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Locaidocyemoves 3adava onmumMasbHo2o OUIHIO8AHHA NMHITHUT GYHKUIOHAAIE 610 HEGIJOMUT 3Ha-
YeHD NEPLOUUHO KOPEALOBAHOT CMOTACTNUNHOT NOCAIIOEHOCTNG 3G CNOCMEPEHCEHHAMU TOCAIA08HOCTNI 13
NPONYULEHUMU 3HAYEHHAMY. FHATIEHO GOPMYAU OAA 0OMUCAEHHA 3HA%CHD CEPEOHBOKBAPAMUYHUT NO-
TUBOK Ma CNEKMPAALHUL TAPAKMEPUCTIUK ONMUMAAOHUL OUIHOK PYHKUIOHAAIE Y 6unadky, KOAU cne-
KMPANHT WIABHOCTNT NOCATdosHOCMET MOouHO 8idomi. OMPUMAHO GoPMYAU OAA BUSHAYEHHA HATMEHWUL
CNPUAMAUBUL CNEKMPAADLHUTL ULLADHOCTET M MIHIMAKCHUL CNEKMPIAYHUT TAPAKMEPUCNUK ONMU-
MANOHUL ATHIGHULT 0UTHOK PYHKUIOHANIE Y BUNGOKY CNEKMPAALHOT HEGUSHAUEHOCTIE, KOAU CNEKMPAAL-
HI WIABHOCTNE NOCAId08HOCTET TMOYHO He 6100ML, aAE 3G0AHO MHONCUHY CONYCTIUMUL CTEKMPASOHUL
ULADHOCTNEN.

Ka10106i cr06a: nepioduuio Kopesvosana Cmoracmusha nocaido6HICMb, MinimakcHa (pobacmna) ouir-
K@, HAUMEHUL CPUATNAUBE CNEKMPAALHA ULADHICTIL, MINIMAKCHT CNEKMPAAbHL TAPAKMEPUCTIUKY.

The problem of the mean-square optimal estimation of the linear functionals which depend on the
unknown values of a periodically correlated stochastic sequence from observations of the sequence with
missings is considered. Formulas for calculation the mean-square error and the spectral characteri-
stic of the optimal estimate of the functionals are proposed in the case where spectral densities of the
sequences are exactly known. Formulas that determine the least favorable spectral densities and the mi-
nimax spectral characteristics are proposed in the case of spectral uncertainty, when spectral densities
of sequences are not exactly known but the class of admissible spectral densities is given.

Key Words: periodically correlated stochastic sequence, minimax (robust) estimate, least favorable spectral
density, minimaz spectral characteristics.

Introduction with stationary processes. W. A. Gardner [4],
W. A. Gardner, A. Napolitano and L. Paura 5]
W. R. Bennett in 1958 [1] started to explore presented bibliography of works in which properti-
cyclostationarity as a phenomenon and property es and applications of cyclostationary processes
of the process, which describes signals in were studied. Recent developments and applicati-
channels of communication. Studying the stati- ons of cyc]ostationary signal analysis are revi-
stical characteristics of information transmissi- ewed in the papers by A. Napolitano [28], [29]. In
on, he calls the group of telegraph signals the other sources cyclostationary processes are called
cyclostationary process, that is the process whose periodically stationary, periodically nonstationary,
group of statistics changes periodically with time. periodically correlated. We will use the term peri-
W. A. Gardner and L. E. Franks [3] highlights the odically correlated processes.
greatest similarity of cyclostationary processes,
which are a subclass of nonstationary processes, E. G. Gladyshev in 1961 [6] was the first who
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published the analysis of spectral properties and
representation of periodically correlated sequences
based on its connection with vector stationary
sequences. He formulated the necessary and suffi-
cient conditions for determining of periodically
correlated sequence in terms of the correlation
function. A. Makagon carried in his works [17], [18]
detailed spectral analysis of periodically correlated
sequences. Main ideas of the research of periodi-
cally correlated sequences are outlined in the book
by H. L. Hurd and A. Miamee [12].

The problem of estimation of unknown values
of random processes is one of the very important
and topical subsections of the theory of stochastic
processes. Processes that are observed can be
completely defined by its characteristics (correlati-
on function, spectral density, canonical decomposi-
tion) or their characteristics can be defined only
by the set of admissible values of characteri-
stics. The linear extrapolation and interpolation
problems for stationary stochastic processes under
the condition that spectral densities are known
exactly were first introduced by A. N. Kolmogorov
[15]. Solutions of the extrapolation and filtering
problems for stationary processes and sequences
with rational spectral densities were offered by
N. Wiener [34] and A. M. Yaglom [35]. Predicti-
on problems for vector-valued stationary processes
were investigated by Yu. A. Rozanov [32] and
E. J. Hannan [11].

Since processes often accompanied by undesi-
rable noise it is naturally to assume that the exact
value of spectral density is unknown and the model
of process is given by a set of restrictions on
spectral density. K. S. Vastola and H. V. Poor
[33] showed for certain classes of spectral densities
that the Wiener filter is very sensitive to minor
changes of spectral model unlike the robust Wi-
ener filter. That is the filter is the least sensitive to
the worst case of uncertainty. Thus, it is reasonable
to use the minimax (robust) estimation method,
which allows to define the optimal estimate for
all densities from a certain class of the admissible
spectral densities simultaneously. Ulf Grenander
[10] was the first who proposed the minimax
approach to the extrapolation problem for stati-
onary processes. A survey of results in minimax-
robust methods of data processing can be found in
the paper by S. A. Kassam and H. V. Poor [14].
Formulation and investigation of the problems of
extrapolation and interpolation of linear functi-
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onals which depend on the unknown values of
stationary sequences from observations with and
without noise are presented by M. P. Moklyachuk
in the paper [23]. Similar problems of optimal esti-
mation of vector-valued stationary sequences and
processes were examined by M. P. Moklyachuk
and O. Yu. Masyutka [24], by O. Yu. Masyutka,
I. I. Golichenko and M. P. Moklyachuk [22].

In their book M. M. Luz and
M. P. Moklyachuk [16] investigated the minimax
estimation problems for linear functionals whi-
ch depends on unobserved values of stochastic
sequences with stationary increments. In their
book I. I. Golichenko and M. P. Moklyachuk
[27] presented results of investigation of the
interpolation, extrapolation and filtering problems
for linear functionals from periodically correlated
stochastic sequences and processes.

The interpolation and extrapolation problems
of linear functionals from periodically correlated
stochastic sequences with missing observati-
ons were investigated by I. I. Golichenko and
M. P. Moklyachuk in [7], [9], by I I. Goli-
chenko, O. Yu. Masyutka and M. P. Moklyachuk
in [8]. The results of the study of the extrapolati-
on, interpolation and filtering problems for li-
near functionals constructed from unobserved
values of multidimensional stochastic sequences
and processes are presented in the papers by
O. Yu. Masyutka, M. P. Moklyachuk and M. I. Si-
dei [19]-[21], [26]. We also refer to the book by
M. P. Moklyachuk, O. Yu. Masyutka and I. I. Goli-
chenko [25] where results of the investigation of
the problem of mean square optimal estimation
(forecasting, interpolation, and filtering) of linear
functionals constructed from unobserved values of
periodically correlated isotropic random fields are
described.

In this paper we study the problem of opti-
mal linear estimation of the functional A{ =

> a(j){(—j), which depends on the unknown

J€Zs

values of a periodically correlated stochastic

sequence ((—j),j € Zs = {T + 1,T +
S

2,... }\ U {MlT—l-l, ey (Ml—i-NZ)T} Estimati-
i=1

on is based on observations of the sequence ((j) +

0(j) at points j € {...,—(T+2),—(T+1)}\S,S =

i=1

an uncorrelated with ((j) periodically correlated
stochastic sequence. Formulas for calculation the
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mean square error and the spectral characteri-
stic of the optimal estimate of the functional A(
are proposed in the case where spectral densities
are exactly known. Formulas that determine the
least favorable spectral densities and the minimax
spectral characteristic are proposed for the given
class of admissible spectral densities.

1 Periodically correlated and multidi-
mensional stationary sequences

The term periodically correlated process was
introduced by E. G. Gladyshev [6] while
W. R. Bennett [1] called random and periodic
processes cyclostationary process.

Periodically  correlated  sequences  are
stochastic sequences that have periodic structure
(see, for example, the book by H. L. Hurd and
A. Miamee [12]).

Definition 1.1. A complex valued stochastic
sequence ((n),n € Z with zero mean, E((n) = 0,
and finite variance, E|((n)]? < +oo, is called
cyclostationary or periodically correlated (PC) wi-
th period T' (T-PC) if for every n,m € Z

EC(n+T)((m+T)=R(n+T,m+T)= R(n,m)
(1)

and there are no smaller values of T' > 0 for which

(1) holds true.

Definition 1.2. A complex valued T-variate
stochastic sequence £(n) = {fy(n)}gzl ,n € Z
with zero mean, E¢,(n) = 0,v = 1,...,T, and
E||€(n)||? < oo is called stationary if for all n,m €
Z and v,u € {1,...,T}

ES(n)€u(m) = Ryp(n,m) = Ryu(n —m).

If this is the case, we denote R(n) =
{Ryu(n)}z u—1 and call it the covariance matriz

—

of T-variate stochastic sequence £(n).

Proposition 1.1. (E. G. Gladyshev [6]). A
stochastic sequence ((n) is PC with period T if
and only if there exists a T-variate stationary
sequence £(n) = {fy(n)}le such that ((n) has
the representation

T
¢(n) = Ze%m"/Tﬁy(n), n € Z. (2)
v=1

—

The sequence &(n) is called generating sequence of
the sequence ((n).
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Proposition 1.2. (E. G. Gladyshev [6]). A complex
valued stochastic sequence ((n),n € Z with zero
mean and finite variance is PC with period T if

and only if the T-variate blocked sequence ((n) of
the form

—

C(n)]p =C(nT +p), neZ,p=1,....,T (3)

is stationary.

. - T
We will denote by fS()) = { fﬁu()\)} 1

v,p=
the matrix valued spectral density function
of the T-variate stationary sequence ((n) =
(¢i(n),...,¢r(n)) " arising from the T-blocking

(3) of a univariate T-PC sequence ((n).

2 The classical projection method of fi-
Itering

Let ¢(j) and 6(j) be uncorrelated T-PC stochastic
sequences. Consider the problem of optimal linear
estimation of the functional

AC =" al§)¢(—),

J€Zs

that depends on the unknown values of T-PC
stochastic sequence ((—j), j € Zs = {T + 1,T +
S
2, N\NU{M T+, (M + N;)- T}, (M; >
i=1

1,M; > M;—1 + Nij_1,i = 1,...s). Estimation is
based on observations of the sequence ((j) + 0(j)
at points j € {...,—(T +2),—(T + 1}\S,S =
S

U{-M;+N;)-T,...,—M;-T —1}. Note that in
i=1

every interval of known and unknown observations
of sequence ((7)+6(j) the amount of observations
is a multiple of the period T.

Let assume that the coefficients a(j),7 € Zs
which determine the functional A satisfy condi-

tion
> la()] <

JE€Zs

(4)
and are of the form

a(j) = a ((j— M T> i H T> _

a(v + JT) = a(j)e*™ /T, (5)

where v = 1,...,T,j = [%} > 1; v =T and
J=A—-1ij=T-\X€Z, or

a(j) = a(T-\) = a(T+(A-1)T) = a(A—1)?™A-DT/T,



Bicnux Kuiscvkoz2o nayionanrvbro2o yrisepcumemy
iment Tapaca Ilesuwernra
Cepia: Pizuro-mamemamusri HAYKY

Under the condition (4) the functional A has the
finite second moment.

Using Proposition 1.2, the linear functional
A( can be written as follows

AC="a(j)¢(—)) =

J€Zs
T s ~
> a() Y T (v + 1)) =
5625 v=1
Z Z 27r1]1//T (_3) —
]GZ‘ v=1
> at()(=) = AC
i€z
where
Z,={1,2,3,. . N\ J{M;, ..., M; + N; — 1},
i=1
a" () = (aG)e- - sar(3))
a,(j) = a(j)e 2’”7"/T v=1,...,T, (6)
G) = {C,,( )} » is T-variate stationary

sequence, obtained by the T-blocking (3) of uni-
variate T-PC sequence ¢(—j), j € Zs.

Let C(j) and 6(j) be uncorrelated T-variate
stationary stochastic sequences with the spectral

(B}, |

)

density matrices fg()\) = and

o ={mw}

problem of optimal linear estimation of the functi-

onal
AC =Y a (5)¢(—)),

j€Zs

, respectively. Consider the

that depends on the unknown values of sequence
((=j),J € Zs, based on observations of the
sequence C(7)+0(j) at points j € {..., =2, —=1}\ S,

S= U{ (M; + N;) +1,...,—M;}.

Let the spectral densities fg()\) and fé(A)
satisfy the minimality condition

— —

[ oo+ £onar< e (@)
Condition (7) is necessary and sufficient in order
that the error;free ﬁlpering of unknown values of
the sequence ((j) + 0(j) is impossible [32].
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Define as H = Ly(Q,F,P) the Hilbert
space generated by random variables { with zero
mathematical expectation, ¢ = 0, finite vari-
ation, E|(|*> < oo, and inner product ((,6) =
E(O. Consider values (,(j),v = 1,....T;j € Z
and 0,(j),v = 1,..,T;j € Z as elements of H.
Denote by H* [C + 9] the closed linear subspace
in the Hilbert space H generated by elements
{GG)+6,0),5€{..,—2,—-1}\S,v=1,...,T}

Denote by La(f) the Hilbert space of vector
valued functions b(\) = {b,(A )}V , that are
integrable with respect to a measure with the

density f(A )_{fuu( )}yp, 1

/ BT FOBA) A =

| S b\l

T yu=1

b (N)d\ < +o0.

Denote by L5(f) the subspace in La(f)
generated by functions

z A

J 61/7(S _{6’/“}# 1>

T, 5€{,—2,—1}\ S,

v=1,...
where 6, = 1,6,, = 0 for v # p.

Every linear estimate A5 of the functionzil AQ?
from observations of the sequence ¢ () + 6(5) at
points j € {...,—2,—1} \ S has the form

BT (e (Z8(dN) + 20

~ T

/ S h(eM)(Z5(AN) + ZIaN)), (8)

().

v=1

AC = (dN)) =

v=1

where Zg(A) = and Zg(A) =

- T
Z9(A

{ V( )}IJZI s s .

of the sequences ((j) and 6(j), and h(e
) T

{h (e},
estimate AC. The function h(e™) € LS(fC + fe)

The mean Square error A(h fC fe) of the esti-

are orthogonal random measures

z‘>\) —

is the spectral characteristic of the

mate AC is calculated by the formula

AR €, 17) = B|AC - AL =

. % ' A (e
1 )
v [T RN

M)} e [A(eM) - E(ew)} A+
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A = Y aG)e

j€Z,

The spectral characteristic E( f@?, fg) of the opti-
mal linear estimate of A{ minimizes the mean
square error

— — — — —

ACFS, 17y = AG(FS, 10); 14, £7) =

I . |2
Comin AR fS f0) = mAinE‘Ag—Aj .
heLy(f<+£9) AC
(10)

With the help of the Hilbert space projection
method proposed by A. N. Kolmogorov [15] we can
find a solution of the optimization problem (10).

The optimal linear estimate Af is a projection of
the functional AC on the subspace H*[( + 6]. The
projection is characterized by following conditions

1) ACe H*[ + 4],

2) AC— AC L H*[C + 4.

The condition 2) gives us the possibility to
derive the formula for spectral characteristic of the
estimate

r—
k,‘
I
—~
=
+
]
N}
~—
.
|
|

where

C(ei)‘) = Z E'(n)eij)‘ + Z E(W)Gij)\a
=0

jes

where ¢(j),j € S U {0,1,2,...}, are unknown
vectors of coefficients.
Denote by U = SU{0,1,2,...}.
Condition 1) is satisfied if the system of
equalities
™ — jnd > .
/ RS e ™ d = 0me U (12)
—Tr
holds true.

The last equalities (12) provide the following
relations

1

Z 5TG)£ ' fg()‘)(fE(A)-Ffé()\))_1e—i)‘(3+m)d)\_

G€Zs
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m e U. (13)

Denote the Fourier coefficients of the matrix
functions (fS(\) + ff(\)~' and fSON)(fC(N) +
FEN)) 7 as

Bm.j) = 5- /7r (FEO) + FI) e Am=D gy,

or .
meU,jeU,

R(m,j) = % _7; FEONSEN () e gy,
meU,je Z.

Using the notations above we can rewrite
relation (13) in the form of the system of equations

> R(m,j)a(j) =Y B(m,j)ei)+Y_ B(m,j)e()),
j=0

jeZs jes
m € U. (14)
Denote by
a'=|(07,..,0",a"(1),..,a"(M; — 1),
——
Zf:l Ni+1

—

0',...,0",...,a" (My+ N,),a@" (My+ Ny + 1), ...
N——
N1

a vector that has zero vectors 0' = (0,...,0),
——
T

vectors @(1),...,a(M; — 1),...,d(Ms + Ns), ..., are
constructed from coefficients of the functional A(
by formula (6).
Denote by ¢’ =
unknown coeflicients.
The last system of equations (14) can be rewri-
tten in the matrix form

(€7 (m))mev a vector of the

Ra = Bc.

The linear operator B is defined by the matrix

Bs,s Bs,sfl Bs,l Bs,n
Bs—l,s Bs—l,s—l Bs—l,l Bs—l,n
B = . . . . ,
By s Bis1 B By,
Bn,s Bn,s—l Bn,l Bn,n

34
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constructed with the help of the block-matrices

By = { Bua( N-)}*M’ i
L = P m=—(M+N;)+1 == (My+Ni)+1’
lLbk=1,..s,
B, ={B ~'}_Ml o 1=1
Ln = Bin(m, j) e g0 L= b S
B —{B (m~')}°o M I=1,..5
n,. — n,l yJ m:O}Z*(Ml+Nl)+1’ =1,...,s8,
~ oo
Bn,n = {Bn’n(m’j)}mzog‘io’

Bii(m,j) = B(m,j),Vl,k =€ {1,...,s} U {n}.

The operator R defined by the
corresponding matrix, which is constructed in the
same manner as matrix B.

The unknown coefficients é(m),m € U are
determined from the equation

linear is

¢ =B 'Ra4, (15)

where the m-th component of the vector € is the
m-th component of vector B"'Ra:

&(m) = (B™'Ra)(m), m € U. (16)

We will suppose that the operator B has the
inverse matrix.
The mean-square error of the optimal estimate

AC is calculated by the formula (9) and is of the
form

Ak, £ 9 = B|AC = AP =
S a0y [ O + )

(17)

where (a,b) denotes the scalar product, D is
defined by the corresponding matrix, which is
constructed in the same manner as matrix B, with
elements

Dn.3) = 5 [ FFNEE) + £700)

x fFI(N)e =g\ m, T e U.
The following statement holds true.

2023, 2

35

Bulletin of Taras Shevchenko
National University of Kyiv
Series: Physics & Mathematics

Theorem 2.1. Let ((j) and 6(j) be uncorrelated
T-PC stochastic sequences with the spectral density
matrices fC(A\) and fO(\) of T-variate stationary
sequences (| (j) and 6(7), respectively. Assume that
SN and fO(N\) satisfy the minimality condition
(7). Assume that condition (4) is satisfied and
operator B is invertible. The spectral characteri-
stic E(fc, f%) and the mean square error A(f<, f%)
of the optimal linear estimate of the functional Ag?
based on observations of the sequence 5(3)4—5(}) at
points j € {ee, =13\ S, are calculated by formulas
(11) and (17).

Consider the mean-square estimation problem

of functional AC = Y a(5)¢(—j), Zs = {T +
JE€Zs

LT+ 2,..} \{MT + 1,...,(M + N)T} based
on observations of the sequence ((j) + 0(j) at
points j € {.,—(T +2),—(T + 1)} \ {—(M +
N)T,...,—MT — 1}. Using Proposition 1.2, the li-
near functional A{ can be written as follows

AC =Y a(i)¢(=)

J€Zs

> d (=) = AC

G€Zs

where

Zs={1,2,3,...,\{M,...,M + N —1}.

The estimate Ag of functional AE from

— ~ — ~

observations of sequence ((j) + 0(j) at points
je {13\ {=(M+ N)+1,...,— M} is defined
by spectral characteristic i_i( 1<, %) (see formula
(8)). The spectral characteristic is calculated by
the following formula

() = (AT ) - €T () x
> =~ -1
< [F+] L as)

A -M S N
where C(e') = > aAG)e 43 &g)e
j=—(M+N)+1 J=0

unknown coefficients ¢(j),57 € {—(M + N) +
1,...—M}U{0,1,...} are calculated by formula

—

¢ =B 'Ra.
Linear operators B, R are defined by compound
matrices, for example

o

Bi1
Bn,s

Bs,n
Bn,n
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is constructed with the help of the block-matrices
B1.1, Bsn, Bp s, B with the elements

B Biim )y M
L= { 1’1(m’j)}m:—(M+N)—13=—(M+N)—1’

By = {Bs,n(mJ)};f_(MJrN)_l}?io’

_ S M
B?’l,S - {Bn7s(m7j)}m:();:*(M+N)fl’
Bn,n - {Bn,n(maj)}mzo']eio'

The vector

g = (07,..,0",a"(1),....,a" (M —1),
N——’
N+1
07,...,00,@ (M +N),a"(M+N+1),...
N

is a vector with vectors d@(1),...,a(M —1),a(M +
N), ..., constructed from coefficients of the functi-
onal A¢ by formula (6).

The mean square error A(f€, fg) is calculated
by the formula

—

A(f¢, f%) = (D4, &) + (BE, &),

—

(19)

where linear operator D is defined by the
corresponding matrix, which is constructed in the
same manner as matrix B above.

The following corollary from the theorem 2.1
holds true.

Corollary 2.1. Let ((j) and 6(j) be uncorrelated
T-PC stochastic sequences With the spectral
density matrices fS(\) and f7(\) of T-variate
stationary sequences E (}) and 5(5), respecti-
vely. Assume that fS()\) and f7()\) satisfy the
minimality condition (7). Assume that condi-
tion (4) is satisfied and operator B is inverti-
ble. The spectral characteristic ﬁ( f<, %) and the
mean square error A(f¢, f%) of the optimal li-
near estimate of the functional Af based on
observations of the sequence (| () + 5(3) at poi-
nts j € {o, =1} \ {=(M + N) +1,...,—M}, are
calculated by formulas (18) and (19).

Consider the mean-square estimation problem
of functional A¢ = Y a(j){(—7j), Zs = {T +
JE€EZs

2023, 2
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LT+2, 3\ {MT +1,..,MT + T} based on
observations of the sequence ((j) + 6(j) at poi-
nts j € {..,—(T +2),—(T+ 1)} \ {-(MT +
T),...,—(MT +1)}. Using Proposition 1.2, the li-
near functional A( can be written as follows

AC =" a(i)C(=5) = Y a (G)¢(—))

JE€Zs 3625

~ =

(7)¢(

= A¢,

where

Ze=1{1,2,3,..., \{M}.

The estimate A§' of functional Af from
observations of sequence ((j) + 6(j) at points
j € {..=1} \ {-M} is defined by spectral

characteristic h( fC fe) The spectral characteri-
stic is calculated by the following formula

TS A7) = (AT ) = 0T () x
> =~ -1
< |[F+ ] e

'L])\

-}

where C/(e™) (—M)e MA 4 Z c(j)

unknown coefficients ¢(j),j € {— M} U {O 1,.
are calculated by formula

—

C =

B 'Ra.

Linear operators B, R are defined by compound
matrices, for example

o

is constructed with the help of the block-matrices
B_y—ms By Bn,—wm, Bpon with the elements

B yv-vm By
Bn,—M Bn,n

B_m,-m = B(-M,—-M),
B—M,n = {B—Mn }
By -y =A{Bn—m(m,—M)}, m

Bnn = {Bn n(m, J)}

The vector

=0,1,...

)

OO
m=0 ]—0

=T

il = (6T,6T,5J(1), wnd (M —1),07,

@ (M + 1), (M +2),...)

is a vector with vectors a@(1),...,a(M —1),a(M +
1), ..., constructed from coefficients of the functi-
onal A¢ by formula (6).
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The mean square error A( fg, f(;) is calculated
by the formula

—

A(f¢, f) = (D&, &) + (BE, ),

—

(21)

where linear operator D is defined by the
corresponding matrix, which is constructed in the
same manner as matrix B above.

The next corollary from the theorem 2.1 holds
true.

Corollary 2.2. Let ((j) and 6(j) be uncorrelated
T-PC stochastic sequences With the spectral
density matrices f<(\) and f7(\) of T-variate
stationary sequences f (}) and 5(;), respectively.
Assume that f<()\) and fY(\) satisfy the mini-
mality condition (7). Assume that condition (4) is
satisfied and operator B is invertible. The spectral
characteristic ﬁ( f¢, %) and the mean square

error A(f¢, %) of the optimal linear estimate of
the functiogal Ag based on observations of the

sequence C(j)+0(j) at points j € {..., —1}\{—M?},
are calculated by formulas (20) and (21).

The filtering problem of linear functional for
the case with factorization of density matrices

fg()\) and fg()\) of T-variate stationary sequences

~ U~

((7) and 6(j) is considered in the article [2].

3 Minimax (robust) method of filtering
problem

Let f(A) and g(A) be the spectral density matrices
of T-variate stationary sequences (| (j) and g(j),
obtained by T-blocking (3) of T-PC sequences ((j)
and 6(7), respectively.

Formulas (11) and (17), (18) and (19), (20)
and (21) may be applied for finding the spectral
characteristic and the mean square error of the
optimal linear estimate of the functional Af only
under the condition that the spectral density
matrices f(\) and g(\) are exactly known. If the
density matrices are not known exactly while a
set D = Dy x D, of possible spectral densities is
given, the minimax (robust) approach to estimati-
on of functionals from unknown values of stati-
onary sequences is reasonable. In this case we fi-
nd the estimate which minimizes the mean square
error for all spectral densities from the given set
simultaneously.
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Definition 3.1. For a given class of pairs of
spectral densities D = Dy x D, the spectral densi-
ty matrices fY(\) € Dy, g°()\) € D, are called the
least favorable in D for the optimal linear esti-
mation of the functional Af if

A(f°, 9% = AR, 6°); 12, °)

max A(h ,9): [ 9).
(ax A(h(f,9); f 9)
Definition 3.2. For a given class of pairs of

spectral densities D D; x D, the spectral

characteristic h%()\) of the optimal linear estimate
of the functional A( is called minimax (robust) if

R\ eHp= () Li(f+9),
(f.9)eD

min max A(i_i; fy9) = max A(ﬁo;f,g).
heHp (f,.9)€D (f.9)€D

Taking into consideration these definitions
and the obtained relations we can verify that the

following lemma holds true.

Lemma 3.1. The spectral density matrices
fO°(\) € Dy, ¢°(\) € Dy, that satisfy the mini-
mality condition (7), are the least favorable in the
class D for the optimal linear estimation of Af , if
the Fourier coefficients of the matrix functions

(P +°0N7 PPN+

FPFON) +° )"
define matrices B%, R?, DY, that determine a
solution of the constrained optimization problem
max ((Ra, B7'R&)) + (D4, a)) =
(f,g)eD(< )+ )

R, (BY)'R"a)) + (D&, &). (22)

The minimax spectral characteristic RO
R(f0,4°) is given by (11), if A(f°,¢°) € Hp.

The least favorable spectral densities fO(\) €
D¢, ¢°(\) € D, and the minimax spectral
characteristic B = E(fo,go) form a saddle poi-
nt of the function A(h; f,g) on the set Hp x D.
The saddle point inequalities

AR f,9) < AR 12,9°) < Ah; 0, 6°),

Vh € Hp,Yf € Dy, Yg € D,

hold true when k0 = H(fo,go), h(f°, ¢%) € Hp

and (f°,¢°) is a solution of the constrained opti-
mization problem

A (ﬁ(fo,go); f; g) — sup, (f,g) € Dy x Dy.
(23)
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A(f2,¢%); frg) s

The linear functional
calculated by the formula

AR, %) f.g9) =

1 T (AT(GM)QO()\) + (CO(ei)\))T) >

-~/
X(F) + 6" )LL) + 62 ()
x (AT(EN)g° ) + (COe)T) i+
s [ (ATENP0) - (e)T) %
<(FOO) +g" () g (O (N) + ¢ (V) 7 x

% (AT(eM)1°0) = (€(e)T)

where C0(e) ZjeUEO(j)eij)‘,
to the formula (16) column vectors ¢ °(j)
(B°)~'R%&)(j).

The constrained optimization problem (23)

is equivalent to the unconstrained optimization
problem, [30]:

),

according

AD(fv g) = _A(ﬁ(f()?go); fa g)+

5((£.9)|Dy x Dy) —inf, (24)
where 6((f,9)|D¢ x Dg) is the indicator functi-
on of the set D = Dy x Dy. A solution of the
problem (24) is characterized by the condition
0 € dAD(f°, ¢°), where DA (fY, ¢°) is the subdi-
fferential of the convex functional Ap(f, g) at poi-
nt (f°, %), [31].

The form of the functional A(ﬁ(fo,go);f,g)
admits finding the derivatives and differentials of
the functional in the space L x Lj. Therefore
the complexity of the optimization problem (24)
is determined by the complexity of calculati-
ng of subdifferentials of the indicator functions
3((f,9)|Ds x Dgy) of the sets Dy x Dy, [13].

The form of the functional A(R(f°,¢%); f,g)
is convenient for application the Lagrange method
of indefinite multipliers for finding solution to
the problem (24). Using the Lagrange method of
indefinite multipliers and the form of subdifferenti-
als of the indicator functions we derived relations
that determine the least favourable spectral densi-
ties in some classes of spectral densities (see books

[27], |24]).
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4 The least favorable spectral densities in
the class D = Dy x Dq5

Let f(A) and g(A) be the spectral density matrices
of T-variate stationary sequences ((j) and (),
obtained by T-blocking (3) of T-PC sequences ((j)
and 6(j), respectively.

Consider the problem of minimax estimation
of the functional Af based on observations of the

— ~. — ~

sequence ((7)+0(j) at points j € {iery =2, —1}\5,
S = U{-(M; + N;) + 1,...,—M;}, under the
=1

condition that the spectral density matrices f(\)
and g(\) belong to the class D = Dy x D145, where

Dy ={10 |55 [ svar=p}

Dl = {o |5 [ i) - '] ax < 6,
D} = {f(A) ‘ o [ )ar =ik = 1,...,T},
Dt = a0 55 [ 1Moo - ab)]an < i

k=1,..,T},

where g'(\) = {g,il()\)}ZJZI is known positive
definite Hermitian matrix, 0, g, p, pp, k = 1, ..., T,
are known and fixed numbers.

The classes Dé,z’ = 1,2, describe densities wi-
th the moment restrictions. The classes Di 50 =
1,2, describe the ”é—neighborhood” models in the
space L of a fixed bounded spectral density g'()).

With the help of the method of Lagrange
multipliers we can find that solution (f°()), g°(\))
of the constrained optimization problem (23) sati-
sty the following relations for these sets of admi-
ssible spectral densities.

For the pair D} x D% 5 we have relations

(9" N A(eM)+CO(e)) (9" () T (A(e™)+C0(e™)

(PP -CTE) ()T (A(e
B + P, (26)
o [T = onfan=sen

where a, 8 are Lagrange multipliers, [¢(\)] < 1
and ¢(\) = sign (Tr(g°(A) — g'(V))) if Tr(g”(A) —
g'(\) #0.
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For the pair D x D%é we have relations

(6" () A(e™) + COe)) x
x (9"(\) T (A(e™) + C%e™) T =

(FOO) + 6°)) {0fdu}y 1y (FOO0) +g° (V)
(28)
(FO N A(R) = CO(eR)) x
<f°<A>>T< (€)= C%eM) T =
(fo( {Bkwk 6kl}kl 1 fo( ) O()‘))7
(29)
;ﬂ }Tr 9N = g W) dX = 6,k =1,...., T,

(30)
where ai,ﬁi are Lagrange multipliers, dy; are
Kronecker symbols, |[¢p(A)] < 1 and ¢(A) =
sign (Tr(g(A) = 9 (V) if Te(g2 (V) — g (V) #
0,k=1,...,T.

Hence the following theorem and corollaries
hold true.

Theorem 4.1. Let the spectral densities fO(\)
and g°(\) satisfy the minimality condition (7).
The least favorable spectral densities fO(X), g°(\)
in the class D§ x D%& for the optimal linear filteri-
ng of the functional AE are determined by relations
(25)-(27). The least favorable spectral densities
fo(N), g°(N) in the class DE x D35 for the optimal
linear filtering of the functional AE are determi-
ned by relations (28)—-(30). The minimax spectral
characteristic of the optimal estimate of the functi-
onal AC is determined by the formula (11).

Corollary 4.1. Assume that the spectral density
g(\) is known. Let the spectral density fO(A\)+g(\)
satisfies the minimality condition (7). The least
favorable spectral density fO()\) in the class D} or
Dg for the optimal linear filtering of the functi-
onal AC based on observations of ( (}) at points
j € {..,-2,—1}\ S is determined by relations
(25), (28), respectively, and by the constrained
optimization problem (22).

Corollary 4.2. Assume that the spectral density
f(A) is known. Let the spectral density f(\) +
g°()\) satisfies the minimality condition (7). The
least favorable spectral density g°()\) in the class
Di; or Di; for the optimal linear filtering of the
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functional Af based on observations of 5 (3) at poi-
nts j € {...,—2,—1}\ S is determined by relati-
ons (26)—(27), (29)-(30), respectively, and by the
constrained optimization problem (22).

5 The least favorable spectral densities in
the class D = Dy x D‘V/V

Let f(A) and g(A) be the spectral density matrices
of T-variate stationary sequences (| () and g(j),
obtained by T-blocking (3) of T-PC sequences ((7)
and 6(j), respectively.

Consider the problem of minimax estimation
of the functional AE based on observations of the
sequence C(5) + 6(j) at points j € {...,—2,—1} \
S, under the condition that the spectral densi-
ty matrices f(A) and g(\) belong to the class
D = Dy x DYV, where

= fo oo}

D ={g(\) [U) < g(N) < W(N),

o [ san=a}.

where P, () are known positive definite Hermitian
matrices, U(X), W () are fixed spectral densities.

The class Dg’ describes densities with the
moment restrictions. The class D[V]V describes the
“strip” models of spectral densities.

With the help of the method of Lagrange
multipliers we can find that solution (f°()), g°(\))
of the constrained optimization problem (23) sati-
sfy the following relations for this set of admissible
spectral densities.

For the class Dg X D(‘;V we have relations

—T

(9" (N A(e?) + CO(e)) x
(6°N) (A + (™) T =
(SO +g°n)aa’ (f° () +¢°(), (31)

(SN A(e?) = CO(e))
(SO T (A(e™) = C%(e™) T =

(O N+9" V) (FET +r1<A>+rz<A>><f°<A>+gO<A>(>, |
2

where @, 3 are Lagrange multipliers, I'1(A) < 0
and T1(A) = 0 if ¢g°(\) > V()), Ta(\) = 0 and
La(A) = 0if g°(\) < W(N).

Hence the following theorem and corollaries
hold true.

39
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Theorem 5.1. Let the spectral densities fO(\)
and g°()\) satisfy the minimality condition (7).
The least favorable spectral densities fO()\), g°(\)
i the class Dg X D(I/]V for the optimal linear filteri-
ng of the functional AE are determined by relati-
ons (31), (32). The minimax spectral characteri-
stic of the optimal estimate of the functional Af 18
determined by the formula (11).

Corollary 5.1. Assume that the spectral density
g(\) is known. Let the spectral density fO(A\)+g(\)
satisfies the minimality condition (7). The least
favorable spectral density f°()\) in the class D}
for the optimal linear filtering of the functional
Af based on observations of 5 (}) at points j €
{...,—2,—1}\ S is determined by relation (31) and
by the constrained optimization problem (22).

Corollary 5.2. Assume that the spectral density
f(N\) is known. Let the spectral density f(\) +
g°()\) satisfies the minimality condition (7). The
least favorable spectral density g°()\) in the class
D(‘}/ for the optimal linear filtering of the functi-
onal AC based on observations of ( (}) at points
je{..,—2,—1}\S is determined by relation (32)
and by the constrained optimization problem (22).

6 Conclusions

In this article we study the filtering problem
of the functional A which depends on the
unobserved values of a periodically correlated
stochastic sequence ((j). Estimates are based on
observations of a periodically correlated stochastic
sequence ((j) + 6(j) with missing observations,
that means that observations of ((j) + 6(j) are
known at points j € {...,—(T+2),—(T+1), }\S.
The sequence 6(j) is an uncorrelated with ((j)
additive noise.

The filtering problem is considered under
conditions of spectral certainty and spectral
uncertainty. In the first case of spectral certai-
nty the spectral density matrices f(A) and g(\) of
the T-variate stationary sequences ¢ (n) and 6(n),
obtained by T-blocking of T-PC sequences ((7)
and 6(j), respectively, are suppose to be known
exactly. With the help of Hilbert space projecti-
on method formulas for calculating the spectral
characteristic and the mean-square error of the
optimal estimate of the functionals are proposed.
In the second case of spectral uncertainty the
spectral density matrices are not exactly known
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while a class D = Dy x D, of admissible spectral
densities is given. Using the minimax (robust) esti-
mation method we derived relations that determi-
ne the least favorable spectral densities and the
minimax spectral characteristic of the optimal
estimate of the functional A{. The problem is
investigated in details for two special classes of
admissible spectral densities.
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