Synthesis of Fluorescent Lanthipeptide Cytolysin S Analogues by Late-Stage Sulfamidate Ring Opening

Nuria Mazo, Imran R. Rahman, Claudio D. Navo, Jesús M. Peregrina, Jesús H. Busto, Wilfred A. van der Donk, and Gonzalo Jiménez-Osés*

Cite This: Org. Lett. 2023, 25, 1431-1435

Read Online

| ACCESS I Llll Metrics \& More | \| 国 Article Recommendations | © Supporting Information |
| :--- | :--- | :--- | :--- |

Abstract

Nucleophilic ring opening of cyclic sulfamidates derived from amino acids is a common strategy for the synthesis of lanthionine derivatives. In this work, we report the regio-, chemo-, and stereoselective intramolecular S-alkylation of a cysteine residue with N -sulfonyl sulfamidates for the synthesis of cyclic lanthioninecontaining peptides. The strategy involves the solid-phase synthesis of sulfamidate-containing peptides followed by late-stage intramolecular cyclization. This protocol allowed for the synthesis of four full-length cytolysin S ($\mathrm{CyIL}_{\mathrm{s}}{ }^{\prime \prime}$) analogues, two α-peptides and two hybrid α / β-peptides. Their conformational preferences and biological activities were assessed and compared with those of wild-type $\mathrm{CylL}_{\mathrm{s}}{ }^{\prime \prime}$.

Lanthipeptides are ribosomally synthesized and posttranslationally modified peptides (RiPPs) containing sulfur cross-linked lanthionine (Lan) and/or β-methyllanthionine (MeLan), ${ }^{1,2}$ formed by a Michael-type addition of a cysteine to a dehydroalanine (Dha) or dehydrobutyrine (Dhb) generated by enzymatic dehydration of Ser or Thr. Many lanthipeptides exhibit antimicrobial properties against Grampositive ${ }^{3}$ and Gram-negative ${ }^{4}$ bacteria, including multidrug resistant strains. These cross-linked macrocycles confer lanthipeptides with exceptional properties such as resistance to chemical and enzymatic degradation ${ }^{5}$ or conformational rigidity. ${ }^{6}$ The number of natural lanthipeptides discovered, as well as engineered analogues, steadily increases in the search for therapeutics to overcome antibiotic resistance. ${ }^{2,7}$ However, large-scale production of lanthipeptides still represents a challenge. ${ }^{8}$ Solid-phase peptide synthesis (SPPS) is an attractive strategy for the preparation of either natural lanthipeptides or chemically modified variants. ${ }^{7,8}$ The use of orthogonally protected bis-amino acids allows for the incorporation of Lan/MeLan residues with defined stereochemistry. ${ }^{9-11}$ Biomimetic approaches generating Lan/MeLan by intramolecular Michael addition have been reported. ${ }^{12,13}$

Cyclic sulfamidates have been extensively used for the regioand stereoselective synthesis of a wide variety of chemicals through regioselective nucleophilic ring-opening reactions. ${ }^{14-16}$ In particular, the intermolecular S-alkylation of five-membered ring sulfamidates has been exploited for the synthesis of orthogonally protected Lan and MeLan analogues. ${ }^{17-19}$ For instance, the thioether ring B of haloduracin β as well as mimetics has been synthesized by intermolecular ring opening of sulfamidates with short cysteine-containing
peptides. ${ }^{20,21}$ However, attempts to achieve the intramolecular ring opening of peptides containing N-carbonyl sulfamidates and cysteine residues produced an unexpected $\mathrm{N} \rightarrow \mathrm{S}$ acyl shift. ${ }^{22}$

Therefore, to avoid this undesired reaction while maintaining the necessary N-activation of the sulfamidate, ${ }^{23}$ we envisioned using sulfonamide functional groups, which have been extensively used in the ring opening of aziridines ${ }^{24,25}$ but scarcely with sulfamidates. ${ }^{26}$ We report the chemo-, regio-, and stereoselective intramolecular ring-opening reactions of peptides incorporating N-sulfonyl sulfamidates derived from (S)or (R)- α-methylisoserine and (S)- or (R)- α-methylserine (Figure 1A) as the key step in obtaining four different analogues of enterococcal cytolysin $\mathrm{S}\left(\mathrm{CyIL}_{S^{\prime \prime}}\right)$.

First, we synthesized the linear model peptide that previously led to transacylation (i.e., 1a-Ala-His-Asn-CysGly) ${ }^{22}$ by microwave (MW)-assisted SPPS, ${ }^{27}$ and its N terminus was reacted with dansyl (DNS) chloride (Figure 1B). Upon cleavage and deprotection, peptide 2 was dissolved in a 96:4 mixture of $\mathrm{CD}_{3} \mathrm{CN}$ and $\mathrm{D}_{2} \mathrm{O}$ and base-promoted cyclization was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy (Figure 1C). After the addition of triethylamine (1.6 equiv), the instantaneous and complete disappearance of the starting

[^0]

B
(α^{Me}-amino acid)

$\cdots{ }^{(1)} \mathrm{CO}_{2} \mathrm{H}$	$\mathrm{CO}_{2} \mathrm{H}$
$\bigcirc{ }^{(R)} \mathrm{NH}$	$O^{(s)}$
0 O'0	O'o
1c	1d

synthesized and purified by RP-HPLC in a moderate global yield (18%). The cyclization reaction was then carried out using a slight excess (1.6 equiv) of triethylamine. MS and HPLC analyses confirmed that the reaction took place rapidly and quantitatively after the reagents had been mixed (Figure S3). Further treatment with an aqueous HCl solution to remove the sulfamic moiety followed by oxidation with an excess of sodium periodate (8 equiv) to unmask the Dhb residue afforded cyclic peptide 5 in a high yield (79\%) after HPLC purification (Scheme 1). It is noteworthy that no oxidation of the thioether group was detected as judged by MS analysis (Figure S3).

Scheme 1. Synthesis of an Analogue of the CylL ${ }_{s}{ }^{\prime \prime}$ A Ring (5)

This $\mathrm{CylL}_{\mathrm{S}}{ }^{\prime \prime}$ ring A analogue (5) features (S)-3-amino-2methylpropanoic acid, (S)-3-Amp, as the first amino acid in the sequence. (S)-3-Amp is a β-amino acid in which the thioether linkage is attached to the tertiary α-carbon, producing a 15 membered macrocycle, whereas the natural derivative is a 16membered macrocycle. In addition, the N -terminus is capped with a nosyl group. Attempts to cleave this protecting group were unsuccessful, and intact peptide 4^{\prime} was always recovered (Table S1). In view of these results, we decided to proceed with the synthesis of full-length N-dansyl analogues of $\mathrm{CylL}_{\mathrm{S}}{ }^{\prime \prime}$, which would confer fluorescent properties to the final peptides.

To synthesize the full-length $\mathrm{CylL}_{\mathrm{s}}{ }^{\prime \prime}$ analogues, ChemMatrix resin was selected due to its effectiveness for the synthesis of highly hydrophobic peptides. First, the orthogonally protected DL-lanthionine building block 6^{34} and the following three natural amino acids (Ala-Lys-Phe) were each manually coupled to the resin. Deprotection and macrolactamization reactions were performed following previously reported conditions ${ }^{34}$ to form the C-terminal B ring of $\mathrm{CyLL}_{S}{ }^{\prime \prime}$. The rest of the peptide, including the masked Dhb residues (i.e., Fmoc-MeSecPh-OH), sulfamidate 1a, and the dansyl group, was successfully coupled to the resin, yielding peptide 7 a upon cleavage. The subsequent late-stage sulfamidate ring-opening cyclization was performed by reacting peptide 7 a with triethylamine in dimethyl sulfoxide (DMSO). We used DMSO instead of acetonitrile in this case due to the better solubility of peptide 7 a in the former solvent. Complete conversion was observed after 5 min , as judged by HPLC and MS analysis, affording peptide 8a quantitatively. Concentrated aqueous HCl was added to the crude mixture to remove the sulfamic moiety generated upon sulfamidate ring opening. To our delight, concomitant oxidation of the selenides and β-elimination of the resulting selenoxides were observed due to the oxidating
properties of DMSO-HCl mixtures. Importantly, the reaction was mild and selective enough to not oxidize the thioether linkages. Consequently, $\mathrm{CyLL}_{S^{\prime \prime}}$ analogue 9 a was obtained in a 1% global yield (90% per step on average, considering 45 steps from the first deprotection of the Fmoc from the resin to the final oxidation-elimination reaction). Following the same methodology, CylL ${ }_{s}{ }^{\prime \prime}$ analogues $\mathbf{9 b} \mathbf{- d}$ were synthesized in $\sim 1 \%$ global yields using sulfamidates $\mathbf{1 b}-\mathbf{d}$, where sulfamidate $\mathbf{1 b}$ is the enantiomer of sulfamidate $\mathbf{1 a}$ leading to $(R)-3$-amino-2-methylpropanoic acid, (R)-3-Amp, upon cyclization; sulfamidates $\mathbf{1 c}$ and $\mathbf{1 d}$ were derived from (R)- and (S)- α methylserine and afford (S)- and (R)-2-amino-2-methylpropanoic acid, (S) - and (R)-2-Amp, upon cyclization, respectively (Scheme 2).

Scheme 2. Synthesis of the Full-Length Analogues of $\mathrm{CyIL}_{S}{ }^{\prime \prime}$ ($9 \mathrm{a}-\mathrm{d}$) and Structure of the Natural $\mathrm{CylL}_{s}{ }^{\prime \prime}(\mathrm{DNS}=\mathrm{N}-$ dansyl)

 NEt_{3}, DMSO

CylLs" analogues (9a-d)

The conformational preferences and dynamics of natural $\mathrm{CyIL}_{\mathrm{s}}{ }^{\prime \prime}$ and analogues $9 \mathrm{a}-\mathrm{d}$ in aqueous solution were analyzed by molecular dynamics (MD) simulations (see the Supporting Information). The three-dimensional structure of $\mathrm{CylL}_{S}{ }^{\prime \prime}$ in methanol was recently determined by NMR^{6} and used as a template for the initial geometries of the peptides. Simulations suggested that all peptides are quite flexible and can adopt different conformations (Figure 2 and Figures S11-S15). The native conformation of $\mathrm{CylL}_{s}{ }^{\prime \prime}$ is frequently observed in all peptides throughout the simulations, particularly at the α helical C-terminal domain (Val12-Phe20). On the contrary, the middle section (Phe6-Gly11) shows a more random coil/ bent conformation, likely due to the abundance of glycine residues.
The more significant conformational differences between natural and modified $\mathrm{CylL}_{s}{ }^{\prime \prime}$ are observed at the N -terminal A ring, where the unnatural amino acids are located. Most

Figure 2. Conformational preferences of $\mathrm{CylL}_{s}{ }^{\prime \prime}$ and analogues $9 \mathrm{a}-\mathbf{d}$. (A) Most abundant secondary structure for each amino acid along MD simulations. (B) Conformational ensembles of ring A of CylL ${ }_{s}{ }^{\prime \prime}$ and analogues $9 \mathrm{a}-\mathrm{d}$. The NMR structure of CylLs" (Protein Data Bank entry 6VE9) is shown in green as a reference. The C atoms of the first residue and Dhb2 are colored blue and pink, respectively. Only H atoms involved in conserved hydrogen bonds (green dashed lines) are shown. The N -terminal dansyl group and the rest of the peptide (Phe6-Ala21) have been omitted for the sake of clarity.
peptides showed a highly conserved hydrogen bond between Cys5 and the Dhb2 backbone, as well as between Ala4 and Abul, thus preserving the 3_{10}-helix-like conformation observed by NMR (Figures S16-S30 and Table S2). The prevalence of the latter hydrogen bond drops significantly in analogues $\mathbf{9 b}$ and 9d. An additional hydrogen bond between Cys5 and (S)3 -Amp is highly conserved for analogue 9 a , resulting in a more rigid α-helix-like motif. These conformational differences exhibited by analogues $\mathbf{9 a}$ and $\mathbf{9 b}$ are due to the incorporation of a β-amino acid (3-Amp) at the N -terminus, which also moves the thioether cross-link from the β-carbon to the α carbon (Scheme 1). Conversely, the conformations adopted by the A ring of analogues 9 c and 9 d resemble more closely those of natural $\mathrm{CylL}_{S}{ }^{\prime \prime}$ as only the position of a methyl group is moved from the β-carbon to the α-carbon (Scheme 2).

The antimicrobial activity of the four analogues $(9 a-d)$ was tested in combination with native cytolysin $\mathrm{L}\left(\mathrm{CylL}_{\mathrm{L}}{ }^{\prime \prime}\right)$ against Lactococcus lactis sp. cremoris. As with natural $\mathrm{CyIL}_{\mathrm{S}}{ }^{\prime \prime}$, ${ }^{35}$ none of the analogues showed antimicrobial activity in the absence of $\mathrm{CyIL}_{\mathrm{L}}{ }^{\prime \prime}$, consistent with the current model in which the two peptides act with a $1: 1$ stoichiometry. ${ }^{34}$ The four synthetic peptides displayed some degree of synergistic activity with $\mathrm{CylL}_{\mathrm{L}}{ }^{\prime \prime}$ in liquid medium antimicrobial assays, suggesting that they still act on the natural target. However, they are significantly less potent than wild-type $\mathrm{CyIL}_{\mathrm{s}}{ }^{\prime \prime}$ with minimum inhibitory concentration (MIC) values in liquid culture around 1000 -fold higher in the case of α / β-peptides $9 \mathbf{a}$ and $\mathbf{9 b}$ and 125- and 250 -fold higher for 9 c and 9 d , respectively (Figure 3 and Figures S8 and S9). Unfortunately, the high MIC values obtained for all analogues prevented the use of subcellular localization data by fluorescence analysis. ${ }^{36}$ These results are in line with previous observations in other synthetic $\mathrm{CylL}_{s}{ }^{\prime \prime}$ analogues, in which very slight modifications in ring A completely abolished their antimicrobial activity. ${ }^{34,35,37}$ Peptides $9 \mathbf{a} \mathbf{- d}$ were also assessed in combination with $\mathrm{CylL}_{\mathrm{L}}{ }^{\prime \prime}$ for

Figure 3. (A) Comparison of MIC values between wild-type (${ }^{\text {a }}$ value extracted from ref 37) and analogues of $\mathrm{CylL}_{S}{ }^{\prime \prime} \mathbf{9 a} \mathbf{- d}$ in the presence of equimolar amounts of $\mathrm{CylL}_{\mathrm{L}}{ }^{\prime \prime}$ against L. lactis sp. cremoris. (B) Comparison of the EC_{50} values of hemolysis of rabbit red blood cells between the wild type and analogues of $\mathrm{CylL}_{S}{ }^{\prime \prime} \mathbf{9 a}-\mathbf{d}$ in the presence of equimolar amounts of $\mathrm{CylL}_{\mathrm{L}}{ }^{\prime \prime}$.
hemolytic activity against rabbit red blood cells. All analogues showed a decreased activity with half-maximal effective concentration (EC_{50}) values 6-14-fold higher than that of natural $\mathrm{CylL}_{S}{ }^{\prime \prime}$. Analogue 9c showed the best antimicrobial and hemolytic activities, possibly due to its ability to better mimic the conformational behavior of natural $\mathrm{CylL}_{\mathrm{S}}{ }^{\prime \prime}$ and/or better complementarity with $\mathrm{CylL}_{\mathrm{L}}{ }^{\prime \prime}$.

We have developed a new synthetic methodology for obtaining lanthipeptide analogues with complete control over regio-, chemo-, and stereoselectivity. Our protocol is based on the mild late-stage intramolecular ring opening of N-sulfonyl cyclic sulfamidates incorporated in Cys-containing peptides by SPPS. This strategy was validated by synthesizing four fulllength analogues of $\mathrm{CyIL}_{s}{ }^{\prime \prime}$ featuring unnatural α - and β-amino acids. The four synthetic peptides showed a dramatic reduction of antimicrobial activity, as well as a decreased hemolytic activity, reinforcing the unique structural properties of CylLs ${ }^{\prime \prime} .{ }^{35}$ Compounds with submicromolar MICs are usually thought to have specific molecular targets, ${ }^{38}$ which in the case of cytolysin remains to be identified. Although our analogues of CylLs ${ }_{s}^{\prime \prime}$ proved to be less active than the wild type, the ability to perform stereocontrolled cyclization reactions on unprotected peptides provides a valuable methodology for the synthesis of conformationally constrained cyclic peptide pools that can be selected for binding to desired targets. ${ }^{39,40}$

■ ASSOCIATED CONTENT

Data Availability Statement

The data underlying this study are available in the published article and its Supporting Information.

(s) Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.3c00122.

Experimental procedures, characterization data, and copies of NMR spectra (PDF)

- AUTHOR INFORMATION

Corresponding Author

Gonzalo Jiménez-Osés - Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; Ikerbaske, Basque Foundation for Science, 48013 Bilbao, Spain; © orcid.org/0000-0003-0105-4337; Email: gjoses@cicbiogune.es

Authors

Nuria Mazo - Departamento de Química, Centro de Investigación en Sintesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain; Present Address: N.M.: 3P Biopharmaceuticals, 31110 Noáin, Navarra, Spain; © orcid.org/0000-0001-6049-0871
Imran R. Rahman - Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States; © orcid.org/0000-0001-9195-0164
Claudio D. Navo - Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; © orcid.org/0000-0003-0161-412X
Jesús M. Peregrina - Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain; © orcid.org/0000-0003-3778-7065
Jesús H. Busto - Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain; © orcid.org/0000-0003-4403-4790
Wilfred A. van der Donk - Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States; © orcid.org/0000-0002-5467-7071

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.orglett.3c00122

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This research was funded by the Agencia Estatal Investigacion of Spain (AEI) through Grants PID2021-125946OB-I00, PID2021-127622OB-I00, RTI2018-099592-B-C21, and RTI2018-099592-B-C22 and the Severo Ochoa Excellence Accreditations (CEX2021-001136-S and SEV-2016-0644). I.R.R. thanks NIGMS-NIH for a Chemistry-Biology Interface Training Grant (5T32-GM070421).

REFERENCES

(1) Repka, L. M.; Chekan, J. R.; Nair, S. K.; van der Donk, W. A. Mechanistic Understanding of Lanthipeptide Biosynthetic Enzymes. Chem. Rev. 2017, 117, 5457-5520.
(2) Montalbán-López, M.; Scott, T. A.; Ramesh, S.; Rahman, I. R.; Van Heel, A. J.; Viel, J. H.; Bandarian, V.; Dittmann, E.; Genilloud, O.; Goto, Y.; Grande Burgos, M. J.; Hill, C.; Kim, S.; Koehnke, J.; Latham, J. A.; Link, A. J.; Martínez, B.; Nair, S. K.; Nicolet, Y.; Rebuffat, S.; Sahl, H. G.; Sareen, D.; Schmidt, E. W.; Schmitt, L.; Severinov, K.; Süssmuth, R. D.; Truman, A. W.; Wang, H.; Weng, J. K.; Van Wezel, G. P.; Zhang, Q.; Zhong, J.; Piel, J.; Mitchell, D. A.; Kuipers, O. P.; van der Donk, W. A. New Developments in RiPP Discovery, Enzymology and Engineering. Nat. Prod. Rep. 2021, 38, 130-239.
(3) Willey, J. M.; van der Donk, W. A. Lantibiotics: Peptides of Diverse Structure and Function. Annu. Rev. Microbiol. 2007, 61, 477501.
(4) Ayikpoe, R. S.; Shi, C.; Battiste, A. J.; Eslami, S. M.; Ramesh, S.; Simon, M. A.; Bothwell, I. R.; Lee, H.; Rice, A. J.; Ren, H.; Tian, Q.; Harris, L. A.; Sarksian, R.; Zhu, L.; Frerk, A. M.; Precord, T. W.; van der Donk, W. A.; Mitchell, D. A.; Zhao, H. A Scalable Platform to Discover Antimicrobials of Ribosomal Origin. Nat. Commun. 2022, 13, 6135.
(5) Rink, R.; Arkema-Meter, A.; Baudoin, I.; Post, E.; Kuipers, A.; Nelemans, S. A.; Akanbi, H. J.; Moll, G. N. To Protect Peptide Pharmaceuticals against Peptidases. J. Pharmacol. Toxicol. Methods 2010, 61, 210-218.
(6) Bobeica, S. C.; Zhu, L.; Acedo, J. Z.; Tang, W.; van der Donk, W. A. Structural Determinants of Macrocyclization in SubstrateControlled Lanthipeptide Biosynthetic Pathways. Chem. Sci. 2020, 11, 12854-12870.
(7) Ongey, E. L.; Neubauer, P. Lanthipeptides: Chemical Synthesis versus in Vivo Biosynthesis as Tools for Pharmaceutical Production. Microb. Cell Fact. 2016, 15, 97.
(8) Tabor, A. B. The Challenge of the Lantibiotics: Synthetic Approaches to Thioether-Bridged Peptides. Org. Biomol. Chem. 2011, 9, 7606-7628.
(9) Mothia, B.; Appleyard, A. N.; Wadman, S.; Tabor, A. B. Synthesis of Peptides Containing Overlapping Lanthionine Bridges on the Solid Phase: An Analogue of Rings d and e of the Lantibiotic Nisin. Org. Lett. 2011, 13, 4216-4219.
(10) Knerr, P. J.; van der Donk, W. A. Chemical Synthesis of the Lantibiotic Lacticin 481 Reveals the Importance of Lanthionine Stereochemistry. J. Am. Chem. Soc. 2013, 135, 7094-7097.
(11) Li, Z.; Gentry, Z.; Murphy, B.; Vannieuwenhze, M. S. Scalable Synthesis of Orthogonally Protected β-Methyllanthionines by Indium(III)-Mediated Ring Opening of Aziridines. Org. Lett. 2019, 21, 2200-2203.
(12) Zhou, H.; van der Donk, W. A. Biomimetic Stereoselective Formation of Methyllanthionine. Org. Lett. 2002, 4, 1335-1338.
(13) Shen, H.; Fallas, J. A.; Lynch, E.; Sheffler, W.; Parry, B.; Jannetty, N.; Decarreau, J.; Wagenbach, M.; Vicente, J. J.; Chen, J.; Wang, L.; Dowling, Q.; Oberdorfer, G.; Stewart, L.; Wordeman, L.; De Yoreo, J.; Jacobs-Wagner, C.; Kollman, J.; Baker, D. De Novo Design of Self-Assembling Helical Protein Filaments. Science 2018, 362, 705.
(14) Cohen, S. B.; Halcomb, R. L. Application of Serine- and Threonine-Derived Cyclic Sulfamidates for the Preparation of S -Linked Glycosyl Amino Acids in Solution- and Solid-Phase Peptide Synthesis. J. Am. Chem. Soc. 2002, 124, 2534-2543.
(15) Jamieson, A. G.; Boutard, N.; Beauregard, K.; Bodas, M. S.; Ong, H.; Quiniou, C.; Chemtob, S.; Lubell, W. D. Positional Scanning for Peptide Secondary Structure by Systematic Solid-Phase Synthesis of Amino Lactam Peptides. J. Am. Chem. Soc. 2009, 131, 7917-7927.
(16) Meléndez, R. E.; Lubell, W. D. Synthesis and Reactivity of Cyclic Sulfamidites and Sulfamidates. Tetrahedron 2003, 59, 25812616.
(17) Avenoza, A.; Busto, J. H.; Jiménez-Osés, G.; Peregrina, J. M. Stereoselective Synthesis of Orthogonally Protected α-Methylnorlanthionine. Org. Lett. 2006, 8, 2855-2858.
(18) Cobb, S. L.; Vederas, J. C. A Concise Stereoselective Synthesis of Orthogonally Protected Lanthionine and β-Methyllanthionine. Org. Biomol. Chem. 2007, 5, 1031-1038.
(19) Engelhardt, D. B.; Donnelly, B. L.; Beadle, J.; van Belkum, M. J.; Vederas, J. C. Ring-Opening Reactions for the Solid-Phase Synthesis of Nisin Lipopeptide Analogues. Org. Biomol. Chem. 2022, 20, 8988-8999.
(20) De Luca, S.; Digilio, G.; Verdoliva, V.; Saviano, M.; Menchise, V.; Tovillas, P.; Jiménez-Osés, G.; Peregrina, J. M. A Late-Stage Synthetic Approach to Lanthionine-Containing Peptides via SAlkylation on Cyclic Sulfamidates Promoted by Molecular Sieves. Org. Lett. 2018, 20, 7478-7482.
(21) De Luca, S.; Digilio, G.; Verdoliva, V.; Tovillas, P.; JiménezOsés, G.; Peregrina, J. M. Lanthionine Peptides by S-Alkylation with Substituted Cyclic Sulfamidates Promoted by Activated Molecular Sieves: Effects of the Sulfamidate Structure on the Yield. J. Org. Chem. 2019, 84, 14957-14964.
(22) Mazo, N.; Navo, C. D.; Peregrina, J. M.; Busto, J. H.; JiménezOsés, G. Selective Modification of Sulfamidate-Containing Peptides. Org. Biomol. Chem. 2020, 18, 6265-6275.
(23) Navo, C. D.; Mazo, N.; Avenoza, A.; Busto, J. H.; Peregrina, J. M.; Jiménez-Osés, G. Substituent Effects on the Reactivity of Cyclic Tertiary Sulfamidates. J. Org. Chem. 2017, 82, 13250-13255.
(24) Liu, W.; Chan, A. S. H.; Liu, H.; Cochrane, S. A.; Vederas, J. C. Solid Supported Chemical Syntheses of Both Components of the Lantibiotic Lacticin 3147. J. Am. Chem. Soc. 2011, 133, 14216-14219.
(25) Dickman, R.; Mitchell, S. A.; Figueiredo, A. M.; Hansen, D. F.; Tabor, A. B. Molecular Recognition of Lipid II by Lantibiotics: Synthesis and Conformational Studies of Analogues of Nisin and Mutacin Rings A and B. J. Org. Chem. 2019, 84, 11493-11512.
(26) Moss, T. A.; Alonso, B.; Fenwick, D. R.; Dixon, D. J. Catalytic Enantio- and Diastereoselective Alkylations with Cyclic Sulfamidates. Angew. Chem., Int. Ed. 2010, 49, 568-571.
(27) Mazo, N.; Navo, C. D.; Peccati, F.; Andreo, J.; Airoldi, C.; Goldsztejn, G.; Çarçabal, P.; Usabiaga, I.; Sodupe, M.; Wuttke, S.; Busto, J. H.; Peregrina, J. M.; Cocinero, E. J.; Jiménez-Osés, G. Conformationally Restricted β-Sheet Breaker Peptides Incorporating Cyclic α-Methylisoserine Sulfamidates. Chem. - Eur. J. 2022, e202202913.
(28) Coburn, P. S.; Gilmore, M. S. The Enterococcus Faecalis Cytolysin: A Novel Toxin Active against Eukaryotic and Prokaryotic Cells. Cell. Microbiol. 2003, 5, 661-669.
(29) Cox, C. R.; Coburn, P. S.; Gilmore, M. S. Enterococcal Cytolysin: A Novel Two Component Peptide System That Serves as a Bacterial Defense against Eukaryotic and Prokaryotic Cells. Curr. Protein Pept. Sci. 2005, 6, 77-84.
(30) Duan, Y.; Llorente, C.; Lang, S.; Brandl, K.; Chu, H.; Jiang, L.; White, R. C.; Clarke, T. H.; Nguyen, K.; Torralba, M.; Shao, Y.; Liu, J.; Hernandez-Morales, A.; Lessor, L.; Rahman, I. R.; Miyamoto, Y.; Ly, M.; Gao, B.; Sun, W.; Kiesel, R.; Hutmacher, F.; Lee, S.; VenturaCots, M.; Bosques-Padilla, F.; Verna, E. C.; Abraldes, J. G.; Brown, R. S.; Vargas, V.; Altamirano, J.; Caballería, J.; Shawcross, D. L.; Ho, S. B.; Louvet, A.; Lucey, M. R.; Mathurin, P.; Garcia-Tsao, G.; Bataller, R.; Tu, X. M.; Eckmann, L.; van der Donk, W. A.; Young, R.; Lawley, T. D.; Stärkel, P.; Pride, D.; Fouts, D. E.; Schnabl, B. Bacteriophage Targeting of Gut Bacterium Attenuates Alcoholic Liver Disease. Nature 2019, 575, 505-511.
(31) Schmidt, U.; Lieberknecht, A.; Wild, J. Didehydroamino Acids (DDAA) and Didehydropeptides (DDP). Synthesis 1988, 1988, 159172.
(32) Maligres, P. E.; See, M. M.; Askin, D.; Reider, P. J. Nosylaziridines: Activated Aziridine Electrophiles. Tetrahedron Lett. 1997, 38, 5253-5256.
(33) Wuts, P. G. M.; Greene, T. W. Greene's Protective Groups in Organic Synthesis, 5th ed.; John Wiley \& Sons, Inc.: Hoboken, NJ, 2014.
(34) Mukherjee, S.; Huo, L.; Thibodeaux, G. N.; van der Donk, W. A. Synthesis and Bioactivity of Diastereomers of the Virulence Lanthipeptide Cytolysin. Org. Lett. 2016, 18, 6188-6191.
(35) Rahman, I. R.; Sanchez, A.; Tang, W.; van der Donk, W. A. Structure-Activity Relationships of the Enterococcal Cytolysin. ACS Infect. Dis. 2021, 7, 2445-2454.
(36) Bindman, N. A.; van der Donk, W. A. A General Method for Fluorescent Labeling of the N -Termini of Lanthipeptides and Its Application to Visualize Their Cellular Localization. J. Am. Chem. Soc. 2013, 135, 10362-10371.
(37) Tang, W.; van der Donk, W. A. The Sequence of the Enterococcal Cytolysin Imparts Unusual Lanthionine Stereochemistry. Nat. Chem. Biol. 2013, 9, 157-159.
(38) Huang, H. W. Molecular Mechanism of Antimicrobial Peptides: The Origin of Cooperativity. Biochim. Biophys. Acta-Biomembr. 2006, 1758, 1292-1302.
(39) Baeriswyl, V.; Heinis, C. Polycyclic Peptide Therapeutics. ChemMedChem. 2013, 8, 377-384.
(40) Bionda, N.; Cryan, A. L.; Fasan, R. Bioinspired Strategy for the Ribosomal Synthesis of Thioether-Bridged Macrocyclic Peptides in Bacteria. ACS Chem. Biol. 2014, 9, 2008-2013.

[^0]: Received: January 17, 2023
 Published: February 27, 2023

