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Abstract: Life Cycle Assessment (LCA) is normally used independently of the physical and temporal location of the 
product, process or  service under analysis. This makes LCA results more easily comparable and globally accepted. 
At the same time, it has drawbacks though, e.g. land use will have the same impact regardless of location. However, the 
use of certain terrains in high erosion risk areas as compared to others in low erosion risk areas will have a different im-
pact on the ecosystem. The availability of airborne Light Detection and Ranging (LiDAR) data (ALS) allows a quick and 
accurate morphogeometric analysis of any terrain. For this reason, this article offers a methodology, based on Revised 
Universal Soil Loss Equation (RUSLE) method and airborne LiDAR data, for the straightforward detection of zones with 
high vulnerability to erosion problems. Based on these local erosion risk data, a method is developed to assess the en-
vironmental impact of land use, based on its location. In this way, the LCA methodology is incorporated to gather local 
data, dependent on the specific location of the activity under analysis. The methodology developed has been applied, 
as a case study, to a specific municipality in the high mountains of the Autonomous Community of La Rioja (Spain).
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The term ecosystem services comprises all the re-
sources and services provided by the ecosystem that 
benefit human beings (Adhikari & Hartemink 2016). 
Within these ecosystem services, four different catego-
ries have been established. The first category includes 
provisioning services such as food for human consump-
tion, freshwater, timber or fuel. Another category refers 
to regulation services, such as erosion, water and gas 
regulation, climate regulation or the regulation of bio-
logical processes such as pollination or diseases. The 
next category is the cultural services provided by the 
ecosystem. The fourth category includes the support 
services that make the production of the three previ-
ous categories of ecosystem services viable.

A key element to maintain these ecosystem services 
is the soil and the erosive processes it may undergo 
(Pimentel & Kounang 1998). Land erodability can 

be defined as the resistance of its soil to the processes 
of disintegration and crumbling of particles (Rueda 
et al. 2010). Rainfall is often considered to be the 
main soil erosion agent (Pimentel & Kounang 1998), 
which is why special attention is paid to the rain-soil 
relationship and its erosive effects (Lee & Hsu 2021). 
Furthermore, it is generally accepted that the erod-
ability of soil will depend greatly on its physical and 
chemical properties, although the type of vegetation 
cover has a decisive influence as well (Zhou et al. 2008; 
Çomakli & Turgut 2021; Kabelka et al. 2021). Another 
significant aspect to consider is land slope. With all 
other aspects set equal for comparison, it stands logical 
to assume that runoff processes will be particularly 
significant when the terrain is too steep (Moham-
med et al. 2020; Fan et al. 2022). In addition, terrain 
orientation can also be a determining factor, as the 
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areas most exposed to the sun (in northern latitudes, 
those facing south) will tend to lose their vegetation 
and moisture more easily (Oorthuis et al. 2020), thus 
favouring these erosive processes.

Over the years, different methods have been de-
veloped to determine soil erosion. This covers from 
the Erosion Potential Model (EPM) (Gavrilovic 1962) 
to the European Soil Erosion Model (EUROSEM) 
(Morgan et al. 1998), including the Water Erosion 
Prediction Project (WEPP) (Laflen et al. 1991) and 
the Soil and Water Assessment Tool (SWAT) (Arnold 
et al. 2012). However, the most used and cited ones 
within the scientific literature are the Universal Soil 
Loss Equation (USLE) (Wischmeier et al. 1958) and 
the Revised Universal Soil Loss Equation (RUSLE) 
(Renard et al. 1996). 

Light Detection and Ranging (LiDAR) data provide 
complete and continuous information on the orog-
raphy of a territory and on the existence or absence 
of vegetation cover and its size (Sultan Mahmud 
et al. 2021). Dense point clouds allow geometric 
modelling of the existing vegetation (MDS) and the 
terrain itself (DTM). Therefore, by strictly analysing 
this material, it is possible to discover which areas 
of the territory are most prone to erosion processes. 
For instance, Đomlija et al. (2019)used LiDAR data 
to identify different erosive processes in Vinodol 
Valley in Croatia. 

Moreover, it is significant to assess, not only the 
potential erosion risk, but also the possible impact 
of erosion on ecosystem services. Life Cycle Assess-
ment (LCA) is one of the most widely used tools 
to assess the environmental impact of products, 
services and processes (Guinée et al. 2002; Rebitzer 
et al. 2004; ISO 14040:2006; ISO 14044:2006). LCA 
has been applied in fields as diverse as construction 
(Pleșcan et al. 2022) agriculture (Koellner et al. 2013; 
Scuderi et al. 2021) and the energy sector (Llan-
toy et al. 2021). It is commonly used independently 
of the physical and temporal location of the product, 
process or service under analysis. This makes LCA 
results more easily comparable and globally accepted. 
It has drawbacks though, e.g. land use will have the 
same impact regardless of  location. However, the 
use of certain terrains in high erosion risk areas, 
as compared to others in low erosion risk areas, will 
have a different impact on the ecosystem (Pimentel & 
Kounang 1998). Pavan and Ometto (2018) emphasize 
on the significant contribution of ecosystem services 
to human well-being, as well as the importance of the 
soil as provider of a great variety of services. Within 

this context, Pavan and Ometto (2018) indicate the 
need of generating new indicators to measure and 
assess the contribution of the aforementioned eco-
system services in LCA. Bearing these assumptions 
in mind, this article presents a swift method to detect 
high erosion risk areas over large terrains, using the 
RUSLE method and LiDAR data. Based on these local 
erosion risk data, a method is developed to assess the 
environmental impact of land use based on its loca-
tion. The methodology developed has been applied, 
as a case study, to a specific municipality in the high 
mountains of the Autonomous Community of La Rioja 
(Spain), taking the data generated during 2016 as base 
material, with an average resolution of 2 points/m2.

MATERIAL AND METHODS

Study area
The study area includes 8 km2 of a mountainous 

area from North Spain (Figure 1), with altitudes 
between 899 and 1 958 m a.s.l. (Figure 2A). The 
typical vegetation cover in the study area includes 
permanent meadows, hardwood forests and conifers, 
without significant crop areas. 

At a geological level, the area is underlain by Meso-
zoic sediments, which generate silty-clay soils with 
a high calcium carbonate content and shallow depth. 
The climate is temperate, oceanic, Sub-Mediterra-
nean, with annual precipitation values over 900 mm 
and a maximum 24-hour precipitation (with a return 
period of 10 years) over 70 and 100 mm/24 h.

The study area (Figure 2B) includes a South zone 
with high sandstones and slates and a North zone 
with siliceous conglomerates. The central study zone 
shows a higher variability containing schists and 
slates, conglomerates, red clays, marls and gypsums, 
chalcedonies, dolomitic limestone breccias and dolos-
tones, limestone banks and dolostones, clays, sands 
and angular edges and gravels, sands and shales.

Erosion risk determination 
To determine the terrain’s erosion susceptibility, the 

RUSLE method was used. This method is based on the 
combination of five factors, according to Equation 1.

A = R × Kfs × LS × C × P 	  (1)

where:
A	 – mean annual soil loss (t·h–1·year–1);
R	 – erodibility factor due to  rainfall intensity 

(MJ·mm·ha·h–1·year–1);
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K	 – soil erodibility factor (t·ha·h·ha–1·MJ–1·mm–1);
LS	– dimensionless topographic factor derived from the 

length and the steepness of the slopes;
C	 – dimensionless factor of terrain vegetation cover;
P	 − dimensionless factor of  the soil conservation 

practices.

R factor. The rain erodibility R factor defines the 
water input, which will generate the erosive processes 
with a higher influence on soil loss (Renard 1992).

This R factor has been obtained from the data series 
from 1960 to 1996 provided by the Ministry of Ag-
riculture, Fishing and Food (MAPA in Spanish) with 

Figure 1. Geographical loca-
tion of the study area

Figure 2. Elevation map (A) and geological map (B) of the study area
Source: Instituto Geologico y Minero de España (Geology and Mining Institute of Spain 1980)

(A)

(B)

Study area
8 km2
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geostatistical interpolation methods (kriging), in turn 
provided by the data from 3 591 stations belonging 
to the network from the State Weather Agency (AE-
MET in Spanish) (Ministry of Agriculture Fishing and 
Food 2022). Eight of these 3 591weather stations are 
located within a 15 km radius of the area under study 
(Figure 3). The R factor calculation was based on the 
study of “Aggressiveness of Rain in Spain” (Ministry 
of Agriculture Fishing and Food 1988) published by the 
Ministry of Agriculture, Fishing and Food. With the 
creation of a data bank, processing pluviographs and 
rainfall information, this study obtained the R factor 
with regression equations, using rainfall and zoning 

variables of the monthly distribution of the R factor. 
The R factor was calculated following Equation (2) 
developed by Wischmeier and Smith (1978):

 	  (2)

where:
Pi – monthly rainfall (mm);
P – annual rainfall (mm).

The R factor of the study area is shown in Figure 4.
Kfs factor. Data from the International Soil Ref-

erence Information Centre (ISRIC 2022) have been 

10
1 1.5 log   0.08188

12

R   1.735 1 0  
   −    = ×∑

iP
P

Figure 3. Weather stations located within a 15 km radius of the area under study and used to R factor calculation
R – erodibility factor due to rainfall intensity

Figure 4. R factor map of the study area
R – erodibility factor due to rainfall intensity
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used to calculate the K factor, using the following 
soil properties from 0 to 30 cm: clay, sand; silt and 
soil organic matter.

The input data used to calculate the K factor has 
been obtained from the SoilGrids system. SoilGrids 
is based on open source principles and allows re-
searchers to access detailed soil data information. 
The database developed in the SoilGrids Project 
incorporates world-wide data from 6 million geo-
referenced records, to obtain a comprehensive 
catalogue of soil profile data. The data available 
in SoilGrids (Hengl et al. 2017) can be obtained 
with a resolution of 250 m and includes datasets 
of different soil properties at seven depths (0, 5, 15, 
30, 60, 100 and 200 cm).

Notwithstanding, only clay, sand, silt and soil or-
ganic matter properties up to a depth of 30 cm have 
been used. 

Based on these data, the equations defined by Nei-
tsch et al. (2000) have been used to calculate the 
K factor:

 	  (3)

 	  (4)

 	 (5)

 	  (6)
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where:
mSand – proportion (%) of sand content;
mSilt – proportion (%) of silt content;
mClay – proportion (%) of clay content;
OrgC – proportion (%) of organic carbon content.

The K factor of Equation (3) does not consider 
the content effect of rock fragments in the soil and, 
therefore, may give results that are far from reality 
in certain areas, especially if they are mountain-
ous (Brooks et al. 2014). To avoid this problem, the 
possible effect of rock fragment contents on soil 
erodibility has also been included, according to the 
equations of Yang et al. (2023):

 	  (8)

 	  (9)

where:
St – mean relative rill sediment yield;
Rc – cover of rock fragments on the soil surface (%);
Kfs –factor of the study area (Figure 5).

LS factor. To determine the topographic fac-
tor, slope length, steepness factor (LS) and LiDAR 
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Figure 5. Map of the soil erodibility factor of the study area (Kfs)
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data were used. In this case, sheets 504-4 686 and 
506-4 686 of the LiDAR flight performed in 2016 
by the Government of La Rioja are used, covering 
a total area of 8 km2 (2 × 4 km). The LiDAR point 
cloud datasets used in this work were downloaded 
from the Spatial Data Infrastructure of the Govern-
ment of La Rioja accessible from IDERioja Portal. 
These datasets are freely available, fully covering 
the regional territory of La Rioja (IDERioja 2016). 
The average density of the point cloud obtained 
were about 2 points/m2, with altimetry precisions 
of RMSE < 20 cm, the total number of points being 
16 620 171. The points are already classified in the 
categories established by the American Society for 
Photogrammetry and Remote Sensing (ASPRS) for 
files in LAZ format (Lohani & Mishra 2009). 

Slope factor (McCool et al. 1989; Desmet & Govers 
1996) has been calculated according to the follow-
ing equations:

 	  (10)

 	  (11)
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where:
β – slope angle in degrees;
Ai,j – area considered in the input mesh;
D – size of the mesh;
xi,j – sum of the orientation sine and cosine;
m – slope-length exponent;
F – ratio between rill erosion and interrill erosion.

The LS factor of the study area is shown in Figure 6.
C factor. The C factor determines the effect of veg-

etation in the soil erosion processes. The LiDAR data 
of the study area also allow estimating a C factor value 
based on the normalized difference vegetation index 
(NDVI). The LiDAR flight of the Autonomous Com-
munity of La Rioja was made in September 2016, with 
a point density of 2 pulses/m² together with oblique 
RGB and near infrared photographic images. The NDVI 
can be calculated based on the following equation:

 	  (14)

where:
NIR – near infrared band;
RED – red band of the multispectral images. 

Following the methodology of García-Gutiérrez et al. 
(2010) the use of the intensity data (I) from the LIDAR 
data has been proposed as an approximation to the NIR 
to obtain the NDVI, according to the following equation:

 	  (15)

The two necessary bands have been extracted us-
ing the GIS program and the NDVI index has been 

NIR REDNDVI  
NIR RED

−
=

+

I REDNDVI  
I RED
−

=
+

Figure 6. LS factor map of the study area
LS – topographic factor derived from the length and the steepness of the slopes
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calculated for the area under study, based on the 
LIDAR data used to calculate the LS factor. The 
NDVI index values vary from –1 to 1, with higher 
index values indicating the presence of vegetation 
in the area.

With this index, the C factor (Van der Knijff et al. 
2000) can be obtained based on Equation (16):

 	  (16)

where:
α, β	 –dimensionless parameters that define the relation 

between the NDVI and the C factor (α = 2 and β = 1).

This C factor estimation is based on the total in-
tegrated vegetation canopy cover via remote sensing 
and, therefore, cannot differentiate between ground 
cover and tree cover.

The C factor of the study area is shown Figure 7.
P factor. The P factor determines how the soil 

conservation practices affect the water currents 
and their impact in soil erosion. Kouli et al. (2009) 
highlight the importance of different agricultural 
practices in erosion control. They define a value of 0, 
for the cases in which an appropriate anthropic ero-
sion control is used and a value of 1 when anthropic 
erosion control is not conducted. The P factor value 
ranges between 1 and 0. For the study area, a uniform 
value of 1 has been used for the whole study. 

The idea presented in the article was to use a meth-
odology relatively quick and easy to perform, with 
widely available global data. It is certainly possible 
to improve the erosion risk estimation in the area 

NVDIα  
β NDVIC  

 
    e

by incorporating land use. However, that would also 
involve the use of data that may not be as readily 
available and would hinder an otherwise relatively 
easy and accessible application of the methodology. 
This is the main reason why a value of 1 has been 
used for the P factor throughout the study.

Erosion risk map. The combination of the different 
factors analysed in the previous sections facilitates 
determining the areas most prone to erosion pro-
cesses due to the cumulative effect of unfavourable 
conditioning factors. 

Therefore, the annual erosion index allows estab-
lishing erosion risk criteria in the different regions 
under study. In this case, a fixed criterion is used 
(Ministry of Agriculture Fishing and Food 2008) 
based on the significant amount of potential erosion 
by hectare and year, calculated through the RUSLE 
method using 2016 LIDAR data:
Low risk: ≤ 2 t·ha–1·year–1

Moderate risk: ≤ 12 t·ha–1·year–1

High risk: ≤ 25 t·ha–1·year–1

Very high risk: >25 t·ha–1·year–1

The Spanish National Action Program against Deserti-
fication establishes three desertification risk categories: 
periods of less than 12, 12–25 t·ha–1·year–1 and more 
than 25 t·ha–1·year–1. Based on the parameters of the 
aforementioned categories, four erosion risk criteria 
have been established for this article.

In this way, an erosion risk scale, from 1 to 4, is ob-
tained based on the combined characteristics of each 
of the points analysed in the area under study.

Determination of the characterisation factor ac-
cording to erosion risk

Figure 7. C factor map of the study area
C – dimensionless factor of the soil conservation practices
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To determine the characterization factor to be ap-
plied, according to the soil erosion risk, the criteria 
followed were those of the 2008 National Action 
Programme against Desertification (Ministry of Ag-
riculture Fishing and Food 2008). Based on the four 
erosion risk levels defined above, four characterisa-
tion factors ranging from 1 to 4 were established. 

In addition, it was necessary to identify those loca-
tions where ravine erosion has occurred as high ero-
sion risk areas (Shellberg 2021). In the case of the area 
under study, the location of these ravine erosions can 
be seen in Figure 8. These areas have been obtained 
from the National Soil Erosion Inventory of Spain. 

These characterization factors are linked to the ero-
sion risk of each region, obtained from the GIS data. 
In this sense, the calculation of the environmental 
impact will be affected by the specific land use location, 
and will therefore consider the specific local charac-
teristics with respect to the erosion risk of that land. 

Determination of the environmental impact of land 
use according to the erosion risk

The integration of erosion risk in the LCA requires 
creating an environmental impact assessment method 
that can be incorporated into the Life Cycle Impact 
Assessment (LCIA) phase. In this LCIA phase, the 
different environmental impacts of each impact cat-
egory under study are evaluated, for example: abiotic 
depletion, global warming potential for a 100-year 
time horizon, ozone layer depletion, human toxicity, 
fresh water aquatic ecotoxicity, marine aquatic ecotox-
icity, terrestrial ecotoxicity, land use, photochemical 
oxidation, acidification, or eutrophication. In order 

to perform this assessment for each impact category, 
the characterization factors that apply to each entry 
of the Life Cycle Inventory (LCI), collected for the 
LCA, must be established. For the environmental 
impact assessment method proposed in this article, 
these characterization factors have been established 
in point 2.3 and are applied based on the erosion 
risk, in the area in which the land is to be occupied.

Land use is one of the environmental impact cat-
egories usually analysed in the LCA. The land use 
impact category used for the LCA methodology 
evaluates the environmental impact of the occupation, 
alteration and management of the land for human 
activities (Brentrup et al. 2002).

The environmental impact assessment method 
for land use, according to the erosion risk, has been 
defined according to Equation (17):

	  (17)

where:
AreaLCI LandUse	– size of the occupied land in m2;
AreaRegioni	 – size in m2 of the land occupation region;
t	 – occupation time in years;
CFi	 – characterisation factor of the land occu-

pation region.

The units of the proposed LCIA are: m2 LCI activ-
ity × m−2 Region i × y. Núñez et al. (2010) propose 
a method for assessing the environmental impact 
of desertification, similar to the one proposed in this 
article, for the case of erosion. 

Figure 8. Gully erosion locations of the study area

Land UseLCI
Erosion

Region 

Area
LCIA CF

Area
= × × i

i

t
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This calculation methodology allows weighing the 
impact according to the size of the region, in a way 
that, for the same land occupation, there will be more 
impact if the region in question is smaller. For in-
stance, Figure 9 shows the impact evolution calcu-
lated for a 1 000 m2 land occupation for one year, 
in different erosion risk regions.

RESULTS AND DISCUSSION

Erosion risk map. Based on the factors defined 
by the RUSLE method, an erosion risk map has 
been generated.

The final results obtained are shown in Figure 10.
The superimposition of the analysis conducted 

on the study area allows the identification and plani-
metry of  the action areas (Figure 11), which are 
necessary to define the characterisation factors that 
allow the environmental impact to be calculated, 
according to the specific land location.

Figure 10 shows red areas that denote a very high 
erosion risk, dark green areas that represent a high 
erosion risk and light green areas that mark a me-
dium erosion risk. Areas in white indicate that low 
risk factors are present.

Table 1 shows the regions found according to ero-
sion risk. Eight regions have been found in the very 
high erosion risk category (erosion risk 4), with areas 
ranging from 2 741 080 to 506 m2. In the high erosion 
risk category (erosion risk 3), there are 27 regions 
with areas ranging from 425 045 to 96 m2. In the 
medium erosion risk category (erosion risk 2), there 
are 17 regions ranging from 871 113 to 927 m2. Three 
regions have been found with low erosion risk fac-
tors (erosion risk 1), ranging from 6 799 to 1 706 m2.

The results show that out of a total of 800 ha ini-
tially studied, 536.7 ha have been identified as very 
high erosion risk areas, due to the adverse conditions 
in these areas. In this study, these areas represent 
around 67.0% of the territory studied and are grouped 
into eight different regions.

A total of 146.9 ha were found to be at high risk 
of erosion, representing 18.3% of the land analysed. 
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Figure 9. Environmental impact according to the area of the 
region in which the one-year, 1 000 m2 land occupation 
takes place

Figure 10. Classification of zones by risk factors
The red areas are the ones showing the highest rates in the risk factors considered
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These high erosion risk areas are distributed in 27 re-
gions with a significant variation in size.

The medium erosion risk areas represent 14.5% 
of the studied land and account for a total of 116.3 ha 
distributed in 17 regions. 

Environmental impact of land use. Based on the 
erosion risk map and the four types of regions defined 
in it, an assessment can be made of the environmental 
impact of a given land use in different areas of the 
region under study.

For example, if eight possible locations are studied 
for the installation of a farm, the environmental im-
pact could be analysed in the category of land use, 
proposed in this article. From this point of view, the 
best location could be determined. 

For this case study, a 1 000 m2 land occupation 
is assumed in different locations in the four types 
of regions defined according to the erosion risk 
(Table 2). The scenarios proposed in this case study, 
include the occupation of two different regions in each 
of the four erosion risk zones (very high, high, medium 
and low risk). For each risk zone, two different-sized 
regions have been selected to assess the effect of the 
region size according to the occupation made.

As shown in the different cases presented as exam-
ples, an important factor in determining the impact 
is the land occupation size, as compared to the total 
size of the region. This reflects the notion that the 
larger the land occupied relative to the total size of the 
region, the greater its environmental impact should be. 

Table 1. Area of the different regions according to their erosion risk

Erosion risk 1 Erosion risk 2 Erosion risk 3 Erosion risk 4
Region area region area region area region area
1 1 706 1 3 304 1 96 1 5 439
2 4 151 2 12 762 2 4 361 2 33 234
3 6 799 3 927 3 8 926 3 46 200

4 29 285 4 23 157 4 506
5 4 552 5 217 275 5 878
6 980 6 7 130 6 2 741 080
7 13 458 7 75 170 7 2 538 196
8 1 776 8 9 180 8 1 736
9 871 113 9 7 848

10 12 488 10 98 897
11 116 141 11 74 952
12 34 854 12 1 340
13 3 407 13 20 981
14 942 14 9 182
15 8 921 15 1 896
16 26 447 16 5 971
17 21 812 17 73 643

18 8 072
19 3 823
20 182 879
21 11 496
22 5 834
23 86 200
24 8 897
25 89 673
26 425 045
27 7 386

Total 12 656 1 163 169 1 469 310 5 367 269
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On the other hand, there is also a clear effect of the 
type of region in which the land is occupied. The 
results show that the characterization factor ensures 
that land occupation in higher erosion risk areas will 
have a greater environmental impact in the category 
of land use proposed in this article. This can be as-
serted as long as the relationship between the size 
of the occupied land and the region in which it is 
located is maintained.

In these examples, it can be seen how easily an en-
vironmental impact assessment of land use can be ap-
plied, considering the specific aspects of the terrain 
location. In this particular case, an assessment is made 
of the erosion risk of the specific region where the 
land use will occur. The power of GIS systems and 
the increasingly abundant cartographic information 

available facilitates developing environmental impact 
assessment methodologies that consider local aspects 
of the specific location where the work occurs.

The proposed methodology has some weak points, 
such as the fact that it does not consider the cumula-
tive effect of other existing land occupations. Fur-
thermore, in the case of the P factor, including soil 
conservation practices, a global value of 1 has been 
established for the whole area under study, to sim-
plify the application of the methodology. In this way, 
a simpler and faster methodology is achieved, without 
the need of accessing more complex data from the 
area under study, which can be hard to find. In turn, 
valuable information is lost, which could be otherwise 
used to calculate the erosion risk in more detail, 
based on the soil conservation applied to each area. 

Table 2. Environmental impact of a 1 000 m2 plot of land in different regions according to erosion risk

Region erosion 
risk

Region area Land use Characterization 
factor

Time 
(year)

LCIA  
(m2 × m2 × year)(m2)

4 1 736 1 000 4 1 2.30E+00
4 33 234 1 000 4 1 1.20E-01
3 1 896 1 000 3 1 1.58E+00
3 20 981 1 000 3 1 1.30E-01
2 1 776 1 000 2 1 1.13E+00
2 21 812 1 000 2 1 9.17E-02
1 1 706 1 000 1 1 5.86E-01
1 6 799 1 000 1 1 1.47E-01

LCIA – life cycle impact assessment

Figure 11. Identification of regions according to erosion risk
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One of the main disadvantages of the LCA methodol-
ogy is that it lacks temporal resolution (Finnveden 
et al. 2009; Zamagni et al. 2009). This implies that 
the life cycle inventories used to represent average 
and aggregate data in a permanent temporal regime. 
Therefore, they do not include dynamic considera-
tions or temporal evolutions that may affect the real 
environmental impact. 

On the other hand, the proposed methodol-
ogy does not differentiate between ground cover 
and tree cover. Ground cover, such as grass and 
shrubs, has particular relevance in erosion control. 
Therefore, it would be advisable to include this 
differentiation according to the type of cover for 
future developments of the methodology proposed 
in this article.

CONCLUSION

By means of airborne LiDAR data (ALS) and us-
ing specific processing software, erosion risk fac-
tors maps can be obtained to, once integrated into 
a Geographic Information System, detect the areas 
of greater or lesser risk of erosive processes. This will 
make it possible to conduct environmental impact 
assessments that consider those areas that, given their 
geomorphology and current vegetation cover, are 
at greater risk of erosion and are affected to a greater 
extent by the land-use activities being analysed.

The methodology developed defines a method for 
assessing the environmental impact of land use ac-
cording to the erosion risk of the specific terrain where 
the activity is performed. The methodology is easy 
to apply and based on current widely available data.

For governments and official institutions, the de-
scribed methodology can be a useful tool for the detec-
tion of areas with high vulnerabilities in terms of soil 
erosion risks and for the environmental impact assess-
ment of future activities to be implemented in such 
areas.In general, these institutions have the necessary 
materials at their disposal, as there are relatively recent 
flights over the whole territory and with sufficient 
densities, which enables them to swiftly and accurately 
locate risk areas over large portions of the territory 
and incorporate them into the environmental impact 
assessment methodology proposed in this article.
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