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Дослiджується задача оптимального оцiнювання лiнiйних функцiоналiв вiд невiдомих зна-
чень перiодично корельованої стохастичної послiдовностi за спостереженнями послiдовностi iз
пропущеними значеннями. Знайдено формули для обчислення значень середньокваратичних по-
хибок та спектральних характеристик оптимальних оцiнок функцiоналiв у випадку, коли спе-
ктральнi щiльностi послiдовностей точно вiдомi. Отримано формули для визначення найменш
сприятливих спектральних щiльностей та мiнiмаксних спектральних характеристик опти-
мальних лiнiйних оцiнок функцiоналiв у випадку спектральної невизначеностi, коли спектраль-
нi щiльностi послiдовностей точно не вiдомi, але задано множини допустимих спектральних
щiльностей.
Ключовi слова: перiодично корельована стохастична послiдовнiсть, мiнiмаксна (робастна) оцiн-
ка, найменш сприятлива спектральна щiльнiсть, мiнiмакснi спектральнi характеристики.

The problem of the mean-square optimal estimation of the linear functionals which depend on the
unknown values of a periodically correlated stochastic sequence from observations of the sequence with
missings is considered. Formulas for calculation the mean-square error and the spectral characteri-
stic of the optimal estimate of the functionals are proposed in the case where spectral densities of the
sequences are exactly known. Formulas that determine the least favorable spectral densities and the mi-
nimax spectral characteristics are proposed in the case of spectral uncertainty, when spectral densities
of sequences are not exactly known but the class of admissible spectral densities is given.
Key Words: periodically correlated stochastic sequence, minimax (robust) estimate, least favorable spectral
density, minimax spectral characteristics.

Introduction

W. R. Bennett in 1958 [1] started to explore
cyclostationarity as a phenomenon and property
of the process, which describes signals in
channels of communication. Studying the stati-
stical characteristics of information transmissi-
on, he calls the group of telegraph signals the
cyclostationary process, that is the process whose
group of statistics changes periodically with time.
W. A. Gardner and L. E. Franks [3] highlights the
greatest similarity of cyclostationary processes,
which are a subclass of nonstationary processes,

with stationary processes. W. A. Gardner [4],
W. A. Gardner, A. Napolitano and L. Paura [5]
presented bibliography of works in which properti-
es and applications of cyclostationary processes
were studied. Recent developments and applicati-
ons of cyclostationary signal analysis are revi-
ewed in the papers by A. Napolitano [28], [29]. In
other sources cyclostationary processes are called
periodically stationary, periodically nonstationary,
periodically correlated. We will use the term peri-
odically correlated processes.

E. G. Gladyshev in 1961 [6] was the first who

c⃝ I. I. Golichenko, M. P. Moklyachuk, 2023

https://doi.org/10.17721/1812-5409.2023/2.4

30



Вiсник Київського нацiонального унiверситету
iменi Тараса Шевченка
Серiя: фiзико-математичнi науки

2023, 2
Bulletin of Taras Shevchenko
National University of Kyiv

Series: Physics & Mathematics

published the analysis of spectral properties and
representation of periodically correlated sequences
based on its connection with vector stationary
sequences. He formulated the necessary and suffi-
cient conditions for determining of periodically
correlated sequence in terms of the correlation
function. A. Makagon carried in his works [17], [18]
detailed spectral analysis of periodically correlated
sequences. Main ideas of the research of periodi-
cally correlated sequences are outlined in the book
by H. L. Hurd and A. Miamee [12].

The problem of estimation of unknown values
of random processes is one of the very important
and topical subsections of the theory of stochastic
processes. Processes that are observed can be
completely defined by its characteristics (correlati-
on function, spectral density, canonical decomposi-
tion) or their characteristics can be defined only
by the set of admissible values of characteri-
stics. The linear extrapolation and interpolation
problems for stationary stochastic processes under
the condition that spectral densities are known
exactly were first introduced by A. N. Kolmogorov
[15]. Solutions of the extrapolation and filtering
problems for stationary processes and sequences
with rational spectral densities were offered by
N. Wiener [34] and A. M. Yaglom [35]. Predicti-
on problems for vector-valued stationary processes
were investigated by Yu. A. Rozanov [32] and
E. J. Hannan [11].

Since processes often accompanied by undesi-
rable noise it is naturally to assume that the exact
value of spectral density is unknown and the model
of process is given by a set of restrictions on
spectral density. K. S. Vastola and H. V. Poor
[33] showed for certain classes of spectral densities
that the Wiener filter is very sensitive to minor
changes of spectral model unlike the robust Wi-
ener filter. That is the filter is the least sensitive to
the worst case of uncertainty. Thus, it is reasonable
to use the minimax (robust) estimation method,
which allows to define the optimal estimate for
all densities from a certain class of the admissible
spectral densities simultaneously. Ulf Grenander
[10] was the first who proposed the minimax
approach to the extrapolation problem for stati-
onary processes. A survey of results in minimax-
robust methods of data processing can be found in
the paper by S. A. Kassam and H. V. Poor [14].
Formulation and investigation of the problems of
extrapolation and interpolation of linear functi-

onals which depend on the unknown values of
stationary sequences from observations with and
without noise are presented by M. P. Moklyachuk
in the paper [23]. Similar problems of optimal esti-
mation of vector-valued stationary sequences and
processes were examined by M. P. Moklyachuk
and O. Yu. Masyutka [24], by O. Yu. Masyutka,
I. I. Golichenko and M. P. Moklyachuk [22].

In their book M. M. Luz and
M. P. Moklyachuk [16] investigated the minimax
estimation problems for linear functionals whi-
ch depends on unobserved values of stochastic
sequences with stationary increments. In their
book I. I. Golichenko and M. P. Moklyachuk
[27] presented results of investigation of the
interpolation, extrapolation and filtering problems
for linear functionals from periodically correlated
stochastic sequences and processes.

The interpolation and extrapolation problems
of linear functionals from periodically correlated
stochastic sequences with missing observati-
ons were investigated by I. I. Golichenko and
M. P. Moklyachuk in [7], [9], by I. I. Goli-
chenko, O. Yu. Masyutka and M. P. Moklyachuk
in [8]. The results of the study of the extrapolati-
on, interpolation and filtering problems for li-
near functionals constructed from unobserved
values of multidimensional stochastic sequences
and processes are presented in the papers by
O. Yu. Masyutka, M. P. Moklyachuk and M. I. Si-
dei [19]–[21], [26]. We also refer to the book by
M. P. Moklyachuk, O. Yu. Masyutka and I. I. Goli-
chenko [25] where results of the investigation of
the problem of mean square optimal estimation
(forecasting, interpolation, and filtering) of linear
functionals constructed from unobserved values of
periodically correlated isotropic random fields are
described.

In this paper we study the problem of opti-
mal linear estimation of the functional Aζ =∑
j∈Zs

a(j)ζ(−j), which depends on the unknown

values of a periodically correlated stochastic
sequence ζ(−j), j ∈ Zs = {T + 1, T +

2, . . . }\
s∪

i=1
{Mi ·T+1, . . . , (Mi+Ni)·T}. Estimati-

on is based on observations of the sequence ζ(j)+
θ(j) at points j ∈ {. . . ,−(T+2),−(T+1)}\S, S =
s∪

i=1
{−(Mi + Ni) · T, . . . ,−Mi · T − 1}. θ(j) is

an uncorrelated with ζ(j) periodically correlated
stochastic sequence. Formulas for calculation the
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mean square error and the spectral characteri-
stic of the optimal estimate of the functional Aζ
are proposed in the case where spectral densities
are exactly known. Formulas that determine the
least favorable spectral densities and the minimax
spectral characteristic are proposed for the given
class of admissible spectral densities.

1 Periodically correlated and multidi-
mensional stationary sequences

The term periodically correlated process was
introduced by E. G. Gladyshev [6] while
W. R. Bennett [1] called random and periodic
processes cyclostationary process.

Periodically correlated sequences are
stochastic sequences that have periodic structure
(see, for example, the book by H. L. Hurd and
A. Miamee [12]).

Definition 1.1. A complex valued stochastic
sequence ζ(n), n ∈ Z with zero mean, Eζ(n) = 0,
and finite variance, E|ζ(n)|2 < +∞, is called
cyclostationary or periodically correlated (PC) wi-
th period T (T -PC) if for every n,m ∈ Z

Eζ(n+T )ζ(m+ T ) = R(n+T,m+T ) = R(n,m)
(1)

and there are no smaller values of T > 0 for which
(1) holds true.

Definition 1.2. A complex valued T-variate
stochastic sequence ξ⃗(n) = {ξν(n)}Tν=1 , n ∈ Z
with zero mean, Eξν(n) = 0, ν = 1, . . . , T , and
E||ξ⃗(n)||2 <∞ is called stationary if for all n,m ∈
Z and ν, µ ∈ {1, . . . , T}

Eξν(n)ξµ(m) = Rνµ(n,m) = Rνµ(n−m).

If this is the case, we denote R(n) =
{Rνµ(n)}Tν,µ=1 and call it the covariance matrix
of T-variate stochastic sequence ξ⃗(n).

Proposition 1.1. (E. G. Gladyshev [6]). A
stochastic sequence ζ(n) is PC with period T if
and only if there exists a T -variate stationary
sequence ξ⃗(n) = {ξν(n)}Tν=1 such that ζ(n) has
the representation

ζ(n) =

T∑
ν=1

e2πinν/T ξν(n), n ∈ Z. (2)

The sequence ξ⃗(n) is called generating sequence of
the sequence ζ(n).

Proposition 1.2. (E. G. Gladyshev [6]). A complex
valued stochastic sequence ζ(n), n ∈ Z with zero
mean and finite variance is PC with period T if
and only if the T -variate blocked sequence ζ⃗(n) of
the form

[ζ⃗(n)]p = ζ(nT + p), n ∈ Z, p = 1, . . . , T (3)

is stationary.

We will denote by f ζ⃗(λ) =
{
f ζ⃗νµ(λ)

}T

ν,µ=1

the matrix valued spectral density function
of the T -variate stationary sequence ζ⃗(n) =
(ζ1(n), . . . , ζT (n))

⊤ arising from the T -blocking
(3) of a univariate T-PC sequence ζ(n).

2 The classical projection method of fi-
ltering

Let ζ(j) and θ(j) be uncorrelated T-PC stochastic
sequences. Consider the problem of optimal linear
estimation of the functional

Aζ =
∑
j∈Zs

a(j)ζ(−j),

that depends on the unknown values of T -PC
stochastic sequence ζ(−j), j ∈ Zs = {T + 1, T +

2, . . . }\
s∪

i=1
{Mi · T + 1, . . . , (Mi +Ni) · T}, (Mi >

1,Mi > Mi−1 + Ni−1, i = 1, ...s). Estimation is
based on observations of the sequence ζ(j) + θ(j)
at points j ∈ {. . . ,−(T + 2),−(T + 1)}\S, S =
s∪

i=1
{−(Mi+Ni) ·T, . . . ,−Mi ·T −1}. Note that in

every interval of known and unknown observations
of sequence ζ(j)+θ(j) the amount of observations
is a multiple of the period T.

Let assume that the coefficients a(j), j ∈ Zs

which determine the functional Aζ satisfy condi-
tion ∑

j∈Zs

|a(j)| <∞ (4)

and are of the form

a(j) = a

((
j −

[
j

T

]
T

)
+

[
j

T

]
T

)
=

a(ν + j̃T ) = a(j̃)e2πij̃ν/T , (5)

where ν = 1, . . . , T, j̃ =
[
j
T

]
> 1; ν = T and

j̃ = λ− 1, if j = T · λ, λ ∈ Z, or

a(j) = a(T ·λ) = a(T+(λ−1)T ) = a(λ−1)e2πi(λ−1)T/T .
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Under the condition (4) the functional Aζ has the
finite second moment.

Using Proposition 1.2, the linear functional
Aζ can be written as follows

Aζ =
∑
j∈Zs

a(j)ζ(−j) =

∑
j̃∈Z̃s

a(j̃)

T∑
ν=1

e2πij̃ν/T ζ(−(ν + j̃T )) =

∑
j̃∈Z̃s

T∑
ν=1

a(j̃)e2πij̃ν/T ζν(−j̃) =

∑
j̃∈Z̃s

a⃗⊤(j̃)ζ⃗(−j̃) = Aζ⃗,

where

Z̃s = {1, 2, 3, . . . , }\
s∪

i=1

{Mi, . . . ,Mi +Ni − 1},

a⃗⊤(j̃) =
(
a1(j̃), . . . , aT (j̃)

)
,

aν(j̃) = a(j̃)e2πij̃ν/T , ν = 1, . . . , T, (6)

ζ⃗(j̃) =
{
ζν(j̃)

}T

ν=1
is T -variate stationary

sequence, obtained by the T -blocking (3) of uni-
variate T -PC sequence ζ(−j), j ∈ Zs.

Let ζ⃗(j) and θ⃗(j) be uncorrelated T-variate
stationary stochastic sequences with the spectral

density matrices f ζ⃗(λ) =
{
f ζ⃗νµ(λ)

}T

ν,µ=1
and

f θ⃗(λ) =
{
f θ⃗νµ(λ)

}T

ν,µ=1
, respectively. Consider the

problem of optimal linear estimation of the functi-
onal

Aζ⃗ =
∑
j̃∈Z̃s

a⃗⊤(j̃)ζ⃗(−j̃),

that depends on the unknown values of sequence
ζ⃗(−j̃), j̃ ∈ Z̃s, based on observations of the
sequence ζ⃗(j̃)+ θ⃗(j̃) at points j̃ ∈ {...,−2,−1}\ S̃,
S̃ =

s∪
i=1

{−(Mi +Ni) + 1, . . . ,−Mi}.

Let the spectral densities f ζ⃗(λ) and f θ⃗(λ)
satisfy the minimality condition∫ π

−π
Tr

[
(f ζ⃗(λ) + f θ⃗(λ))−1

]
dλ < +∞. (7)

Condition (7) is necessary and sufficient in order
that the error-free filtering of unknown values of
the sequence ζ⃗(j) + θ⃗(j) is impossible [32].

Define as H = L2(Ω,F, P ) the Hilbert
space generated by random variables ζ with zero
mathematical expectation, Eζ = 0, finite vari-
ation, E|ζ|2 < ∞, and inner product (ζ, θ) =
Eζθ. Consider values ζν(j), ν = 1, ..., T ; j ∈ Z
and θν(j), ν = 1, ..., T ; j ∈ Z as elements of H.
Denote by Hs[ζ⃗ + θ⃗] the closed linear subspace
in the Hilbert space H generated by elements
{ζν(j̃) + θν(j̃), j̃ ∈ {...,−2,−1} \ S̃, ν = 1, ..., T}.

Denote by L2(f) the Hilbert space of vector
valued functions b⃗(λ) = {bν(λ)}Tν=1 that are
integrable with respect to a measure with the
density f(λ) = {fνµ(λ)}Tν,µ=1:∫ π

−π
b⃗⊤(λ)f(λ)⃗b(λ)dλ =∫ π

−π

T∑
ν,µ=1

bν(λ)fνµ(λ)bµ(λ)dλ < +∞.

Denote by Ls
2(f) the subspace in L2(f)

generated by functions

eij̃λδν , δν = {δνµ}Tµ=1 ,

ν = 1, . . . , T, j̃ ∈ {...,−2,−1} \ S̃,

where δνν = 1, δνµ = 0 for ν ̸= µ.

Every linear estimate Âζ⃗ of the functional Aζ⃗
from observations of the sequence ζ⃗(j̃) + θ⃗(j̃) at
points j̃ ∈ {...,−2,−1} \ S̃ has the form

Âζ⃗ =

∫ π

−π
h⃗⊤(eiλ)(Z ζ⃗(dλ) + Z θ⃗(dλ)) =∫ π

−π

T∑
ν=1

hν(e
iλ)(Z ζ⃗

ν (dλ) + Z θ⃗
ν (dλ)), (8)

where Z ζ⃗(∆) =
{
Z ζ⃗
ν (∆)

}T

ν=1
and Z θ⃗(∆) ={

Z θ⃗
ν (∆)

}T

ν=1
are orthogonal random measures

of the sequences ζ⃗(j̃) and θ⃗(j̃), and h⃗(eiλ) ={
hν(e

iλ)
}T

ν=1
is the spectral characteristic of the

estimate Âζ⃗. The function h⃗(eiλ) ∈ Ls
2(f

ζ⃗ + f θ⃗).
The mean square error ∆(⃗h; f ζ⃗ , f θ⃗) of the esti-

mate Âζ⃗ is calculated by the formula

∆(⃗h; f ζ⃗ , f θ⃗) = E|Aζ⃗ − Âζ⃗|2 =

=
1

2π

∫ π

−π

[
A(eiλ)− h⃗(eiλ)

]⊤
f ζ⃗(λ)

[
A(eiλ)− h⃗(eiλ)

]
dλ+

(9)

+
1

2π

∫ π

−π
h⃗⊤(eiλ)f θ⃗(λ)⃗h(eiλ)dλ,
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A(eiλ) =
∑
j̃∈Z̃s

a⃗(j̃)e−ij̃λ.

The spectral characteristic h⃗(f ζ⃗ , f θ⃗) of the opti-
mal linear estimate of Aζ⃗ minimizes the mean
square error

∆(f ζ⃗ , f θ⃗) = ∆(⃗h(f ζ⃗ , f θ⃗); f ζ⃗ , f θ⃗) =

min
h⃗∈Ls

2(f
ζ⃗+f θ⃗)

∆(⃗h; f ζ⃗ , f θ⃗) = min
Âζ⃗

E

∣∣∣∣Aζ⃗ − Âζ⃗

∣∣∣∣2 .
(10)

With the help of the Hilbert space projection
method proposed by A. N. Kolmogorov [15] we can
find a solution of the optimization problem (10).

The optimal linear estimate Âζ⃗ is a projection of
the functional Aζ⃗ on the subspace Hs[ζ⃗ + θ⃗]. The
projection is characterized by following conditions

1) Âζ⃗ ∈ Hs[ζ⃗ + θ⃗],

2) Aζ⃗ − Âζ⃗ ⊥ Hs[ζ⃗ + θ⃗].
The condition 2) gives us the possibility to

derive the formula for spectral characteristic of the
estimate

h⃗⊤(f ζ⃗ , f θ⃗) =(
A⊤(eiλ)f ζ⃗(λ)− C⊤(eiλ)

) [
f ζ⃗(λ) + f θ⃗(λ)

]−1
=

A⊤(eiλ)−
(
A⊤(eiλ)f θ⃗(λ) + C⊤(eiλ)

)
×

×
[
f ζ⃗(λ) + f θ⃗(λ)

]−1
, (11)

where

C(eiλ) =
∑
j∈S̃

c⃗(n)eijλ +

∞∑
j=0

c⃗(n)eijλ,

where c⃗(j), j ∈ S̃ ∪ {0, 1, 2, ...}, are unknown
vectors of coefficients.

Denote by U = S̃ ∪ {0, 1, 2, ...}.
Condition 1) is satisfied if the system of

equalities∫ π

−π
h⃗(f ζ⃗ , f θ⃗)e−imλdλ = 0,m ∈ U (12)

holds true.
The last equalities (12) provide the following

relations∑
j̃∈Z̃s

a⃗⊤(j̃)
1

2π

∫ π

−π
f ζ⃗(λ)(f ζ⃗(λ)+f θ⃗(λ))−1e−iλ(j̃+m)dλ−

∑
j̃∈S̃

c⃗⊤(j̃)
1

2π

∫ π

−π
(f ζ⃗(λ) + f θ⃗(λ))−1e−iλ(m−j̃)dλ−

∞∑
j̃=0

c⃗⊤(j̃)
1

2π

∫ π

−π
(f ζ⃗(λ)+f θ⃗(λ))−1e−iλ(m−j̃)dλ = 0⃗,

m ∈ U. (13)

Denote the Fourier coefficients of the matrix
functions (f ζ⃗(λ) + f θ⃗(λ))−1 and f ζ⃗(λ)(f ζ⃗(λ) +

f θ⃗(λ))−1 as

B(m, j̃) =
1

2π

∫ π

−π
(f ζ⃗(λ) + f θ⃗(λ))−1e−iλ(m−j̃)dλ,

m ∈ U, j̃ ∈ U,

R(m, j̃) =
1

2π

∫ π

−π
f ζ⃗(λ)(f ζ⃗(λ)+f θ⃗(λ))−1e−iλ(m+j̃)dλ,

m ∈ U, j̃ ∈ Z̃s.

Using the notations above we can rewrite
relation (13) in the form of the system of equations∑
j̃∈Z̃s

R(m, j̃)⃗a(j̃) =
∑
j̃∈S̃

B(m, j̃)c⃗(j̃)+

∞∑
j̃=0

B(m, j̃)c⃗(j̃),

m ∈ U. (14)

Denote by

a⃗⊤ =

0⃗⊤, ..., 0⃗⊤︸ ︷︷ ︸∑s
i=1 Ni+1

, a⃗⊤(1), ..., a⃗⊤(M1 − 1),

0⃗⊤, ...., 0⃗⊤︸ ︷︷ ︸
N1

, ..., a⃗⊤(Ms +Ns), a⃗
⊤(Ms +Ns + 1), ...


a vector that has zero vectors 0⃗⊤ = (0, ..., 0︸ ︷︷ ︸

T

),

vectors a⃗(1), ..., a⃗(M1 − 1), ..., a⃗(Ms + Ns), ..., are
constructed from coefficients of the functional Aζ
by formula (6).

Denote by c⃗⊤ = (c⃗⊤(m))m∈U a vector of the
unknown coefficients.

The last system of equations (14) can be rewri-
tten in the matrix form

Ra⃗ = Bc⃗.

The linear operator B is defined by the matrix

B =


Bs,s Bs,s−1 . . . Bs,1 Bs,n

Bs−1,s Bs−1,s−1 . . . Bs−1,1 Bs−1,n

. . . . . . . . . . . .
B1,s B1,s−1 . . . B1,1 B1,n

Bn,s Bn,s−1 . . . Bn,1 Bn,n

 ,
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constructed with the help of the block-matrices

Bl,k =
{
Bl,k(m, j̃)

}−Ml

m=−(Ml+Nl)+1

−Mk

j̃=−(Mk+Nk)+1
,

l, k = 1, ..., s,

Bl,n =
{
Bl,n(m, j̃)

}−Ml

m=−(Ml+Nl)+1

∞
j̃=0

, l = 1, ..., s,

Bn,l =
{
Bn,l(m, j̃)

}∞

m=0

−Ml

j̃=−(Ml+Nl)+1
, l = 1, ..., s,

Bn,n =
{
Bn,n(m, j̃)

}∞

m=0

∞
j̃=0

,

Bl,k(m, j̃) = B(m, j̃),∀l, k =∈ {1, ..., s} ∪ {n}.

The linear operator R is defined by the
corresponding matrix, which is constructed in the
same manner as matrix B.

The unknown coefficients c⃗(m),m ∈ U are
determined from the equation

c⃗ = B−1Ra⃗, (15)

where the m-th component of the vector c⃗ is the
m-th component of vector B−1Ra⃗:

c⃗(m) = (B−1Ra⃗)(m), m ∈ U. (16)

We will suppose that the operator B has the
inverse matrix.

The mean-square error of the optimal estimate

Âζ⃗ is calculated by the formula (9) and is of the
form

∆(⃗h, f ζ⃗ , f θ⃗) = E|Aζ⃗ − Âζ⃗|2 =∑
j̃∈U

∑
m∈U

a⃗⊤(j̃)
1

2π

∫ π

−π
f ζ⃗(λ)(f ζ⃗(λ) + f θ⃗(λ))−1×

× f θ⃗(λ)e−iλ(j̃−m)dλ · a⃗(m)+∑
j̃∈U

∑
m∈U

c⃗⊤(j̃)
1

2π

∫ π

−π
(f ζ⃗(λ) + f θ⃗(λ))−1×

× e−iλ(m−j̃)dλ · c⃗(m) =

⟨Da⃗, a⃗⟩+ ⟨Bc⃗, c⃗⟩, (17)

where ⟨a, b⟩ denotes the scalar product, D is
defined by the corresponding matrix, which is
constructed in the same manner as matrix B, with
elements

D(m, j̃) =
1

2π

∫ π

−π
f ζ⃗(λ)(f ζ⃗(λ) + f θ⃗(λ))−1×

×f θ⃗(λ)e−i(j̃−m)λdλ, m, j̃ ∈ U.

The following statement holds true.

Theorem 2.1. Let ζ(j) and θ(j) be uncorrelated
T-PC stochastic sequences with the spectral density
matrices f ζ⃗(λ) and f θ⃗(λ) of T-variate stationary
sequences ζ⃗(j̃) and θ⃗(j̃), respectively. Assume that
f ζ⃗(λ) and f θ⃗(λ) satisfy the minimality condition
( 7). Assume that condition ( 4) is satisfied and
operator B is invertible. The spectral characteri-
stic h⃗(f ζ⃗ , f θ⃗) and the mean square error ∆(f ζ⃗ , f θ⃗)
of the optimal linear estimate of the functional Aζ⃗
based on observations of the sequence ζ⃗(j̃)+θ⃗(j̃) at
points j̃ ∈ {...,−1} \ S̃, are calculated by formulas
( 11) and ( 17).

Consider the mean-square estimation problem
of functional Aζ =

∑
j∈Zs

a(j)ζ(−j), Zs = {T +

1, T + 2, ...} \ {MT + 1, ..., (M + N)T} based
on observations of the sequence ζ(j) + θ(j) at
points j ∈ {...,−(T + 2),−(T + 1)} \ {−(M +
N)T, ...,−MT − 1}. Using Proposition 1.2, the li-
near functional Aζ can be written as follows

Aζ =
∑
j∈Zs

a(j)ζ(−j) =
∑
j̃∈Z̃s

a⃗⊤(j̃)ζ⃗(−j̃) = Aζ⃗,

where

Z̃s = {1, 2, 3, . . . , }\{M, . . . ,M +N − 1}.

The estimate Âζ⃗ of functional Aζ⃗ from
observations of sequence ζ⃗(j̃) + θ⃗(j̃) at points
j̃ ∈ {...,−1} \ {−(M +N) + 1, ...,−M} is defined
by spectral characteristic h⃗(f ζ⃗ , f θ⃗) (see formula
(8)). The spectral characteristic is calculated by
the following formula

h⃗⊤(f ζ⃗ , f θ⃗) =
(
A⊤(eiλ)f ζ⃗(λ)− C⊤(eiλ)

)
×

×
[
f ζ⃗(λ) + f θ⃗(λ)

]−1
, (18)

where C(eiλ) =
−M∑

j=−(M+N)+1

c⃗(j)eijλ+
∞∑
j=0

c⃗(j)eijλ,

unknown coefficients c⃗(j), j ∈ {−(M + N) +
1, ...,−M} ∪ {0, 1, ...} are calculated by formula

c⃗ = B−1Ra⃗.

Linear operators B,R are defined by compound
matrices, for example

B =

(
B1,1 Bs,n

Bn,s Bn,n

)
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is constructed with the help of the block-matrices
B1,1, Bs,n, Bn,s, Bn,n with the elements

B1,1 =
{
B1,1(m, j̃)

}−M

m=−(M+N)−1

−M

j̃=−(M+N)−1
,

Bs,n =
{
Bs,n(m, j̃)

}−M

m=−(M+N)−1

∞
j̃=0

,

Bn,s =
{
Bn,s(m, j̃)

}∞

m=0

−M

j̃=−(M+N)−1
,

Bn,n =
{
Bn,n(m, j̃)

}∞

m=0

∞
j̃=0

.

The vector

a⃗⊤ =

0⃗⊤, ..., 0⃗⊤︸ ︷︷ ︸
N+1

, a⃗⊤(1), ..., a⃗⊤(M − 1),

0⃗⊤, ...., 0⃗⊤︸ ︷︷ ︸
N

, a⃗⊤(M +N), a⃗⊤(M +N + 1), ...


is a vector with vectors a⃗(1), ..., a⃗(M − 1), a⃗(M +
N), ..., constructed from coefficients of the functi-
onal Aζ by formula (6).

The mean square error ∆(f ζ⃗ , f θ⃗) is calculated
by the formula

∆(f ζ⃗ , f θ⃗) = ⟨Da⃗, a⃗⟩+ ⟨Bc⃗, c⃗⟩, (19)

where linear operator D is defined by the
corresponding matrix, which is constructed in the
same manner as matrix B above.

The following corollary from the theorem 2.1
holds true.

Corollary 2.1. Let ζ(j) and θ(j) be uncorrelated
T-PC stochastic sequences with the spectral
density matrices f ζ⃗(λ) and f θ⃗(λ) of T-variate
stationary sequences ζ⃗(j̃) and θ⃗(j̃), respecti-
vely. Assume that f ζ⃗(λ) and f θ⃗(λ) satisfy the
minimality condition (7). Assume that condi-
tion (4) is satisfied and operator B is inverti-
ble. The spectral characteristic h⃗(f ζ⃗ , f θ⃗) and the
mean square error ∆(f ζ⃗ , f θ⃗) of the optimal li-
near estimate of the functional Aζ⃗ based on
observations of the sequence ζ⃗(j̃) + θ⃗(j̃) at poi-
nts j̃ ∈ {...,−1} \ {−(M + N) + 1, ...,−M}, are
calculated by formulas (18) and (19).

Consider the mean-square estimation problem
of functional Aζ =

∑
j∈Zs

a(j)ζ(−j), Zs = {T +

1, T + 2, ...} \ {MT + 1, ...,MT + T} based on
observations of the sequence ζ(j) + θ(j) at poi-
nts j ∈ {...,−(T + 2),−(T + 1)} \ {−(MT +
T ), ...,−(MT + 1)}. Using Proposition 1.2, the li-
near functional Aζ can be written as follows

Aζ =
∑
j∈Zs

a(j)ζ(−j) =
∑
j̃∈Z̃s

a⃗⊤(j̃)ζ⃗(−j̃) = Aζ⃗,

where
Z̃s = {1, 2, 3, . . . , }\{M}.

The estimate Âζ⃗ of functional Aζ⃗ from
observations of sequence ζ⃗(j̃) + θ⃗(j̃) at points
j̃ ∈ {...,−1} \ {−M} is defined by spectral
characteristic h⃗(f ζ⃗ , f θ⃗). The spectral characteri-
stic is calculated by the following formula

h⃗⊤(f ζ⃗ , f θ⃗) =
(
A⊤(eiλ)f ζ⃗(λ)− C⊤(eiλ)

)
×

×
[
f ζ⃗(λ) + f θ⃗(λ)

]−1
, (20)

where C(eiλ) = c⃗(−M)e−iMλ +
∞∑
j=0

c⃗(j)eijλ,

unknown coefficients c⃗(j), j ∈ {−M} ∪ {0, 1, ...}
are calculated by formula

c⃗ = B−1Ra⃗.

Linear operators B,R are defined by compound
matrices, for example

B =

(
B−M,−M B−M,n

Bn,−M Bn,n

)
is constructed with the help of the block-matrices
B−M,−M , B−M,n, Bn,−M , Bn,n with the elements

B−M,−M = B(−M,−M),

B−M,n =
{
B−M,n(−M, j̃)

}
, j̃ = 0, 1, ...,

Bn,−M = {Bn,−M (m,−M)} , m = 0, 1, ...,

Bn,n =
{
Bn,n(m, j̃)

}∞

m=0

∞
j̃=0

.

The vector

a⃗⊤ =
(
0⃗⊤, 0⃗⊤, a⃗⊤(1), ..., a⃗⊤(M − 1), 0⃗⊤,

a⃗⊤(M + 1), a⃗⊤(M + 2), ...
)

is a vector with vectors a⃗(1), ..., a⃗(M − 1), a⃗(M +
1), ..., constructed from coefficients of the functi-
onal Aζ by formula (6).
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The mean square error ∆(f ζ⃗ , f θ⃗) is calculated
by the formula

∆(f ζ⃗ , f θ⃗) = ⟨Da⃗, a⃗⟩+ ⟨Bc⃗, c⃗⟩, (21)

where linear operator D is defined by the
corresponding matrix, which is constructed in the
same manner as matrix B above.

The next corollary from the theorem 2.1 holds
true.

Corollary 2.2. Let ζ(j) and θ(j) be uncorrelated
T-PC stochastic sequences with the spectral
density matrices f ζ⃗(λ) and f θ⃗(λ) of T-variate
stationary sequences ζ⃗(j̃) and θ⃗(j̃), respectively.
Assume that f ζ⃗(λ) and f θ⃗(λ) satisfy the mini-
mality condition (7). Assume that condition (4) is
satisfied and operator B is invertible. The spectral
characteristic h⃗(f ζ⃗ , f θ⃗) and the mean square
error ∆(f ζ⃗ , f θ⃗) of the optimal linear estimate of
the functional Aζ⃗ based on observations of the
sequence ζ⃗(j̃)+θ⃗(j̃) at points j̃ ∈ {...,−1}\{−M},
are calculated by formulas (20) and (21).

The filtering problem of linear functional for
the case with factorization of density matrices
f ζ⃗(λ) and f θ⃗(λ) of T-variate stationary sequences
ζ⃗(j̃) and θ⃗(j̃) is considered in the article [2].

3 Minimax (robust) method of filtering
problem

Let f(λ) and g(λ) be the spectral density matrices
of T -variate stationary sequences ζ⃗(j) and θ⃗(j),
obtained by T -blocking (3) of T -PC sequences ζ(j)
and θ(j), respectively.

Formulas (11) and (17), (18) and (19), (20)
and (21) may be applied for finding the spectral
characteristic and the mean square error of the
optimal linear estimate of the functional Aζ⃗ only
under the condition that the spectral density
matrices f(λ) and g(λ) are exactly known. If the
density matrices are not known exactly while a
set D = Df ×Dg of possible spectral densities is
given, the minimax (robust) approach to estimati-
on of functionals from unknown values of stati-
onary sequences is reasonable. In this case we fi-
nd the estimate which minimizes the mean square
error for all spectral densities from the given set
simultaneously.

Definition 3.1. For a given class of pairs of
spectral densities D = Df ×Dg the spectral densi-
ty matrices f0(λ) ∈ Df , g0(λ) ∈ Dg are called the
least favorable in D for the optimal linear esti-
mation of the functional Aζ⃗ if

∆(f0, g0) = ∆(⃗h(f0, g0); f0, g0) =

max
(f,g)∈D

∆(⃗h(f, g); f, g).

Definition 3.2. For a given class of pairs of
spectral densities D = Df × Dg the spectral
characteristic h⃗0(λ) of the optimal linear estimate
of the functional Aζ⃗ is called minimax (robust) if

h⃗0(λ) ∈ HD =
∩

(f,g)∈D

Ls
2(f + g),

min
h⃗∈HD

max
(f,g)∈D

∆(⃗h; f, g) = max
(f,g)∈D

∆(⃗h0; f, g).

Taking into consideration these definitions
and the obtained relations we can verify that the
following lemma holds true.

Lemma 3.1. The spectral density matrices
f0(λ) ∈ Df , g0(λ) ∈ Dg, that satisfy the mini-
mality condition (7), are the least favorable in the
class D for the optimal linear estimation of Aζ⃗, if
the Fourier coefficients of the matrix functions

(f0(λ) + g0(λ))−1, f0(λ)(f0(λ) + g0(λ))−1,

f0(λ)(f0(λ) + g0(λ))−1g0(λ)

define matrices B0,R0,D0, that determine a
solution of the constrained optimization problem

max
(f,g)∈D

(⟨Ra⃗,B−1Ra⃗⟩) + ⟨Da⃗, a⃗⟩) =

⟨R0a⃗, (B0)−1R0a⃗⟩) + ⟨D0a⃗, a⃗⟩. (22)

The minimax spectral characteristic h⃗0 =
h⃗(f0, g0) is given by (11), if h⃗(f0, g0) ∈ HD.

The least favorable spectral densities f0(λ) ∈
Df , g0(λ) ∈ Dg and the minimax spectral
characteristic h⃗0 = h⃗(f0, g0) form a saddle poi-
nt of the function ∆(⃗h; f, g) on the set HD × D.
The saddle point inequalities

∆(⃗h0; f, g) 6 ∆(⃗h0; f0, g0) 6 ∆(⃗h; f0, g0),

∀h⃗ ∈ HD, ∀f ∈ Df , ∀g ∈ Dg

hold true when h⃗0 = h⃗(f0, g0), h⃗(f0, g0) ∈ HD

and (f0, g0) is a solution of the constrained opti-
mization problem

∆
(
h⃗(f0, g0); f, g

)
→ sup, (f, g) ∈ Df ×Dg.

(23)
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The linear functional ∆(⃗h(f0, g0); f, g) is
calculated by the formula

∆(⃗h(f0, g0); f, g) =

=
1

2π

∫ π

−π

(
A⊤(eiλ)g0(λ) + (C0(eiλ))⊤

)
×

×(f0(λ) + g0(λ))−1f(λ)(f0(λ) + g0(λ))−1×

×
(
A⊤(eiλ)g0(λ) + (C0(eiλ))⊤

)∗
dλ+

+
1

2π

∫ π

−π

(
A⊤(eiλ)f0(λ)− (C0(eiλ))⊤

)
×

×(f0(λ) + g0(λ))−1g(λ)(f0(λ) + g0(λ))−1×

×
(
A⊤(eiλ)f0(λ)− (C0(eiλ))⊤

)∗
dλ,

where C0(eiλ) =
∑

j∈U c⃗
0(j)eijλ, according

to the formula (16) column vectors c⃗ 0(j) =
((B0)−1R0a⃗)(j).

The constrained optimization problem (23)
is equivalent to the unconstrained optimization
problem, [30]:

∆D(f, g) = −∆(⃗h(f0, g0); f, g)+

δ((f, g) |Df ×Dg ) → inf, (24)

where δ((f, g)|Df × Dg) is the indicator functi-
on of the set D = Df × Dg. A solution of the
problem (24) is characterized by the condition
0 ∈ ∂∆D(f

0, g0), where ∂∆D(f
0, g0) is the subdi-

fferential of the convex functional ∆D(f, g) at poi-
nt (f0, g0), [31].

The form of the functional ∆(⃗h(f0, g0); f, g)
admits finding the derivatives and differentials of
the functional in the space L1 × L1. Therefore
the complexity of the optimization problem (24)
is determined by the complexity of calculati-
ng of subdifferentials of the indicator functions
δ((f, g)|Df ×Dg) of the sets Df ×Dg, [13].

The form of the functional ∆(⃗h(f0, g0); f, g)
is convenient for application the Lagrange method
of indefinite multipliers for finding solution to
the problem (24). Using the Lagrange method of
indefinite multipliers and the form of subdifferenti-
als of the indicator functions we derived relations
that determine the least favourable spectral densi-
ties in some classes of spectral densities (see books
[27], [24]).

4 The least favorable spectral densities in
the class D = D0 ×D1δ

Let f(λ) and g(λ) be the spectral density matrices
of T -variate stationary sequences ζ⃗(j) and θ⃗(j),
obtained by T -blocking (3) of T -PC sequences ζ(j)
and θ(j), respectively.

Consider the problem of minimax estimation
of the functional Aζ⃗ based on observations of the
sequence ζ⃗(j̃)+ θ⃗(j̃) at points j̃ ∈ {...,−2,−1}\ S̃,
S̃ =

s∪
i=1

{−(Mi + Ni) + 1, . . . ,−Mi}, under the

condition that the spectral density matrices f(λ)
and g(λ) belong to the class D = D0×D1δ, where

D1
0 =

{
f(λ)

∣∣∣∣ 1

2π

∫ π

−π
Tr f(λ)dλ = p

}
,

D1
1δ =

{
g(λ)

∣∣∣∣ 12π
∫ π

−π

∣∣Tr(g(λ)− g1(λ))
∣∣ dλ 6 δ

}
,

D2
0 =

{
f(λ)

∣∣∣∣ 1

2π

∫ π

−π
fkk(λ)dλ = pk, k = 1, ..., T

}
,

D2
1δ =

{
g(λ)

∣∣∣∣ 12π
∫ π

−π

∣∣Tr(gkk(λ)− g1kk(λ))
∣∣ dλ 6 δk,

k = 1, ...., T} ,

where g1(λ) =
{
g1kl(λ)

}T

k,l=1
is known positive

definite Hermitian matrix, δ, δk, p, pkk, k = 1, ..., T,
are known and fixed numbers.

The classes Di
0, i = 1, 2, describe densities wi-

th the moment restrictions. The classes Di
1δ, i =

1, 2, describe the ”δ–neighborhood” models in the
space L1 of a fixed bounded spectral density g1(λ).

With the help of the method of Lagrange
multipliers we can find that solution (f0(λ), g0(λ))
of the constrained optimization problem (23) sati-
sfy the following relations for these sets of admi-
ssible spectral densities.

For the pair D1
0 ×D1

1δ we have relations

(g0(λ)A(eiλ)+C0(eiλ))(g0(λ))⊤(A(eiλ)+C0(eiλ))⊤ =

α2(f0(λ) + g0(λ))2, (25)

(f0(λ)A(eiλ)−C0(eiλ))(f0(λ))⊤(A(eiλ)−C0(eiλ))⊤ =

β2ψ(λ)(f0(λ) + g0(λ))2, (26)

1

2π

∫ π

−π

∣∣Tr(g0(λ)− g1(λ))
∣∣ dλ = δ, (27)

where α, β are Lagrange multipliers, |ψ(λ)| 6 1
and ψ(λ) = sign (Tr(g0(λ)− g1(λ))) if Tr(g0(λ)−
g1(λ)) ̸= 0.
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For the pair D2
0 ×D2

1δ we have relations

(g0(λ)A(eiλ) + C0(eiλ))×
× (g0(λ))⊤(A(eiλ) + C0(eiλ))⊤ =

(f0(λ) + g0(λ))
{
α2
kδkl

}T

k,l=1
(f0(λ) + g0(λ)),

(28)

(f0(λ)A(eiλ)− C0(eiλ))×
(f0(λ))⊤(A(eiλ)− C0(eiλ))⊤ =

(f0(λ)+g0(λ))
{
β2kψk(λ)δkl

}T

k,l=1
(f0(λ)+g0(λ)),

(29)

1

2π

∫ π

−π

∣∣Tr(g0kk(λ)− g1kk(λ))
∣∣ dλ = δk, k = 1, ...., T,

(30)
where α2

k, β
2
k are Lagrange multipliers, δkl are

Kronecker symbols, |ψk(λ)| 6 1 and ψk(λ) =
sign (Tr(g0kk(λ)−g1kk(λ))) if Tr(g0kk(λ)−g1kk(λ)) ̸=
0, k = 1, ..., T .

Hence the following theorem and corollaries
hold true.

Theorem 4.1. Let the spectral densities f0(λ)
and g0(λ) satisfy the minimality condition ( 7).
The least favorable spectral densities f0(λ), g0(λ)
in the class D1

0×D1
1δ for the optimal linear filteri-

ng of the functional Aζ⃗ are determined by relations
( 25)–( 27). The least favorable spectral densities
f0(λ), g0(λ) in the class D2

0 ×D2
1δ for the optimal

linear filtering of the functional Aζ⃗ are determi-
ned by relations ( 28)–( 30). The minimax spectral
characteristic of the optimal estimate of the functi-
onal Aζ⃗ is determined by the formula ( 11).

Corollary 4.1. Assume that the spectral density
g(λ) is known. Let the spectral density f0(λ)+g(λ)
satisfies the minimality condition (7). The least
favorable spectral density f0(λ) in the class D1

0 or
D2

0 for the optimal linear filtering of the functi-
onal Aζ⃗ based on observations of ζ⃗(j̃) at points
j̃ ∈ {...,−2,−1} \ S̃ is determined by relations
(25), (28), respectively, and by the constrained
optimization problem (22).

Corollary 4.2. Assume that the spectral density
f(λ) is known. Let the spectral density f(λ) +
g0(λ) satisfies the minimality condition (7). The
least favorable spectral density g0(λ) in the class
D1

1δ or D2
1δ for the optimal linear filtering of the

functional Aζ⃗ based on observations of ζ⃗(j̃) at poi-
nts j̃ ∈ {...,−2,−1} \ S̃ is determined by relati-
ons (26)–(27), (29)–(30), respectively, and by the
constrained optimization problem (22).

5 The least favorable spectral densities in
the class D = D0 ×DW

V

Let f(λ) and g(λ) be the spectral density matrices
of T -variate stationary sequences ζ⃗(j) and θ⃗(j),
obtained by T -blocking (3) of T -PC sequences ζ(j)
and θ(j), respectively.

Consider the problem of minimax estimation
of the functional Aζ⃗ based on observations of the
sequence ζ⃗(j̃) + θ⃗(j̃) at points j̃ ∈ {...,−2,−1} \
S̃, under the condition that the spectral densi-
ty matrices f(λ) and g(λ) belong to the class
D = D0 ×DW

V , where

D3
0 =

{
f(λ)

∣∣∣∣ 1

2π

∫ π

−π
f(λ)dλ = P

}
,

DW
U = {g(λ) |U(λ) 6 g(λ) 6W (λ),

1

2π

∫ π

−π
g(λ)dλ = Q

}
,

where P,Q are known positive definite Hermitian
matrices, U(λ),W (λ) are fixed spectral densities.

The class D3
0 describes densities with the

moment restrictions. The class DW
U describes the

”strip” models of spectral densities.
With the help of the method of Lagrange

multipliers we can find that solution (f0(λ), g0(λ))
of the constrained optimization problem (23) sati-
sfy the following relations for this set of admissible
spectral densities.

For the class D3
0 ×DW

U we have relations

(g0(λ)A(eiλ) + C0(eiλ))×
(g0(λ))⊤(A(eiλ) + C0(eiλ))⊤ =

(f0(λ) + g0(λ))α⃗α⃗⊤(f0(λ) + g0(λ)), (31)

(f0(λ)A(eiλ)− C0(eiλ))×
(f0(λ))⊤(A(eiλ)− C0(eiλ))⊤ =

(f0(λ)+g0(λ))(β⃗β⃗⊤+Γ1(λ)+Γ2(λ))(f
0(λ)+g0(λ)),

(32)

where α⃗, β⃗ are Lagrange multipliers, Γ1(λ) 6 0
and Γ1(λ) = 0 if g0(λ) > V (λ), Γ2(λ) > 0 and
Γ2(λ) = 0 if g0(λ) < W (λ).

Hence the following theorem and corollaries
hold true.
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Theorem 5.1. Let the spectral densities f0(λ)
and g0(λ) satisfy the minimality condition ( 7).
The least favorable spectral densities f0(λ), g0(λ)
in the class D3

0×DW
U for the optimal linear filteri-

ng of the functional Aζ⃗ are determined by relati-
ons ( 31), ( 32). The minimax spectral characteri-
stic of the optimal estimate of the functional Aζ⃗ is
determined by the formula ( 11).

Corollary 5.1. Assume that the spectral density
g(λ) is known. Let the spectral density f0(λ)+g(λ)
satisfies the minimality condition (7). The least
favorable spectral density f0(λ) in the class D3

0

for the optimal linear filtering of the functional
Aζ⃗ based on observations of ζ⃗(j̃) at points j̃ ∈
{...,−2,−1}\ S̃ is determined by relation (31) and
by the constrained optimization problem (22).

Corollary 5.2. Assume that the spectral density
f(λ) is known. Let the spectral density f(λ) +
g0(λ) satisfies the minimality condition (7). The
least favorable spectral density g0(λ) in the class
DW

U for the optimal linear filtering of the functi-
onal Aζ⃗ based on observations of ζ⃗(j̃) at points
j̃ ∈ {...,−2,−1}\ S̃ is determined by relation (32)
and by the constrained optimization problem (22).

6 Conclusions

In this article we study the filtering problem
of the functional Aζ which depends on the
unobserved values of a periodically correlated
stochastic sequence ζ(j). Estimates are based on
observations of a periodically correlated stochastic
sequence ζ(j) + θ(j) with missing observations,
that means that observations of ζ(j) + θ(j) are
known at points j ∈ {. . . ,−(T +2),−(T +1), }\S.
The sequence θ(j) is an uncorrelated with ζ(j)
additive noise.

The filtering problem is considered under
conditions of spectral certainty and spectral
uncertainty. In the first case of spectral certai-
nty the spectral density matrices f(λ) and g(λ) of
the T -variate stationary sequences ζ⃗(n) and θ⃗(n),
obtained by T -blocking of T -PC sequences ζ(j)
and θ(j), respectively, are suppose to be known
exactly. With the help of Hilbert space projecti-
on method formulas for calculating the spectral
characteristic and the mean-square error of the
optimal estimate of the functionals are proposed.
In the second case of spectral uncertainty the
spectral density matrices are not exactly known

while a class D = Df ×Dg of admissible spectral
densities is given. Using the minimax (robust) esti-
mation method we derived relations that determi-
ne the least favorable spectral densities and the
minimax spectral characteristic of the optimal
estimate of the functional Aζ. The problem is
investigated in details for two special classes of
admissible spectral densities.
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