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Given an Appell sequence {Pn(x)}∞n=0 defined by means of a generating function

A(t)ext =
∞∑

n=0
Pn(x)

tn

n!
,

we discuss a general procedure for constructing a complex function F (s, x), which 
is entire in s for each fixed x with Rex > 0, and satisfies F (−n, x) = Pn(x) at n =
0, 1, 2, . . . . The method is based on the Mellin transform and allows A(−t) to have 
isolated singularities on the half-line (0, ∞), in contrast with other general methods 
that appear in the mathematical literature. We illustrate our procedure with some 
elucidatory examples. However, our approach cannot be used for analogously defined 
Appell-Dunkl sequences, a fact which has led us to include an open problem related 
to this case.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

An Appell sequence {Pn(x)}∞n=0 is defined formally by an exponential generating function of the form

G(x, t) = A(t)ext =
∞∑

n=0
Pn(x) t

n

n! , (1.1)

where x, t are indeterminates and A(t) is a formal power series.
It is easily seen that (1.1) implies Pn(x) is a polynomial of the form

Pn(x) = A(0)xn + · · · .
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Thus, the assumption A(0) �= 0 (which is usually given together with (1.1)) means that Pn(x) has degree n. 
In addition, it is straightforward to verify that any such generating function has polynomial coefficients 
satisfying P ′

n(x) = nPn−1(x) for all n ≥ 1, and conversely, that this condition on a polynomial sequence is 
equivalent to having a generating function of the given form.

The members of an Appell sequence are called Appell polynomials. Typical examples of Appell sequences 
are the Bernoulli, Euler, and Hermite polynomials, whose generating functions G(x, t) are respectively 
text/(et − 1), 2ext/(et + 1) and e−t2/2.

In a series of recent papers [21–23], the authors give a method to build transcendental functions whose 
values at the negative integers are the polynomials defined by (1.1), requiring only a few easy conditions 
on the function A(t), and provide many examples and properties. This method uses a slight modification of 
the Mellin transform of the generating function G(x, −t) (note the sign change) and conditions on A(t) that 
ensure the integral defining the transform converges. For instance, for the Bernoulli polynomials {Bn(x)}∞n=0
the corresponding function is sζ(s +1, x), where ζ(s, x) is the Hurwitz zeta function. This is not surprising, 
since a well-known property of ζ(s, x) is ζ(−n + 1, x) = −Bn(x)/n. Many other examples, such as those 
coming from some generalizations of the Bernoulli and Euler polynomials, the classical Hermite and Laguerre 
polynomials, and the Bell numbers, are discussed there.

However, although the conditions on A(t) given in [21] are rather general, one of them requires that A(−t)
be continuous on [0, +∞), thus excluding complex analytic functions A(−t) with singularities on (0, +∞); 
indeed, the Mellin transform does not converge in this case. The purpose of this paper is to extend these 
kinds of results by allowing the existence of isolated singularities, and to give some additional examples.

This article is organized as follows. In Section 2, we present the general method for obtaining an entire 
function s �→ H(s, x) that satisfies H(−n, x) = Pn(x) for a given Appell sequence {Pn(x)}∞n=0, modifying 
the hypotheses of the main theorem of [21] in order to be able to apply it in cases where the Mellin 
transform fails to converge because of the appearance of an isolated singularity (usually, a pole). The 
extended result is contained in Theorem 2.1. This section also includes many comments regarding the use of 
the theorem. In Sections 3, 4 and 5, we apply this method to the Appell sequences that arise when we take 
A(t) = 1/(1 ± t)r and A(t) = 1/(1 ± tk), constructing the corresponding transcendental functions H(s, x)
that satisfy H(−n, x) = Pn(x) for such Appell polynomials. Some of these sequences are related to the 
truncated exponential polynomials

en(x) =
n∑

k=0

1
k!x

k,

and have been recently studied in [7,17,20]. Section 6 includes some additional examples. Finally, in Section 7, 
we conclude by presenting an open problem related to Appell-Dunkl sequences, which are a generalization 
of Appell sequences where the exponential ext has been replaced by the Dunkl exponential Eα(xt) =
ext 1F1(α + 1/2, 2α + 2, −2xt). The details are given in that section.

2. Appell-Mellin sequences

The Mellin transform has been widely used in number theory as well as other fields of mathematics. For 
a given function f(t), it is defined by the integral

M{f(t)}(s) =
∞∫
0

f(t)ts−1 dt. (2.1)

We will often add the factor 1/Γ(s) in front of the integral while still referring to it as a Mellin transform, but 
we reserve the symbol M to always denote (2.1). We apply the Mellin transform to a generating function of 
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an Appell sequence (with a sign change). This provides an entire function that, when restricted to negative 
integer values, yields those Appell polynomials. Mellin transforms of generating functions have also been 
used in the recent papers [3] and [4] for not too dissimilar purposes.

In [21] a subclass of Appell sequences, the so-called Appell-Mellin sequences, were introduced. These are 
sequences {Pn(x)}∞n=0 defined by a generating function of the form (1.1), where A(t) is a complex function 
defined on the union of a neighborhood of the origin with (−∞, 0), satisfying

(a) A(t) is non-constant and analytic around 0;
(b) A(−t) is continuous on [0, +∞) and has polynomial growth at +∞.

Following [21, Theorem 1] for an Appell-Mellin sequence and a fixed x > 0, we consider the integral

H(s, x) = 1
Γ(s)

∞∫
0

G(x,−t)ts−1 dt = 1
Γ(s)

∞∫
0

A(−t)e−xtts−1 dt. (2.2)

This converges for Re(s) > 0 to a holomorphic function of s having an analytic continuation to an entire 
function satisfying H(−n, x) = Pn(x) for n = 0, 1, 2, . . . .

Let R denote the radius of convergence of the Taylor series of A(t) at t = 0. Note that it does not depend 
on x and that the generating series in (1.1) converges for all x ∈ C and |t| < R.

The above integral is an example of a parametric integral with a holomorphic integrand in the s-domain. 
The condition x > 0 is stated for simplicity, but it is not really necessary and can be replaced in most of 
the results by x ∈ C with Re(x) > 0.

As we pointed out in the introduction, this result can be extended to functions such that A(−t) has poles 
on [0, ∞); in other words, we are going to replace condition (b) by a weaker one. This is quite useful since 
it allows us to obtain a special function satisfying H(−n, x) = Pn(x), n = 0, 1, 2, . . . in some remarkable 
cases where the integral 

∫∞
0 G(x, −t)ts−1 dt doesn’t converge, for example, when G(x, −t) = e−xt/(1 − t2). 

The conditions are given in the following theorem.

Theorem 2.1. Let A(−t) be a meromorphic function, continuous on [0, +∞) except for isolated singularities 
at t = t1, t2, . . . , tk (ordered by t1 < t2 < · · · < tk). Furthermore, suppose that A(−t) is analytic in the 
k-punctured rectangle

T = {t ∈ C : t1 − η < Re(t) < tk + η, −η < Im(t) < η} \ {t1, . . . , tk}

for some η > 0 and that A(−t) has polynomial growth for t → +∞. Consider the Appell sequence {Pn(x)}∞n=0
defined by

G(x, t) = A(t)ext =
∞∑

n=0
Pn(x) t

n

n! , |t| < R,

with radius of convergence R satisfying R > t1 − η. Then the integral

H(s, x) = 1
Γ(s)

∫
C

G(x,−t)ts−1 dt = 1
Γ(s)

∫
C

A(−t)e−xtts−1 dt (2.3)

(where the path C goes from t = 0 to t = ∞ avoiding the singularities tj as shown in Fig. 1, with 0 < ε < η) 
converges in the right plane Re(s) > 0 to a holomorphic function of s which may be analytically continued 
to an entire function satisfying
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C1

C2

C3

•0 •
t1 − ε

•
t1

•
t2 . . .

•
tk

•
tk + ε

+∞

Fig. 1. An example of how the path C “avoids” the singularities t1, t2, . . . , tk of A(−t), from Theorem 2.1 (the radius of convergence 
of A(t) must satisfy R > t1 − ε).

H(−n, x) = Pn(x), n = 0, 1, 2, . . .

Proof. The technique of the proof is somewhat similar to that in [21], but more care must be taken to avoid 
the singularities.

Given N ∈ N ∪ {0}, the Mellin integral can be analytically continued to the half-plane Re(s) > −N − 1
as follows. For a fixed ε such that t1 − R < ε < min{η, R} (note that necessarily R ≤ t1 since t1 is a 
singularity), separate the complete integral into three parts, each following the integration paths C1, C2
and C3 (see Fig. 1; the upper corners of C2 are t1 − ε + iε and tk + ε + iε, in order for C2 to lie inside the 
k-punctured rectangle T where A(−t) is analytic). Next, further divide the integral along C1 into two parts, 
so now we have four parts as follows:

H(s, x) = 1
Γ(s)

∞∫
tk+ε

A(−t)e−xtts−1 dt

+ 1
Γ(s)

∫
C2

A(−t)e−xtts−1 dt

+ 1
Γ(s)

t1−ε∫
0

(
A(−t)e−xt −

N∑
n=0

Pn(x) (−t)n

n!

)
ts−1 dt

+ 1
Γ(s)

t1−ε∫
0

N∑
n=0

Pn(x) (−t)n

n! ts−1 dt.

(2.4)

In the first part, the integrand e−xtA(−t)ts−1 converges exponentially to 0 when t → ∞; it is dominated 
on arbitrary closed vertical strips of finite width, hence the integral is an entire function of s. Since 1/Γ(s)
is entire, the complete first term is also.

In the second part, the integrand is again e−xtA(−t)ts−1 and since the path C2 is finite and the integrand 
is analytic there, we again conclude that the integral is an entire function of s.

In the third part, note that the radius of convergence of A(t) is R > t1 − ε. The integrand is the product 
of ts−1 with the tail of the generating series, 

∑∞
n=N+1 Pn(x)(−t)n/n!, which is O(tN+1) at t = 0. Thus, for 

Re(s) > −N − 1, the complete integrand is O(tN+Re(s)) at t = 0 (with the order constant depending only 
on x) and hence is integrable on [0, t1− ε] and dominated on closed vertical sub-strips of finite width of this 
section of the s-plane. Therefore the third integral is a holomorphic function of s for Re(s) > −N − 1.

In the fourth part, we get

1
Γ(s)

t1−ε∫
0

N∑
n=0

Pn(x) (−t)n

n! ts−1 dt = 1
Γ(s)

N∑
n=0

Pn(x) (−1)n

n!

t1−ε∫
0

ts+n−1 dt

= 1
Γ(s)

N∑
n=0

Pn(x) (−1)n

n!
(t1 − ε)s+n

s + n
, (2.5)
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C1 C3

•0 •
t1 − ε

•
t1

•
t2 . . .

•
tk

•
tk + ε

C2

+∞

Fig. 2. An alternative for the path C2, as described in Remark 1.

t0
0 •• • •

+∞

C2

t0 − ε t0 + ε

C3C1

Fig. 3. An example of how the path C that “avoids” a unique singularity t0 of A(−t).

which is an entire function of s because the simple pole of Γ(s) at s = −n cancels the simple zero of s + n

for n = 0, 1, 2, . . . , leaving the non-zero residue (−1)n/n!.
Finally, if s = −n with 0 ≤ n ≤ N , the factor 1/Γ(s) in front of every integral is zero, so the first, second, 

and third parts in (2.4) vanish, while in the fourth part, the only non-zero summand in (2.5) corresponds to 
n, and yields the value Pn(x) because of the residue of Γ(s) at −n = 0, 1, 2, . . . , which is equal to (−1)n/n!. 
Thus H(−n, x) = Pn(x) for these n, and this completes the proof. �

In the next sections we show how to apply Theorem 2.1 to specific Appell sequences. In most cases, the 
singularities reduce to a single pole. Before we proceed, we make some observations about the theorem.

Remark 1. We have taken the C2 part of the path C as the upper part of a rectangle. This is not essential 
since for functions which are analytic in a simply connected domain, the integral is independent of the path. 
For instance, we could also take the C2 part as in Fig. 2 (again with R > t1 − ε). The most common (and 
easy) case of the previous theorem is when A(−t) has only one singularity, which we call t0. In this case, 
we usually describe the C2 part of the path as a semicircle of radius ε centered on t0, as in Fig. 3. In many 
cases, the radius of convergence of A(−t) is R = t0, and then we can take any ε > 0.

Remark 2. For simplicity, assume that we have a unique singularity at t0, as described in the previous 
remark, with the path C passing above the singularity as shown in Fig. 3, and C2 equal to a semicircle. 
Clearly, we could also take the path C passing under the singularity t0, obtaining two different functions 
H(s, x) satisfying H(−n, x) = Pn(x). Let C+ denote the path going over t0 (as in the figure) and C− the 
path going under t0, and let us denote by H+(s, x) and H−(s, x) the corresponding functions H(s, x). Then, 
by Cauchy’s residue theorem,

H−(s, x) = 1
Γ(s)

∫
C−

A(−t)e−xtts−1 dt

= 1
Γ(s)

∫
C+

A(−t)e−xtts−1 dt + 1
Γ(s)

∫
|t−t0|=ε

A(−t)e−xtts−1 dt

= H+(s, x) + 2πi
Γ(s) Res(A(−t)e−xtts−1, t = t0)

in the right plane Re(s) > 0. By analytic continuation, this relation between H−(s, x) and H+(s, x) is also 
true in the complex s-plane. If A(−t) has a pole of order 1 at t0, let us write A(−t) =

∑∞
k=−1 ak(t − t0)k; 

then, it is easy to see that Res(A(−t)e−xtts−1, t = t0) = a−1e
−t0xts−1

0 .
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In the case of more than one singularity, as in Fig. 2, we can also conceive of paths that zigzag between 
singularities, some going over and some under (for instance, with semicircles above and below the horizontal 
axis). This will generate many different functions H(s, t) but, again, they will be related by the residues at 
the singularities.

Remark 3. For certain generating functions A(t) such that A(−t) has a pole at a certain t0 > 0, Theorem 2.1
might be superfluous. For instance, let us assume given A(t) and the corresponding Appell polynomials 
Pn(x), and let Ã(t) = A(−t), with corresponding Appell polynomials P̃n(x); if A(−t) has a pole at t0 > 0, 
it becomes −t0 (negative) for Ã(−t), and perhaps Ã(t) satisfies the hypotheses of [21, Theorem 1]. With 
this notation,

∞∑
n=0

Pn(x) t
n

n! = A(t)ext = Ã(−t)e(−x)(−t) =
∞∑

n=0
P̃n(−x) (−t)n

n! ,

so Pn(x) = (−1)nP̃n(−x). Consequently, if H̃(s, x) is the s-entire function that satisfies H̃(−n, x) = P̃n(x), 
the new s-entire function H(s, x) = eiπsH̃(s, −x) (or e−iπsH̃(s, −x)) satisfies

H(−n, x) = e−iπnH̃(−n,−x) = (−1)nP̃n(−x) = Pn(x).

In any case, the trick above mention cannot be used if, for instance, A(−t) has poles both at t0 and at −t0. 
In particular, this happens for A(t) = 1/(1 − t2).

Remark 4. Sometimes, a clever use of Theorem 2.1 allows us to find in a simple way the function H(s, x)
corresponding to (1.1) if A(−t) has more than one pole on (0, ∞). To exemplify it, let us assume that we 
have t1 and t2 satisfying 0 < t1 < t2 and

A(t) = Ã(t)
(t + t1)(t + t2)

,

for a function Ã(t) without singularities. Let us take the partial fraction decomposition

1
(t + t1)(t + t2)

= k1

t + t1
+ k2

t + t2
, k1 = (t2 − t1)−1, k2 = (t1 − t2)−1,

as well as the Appell sequences

Ã(t)
t + tj

ext =
∞∑

n=0
P j
n(x) t

n

n! , j = 1, 2.

Then,

∞∑
n=0

Pn(x) t
n

n! = A(t)ext = k1
Ã(t)
t + t1

ext + k2
Ã(t)
t + t2

ext = k1

∞∑
n=0

P 1
n(x) t

n

n! + k2

∞∑
n=0

P 2
n(x) t

n

n! ,

so Pn(x) = k1P
1
n(x) + k2P

2
n(x).

It is clear that the radius of convergence of Ã(t)
t+tj

is tj , for j = 1, 2, and we can apply Theorem 2.1 in both 

cases, obtaining s-entire functions Hj(s, x) such that Hj(−n, x) = P j
n(x). Consequently, taking

H(s, x) = k1H1(s, x) + k2H2(s, x)

we have H(−n, x) = Pn(x), as desired.
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3. The case A(t) = 1/(1 − t)r

For completeness, and to compare it with the case A(t) = 1/(1 + t)r that will be explored in the next 
section, we begin with an example that does not require the extension given in Theorem 2.1 of this paper 
because A(−t) = 1/(1 + t)r does not have singularities on [0, ∞). However, perhaps the most interesting 
case, which corresponds to r = 1, was not studied in [21].

Let {P (r−)
n (x)}∞n=0 be the polynomials defined by

1
(1 − t)r e

xt =
∞∑

n=0
P (r−)
n (x) t

n

n! , |t| < 1. (3.1)

The case r = 1 is of interest on its own. In this particular case, for |t| < 1 we have

1
1 − t

ext =
( ∞∑

j=0
tj

)( ∞∑
j=0

(xt)j

j!

)
=

∞∑
n=0

tn

n!

(
n∑

k=0

xn−k

(n− k)!k!
)

and hence, equating coefficients in (3.1), we get

P (1−)
n (x) = n!

(
1 + x + x

2 + · · · + xn

n!

)
= n! en(x). (3.2)

The en(x) are called the truncated exponential polynomials.
For general r, we have

H(r−)(s, x) = 1
Γ(s)

∞∫
0

e−xt(1 + t)−rts−1 dt, Re(s) > 0, Re(x) > 0,

and [21, Theorem 1] (and also Theorem 2.1 of this paper, of course) implies that this function can be 
analytically continued to a s-entire function satisfying H(r−)(−n, x) = P

(r−)
n (x). Actually, H(r−)(s, x) is an 

old well-known function in the mathematical literature, as we now show.
Let us recall that Tricomi’s confluent hypergeometric function is

Ψ(a, c;x) = Γ(1 − c)
Γ(a + 1 − c) 1F1(a, c; t) + Γ(b− 1)

Γ(a) t1−c
1F1(a + 1 − c, 2 − c; t)

(it is also denoted by U(a, c, x), see [12, § 6.5, equation (2)] or [19, p. 242 in § 5.5.2]). This function, that 
will appear several other times in this paper, is often defined as the Mellin transform

Ψ(a, c;x) = 1
Γ(a)

∞∫
0

e−xt(1 + t)c−a−1ta−1 dt, Re(a) > 0, Re(x) > 0,

and then extended by analytic continuation.
With our notation, H(r−)(s, x) = Ψ(s, s − r + 1; x) and H(r−)(−n, x) = P

(r−)
n (x). But, when s = −n, by 

[12, § 6.9.2, equation (36)] we have

Ψ(−n,−n− r + 1;x) = (−1)nn!L(−n−r)
n (x),

where
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L(α)
n (x) =

n∑
k=0

(
n + α

n− k

)
(−x)k

k!

denotes the (generalized) Laguerre polynomial of degree n and order α (here, 
(
n+α
n−k

)
is the generalized 

binomial coefficient). Consequently, P (r−)
n (x) = (−1)nn! L(−n−r)

n (x).
The case r = 1 yields

H(1−)(s, x) = 1
Γ(s)

∞∫
0

e−xt(1 + t)−1ts−1 dt = Ψ(s, s;x),

and the function H(1−)(s, x) analytically continued to the s-plane satisfies H(−n, x) = n! en(x).
Now, note that one of the properties of the incomplete Gamma function

Γ(s, x) =
∞∫
x

e−tts−1 dt, (3.3)

is the following relation (see, for instance, [13, § 9.1, equation (4)]):

Γ(s, x) = e−xΨ(1 − s, 1 − s;x). (3.4)

Hence,

H(1−)(s, x) = exΓ(1 − s, x), (3.5)

and consequently

H(1−)(−n, x) = exΓ(n + 1, x) = n! en(x). (3.6)

Thus we recover a nice property of the incomplete Gamma function (see, for instance, [24, 8.4.8]):

Γ(n, x) = (n− 1)! e−xen−1(x), n ∈ N. (3.7)

3.1. McBride polynomials

Let us finish this section by mentioning some polynomials related to what has been shown and that have 
been studied in the mathematical literature. They are the McBride polynomials {eλn(x)}∞n=0, defined by 
(see, for instance, [7, equation (12)])

∞∑
n=0

tneλn(x) = ext
Γ(λ + 1)
(1 − t)λ .

These polynomials are an easy variation of {P (λ−)
n (x)}∞n=0, and thus we have that Ψ(s, s −λ +1; x) satisfies

Ψ(−n,−n− λ + 1;x) = n! Γ(λ + 1)eλn(x).
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+∞

+∞i

0

γ2
γ3

γ1 M

Mi

Fig. 4. Path for transforming an integral on (0,+∞) into an integral on (0,+∞i).

4. The case A(t) = 1/(1 + t)r

Let {P (r+)
n (x)}∞n=0 be the polynomials defined by

1
(1 + t)r e

xt =
∞∑

n=0
P (r+)
n (x) t

n

n! , |t| < 1.

Note that in this case the integral

H(r+)(s, x) = 1
Γ(s)

∞∫
0

e−xt(1 − t)−rts−1 dt

does not converge because A(−t) = (1 − t)−r has a pole at t0 = 1. However, we can apply Theorem 2.1, 
and thus we can consider

H(r+)(s, x) = 1
Γ(s)

∫
C

e−xt(1 − t)−1ts−1 dt,

where the path C goes from 0 to ∞ but jumps over the pole t0 = 1 (as shown in Fig. 3), and The-
orem 2.1 guarantees that H(r+)(s, x) can be analytically continued to an s-entire function that satisfies 
H(r+)(−n, x) = P

(r+)
n (x).

To identify the function H(r+)(s, x), let us start by noticing that for H(r−)(s, x) we had, for Re(s) > 0
and Re(x) > 0,

H(r−)(s, x) = Ψ(s, s− r + 1;x) = 1
Γ(s)

∞∫
0

e−xt(1 + t)−rts−1 dt.

If we change the path of integration of H(r−)(s, x) to the positive imaginary axis, we have that

1
Γ(s)

∞i∫
0

e−xt(1 + t)−rts−1 dt (4.1)

is convergent for Re(s) > 0 and −π < arg(x) < 0. Let f(t) = e−xt(1 + t)−rts−1 and consider the integral ∫
γ
f(t) dt, where γ is the composition of the paths γ1, γ2 and γ3 given in Fig. 4. Since f(t) has no singularities 

inside the contour γ, 
∫
γ
f(t) dt =

∫
γ1

f(t) dt +
∫
γ2

f(t) dt +
∫
γ3

f(t) dt = 0, and it is easy to prove that ∫
f(t) dt = 0 when M → ∞ (because of the term e−xt in the integrand). Hence 

∫∞
f(t) dt =

∫∞i
f(t) dt, 
γ2 0 0
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so H(r−)(s, x) is equal to (4.1) in the overlapping domain −π/2 < arg(x) < 0. By the same reasoning, we 
can change the path to the negative real axis t ∈ [0, −∞), and thus

H(r−)(s, x) = 1
Γ(s)

−∞∫
0

e−xt(1 + t)−rts−1 dt, (4.2)

where the path passes above the pole at t0 = −1, similarly to Fig. 3, but on the negative real axis.
Finally, substituting z = −t = eiπt in (4.2), we get

H(r−)(s, xeiπ) = Ψ(s, s− r + 1;xeiπ) = eiπs

Γ(s)

∫
C

e−xz(1 − z)−rzs−1 dz,

with C as in Fig. 3 (with z0 = 1). Then,

H(r+)(s, x) = 1
Γ(s)

∫
C

e−xz(1 − z)−rzs−1 dz = e−πisΨ(s, s− r + 1;xeπi) (4.3)

is a function that satisfies H(r+)(−n, x) = P
(r+)
n (x).

Note that if we substitute z = te−iπ instead of z = teiπ we obtain a different special function H(r+)(s, x)
which satisfies H(r+)(−n, x) = P

(r+)
n (x) (see, for instance, [26])

H̃(r+)(s, x) = eπisΨ(s, s− r + 1; e−iπx).

In this case C passes under the pole t0 = 1, which is related to Remark 2. We will use this reasoning for 
obtaining H(r+)(s, x) and H̃(r+)(s, x) many other times in this paper, but we will omit the details from 
now on.

The case r = 1 is interesting for its own sake. We get

1
1 + t

ext =
∞∑

n=0
P (1+)
n (x) t

n

n! , |t| < 1, (4.4)

and it is easy to prove that P (1+)
n (x) = (−1)nn! en(−x). Of course, this can be easily deduced from (3.1)

and (3.2) changing x to −x and t to −t.
A direct consequence of (4.3) together with (3.4) is

Γ(−s + 1, xe±πi) = exe±πis 1
Γ(s)

∫
C

e−xt

1 − t
ts−1 dt

and

H(1+)(s, x) = Γ(−s + 1, xe±πi)e−xe∓πis. (4.5)

4.1. Appell-type Changhee polynomials

As in Section 3, let us finish this section by mentioning another family of Appell polynomials with a proper 
name. The so-called Appell-type Changhee polynomials, {Ch∗

n(x)}∞n=0, introduced in [18], are defined by
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2
2 + t

ext =
∞∑

n=0
Ch∗

n(x) t
n

n! , |t| < 2.

The generating function 2
2+te

xt is closely related to 1
1+te

xt by means of the change of variables t �→ 2t
and x �→ x/2. It is easy to check that the Appell-type Changhee polynomials are related to the truncated 
exponential polynomials by the equation

Ch∗
n(x) = (−1)nn!

2n en(−2x).

To find the special function that satisfies H(−n, x) = Ch∗
n(x) for n = 0, 1, 2, . . . , let us take the integral

H(s, x) = 2
Γ(s)

∫
C

e−xt

2 − t
ts−1 dt,

where now C is a path avoiding the pole at t0 = 2. By changing t �→ 2t in the integral and recalling (4.5), 
we get

H(s, x) = 2sΓ(−s + 1, 2xe±πi)e−2xe∓πis.

5. The cases A(t) = 1/(1 − tk) and A(t) = 1/(1 + tk)

In this section we are going to study together the two cases A(t) = 1/(1 − tk) and A(t) = 1/(1 + tk), 
whose corresponding Appell polynomials will be denoted by P [k]

n (x) and Q[k]
n (x). We study these cases 

simultaneously because we will obtain two special functions H [k]
j (s, x) such that H [k]

j (−n, x) (both for 
j = 1, 2) is equal to P [k]

n (x) or Q[k]
n (x) depending on k being even or odd.

First, let us denote by {P [k]
n (x)}∞n=0 the polynomials defined by

1
1 − tk

ext =
∞∑

n=0
P [k]
n (x) t

n

n! , |t| < 1.

Of course, the case k = 1 gives us P (1)
n (x) = n! en(x), and they are given by

P [k]
n (x) = n!

�n/k�∑
j=0

xn−kj

(n− kj)!

(these polynomials are studied, for instance, in [16, (1.19)], where they are denoted by [k]en(x)).
In this case, we get that

H [k](s, x) = 1
Γ(s)

∞∫
0

e−xt

1 − (−t)k t
s−1 dt =

⎧⎨⎩
1

Γ(s)
∫∞
0 e−xt(1 − tk)−1ts−1 dt, if k even,

1
Γ(s)

∫∞
0 e−xt(1 + tk)−1ts−1 dt, if k odd.

On the other hand, if {Q[k]
n (x)}∞n=0 are the polynomials defined by

1
1 + tk

ext =
∞∑

n=0
Q[k]

n (x) t
n

n! , |t| < 1,

where
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Q[k]
n (x) = n!

�n/k�∑
j=0

(−1)jxn−kj

(n− kj)! ,

we get that

H [k](s, x) = 1
Γ(s)

∞∫
0

e−xt

1 + (−t)k t
s−1 dt =

⎧⎨⎩
1

Γ(s)
∫∞
0 e−xt(1 + tk)−1ts−1 dt, if k even,

1
Γ(s)

∫∞
0 e−xt(1 − tk)−1ts−1 dt, if k odd.

Then we could argue that, for k = 1, 2, 3, . . . , the function

H
[k]
1 (s, x) = 1

Γ(s)

∞∫
0

e−xt(1 + tk)−1ts−1 dt

can be analytically continued to the s-complex plane (in this case [21, Theorem 1] is enough to do it) and 
satisfies H [k]

1 (−n, x) = P
[k]
n (x) if k is odd and H [k]

1 (−n, x) = Q
[k]
n (x) if k is even.

On the other hand, we notice that the integral

∞∫
0

e−xt(1 − tk)−1ts−1 dt

does not converge for any k = 1, 2, 3, . . . . However, we can consider instead

H
[k]
2 (s, x) = 1

Γ(s)

∫
C

e−xt(1 − tk)−1ts−1 dt,

which can be analytically continued to the s-complex plane as described in Theorem 2.1. Then, H [k]
2 (−n, x) =

Q
[k]
n (x) if k is odd and H [k]

2 (−n, x) = P
[k]
n (x) if k is even.

Next, we show how to express H [k]
1 (s, x) and H [k]

2 (s, x) in terms of previously known special functions. 
Both of them are particular cases of Meijer G-functions, a remarkable family of functions of one variable, each 
of them determined by finitely many indices. By definition, via the Mellin-Barnes integral representation, 
the Meijer G-function is

Gm,n
p,q

(
a1, . . . , ap
b1, . . . , bq

∣∣∣∣ z) = 1
2πi

∫
L

∏m
j=1 Γ(bj − t)

∏n
j=1 Γ(1 − aj + t)∏q

j=m+1 Γ(1 − bj + t)
∏p

j=n+1 Γ(aj − t)
zt dt

where the integration path L separates the poles of the factors Γ(bj−t) from those of the factors Γ(1 −aj+t), 
with three possible choices for this path (for details, see [1, § 16.17] or [2] and the references therein).

Meijer G-functions have proved useful for generalizing a huge class of functions, including elementary 
functions, gamma functions, Bessel functions, hypergeometric functions, and so on. If A(t) can be written 

as a Meijer G-function as A(−t) = Gm,n
p,q

(
a1,...,ap

b1,...,bq

∣∣∣ ηt) for some constant η, then

∞∫
0

Gm,n
p,q

(
a1, . . . , ap
b1, . . . , bq

∣∣∣∣ ηt)e−xtts−1 dt = x−sGm,n+1
p+1,q

(
1 − s, a1, . . . , ap

b1, . . . , bq

∣∣∣∣ ηx
)

(5.1)

(see [12, § 5.5.2]). However, in our case we have 1/(1 + tk) = G1,1
1,1

(
0
0

∣∣∣ tk), which is not of this form. Hence, 
the identity (5.1) alone isn’t enough to compute the integral (2.2), and for this reason we need some auxiliary 
results involving Mellin transforms.
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Theorem 5.1. For k ∈ N we have that

1
Γ(s)

∞∫
0

e−xt

1 + tk
ts−1 dt = (2π) 1−k

2
√
k Γ(s)

G1,k+1
k+1,1

(
1, k−1

k , . . . , 1
k ,

s
k

s/k

∣∣∣∣ (k

x

)k )
,

where the function G1,k+1
k+1,1 is a Meijer G-function.

We need the following lemmas to prove the above theorem. We refer Lemma 5.2 to [14, Chapter VI], and 
Lemma 5.3 to [8, § 8.2 and § 8.3] or [27, Theorem 73, p. 95].

Lemma 5.2. Let M{f(t)}(s) denote the Mellin transform of a suitable function f(t). Then

M{e−xt}(s) = Γ(s)x−s, 0 < Re(s),

and

M
{

1
1 + tk

}
(s) = π

k
csc

(π
k
s
)

= 1
k

Γ
( s

k

)
Γ
(
1 − s

k

)
, 0 < Re(s) < k.

Lemma 5.3 (Parseval’s formula for Mellin transforms). Let f1(t), f2(t) be two functions with Mellin trans-
forms f̃j(t) = M{fj(t)}(s), j = 1, 2, in the strips α1,2 < Re(s) < β1,2, respectively. Take c ∈ R

such that α1 < c < β1 and suppose that f1(t)tc and f2(t)tRe(s)−c belong to L2((0, ∞)). Then, for 
α2 + c < Re(s) < β2 + c, we have

M{f1(t)f2(t)}(s) = 1
2πi

c+i∞∫
c−i∞

f̃1(r)f̃2(s− r) dr.

Proof of Theorem 5.1. We start by computing the Mellin transform of e−xt/(1 + tk) for k ∈ N. We apply 
Parseval’s formula (Lemma 5.3 with 0 < c < ∞ and c < Re(s) < c + k) to e−xt and 1/(1 + tk). This, 
together with Lemma 5.2, gives

∞∫
0

e−xt(1 + tk)−1ts−1 dt = 1
2πik

c+i∞∫
c−i∞

Γ(r)Γ
(
1 − s− r

k

)
Γ
(s− r

k

)
x−r dr

= 1
2πi

c̃+i∞∫
c̃−i∞

Γ(kt)Γ
(
1 − s

k
+ t

)
Γ
( s

k
− t

)
x−tk dt

= (2π) 1−k
2

√
k

1
2πi

c̃+i∞∫
c̃−i∞

k∏
j=1

Γ
(j − 1

k
+ t

)
Γ
(
1 − s

k
+ t

)
Γ
( s

k
− t

)(k
x

)tk

dt,

where in the last step we have applied the multiplication formula for the gamma function (see [12, § 1.2, 
equation (11)]):

Γ(ks) = (2π)(1−k)/2kks−1/2
k−1∏

Γ
(
s + j

k

)
, ks �= −1,−2, . . . .
j=0
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The last integral, together with the factor 1/(2πi), is a Meijer-G function G1,k+1
k+1,1 with coefficients aj =

1 − (j − 1)/k for j = 1, . . . , k, ak+1 = s/k and b1 = s/k, and z = (k/x)k. Here, the path L in 
∫ c̃+i∞
c̃−i∞ is one 

of the three possible types of path in the integral representation of the Meijer G-function Gm,n
p,q ; namely, L

runs from −i∞ to +i∞ in such a way that all poles of Γ(bj − s), j = 1, 2, . . . , m, are to the right of the 
path, while all poles of Γ(1 −ak +s), k = 1, 2, . . . , n, are to the left (case (i) with the notation of [1, § 16.17], 
that can be used when p + q < 2(m + n)). �

Now, to obtain H [k]
2 (s, x), we follow the reasoning of Section 4. We start from

H
[k]
1 (s, x) = 1

Γ(s)

∞∫
0

e−xt

1 + tk
ts−1 dt

and we get

H
[k]
1 (s, xe±iπ/k) = 1

Γ(s)

∞∫
0

e−xe±iπ/kt

1 + tk
ts−1 dt.

By changing variables to e±iπ/kt = u, and using the path avoiding the pole at t0 = 1 as usual, we get

H
[k]
1 (s, xe±iπ/k) = e

±iπ
k s

Γ(s)

∫
C

e−xu

1 − uk
us−1 dt.

Hence

H
[k]
2 (s, x) = e∓

iπ
k sH

[k]
1 (s, xe±iπ/k).

6. An example with 2-variable-truncated Appell polynomials

Let us assume that we have an Appell sequence defined as in (1.1). Then, following [17, § 2], the corre-
sponding 2-variable-truncated Appell polynomials are

A(t)
1 − ytr

ext =
∞∑

n=0
P [r]
n (x, y) t

n

n! . (6.1)

The polynomials P [r]
n (x, y) are equal to

P [r]
n (x, y) = n!

�n/r�∑
j=0

yjAn−rj(x)
(n− rj)! ,

where the sequencce {An(x)}∞n=0 is determined by the generating function

A(t)ext =
∞∑

n=0
An(x) t

n

n! .

In this kind of Appell sequence, it is clear that the denominator 1 − ytr introduces a pole on (0, ∞)
when y < 0 (recall that in the Mellin transform, the generating function appears as G(x, −t)). Thus, finding 
H [r](s, x, y) such that H [r](−n, x, y) = P

[r]
n (x, y) could be done with the help of Theorem 2.1.
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Of course, it is not feasible to give general formulas for this, because the integrals that appear in the 
process depend strongly on the function A(t) in (6.1). Here, we are going to study some simple cases.

Let us consider the polynomials {Pn(x, y)}∞n=0 defined by

1
(1 − yt)(1 + t)e

xt =
∞∑

n=0
Pn(x, y) t

n

n! , |t| < min{1, 1/|y|}.

Starting from

ezu

1 − u
=

∞∑
n=0

n! en(z)u
n

n!

(recall (3.1) and (3.2)) the substitutions z = x/y and u = yt give

ext

1 − yt
=

∞∑
n=0

n! ynen(x/y) t
n

n! ;

moreover (see (4.4)),

ext

1 + t
=

∞∑
n=0

(−1)nn! en(−x) t
n

n! .

Let us separate A(−t) into partial fractions as

1
(1 + yt)(1 − t) = y

y + 1 · 1
1 + yt

+ 1
y + 1 · 1

1 − t
, y �= −1.

Then, it is easy to check that

Pn(x, y) = y

y + 1n! ynen(x/y) + 1
y + 1(−1)nn! en(−x) = n!

y + 1
(
yn+1en(x/y) + (−1)nen(−x)

)
.

For completeness, let us observe that yn+1en(x/y) + (−1)nen(−x), which is a polynomial of degree n + 1 in 
y, vanishes when y = −1, so it is divisible by y + 1. Consequently, Pn(x, y) is, as expected, a polynomial of 
degree n both in x and in y.

The special function H(s, x, y) such that H(−n, x, y) = Pn(x, y) is found by separating the integral 
corresponding to (2.3) into two previously studied integrals. For y �= −1 we have

H(s, x, y) = 1
Γ(s)

∫
C

e−xt

(1 + yt)(1 − t) t
s−1 dt

= y

y + 1
1

Γ(s)

∫
C

e−xt

1 + yt
ts−1 dt + 1

y + 1
1

Γ(s)

∫
C

e−xt

1 − t
ts−1 dt,

where C is a path as in Theorem 2.1 avoiding the poles at t = 1 and t = −1/y if y < 0 (if y > 0 the path 
C only needs to avoid the pole t = 1). Then, by (3.5) and (4.5),

H(s, x, y) =

⎧⎨⎩
y1−s

y+1 e
x/yΓ(1 − s, x/y) + 1

y+1e
−xeπisΓ(1 − s,−x), y > 0;

|y|−sy e−x/|y|eπisΓ(1 − s,−x/|y|) + 1 e−xeπisΓ(1 − s,−x), −1 �= y < 0.
y+1 y+1
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Notice that the cases y = 0 and y = −1 were already studied in Section 4.
Many other cases can be studied by this technique, especially when A(t) is a rational function. To conclude 

this section, let us also briefly consider the case A(t) = 1 and a given r, i.e.,

ext

1 − ytr
=

∞∑
n=0

P [r]
n (x, y) t

n

n! .

Here we have

P [r]
n (x, y) = n!

�n/r�∑
j=0

yjxn−rj

(n− rj)! .

The function H [r](s, x, y) can be easily computed. First consider each case y > 0 or y < 0 (using a 
denominator like 1 + |y|tr) and then substitute ytr = u in the integral. Having done this, we just need to 
compare the integral with the functions H [r]

1 (s, x) or H [r]
2 (s, x) of Section 5.

7. An open problem for the Appell-Dunkl case

Appell sequences of polynomials have been extended in many ways. One of them consists of changing 
the derivative operator in the relation P ′

n(x) = nPn−1(x) (or a similar one) by a different operator with 
suitable properties. In [5] and [9], the derivative was replaced by the Dunkl operator on the real line

Λαf(x) = d

dx
f(x) + 2α + 1

2

(
f(x) − f(−x)

x

)
,

where α > −1 is a fixed parameter (see [10,25]). When α = −1/2 we recover the classical case Λ−1/2 = d
dx . 

In that setting, an Appell-Dunkl sequence {Pn,α}∞n=0 is a sequence of polynomials that satisfies

ΛαPn,α(x) =
(
n + (α + 1/2)(1 − (−1)n)

)
Pn−1,α(x).

This is a generalization of d
dxPn(x) = nPn−1(x), which we recover when α = −1/2.

In order to express Appell-Dunkl polynomials by means of a generating function, we replace the classical 
exponential ez by the so-called “Dunkl exponential” Eα(z), which is

Eα(z) =
∞∑

n=0

zn

γn,α
, z ∈ C,

with

γn,α =
{

22kk! (α + 1)k, if n = 2k,
22k+1k! (α + 1)k+1, if n = 2k + 1,

and where (a)n = a(a + 1)(a + 2) · · · (a + n − 1) = Γ(a + n)/Γ(a) denotes the Pochhammer symbol. Of 
course, E−1/2(z) = ez and γn,−1/2 = n!.

In this way, an Appell-Dunkl sequence {Pn,α(x)}∞n=0 is a sequence of polynomials defined by the gener-
ating function

A(t)Eα(xt) =
∞∑

Pn,α(x) tn

γn,α
,

n=0
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where A(t) is analytic at t = 0 with A(0) �= 0. The first Appell-Dunkl sequence of polynomials studied in 
the mathematical literature were the so-called generalized Hermite polynomials (see [25]). In recent years, 
the Bernoulli and the Euler polynomials (among other Appell families) have been extended to the Dunkl 
context; see, for instance, [5,6,11]. These polynomials have been proven to be very useful for extending some 
classical properties to a more general context.

Some of the Appell sequences that we studied in this paper have also been recently extended to the 
Dunkl context (see [20]). For instance, (3.1) and (4.4) are extended as

1
1 ± t

Eα(xt) =
∞∑

n=0
P (1±)
n,α (x) t

n

n! .

As expected, P (1−)
n,α (x) = γn,αen,α(x) and P (1+)

n,α (x) = (−1)nγn,αen,α(−x), where now

en,α(x) = 1 + x

γ1,α
+ x2

γ2,α
+ · · · + xn

γn,α

is the n-th truncated Dunkl exponential. Can we find special functions H(1±)
α (s, x) such that H(1±)

α (−n, x) =
P

(1±)
n,α (x)?
In the recent paper [15], we give special functions H(s, x) whose values at the negative integers yield 

the Bernoulli-Dunkl and Euler-Dunkl polynomials (and their generalized families) and found functions that 
recall the Hurwitz and Riemann zeta functions, but in a Dunkl context. We do this by taking the Mellin 
transform

∞∫
0

A(−t)Eα(−xt)ts−1 dt, Re(x) > 0, (7.1)

and, at least in part, the method is similar to the one in [21, Theorem 1], although with many difficulties. 
One of these is the convergence of the integral (7.1) when t → ∞. In the classical case α = −1/2, the factor 
E−1/2(−xt) = e−xt decreases very quickly when t → +∞, and then the integral (7.1) converges if A(−t) is 
continuous on [0, +∞) and has polynomial growth at +∞. However, except for α = −1/2, Eα(u) (for u ∈ R) 
behaves roughly like e|u|, so A(−t) must decrease very quickly to allow the convergence of (7.1). This is 
the case for the Bernoulli-Dunkl and Euler-Dunkl polynomials studied in [15], for which the corresponding 
function A(t) is able to guarantee the convergence of (7.1) for a certain range of x, but not, for instance, in 
the case A(t) = 1 or A(t) = 1/(1 − t).

In particular, if we try to apply the method to G(x, −t) = Eα(−xt)/(1 + t) with α �= −1/2, we get the 
integral

∞∫
0

Eα(−xt)
1 + t

ts−1 dt,

which does not converge for any x ∈ R. Hence, the method fails here and we can not find in this way an 
s-analytic function Hα(s, x) such that Hα(−n, x) = γn,αen,α(x) (or other suitable multiplicative constants) 
which would be the Dunkl extension of (3.6). Is there another way to find the desired function?

Taking into account the definition (3.3) and the identity (3.7) in the classical case, this will perhaps lead 
to an “incomplete Gamma-Dunkl function” and/or to a “Gamma-Dunkl function” with suitable properties.



18 A. Gil Asensi, J.L. Varona / J. Math. Anal. Appl. 531 (2024) 127825
References

[1] R.A. Askey, A.B. Olde Daalhuis, Generalized Hypergeometric Functions and Meijer G-Function, NIST Handbook of 
Mathematical Functions, U.S. Dept. Commerce, Washington, DC, 2010, pp. 404–418, Available online in http://dlmf .nist .
gov /16.

[2] R. Beals, J. Szmigielski, Meijer G-functions: a gentle introduction, Not. Am. Math. Soc. 60 (2013) 866–872.
[3] J.S. Campos-Orozco, J.E. Galé, Continuous Sheffer families I, J. Math. Anal. Appl. 405 (2013) 286–296.
[4] J.S. Campos-Orozco, J.E. Galé, Continuous Sheffer families II, J. Math. Anal. Appl. 412 (2014) 381–390.
[5] Ó. Ciaurri, A.J. Durán, M. Pérez, J.L. Varona, Bernoulli-Dunkl and Apostol-Euler-Dunkl polynomials with applications 

to series involving zeros of Bessel functions, J. Approx. Theory 235 (2018) 20–45.
[6] Ó. Ciaurri, J. Mínguez Ceniceros, J.L. Varona, Bernoulli-Dunkl and Euler-Dunkl polynomials and their generalizations, 

Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113 (2019) 2853–2876.
[7] G. Dattoli, C. Cesarano, D. Sacchetti, A note on truncated polynomials, Appl. Math. Comput. 134 (2003) 595–605.
[8] L. Debnath, D. Bhatta, Integral Transforms and Their Applications, 3rd ed., CRC Press, Boca Raton, FL, 2015.
[9] I.H. Dimovski, V.Z. Hristov, Nonlocal operational calculi for Dunkl operators, SIGMA 5 (2009) 030.

[10] C.F. Dunkl, Differential-difference operators associated to reflection groups, Trans. Am. Math. Soc. 311 (1989) 167–183.
[11] A.J. Durán, M. Pérez, J.L. Varona, Fourier-Dunkl system of the second kind and Euler-Dunkl polynomials, J. Approx. 

Theory 245 (2019) 23–39.
[12] A. Erdélyi, W. Magnus, F. Oberhettinger, F. Tricomi, Higher Transcendental Functions, vol. I, McGraw-Hill, New York, 

1953.
[13] A. Erdélyi, W. Magnus, F. Oberhettinger, F. Tricomi, Higher Transcendental Functions, vol. II, McGraw-Hill, New York, 

1955.
[14] A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Tables of Integral Transforms, vol. I, McGraw-Hill, New York, 

1954.
[15] A. Gil Asensi, J.L. Varona, Appell-Dunkl sequences and Hurwitz-Dunkl zeta functions, J. Math. Anal. Appl. 520 (2023) 

126870.
[16] S. Khan, G. Yasmin, N. Ahmad, On a new family related to truncated exponential and Sheffer polynomials, J. Math. 

Anal. Appl. 419 (2014) 921–937.
[17] S. Khan, G. Yasmin, N. Ahmad, A note on truncated exponential-based Appell polynomials, Bull. Malays. Math. Sci. Soc. 

40 (2017) 373–388.
[18] J.G. Lee, L.-C. Jang, J.-J. Seo, S.-K. Choi, H.I. Kwon, On Appell-type Changhee polynomials and numbers, Adv. Differ. 

Equ. 2016 (2016) 160.
[19] W. Magnus, F. Oberhettinger, R.P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, 3rd 

ed., Springer-Verlag, Berlin-Heidelberg, 1966.
[20] J. Mínguez Ceniceros, Some Appell-Dunkl sequences, Bull. Malays. Math. Sci. Soc. 46 (2023) 64.
[21] L.M. Navas, F.J. Ruiz, J.L. Varona, Appell polynomials as values of special functions, J. Math. Anal. Appl. 459 (2018) 

419–436.
[22] L.M. Navas, F.J. Ruiz, J.L. Varona, A note on Appell sequences, Mellin transforms and Fourier series, J. Math. Anal. 

Appl. 476 (2019) 836–850.
[23] L.M. Navas, F.J. Ruiz, J.L. Varona, A connection between power series and Dirichlet series, J. Math. Anal. Appl. 493 

(2021) 124541.
[24] R.B. Paris, Incomplete Gamma and Related Functions, NIST Handbook of Mathematical Functions, U.S. Dept. Commerce, 

Washington, DC, 2010, pp. 587–599, Available online in http://dlmf .nist .gov /8.
[25] M. Rosenblum, Generalized Hermite polynomials and the Bose-like oscillator calculus, Oper. Theory, Adv. Appl. 73 (1994) 

369–396.
[26] N.M. Temme, Uniform asymptotics for the incomplete gamma functions starting from negative values of the parameters, 

Methods Appl. Anal. 3 (1996) 335–344.
[27] E.C. Titchmarsh, Introduction to the Theory of Fourier Integrals, 2nd ed., Oxford University Press, 1948.

http://dlmf.nist.gov/16
http://dlmf.nist.gov/16
http://refhub.elsevier.com/S0022-247X(23)00828-4/bib9A231C14A3416B1055B8FFB960151AEEs1
http://refhub.elsevier.com/S0022-247X(23)00828-4/bibA4EA87EE16E98B1C4FA6A8D312E0D56Bs1
http://refhub.elsevier.com/S0022-247X(23)00828-4/bibC5CDC14B846FFDA7289DAFCBFEFD3918s1
http://refhub.elsevier.com/S0022-247X(23)00828-4/bibB5FC5E44FF290DD81640B8807599BBD5s1
http://refhub.elsevier.com/S0022-247X(23)00828-4/bibB5FC5E44FF290DD81640B8807599BBD5s1
http://refhub.elsevier.com/S0022-247X(23)00828-4/bib89A4DDD107EAAC8687564968D1E20226s1
http://refhub.elsevier.com/S0022-247X(23)00828-4/bib89A4DDD107EAAC8687564968D1E20226s1
http://refhub.elsevier.com/S0022-247X(23)00828-4/bib10D873BD2CEF5458A1AF8E7B92A97F1Ds1
http://refhub.elsevier.com/S0022-247X(23)00828-4/bib0A5A4D7386065C6C6AC19C303768C7E1s1
http://refhub.elsevier.com/S0022-247X(23)00828-4/bibFF7A7D0EA68CF95F3D4B14E3F2A30767s1
http://refhub.elsevier.com/S0022-247X(23)00828-4/bibE76CF8A691823107E27238A4976CD98Es1
http://refhub.elsevier.com/S0022-247X(23)00828-4/bibB6D5696E1411EA9F17CC09AC46398F30s1
http://refhub.elsevier.com/S0022-247X(23)00828-4/bibB6D5696E1411EA9F17CC09AC46398F30s1
http://refhub.elsevier.com/S0022-247X(23)00828-4/bib34344BDF473A04E27315DA6919F23B3Bs1
http://refhub.elsevier.com/S0022-247X(23)00828-4/bib34344BDF473A04E27315DA6919F23B3Bs1
http://refhub.elsevier.com/S0022-247X(23)00828-4/bib92CADDD306AD913D0ABB96410A381927s1
http://refhub.elsevier.com/S0022-247X(23)00828-4/bib92CADDD306AD913D0ABB96410A381927s1
http://refhub.elsevier.com/S0022-247X(23)00828-4/bibA8B3ADDCCA32A9FF45495B109AC9883Es1
http://refhub.elsevier.com/S0022-247X(23)00828-4/bibA8B3ADDCCA32A9FF45495B109AC9883Es1
http://refhub.elsevier.com/S0022-247X(23)00828-4/bib09E135328CBE29A223F8EBCDDEB3517Cs1
http://refhub.elsevier.com/S0022-247X(23)00828-4/bib09E135328CBE29A223F8EBCDDEB3517Cs1
http://refhub.elsevier.com/S0022-247X(23)00828-4/bibE8A1315BEDD13C6AF41D7609AADEBD19s1
http://refhub.elsevier.com/S0022-247X(23)00828-4/bibE8A1315BEDD13C6AF41D7609AADEBD19s1
http://refhub.elsevier.com/S0022-247X(23)00828-4/bibCFCDDCE5D5B2E3A53D2AC2D6B23CE981s1
http://refhub.elsevier.com/S0022-247X(23)00828-4/bibCFCDDCE5D5B2E3A53D2AC2D6B23CE981s1
http://refhub.elsevier.com/S0022-247X(23)00828-4/bibFB0E5CE2E760B7E58B2C687A01C62233s1
http://refhub.elsevier.com/S0022-247X(23)00828-4/bibFB0E5CE2E760B7E58B2C687A01C62233s1
http://refhub.elsevier.com/S0022-247X(23)00828-4/bib189C7CC8596DD5C1DB43D2EA30AAF79Fs1
http://refhub.elsevier.com/S0022-247X(23)00828-4/bib189C7CC8596DD5C1DB43D2EA30AAF79Fs1
http://refhub.elsevier.com/S0022-247X(23)00828-4/bib69691C7BDCC3CE6D5D8A1361F22D04ACs1
http://refhub.elsevier.com/S0022-247X(23)00828-4/bib7E5023AD1523E858CD94B931A3737240s1
http://refhub.elsevier.com/S0022-247X(23)00828-4/bib7E5023AD1523E858CD94B931A3737240s1
http://refhub.elsevier.com/S0022-247X(23)00828-4/bib3007A24749B48F6371C6E7B3A3C49827s1
http://refhub.elsevier.com/S0022-247X(23)00828-4/bib3007A24749B48F6371C6E7B3A3C49827s1
http://refhub.elsevier.com/S0022-247X(23)00828-4/bib146F714B5C6EF41CC91B04E6FC0AAA70s1
http://refhub.elsevier.com/S0022-247X(23)00828-4/bib146F714B5C6EF41CC91B04E6FC0AAA70s1
http://dlmf.nist.gov/8
http://refhub.elsevier.com/S0022-247X(23)00828-4/bibABA3AA931662562BA28FD1F0A05F64BFs1
http://refhub.elsevier.com/S0022-247X(23)00828-4/bibABA3AA931662562BA28FD1F0A05F64BFs1
http://refhub.elsevier.com/S0022-247X(23)00828-4/bib317E7F41E2EE0FADE60266CFE9A0148Bs1
http://refhub.elsevier.com/S0022-247X(23)00828-4/bib317E7F41E2EE0FADE60266CFE9A0148Bs1
http://refhub.elsevier.com/S0022-247X(23)00828-4/bib5FE196FA09E42ED5B428B146A4F7FF27s1

	A general method to find special functions that interpolate Appell polynomials, with examples
	1 Introduction
	2 Appell-Mellin sequences
	3 The case A(t)=1/(1−t)r
	3.1 McBride polynomials

	4 The case A(t)=1/(1+t)r
	4.1 Appell-type Changhee polynomials

	5 The cases A(t)=1/(1−tk) and A(t)=1/(1+tk)
	6 An example with 2-variable-truncated Appell polynomials
	7 An open problem for the Appell-Dunkl case
	References


