-3), and lower on site B (665.1 kg∙m-3; CV = 8.2 %; range: 

http://link.springer.com/article/10.1007/s10342-008-0230-x#CR39
http://link.springer.com/article/10.1007/s10342-008-0230-x#CR18
http://link.springer.com/article/10.1007/s10342-008-0230-x#CR4
http://forestry.oxfordjournals.org/content/early/2011/03/02/forestry.cpr001.full#ref-78
http://link.springer.com/article/10.1007/s10342-008-0230-x#CR20
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508.8 to 773.3 kg∙m-3). The difference between the two localities was significant (F = 1.3; 

p = 0.00012). The European ash trees growing on site B, were approximately 20 years 

older than the trees on site A. The significantly different values can be attributed to the 

age influence.  

The average ρ0 of the English oak trees (A and B) was found to be 618.2 kg∙m-3 

(CV = 9.9%) coinciding with previous studies (Kollman 1951; Lexa et al. 1952). We 

recorded lower average ρ0 (584.3 kg∙m-3; CV = 9.5%; range: 544.7 to 652.5 kg∙m-3) on 

site A, which was different from the average ρ0 on site B (645.4 kg∙m-3; CV = 7.9%; 

range: 632.4 to 667.4 kg∙m-3).  

The difference between the two sites was significant (F = 8.86; p = 0.0176), 

which can be attributed to the site conditions, or more likely, the genetic predisposition of 

the individual trees. It should be noted that according to the literature, English oak trees 

which grow in floodplain forests generally tend to have lower densities (Vichrov 1954; 

Vavrčík and Gryc 2012).  

The ρ0 was examined in relation with the orientation of the samples (North and 

South). The marking of the cardinal directions of the samples showed no important 

influence on the average ρ0 (Fig. 3b). No obvious trend was evident per species and site. 

The ρ0 values of the trees growing on site A showed a higher variability, while the 

respective results were rather homogenous on site B (Fig. 3c). The highest variability was 

recorded on the English oak trees growing on site A. Furthermore, it was observed that 

the two dominant ring-porous deciduous species responded differently to the alterations. 

After lowering the groundwater level (0.9 m) and eliminating the floods, the European 

ash trees on site A showed a notably higher ρ0 than that on site B. Matovič (1984) 

described this negative relation between the ρ0 of European ash trees and the level of the 

water during flooding. Nevertheless, English oak was inversely influenced by the 

reduction of the groundwater level, showing lower ρ0.  

The variation of the European ash ρ0 along the stem radius (from bark to pith) 

showed no differences between the sites A and B (ANOVA: F = 0.0883; p = 0.77) (Fig. 

4).  

On site A, the highest average oven-dry density was 732.6 kg∙m-3 (CV = 5%), 

while on site B the highest average ρ0 was 739.3 kg∙m-3 (CV = 1.7%). Higher wood 

density is expected to be found around the central part of a ring-porous tree stem 

(Vavrčík and Gryc 2012). On site A, the outer margins of the radial sections presented a 

considerably lower average ρ0 than the central parts of the European ash stem. 

In contrast to European ash, the variation of the English oak ρ0 along the radius of 

the stem cross section (from bark to pith) differed significantly between the two sites (F = 

9.45; p = 0.0082), (Fig. 5, Table 2).  

The highest average ρ0 was found to be 631.6 kg∙m-3 (CV = 4.7%) and 672.5 

kg∙m-3 (CV = 5.5%) on sites A and B respectively. The outer margins of the radial 

sections (close to bark and pith) presented impressively lower average ρ0 than the central 

parts, in line with literature (Matovič 1984).  
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Fig. 3. The oven-dry density of both species: a) per site, b) samples obtained from two different 
directions (North, South) per site, c) per tree per site, (A: Lednice; B: Tvrdonice; Bars: confidence 
intervals).  
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Fig. 4. European ash horizontal oven-dry wood density distribution along the radius from bark to 
pith (A - I) in the two studied sites. (Bars: Standard Deviation). 
 

 
 
Fig. 5. English oak horizontal oven-dry wood density distribution along the radius from bark to 
pith (A – H) in the two studied sites (Bars: Standard Deviation).  

 

Tukey’s range test, which was performed for the ρ0 positions along the radius of 

the stem cross sections per sites and species, revealed significant differences mostly close 

to the bark. In the case of European ash, ρ0 was different from position to position almost 

along the whole stem radius whereas English oak presented similar ρ0 only close to bark. 

Lower ρ0 was observed closer to the bark in comparison with wood formed closer to the 

pith, most likely due to the sapwood area and narrower TRW with higher proportion of 

early-wood. 

 

 

Average 
Average ± SD 
Average ± 
1.96·SD 
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Table 2. Tukey’s Range Test for Oven-Dry Density Position along Stem Radius 
in European Ash and English oak (sites A + B) 

Species European ash (A + B) 

E
n

g
lis

h
 o

a
k
 (

A
 +

 B
) 

 A B C D E F G H 

A  .000 .000 .000 .000 .000 .000 .000 

B .000  .003 .000 .000 .000 .000 .000 

C .000 .000  .000 .000 .000 .000 .000 

D .000 .000 .000  .130 .000 .843 .291 

E .000 .000 .000 .999  .725 .999 .999 

F .000 .000 .000 .889 .996  .581 .999 

G .000 .000 .109 .263 .138 .036  .984 

H .000 .000 .099 .999 .994 .936 .994  

 
Tree Rings and Oven-Dry Wood Density Relationships 
 

European ash trees growing on site B revealed a strong correlation between ρ0 and 

TRW (Fig. 6). By contrast, the relationships were weak on both sites for the English oak 

trees (A and B).  

 

 
Fig. 6. Relationship between the oven-dry density and the tree ring widths per species and sites 

 
Wood density depends on the size of the cells, the cell-wall thickness, and the 

interrelationship between the number and the distribution of different types of cells 

forming the tree-ring structure, such as the proportion of early-wood and late-wood 

(Panshin and de Zeeuw 1980). Because latewood cells form thicker walls and smaller 

lumina than early-wood cells, a higher proportion of late-wood in the growth ring yields 

denser wood in ring-porous wood species (Tsoumis 1991). This was confirmed by the 

examined European ash trees growing on both sites, which verily depicted a strong 

relationship between the proportion of late-wood and ρ0 (Fig. 7). 
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English oak showed weak relationships on both sites, possibly due to high 

porosity (higher number of vessels) of the late-wood in comparison with the European 

ash late-wood. English oak is more tolerant and resistant to soil moisture content 

conditions and hence, potentially not highly affected. 

 
Fig. 7. Relationship between the oven-dry density and the proportion of late-wood per species 
and sites. 
 

Conclusively, it was observed that both examined species followed the general 

age trend of the tree-ring growth. Still, there was a significant decrease in the TRWIs, 

which eventually occurred some years after the water regime alterations. Hence, the 

reaction of the trees was not immediate or directly connected to the changes. 

Nevertheless, the observed significant long-term differences of the TRWIs potentially 

provide a signal for further research. It was assumed that the water regime treatments as 

applied to the studied area, poorly affected the tree growth or the density of the produced 

wood, since eventually no solid evidence of drastic impact was recorded. The complex 

relationship between wood density and hydrological events (e.g., rainfall/precipitation, 

snowmelts, and floods) needs further elucidation. An extended analysis at the cellular 

level (number and size of vessels, cell-wall thickness and vessel area) is needed in the 

future.  

 

 

CONCLUSIONS 
 
1. Tree-ring widths (TRWs) (measured at breast height) revealed no notable differences 

between species or sites followed the common trends of age.   

 

2. Standardized tree-ring widths (TRWIs) showed significant long-term differences 

before and after the water regime treatments per site and species, but not any evident 

immediate reaction. 

3. The average oven-dry density between the two localities was found to be significantly 

different for both European ash and English oak. 
 

4. High variability of oven-dry density was recorded along the stem radius in both 

species and sites.  
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5. European ash oven-dry density was highly connected with the TRW and the 

proportion of the late-wood. 
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