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Abstract— Fracture mechanics is the mechanical approach to 
fracture processes, which emerged due to limitations in applying 
traditional concepts of Mechanics of Materials to predict the 
behavior of cracked materials. Analytical problem solutions with 
this approach may be unattainable, so it is necessary to use 
numerical modeling, such as the finite element method. However, 
the use of more advanced software that solves engineering problems 
numerically is limited by its high cost. FEniCS is an open-source 
computational platform that solves partial differential equations by 
the finite element method. Thus, from a tutorial for this 
computational platform, this work proposes to reproduce a classic 
problem of linear elastic fracture mechanics, based on the validation 
of a comparison of a linear elastic problem with the commercial 
software ANSYS ®. With the help of the provided tutorial, a code 
was built to model a three-point bending test. Implemented with the 
aid of Gmsh and Paraview, it was possible to obtain satisfactory 
results and to show that FeniCS is a powerful and accessible tool for 
solving fracture mechanics problems. 

Keywords— Fracture Mechanics, Numerical Modeling, 
FEniCS, Finite Elements 

I. INTRODUCTION 
The Finite Element Method (FEM) is an approach to 

solving partial differential equations using numerical 
techniques in which a continuous domain is discretized into 
finite elements called mesh. With the advancement of 
technology and, consequently, computational power, more 
advanced engineering problems have become simpler to 
solve. This is due to the fact that analytical solutions can be 
complex and even unreachable, and the error achieved in 
numerical solutions is considerably acceptable [1]. 

 In general, the use of advanced FEM-based software 
is restricted to companies and some teaching institutions, as it  
is the case with ANSYS ® [2]. On the other hand, open-source 
programs, such as the FEniCS Software [3], which is free, are 
used more widely due to their availability and ease of access. 
However, they tend not to have a graphical interface, unlike 
commercial software, which makes the use of pre- and post-
processors essential for visualizing the solution. Even for a 
simple computational solution approach, the development of 
the finite element method can be complex, as it requires 
knowledge about tensor and variational calculus in some 
cases. The FEniCS [3] software, for example, uses these 

principles and, based on programming knowledge and the 
library itself, it is possible to solve partial differential 
equations using a variational approach. Therefore, this work 
proposes to present a numerical modeling of a linear elastic 
problem and two of fracture mechanics, presenting a 
preliminary comparison with ANSYS® for the linear elastic 
problem. 

A. Fracture Mechanics 
Fracture mechanics is the mechanical approach to fracture 

processes that emerged due to limitations applying traditional 
concepts of Mechanics of Materials to predict the behavior of 
materials in the presence of cracks. It was developed and 
founded after the 2nd World War [4] and is widely used in 
structural contexts in the areas of civil, mechanical, and 
metallurgical engineering [5-7]. For materials with brittle 
behavior, the linear elastic fracture mechanics (LEFM) 
approach is used, while for materials with ductile behavior, 
the elastoplastic fracture mechanics (EPFM) is used [4,8]. 

For example, in industry, a component may have such a 
high cost that, depending on the conditions and its integrity, 
it is more viable to have knowledge about fracture mechanics 
and continue using it with cracks to perform an exchange, 
which results in a complete pause of an operation. Alan 
Arnold Griffith studied the behavior of an elliptical hole 
when external stress is applied and established a 
thermodynamic model for crack propagation [8]. Griffith 
concluded that the strength of a material is not only linked to 
chemical bonding parameters but also to the existing defects. 
Therefore, it was realized that defects in the material are 
factors that intensify the applied stress, making it susceptible 
to exceeding the yield strength of the material and causing a 
rupture, which is the basis of fracture mechanics [4]. With 
this, a good characterization of the material must also have 
experimental parameters of the LEFM, such as the fracture 
toughness (K IC) and the critical energy release rate (Gc), for 
example. Fracture toughness is independent of size, geometry, 
and loading levels for a material with a given microstructure 
and is the  main obtained experimentally properties related to 
fracture mechanics [8]. 
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II. METODOLOGY 

A. Numerical Modeling 
The main concept addressed in the FEM is the 

discretization of a continuous domain into finite geometric 
elements, in addition to the use of polynomial interpolation to 
determine the results in the region inside the elements [1]. 
These elements form a mesh, and each node has a 
displacement u and a stress σ , which are represented in a 
linear system and determined through the variational calculus. 
The stress and strain of the solid are expressed by tensors, 
which are, by definition, mathematical entities that produce a 
linear transformation in vectors, transforming them into 
different vectors [9]. Tensors are represented in Equations (1) 
and (2), where u , v , and 𝑤𝑤  are the horizontal, vertical, and 
transverse components of infinitesimal displacement. The 
strain tensor can also be defined as ε=sym𝛻𝛻u , that is, the 
symmetric gradient of u. Both mathematical entities σ and ε 
have Cartesian x, y, and z components. 

𝝈𝝈 = 𝝈𝝈𝑇𝑇 = [
𝜎𝜎𝑥𝑥𝑥𝑥 𝜎𝜎𝑥𝑥𝑥𝑥 𝜎𝜎𝑥𝑥𝑥𝑥
𝜎𝜎𝑥𝑥𝑥𝑥 𝜎𝜎𝑥𝑥𝑥𝑥 𝜎𝜎𝑥𝑥𝑥𝑥
𝜎𝜎𝑥𝑥𝑥𝑥 𝜎𝜎𝑥𝑥𝑥𝑥 𝜎𝜎𝑥𝑥𝑥𝑥

]                    () 

𝜺𝜺 =

[
 
 
 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

1
2 (𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥 + 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥)

1
2 (𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥 + 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥)

1
2 (𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥 + 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

1
2 (𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥 + 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥)

1
2 (𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥 + 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥) 1

2 (𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥) 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥 ]

 
 
 
 
          () 

 

Mesh refinement generates more accurate results that are 
closer to the analytical ones, but there is a computational limit 
to be respected, which is analyzed through a convergence test, 
where the best results are sought with the minimum possible 
elements [9]. In the formulation involving the FEM applied to 
fracture mechanics, some parameters must be provided to the 
program, such as Young’s modulus (E), Poisson’s coefficient 
(𝜈𝜈), and the critical energy release rate ( Gc). After providing 
the input data, using concepts of variational calculus, it is 
possible to obtain the results, which are observed through a 
post-processing software. 

Simulation allows engineers to use basic principles of 
modeling, physics, mathematics, and computer science to 
evaluate design performance in different scenarios. Thus, for 
the development of Engineering, it is important to analyze 
solutions via software to ensure that the result obtained is 
adequate and that it meets the functional needs of a project 
[10]. 

1. Numerical modeling for FEniCS software 
a. Linear elasticity 

Numerical modeling is used for a linear elasticity problem 
in a plane strain state [9] shown in Fig. 1, based on the FEniCS 
library [11]. The problem consists of a three-dimensional plate 
200 mm long, 500 mm high and whit thick e = 10 mm 
subjected to a load. Acting field forces are disregarded and a 
plane strain state is defined. For the Young’s modulus of the 
material, 200 GPa was adopted and, for Poisson's coefficient, 
0.3. The problem has the following governing equations for a 
Ω domain.             

−∇ ∙ 𝝈𝝈 = 𝑻𝑻, ∀ 𝑦𝑦 = 0 in 𝜕𝜕𝛺𝛺                 (1) 

𝝈𝝈 = 𝜆𝜆 ∙ 𝑡𝑡𝑡𝑡(𝜺𝜺)𝑰𝑰 + 2𝜇𝜇𝜀𝜀                     (2) 
𝜀𝜀 =  12 (∇𝒖𝒖 + (∇𝒖𝒖)𝑇𝑇)                      (3) 

 
where T is the applied stress, represented by the ratio 

between the uniformly distributed load at the base of the bar 
and the thickness, Ⅰ is the three-dimensional identity matrix, 
and μ and λ are the Lamé constants, which depend on the 
Young’s modulus and the Poisson’s coefficient of the 
material. Considering the principle of virtual work, one must 
find values of u that satisfy the weak formulation [9]. 

∫ 𝝈𝝈(𝒖𝒖): 𝜀𝜀(𝒖𝒖) 𝑑𝑑𝑑𝑑 =𝛺𝛺 ∫ 𝑻𝑻 ∙ 𝒑𝒑 𝑑𝑑𝑑𝑑, ∀ 𝒖𝒖, 𝒑𝒑 ∈ 𝑉𝑉  𝛺𝛺      (4) 
where u and p are the trial and test functions, respectively, 

and V is the vector field containing them. In this example, 
second-degree Lagrange polynomials are defined for the 
interpolation between nodes. The vertical face is fixed, and the 
load F is uniformly applied in the negative y-direction. The 
mesh was built using a function from the FEniCS library, 
containing 48000 tetrahedral elements with 5 mm on each 
side. 

  
Fig. 1. Representation of geometry (a) and boundary conditions (b) 
 

 

b. Fracture Mechanics 
Numerical modeling for the fracture mechanics problem 

was proposed by [12], using models by [13], with 
contributions by [14]. It is considered an elasto-static body 
with a discontinuity, which occupies a domain Ω⊂ R2. The 
Dirichlet and Neumann boundary conditions [9] are imposed 
by ΓD  and ΓC. In the case of a discrete fracture mechanism, 
the crack is represented by a discontinuous surface ΓC. The 
variable that models crack propagation is ϕ∈[0,1]. When it 
assumes a null value, the material is intact, and when it 
assumes a unitary value, there is a complete fracture. The 
crack size is controlled by a variable ℓ, a length scale 
parameter inherent to the model and which depends on the 
developed mesh refinement [12-15], called characteristic 
length. The approximate crack surface energy is defined as: 

∫ 𝐺𝐺𝑐𝑐 𝑑𝑑𝛤𝛤𝑐𝑐 ≈𝛺𝛺 ∫ 𝐺𝐺𝑐𝑐 ( 1
2ℓ 𝜙𝜙

2 + ℓ
2 |∇𝜙𝜙|2) 𝑑𝑑 𝛺𝛺  𝛺𝛺            (5) 
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Adding the Bulk energy to Eq. (5) the total potential energy 
of the solid (Ψ) is obtained as: 

Ψ = ∫ ((1 − 𝜙𝜙2)𝜓𝜓(𝜀𝜀) + 𝐺𝐺𝑐𝑐 ( 1
2ℓ 𝜙𝜙2 + ℓ

2 |∇𝜙𝜙|2)) 𝑑𝑑 𝛺𝛺  𝛺𝛺  (6) 
where ψ(ε) is the strain energy density of the solid, in terms 
of the Lamé parameters and the strain tensor, represented in 
Eq. (2), whose mathematical expression is: 

𝜓𝜓(𝜀𝜀) = 1
2 𝜆𝜆(𝑡𝑡𝑡𝑡(𝜀𝜀))2 + 𝜇𝜇𝑡𝑡𝑡𝑡(𝜀𝜀2)                    (7) 

Applying Gauss's theorem in Eq. (7) the following field 
equations are obtained, with arbitrary values for the 
kinematic variables δu and δф. 

(1 − 𝜙𝜙2)∇ ∙ 𝝈𝝈 = 𝟎𝟎,  in 𝛺𝛺 
 𝐺𝐺𝑐𝑐 (1

ℓ − ℓ∆𝜙𝜙) − 2(1 − 𝜙𝜙)𝜓𝜓(𝜀𝜀) = 0               (8) 
 
The natural boundary conditions for a traction T are: 

(1 − 𝜙𝜙2)𝝈𝝈 ∙ 𝒏𝒏 = 𝑻𝑻, on 𝛤𝛤 
∇𝜙𝜙 ∙ 𝒏𝒏 = 0,  on 𝛤𝛤                         (9) 

where n is the normal vector to the surface Γ. With this, the 
constitutive equations and the boundary conditions are given. 
The procedure now consists of implementing the finite 
element method. The main objective is the resolution of the 
system of equations (8) with the boundary conditions 
expressed by Eqs. (9.1) and (9.2). However, it is necessary to 
use the finite element method, discretizing the continuous 
domain. Equation (8.2) is modified to: 

𝐺𝐺𝑐𝑐 (1
ℓ − ℓ∆𝜙𝜙) − 2(1 − 𝜙𝜙)𝐻𝐻+(𝜀𝜀) = 0            (10) 

where H+ is called the variable storage (or history) field, 
which changes with time, expressed mathematically as: 

𝐻𝐻+(𝜀𝜀) = max 𝜓𝜓+(𝜀𝜀(𝑡𝑡))                       (11) 
and ψ+ is the variable strain energy density of the solid, 
defined as: 

𝜓𝜓+(𝜀𝜀) = 1
4 𝐾𝐾(𝜀𝜀 + |𝜀𝜀|)2 + 𝜇𝜇(𝜀𝜀dev: 𝜀𝜀dev)          (12) 

where K is the Bulk modulus, which can be expressed in 
terms of the Young’s modulus and the Poisson’s coefficient 
[9]. Finite element modeling uses a weak, or variational, 
formulation that uses dimensional trial (𝒰𝒰, 𝒫𝒫) and test (ℒ, 𝒱𝒱) 
spaces, which contain the trial (u, 𝜙𝜙) and test (p, q) functions, 
respectively. A discrete space (𝒲𝒲) is also defined around the 
mesh that contains the phase field variable (ф) and the 
displacement field (u). All spaces have a dimension d. 

(𝒰𝒰, 𝒱𝒱) = {(𝒖𝒖, 𝒑𝒑) ∈ [𝐶𝐶0(𝛺𝛺)]𝑑𝑑: (𝒖𝒖, 𝒑𝒑) ∈ [𝒲𝒲(𝛺𝛺)]𝑑𝑑

⊆ [𝐻𝐻1(𝛺𝛺)]𝑑𝑑 
(𝒫𝒫, ℒ) = {(𝜙𝜙, 𝑞𝑞) ∈ [𝐶𝐶0(𝛺𝛺)]𝑑𝑑: (𝜙𝜙, 𝑞𝑞) ∈ [𝒲𝒲(𝛺𝛺)]𝑑𝑑 ⊆

[𝐻𝐻1(𝛺𝛺)]𝑑𝑑                    (13) 
 
In the reformulation of the system of constitutive equations, 
applying the Bubnov-Galerkin procedure, remote tractions 
and field forces are disregarded, making it: 

∫ [(1 − 𝜙𝜙)2𝝈𝝈(𝒖𝒖): 𝜀𝜀(𝒑𝒑)] 𝑑𝑑 𝛺𝛺 = 0 
𝛺𝛺

 

∫ [∇𝑞𝑞 ∙ ∇𝜙𝜙𝐺𝐺𝑐𝑐ℓ + 𝑞𝑞 (𝐺𝐺𝑐𝑐
ℓ + 2𝐻𝐻+) 𝜙𝜙 − 2𝐻𝐻+𝑞𝑞] 𝑑𝑑 𝛺𝛺 = 0  𝛺𝛺 (14) 

2. Numerical modeling for ANSYS ® software 
In order to validate the results obtained by FEniCS for the 

linear elasticity problem (Section II.1.a), a numerical model 
was implemented in the Ansys ® software, version 2022. The 
material used in the modeling has the same properties as in 

Section II.1.a. As it is a three-dimensional model, a load of 
0.1N/mm² ( Pressure type ) was applied to the lower face of 
an xz plane of the structural element in the vertical direction 
with a downward direction ( -y ). Opposite the load application 
plane, all nodes were restricted to translation, which 
represented a crimp. The mesh illustrated in Fig. 2 records the 
geometry containing 45125 nodes and 8000 cubic elements. 

 
Fig. 2. Mesh result obtained in ANSYS ® for linear elasticity problem 

III. RESULTS AND DISCUSSION 

A. FEniCS software validation 
With the help of ANSYS ®, a kind of FEniCS validation 

was carried out, solving the same linear elasticity problem  
and comparing the results. Fig. 3 shows the bar displacements 
obtained by ANSYS ®, and Fig. 4 exposes those obtained by 
FEniCS, both in the y direction. Note that there is a 
qualitative similarity regarding the vector field represented 
by the scale. The maximum supported stresses are found on 
the crimped face of the bar, opposite to the force application 
face, and, for both cases, a value of 0.1MPa was obtained. 
The maximum deformation obtained analytically is -
2.500⋅10-4 mm. The comparison between FEniCS and 
ANSYS ® for the linear elastic problem resulted in errors of 
less than 0.6%, as shown in Table I. Therefore, free open-
source software can be operated safely. 

 
Fig. 3. Result of the displacement field obtained in ANSYS ® for linear 

elasticity problem 
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Fig. 4. Result of the displacement field obtained in FEniCS for linear 

elasticity problem 

TABLE I.  COMPARISON BETWEEN ANSYS AND FENICS MAXIMUM 
DEFORMATION 

Ansys vs FEniCS comparison 
Method Value (mm) Relative Error a (%) 

Ansys ® -2.486⋅10-4 0.560 

FEniCS -2.487⋅10-4 0.520 

Analytical -2.500⋅10-4 - 
a. Relative to the analytical value 

B. Application of the phase field method using FEniCS 
1. Tensile test with simple pre-crack 
Elaborated by [15], the problem to be solved consists of a 
representation of a fracture mechanics test of a plate 
subjected to uniaxial tensile stress that has a pre-crack to 
simulate a pure fracture in Mode 1, as illustrated in Fig. 5. In 
order to reduce the computational time, small geometric 
proportions were considered, being L=0.5 mm. The code 
structure of this problem, implemented for this work, 
followed the tutorial developed by [12]. 

The mesh was built using the Gmsh preprocessor [16] 
and has 30546 triangular elements. The material has a 
modulus of elasticity E = 210GPa, a Poisson coefficient 𝑣𝑣 = 
0.3, and a critical energy release rate Gc = 2.7MPa mm. Thus, 
the Lamé parameters λ =121153.8MPa and μ = 80769.2MPa 
were obtained. A value of 0.011mm was also used for the 
characteristic length ℓ. 

 
 

Fig. 5. Tensile stress problem in a pre-cracked plate under uniaxial force, 
adapted from [12,13] 

     The base of the mesh (y=0) is fixed, and a remote offset 
of 0.007mm is used as the first iteration. To help with the 
code, the value of the phase field variable ϕ for every pre-
crack was defined as 1. During the execution of the code, the 
necessary number of iterations for convergence of the 
solution during a given step is provided. The main results of 
the analysis are shown in Fig. 6 and Fig. 7. Visualization of 
crack propagation is easily observed using the post-processor 
software Paraview [17]. Code execution stops at a value 
determined as a maximum (t=1.0), at which there has already 
been catastrophic failure of the material. A change was made 
regarding the test loading rate, for reasons of computational 
power. The red region represents the complete failure of the 
material, and the blue shows the initial state (intact). 

 

 
Fig. 6. Force-displacement curve for traction problem (a) 

 

 
Fig. 7. Displacement crack propagation u=5,7x10-3 mm 

 
     The results obtained are satisfactory and close to the 

literature, as shown in Table II [12,13,15,18], although 
changes have been made to the code and the mesh used has 
been less refined. 

TABLE II.  COMPARISON BETWEEN THIS PAPER AND LITERATURE OF 
TENSILE TEST’S PEAK VALUES  

Ansys vs FEniCS comparison 

Reference Peak Value (kN) Relative Error a (%) 

This Paper 0.6880 - 

[12] 0.7162 3.93 

[13] (Isotropic) 0.6807 1.07 

[15] (ℓ=0.015) 0.6842 0.555 

[18] (ℓ=0.011) 0.6476 6,23 
a. Relative to literature values 
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2. Three-point bending test 

The following problem consists of a three-point bending 
test. More details can be seen in [15]. The geometry and 
boundary conditions are given in Fig. 8. The mesh was built 
using the Gmsh preprocessor and has 72768 triangular 
elements, in which a refinement was performed in the center, 
where the crack is expected to propagate [18]. The material 
has a modulus of elasticity E = 20.8GPa, a Poisson coefficient 
𝑣𝑣 = 0.3 and a critical energy release rate Gc = 0.54MPa mm. 
Thus, the Lamé parameters λ =12000MPa and μ = 8000MPa 
were obtained. A value of 0.03mm was also used for the 
characteristic length ℓ, similar to that used in the literature 
[13,15]. 

We start with the same numerical modeling for the 
traction problem but now with a point force. The point (0,0) 
has zero nodal displacements in x and y. At the point (8,0), 
the shift is restricted to y only. The force is applied punctually 
at (4,2). An initial displacement of 0.005mm was defined at 
the top of the geometry, changing to 0.00001mm when 
approaching the failure and returning to 0.005mm after the 
failure to follow the crack in greater detail. Fig. 9 shows the 
vector field of the phase field variable as a ϕ function of the 
load level, with representation like the previous problem. The 
force-displacement curve is shown in Fig. 10. The results 
obtained are satisfactory and close to the literature, as shown 
in Table III, even with a variation of displacements different 
from that used by the authors to reduce computational costs 
[13,15,18].  

  
Fig. 8. Geometry and boundary conditions for three-point bending 

test, adapted from [13] 
 
 

 
Fig. 9. Phase field for displacements u=0.04 mm (a), u=0.045 mm (b), 

u=0.056 mm (c), u=0.071 mm (d) 

 
Fig. 10. Force-displacement curve for three-point bending test 

 

TABLE III.  COMPARISON BETWEEN THIS PAPER AND LITERATURE OF 
THREE-POINT BENDING TEST PEAK VALUES  

Ansys vs FEniCS comparison 

Reference Peak Value (kN) Relative Error a (%) 

This Paper 0,0365 - 

[13] (Hybrid) 0,0417 12,47 

[15] 0,0385 5,19 

[18] 0,0412 11,4 
a. Relative to literature values 

IV. CONCLUSIONS 
     This work proposes the implementation of classic 

linear elastic fracture mechanics problems based on a tutorial 
and examples found in the literature, with the help of Gmsh 
and Paraview. The comparison between the FeniCS and 
ANSYS software for the elastic linear problem obtained a 
satisfactory result, with an error, on average, of less than 
0.6%. The traction problem presented an error, on average, of 
approximately 2.9% for the peak value when compared to the 
literature. The three-point bending problem, on the other hand, 
presented an error, on average, of approximately 9.7% for the 
peak value in comparison with the same source. Thus, it is 
concluded that FEniCS can be used for academic purposes 
both for solving classic problems of Strength of Materials and 
MFLE. Furthermore, this tool, together with Gmsh and 
Paraview, provides users with advanced approaches to 
learning engineering problem-solving. 
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