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A B S T R A C T

The PSO-PARSIMONY methodology (a heuristic for finding accurate and low-complexity models with particle
swarm optimization (PSO)) allows obtaining machine learning models with a good balance between accuracy
and complexity. However, when the datasets are of high dimensionality, the methodology does not sufficiently
reduce the complexity of the models. This paper presents a new hybrid methodology, called HYB-PARSIMONY,
that combines PSO with genetic algorithm (GA) based methods. In the early stages of the optimization process,
GA methods have a preponderance to accelerate the search for parsimony. Later, PSO becomes more relevant
to improve accuracy. This new methodology obtains significant improvements in the search for more accurate
and low-complexity models in high-dimensional datasets.
1. Introduction

The success of machine learning techniques in practically all fields
of science and industry has led to an increasing demand for opti-
mization heuristics and tools to facilitate some typical tasks such as
hyperparameter optimization (HO) and feature selection (FS). Compa-
nies try to reduce the risk of overfitting by selecting the least complex
(most parsimonious) model among those with similar accuracy [1]. A
less complex model will have more stable predictions and robustness
to noise and disturbances, as well as being easier to maintain and
analyze [2]. Likewise, companies are increasingly demanding models
with a reduced number of input variables that facilitate the study and
identification of biases that may affect decision making [3].

Another aspect to consider is energy consumption. Although inten-
sive search heuristics may initially involve a higher energy cost, the
use of simple models with few features versus ensemble models with a
large number of inputs can help to compensate for the initial energy
costs by using fewer resources (memory, cpu usage, etc.). Likewise,
the reduction of features can lead to energy savings due to a lower
use of sensors, lower information acquisition costs, lower maintenance,
reduction of the need to retrain the models due to the reduction of
features that can be perturbed over time (with noise, outliers, data
drift), etc. Similarly, an automated systematic search can reduce time
and energy costs compared to other classical methods based on multiple
non-systematic tests [4].
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An attempt to improve the results of other methodologies was to de-
velop a new algorithm that combined the particle swarm optimization
technique (PSO) and the parsimony criteria to obtain high-accuracy and
low-complexity models.

The algorithm, named PSO-PARSIMONY [5], performs a finer ad-
justment and finds more accurate solutions than other methods, al-
though the computational cost is higher and the obtained models from
high-dimensional datasets are less parsimonious (higher complexity).

This work proposes a hybrid model between PSO [6] and genetic
algorithms (GA) [7] in which, in the first stages and to accelerate
the search for parsimony, the particles with worse fitness values are
replaced in each iteration by new ones generated by typical GA oper-
ations: selection, crossover and mutation. After that, PSO optimization
becomes more relevant to improve the accuracy search.

2. Related work

Nowadays, AutoML frameworks such as Autogluon [8], MLJar [9]
and H2O AutoML [10], among others, address modeling problems
with high dimensional tabular datasets by creating ensemble models
formed by artificial neural networks and tree-based methods such as
RandomForest, LightGBM [11], XGBoost [12] and CatBoost [13]. The
use of robust training and validation methods makes it possible to
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automatically obtain highly accurate models without having to per-
form a previous feature selection. However, this combination of highly
complex models may contain biases that are difficult to detect. This is
why companies increasingly prefer explainable models with a reduced
number of input variables, even if their accuracy is lower than that
obtained with ensemble models. For example, a linear model or a
decision tree with few rules can be much more valuable in decision
making. Even a black box model created with a reduced selection of the
original features can be easier to analyze with current techniques such
as ELI5.1 and SHAP [14] Thus, the development of methods to perform
simultaneous HO and FS remains a very active field of research.

However, the right choice of hyperparameters and a subset of
features is a difficult combinational problem for which efficient heuris-
tic methods are usually required. Currently approaches are usually
inspired from nature, mainly from biological systems such as ani-
mal herding, bacterial growth and so on. They usually consist of a
population of simple individuals interacting both locally and globally
with each other following some simple rules. For example, Mirjalili
et al. [15] proposed a new meta-heuristic called Grey Wolf Opti-
mizer (GWO) inspired by grey wolves and was successfully applied
to several classical engineering design problems. Mirjalili et al. also
proposed the Salp Swarm Algorithm [16], being inspired by the swarm-
ing behavior of salps when navigating and foraging in oceans. Other
techniques related to animals include bat [17], glowworm [18] and bee
colonies [19].

One of the most commonly used optimization techniques is the
Particle Swarm Optimization (PSO), originally proposed by Kennedy
and Eberhart [20]. There has been much research on this technique
and numerous improvements have been proposed [6,21], for instance,
in terms of topology, parameter selection, and other technical modi-
fications, including quantum-behaved and chaotic PSO, extensions to
multiobjective optimization, cooperation and multi-swarm techniques.
Indeed, the study of PSO modifications is itself an active area of
research due to the success of the algorithm. Some hybridizations of
PSO with other meta-heuristic methods have been also proposed. For
instance, for feature selection Chuang et al. [22] proposed an improved
binary particle swarm optimization using the catfish effect, that is, new
particles are introduced into the search space if the best solution does
not improve in some number of consecutive iterations. This is done by
replacing the 10% of original particles with the worst fitness values
by new ones at extreme positions. Some PSO hybridizations include
operations from genetic algorithms, for example, there are several
modifications that include the crossover [23] operator. In [24] the
crossover is taken between each particle’s individual best position. After
the crossover, the fitness of the individual best position is compared
with two offspring produced after crossing. Then, the best one is chosen
as the new individual best position. In [25], the standard crossover and
mutation operations from GA are applied to PSO.

3. Performance analysis of GA-PARSIMONY and PSO-PARSIMONY

Similar to these heuristics, GA-PARSIMONY [1,26,27] was proposed
to search for parsimonious solutions with genetic algorithms by per-
forming HO and FS. It has been successfully applied in many fields, such
as steel industrial processes [28], hotel room-booking forecasting [29],
mechanical design [30], solar radiation forecasting [31] and hospital
energy demand [32]. Moreover, previous comparisons with other ex-
isting AutoML methodologies (such as Auto-sklearn, H2O and MLJAR)
demonstrated its effectiveness [27].

This methodology (see pseudo-code 1) makes use of GA optimiza-
tion where each individual 𝑖 of each generation/iteration 𝑡 is defined by
𝐗𝑡
𝑖 = [𝐻 𝑡

𝑖 , 𝐹
𝑡
𝑖 ] chromosome formed by the combination of two vectors:

the training hyperparameters of the algorithm (𝐻 𝑡
𝑖 ) and the input

attributes selected for that individual (𝐹 𝑡
𝑖 ). The particularity of this

ethodology is that it performs the selection of the best individuals of
ach generation in two steps. First, it orders the individuals according
2

Algorithm 1 Pseudo-code of the GA-PARSIMONY algorithm

1: Initialization of individuals of initial population 𝐗𝟎 using a random
and uniformly distributed Latin hypercube within the ranges of
feasible values for each input parameter

2: for 𝑡 = 1 to 𝑇 do
3: Train each individual 𝐗𝑡

𝑖 and validate with 𝐶𝑉
4: Fitness evaluation 𝐽 and complexity evaluation 𝑀𝑐 of each

individual
5: Sort individuals using 𝐽
6: Promote individuals with best 𝑀𝑐 between those with similar 𝐽
7: if early stopping is satisfied then
8: return best individual of the last generation, ̂̂𝐗
9: end if
0: Select elitist population 𝑃𝑒 for reproduction
1: Cross over 𝑃𝑒 to create a new generation 𝐗𝑡+1

2: Mutation of a % of 𝐻 (hyperparameters)
3: Mutation of a % of 𝐹 (features)
4: end for
5: return best individual ̂̂𝐗

to their fitness value (𝐽 ) and, subsequently, it reorders them so that,
among the individuals with similar 𝐽 (defined with a tol parameter),
those with lower complexity (𝑀𝑐) are promoted to higher positions.
In this way, the methodology mainly aims at finding models with good
fitness value, but guiding them towards the improvement of parsimony.

The methodology can be applied to both classification and regres-
sion problems. The algorithm by which the individuals are trained (Line
3 in pseudo-code 1) is decided by the user, for instance, MLP and KNN
could be used for regression and classification problems, respectively.
It is advisable to choose one depending on the dataset size, i.e., with a
balance between predictive power and computational demands, since
many individuals need to be trained repeatedly. Furthermore, the
fitness evaluation 𝐽 can also be customized by the user, but by default
the root-mean-square error (RMSE) is used for regression and the log loss
for classification. Similarly, the computation of the complexity (𝑀𝑐) of
each individual can be defined by the user; the following formula is
used by default:

𝑀𝑐 = 106𝑁𝐹𝑆 + 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙_𝑐𝑜𝑚𝑝

where 𝑁𝐹𝑆 is the number of selected input features for that individ-
ual, 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙_𝑐𝑜𝑚𝑝 is an internal measure of model complexity, which
depends on the algorithm used for training. For instance, the sum of
the squared coefficients of a linear regression, the number of support
vectors in a SVM and the mean of the number of leaves in a random
forest. Six model complexity metrics were compared in a previous
work [27], being this configuration the one that showed the best
experimental results with different datasets.

In this type of problems where each solution has a high computa-
tional cost, it is not possible to evaluate a large number of individuals
in each iteration. This makes GAs not as efficient as other optimization
techniques where hundreds or thousands of individuals are evaluated.
Thus, GA-PARSIMONY usually produces individuals that are very sim-
ilar to each other, so that the GA optimization quickly converges to
a local minimum rather than approaching a global minimum. This
low diversity makes GA optimization unstable and requires several
iterations of the method to find an optimal solution.

As a continuation of this methodology and in order to improve the
obtaining of accurate and low-complexity models, the authors in [5]
used particle swarm optimization combined with a parsimony criterion
to find parsimonious and, at the same time, accurate machine learning
models. The PSO algorithm is based on the use of a population (called
a swarm) of possible solutions (called particles). Algorithm 2 presents

a pseudo-code version of it.
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Algorithm 2 Pseudo-code of the PSO-PARSIMONY algorithm

1: Initialization of positions 𝐗𝟎 using a random and uniformly dis-
tributed Latin hypercube within the ranges of feasible values for
each input parameter

2: Initialization of velocities according to 𝐕𝟎 = 𝑟𝑎𝑛𝑑𝑜𝑚𝐿𝐻𝑆 (𝑠, 𝐷)−𝐗𝟎

2
3: for 𝑡 = 1 to 𝑇 do
4: Train each particle 𝐗𝑡

𝑖 and validate with 𝐶𝑉
5: Fitness evaluation 𝐽 and complexity evaluation 𝑀𝑐 of each

particle
6: Update 𝐗̂𝑖, 𝐗̂

𝑝
𝑖 and the ̂̂𝐗

7: if early stopping is satisfied then
8: return ̂̂𝐗
9: end if

10: Generation of new neighborhoods if ̂̂𝐗 did not improve
1: Update each 𝐋̂𝑖
2: Update positions and velocities according the formulae
3: Mutation of % of 𝐹 (features)
4: Limitation of velocities and out-of-range positions
5: end for
6: return best individual ̂̂𝐗

These particles are moved around in the search-space of the combi-
ational problem according to simple formulae:
𝑡+1
𝑖 = 𝜔𝐕𝑡

𝑖 + 𝜑1𝐫𝐢,𝟐 × (𝐗̂𝑝
𝑖 − 𝐗𝑡

𝑖) + 𝜑2𝐫𝐢,𝟐 × 𝐋̂𝑖 − 𝐗𝑡
𝑖 (1)

𝐗𝑡+1
𝑖 = 𝐗𝑡

𝑖 + 𝐕𝑡+1
𝑖 (2)

where 𝐕𝑡
𝑖 and 𝐗𝑡

𝑖 denote the velocity and position of the 𝑖th particle
in iteration 𝑡, respectively. Similar to GA-PARSIMONY, the position of
the 𝑖th particle in iteration 𝑡 is again a vector 𝐗𝑡

𝑖 = (𝐻 𝑡
𝑖 , 𝐹

𝑡
𝑖 ) where 𝐻 𝑡

𝑖
orresponds to the values of model’s hyperparameters and 𝐹 𝑡

𝑖 is in this
ase a probability vector with values between 0 and 1 for selecting the
nput features if the probability is greater than a value 𝛼 (by default,
= 0.50). If the iteration is clear from the context, we just denote it as
𝑖 (similarly for the velocities, i.e., 𝐕𝑖).

Such formulae just state that the movement of a particle is influ-
nced by three components: its previous velocity, its own experience
its best position achieved so far with a parsimony criterion, denoted
s 𝐗̂𝑝

𝑖 ) and also by the experience of other particles (the best position
ithin a neighborhood, 𝐋̂𝑖). This permits particles to explore the search

pace based on their current momentum, each individual particle think-
ng (cognitive component) and the collaborative effect (cooperation
omponent). More concretely, 𝜔 is the inertia weight used to control the
isplacement of the current velocity. 𝜑1 and 𝜑2 are positive constant
arameters that balance the global exploration and local exploitation.
𝐢,𝟏 and 𝐫𝐢,𝟐 are uniformly distributed random variables used to maintain
he diversity of the swarm.

The main novelty in the PSO-PARSIMONY methodology is that it
ncludes a strategy where the best position of each particle (thus, also
he best position of each neighborhood) is computed considering not
nly the goodness-of-fit, but also the principle of parsimony.

To do so, for each particle of the swarm, both 𝐗̂𝑖 (position of the
est fitness value achieved by the 𝑖th particle, without parsimony) and
̂ 𝑝
𝑖 (similarly, but with parsimony) are computed. 𝐗̂𝑝

𝑖 is updated if the
itness value of this new position 𝐽 (𝐗𝑡

𝑖) is clearly lower than the current
alue, or if it is better and also has lower complexity. If 𝐽 (𝐗𝑡

𝑖) is within
tolerance in regards to the 𝐗̂𝑖, the complexity criterion is applied

nd 𝐗̂𝑝
𝑖 is updated if the complexity 𝑀𝑐 (𝐗𝑡

𝑖) is lower than its current
alue. As expected, 𝐗̂𝑝

𝑖 is not updated if 𝐽 (𝐗𝑡
𝑖) is clearly higher than the

urrent value. In short, for each particle, its 𝐗̂𝑝
𝑖 is updated if the best

arsimonious solution improves or stays close (within the indicated
olerance) to the best solution without parsimony (𝐗̂𝑖). This avoids
naccurate parsimonious solutions, i.e. the most important criterion
3

s always the minimization of the fitness value 𝐽 and parsimonious
olutions should remain very close to the best global solution obtained
ithout applying the parsimony criterion. At the end of the process, the
osition of the individual with the best score is returned, ̂̂𝐗 (see [5] for

further details).

3.1. Performance of GA and PSO with high dimensional datasets

A comparison between both methods was performed [5] on 13
public data sets [33]. As training algorithm, multilayer perceptron
model (MLPRegressor from scikit-learn package) was chosen,
defined with a single hidden layer of neurons with sigmoid activation
unctions. As hyperparameters, the number of neurons ranged from 1
o 25, whereas the alpha value (the hyperparameter for regularization
erm) ranged within the interval [10−6, 103]; see [5] for further details.

The results showed that PSO always improved accuracy over GA,
ut GA found solutions approximately 10% less complex on problems
ith a low number of features. However, datasets with a larger number
f features, such as 𝑎𝑖𝑙𝑒𝑟𝑜𝑛𝑠, 𝑡𝑒𝑐𝑎𝑡𝑜𝑟 and 𝑐𝑟𝑖𝑚𝑒, caused problems to PSO,
hich found better solutions than GA but with twice as many features
nd with higher computational cost. In summary, PSO obtained more
ccurate models but required more iterations and obtained much more
omplex models on high-dimensional datasets.

Experiments also provided insight on the evolution of the accuracy
nd parsimony in both GA and PSO. Fig. 1(a) shows an exponential-
ike decrease in the number of features selected by GA in the first
terations, whereas PSO performed a more linear decrease. On the other
and, Fig. 1(b) illustrates how good PSO was in terms of accuracy. This
ehavior can be explained by the low number of subjects that could
e evaluated in each iteration, due to the high computational costs
equired to evaluate each individual. As it has been said previously, GA-
ARSIMONY produces, in a few generations, populations of individuals
ery similar to each other, so this reduction in diversity causes GA
ptimization to quickly stall at local minima making the search for
ccurate models suboptimal. This is mainly due to three reasons. First,
he high computational cost makes GA crossover mechanisms not as ef-
icient as in other GA-based optimization problems where hundreds or
housands of individuals can be evaluated. Second, the parsimony cri-
erion reduces the number of selected features very significantly; thus,
ndividuals have fewer and fewer features and therefore the search
pace is smaller again, so that after a few iterations mutations fail to
enerate better individuals, the best ones being very similar to each
ther. Third, a well-known issue in classical genetic algorithms is the
ocal optima problem: the population becomes genetically similar due
o crossover and fitness selection as a local minim is approached [7].
n the other hand, the experiments show that PSO usually finds more
ccurate solutions because it performs a finer tuning, although it needs
any more iterations and obtains more complex models.

With higher values of tol, this problem was accentuated as is
emonstrated in Fig. 2a where diversity evolution with 𝑡𝑜𝑙 = 10−3
s showed. For each generation/iteration, we defined diversity of 𝑇
ndividuals as 𝐹𝑑𝑖𝑠𝑡 = (

∑

𝑖
∑

𝑗 𝑑𝑖𝑗 )∕𝑇 2 where 𝑑𝑖𝑗 corresponds to the
uclidean distance of 𝐹𝑖 and 𝐹𝑗 , the binary vectors that define the
haracteristics that are selected for individuals 𝑖 and 𝑗. It can be seen
hat with GA the diversity decreases rapidly in the first iterations, while
ith PSO the decrease is much slower. On the other hand, Fig. 2b shows

he number of total feature state changes (change from selected to
nselected, or vice versa) between two consecutive iterations. Thanks
o GA’s crossover and mutation mechanisms, GA performs more feature
tate changes than PSO in the first few generations, performing at
he beginning a wider exploration of feature combinations than PSO,
nd finding solutions with smaller number of features on most of
he datasets. However, this sharp reduction means that the obtained
olutions cannot improve their accuracy in the next generations. In
onclusion, PSO obtains better accurate solutions, but is much more
nefficient when the number of features is high since the feature prob-
bility is slowly updated by the particle velocity. This is because a
eature changes its state of being selected or not (or vice versa) only
hen the probability crosses the 0.50 threshold.
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Fig. 1. PSO-PARSIMONY (red) vs. GA-PARSIMONY (blue) in terms of number of selected features and accuracy with the 𝑐𝑟𝑖𝑚𝑒 dataset with 𝑡𝑜𝑙 = 10−6.
Fig. 2. Evolution of diversity (top) and number of features that change state (selected/unselected) between consecutive iterations (bottom) with GA-PARSIMONY and
PSO-PARSIMONY and 𝑐𝑟𝑖𝑚𝑒 dataset.
p
A

4. HYB-PARSIMONY: a hybrid method of PSO combined with GA
crossover and mutation operators

As seen in the previous section, PSO-PARSIMONY obtained models
with better accuracy than GA-PARSIMONY, although it needed many
more iterations to find a suitable solution and the models obtained were
of higher complexity, especially in high-dimensional datasets.

To improve the parsimony search, mainly in the first iterations,
reduce the number of iterations and, therefore, the computational
4

g

effort, it is proposed a hybrid combination to incorporate GA operations
(selection, crossover and mutation) in the PSO algorithm.2 For this
urpose, Algorithm 2 was modified in several parts as is presented in
lgorithm 3.

2 They have been implemented in Python and are available at https://
ithub.com/jodivaso/hyb-parsimony.

https://github.com/jodivaso/hyb-parsimony
https://github.com/jodivaso/hyb-parsimony
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Algorithm 3 Pseudo-code of the HYB-PARSIMONY algorithm

1: Initialization of positions 𝐗𝟎 using a random and uniformly dis-
tributed Latin hypercube within the ranges of feasible values for
each input parameter

2: Initialization of velocities according to 𝐕𝟎 = 𝑟𝑎𝑛𝑑𝑜𝑚𝐿𝐻𝑆 (𝑠, 𝐷)−𝐗𝟎

2
3: for 𝑡 = 1 to 𝑇 do
4: Train each particle 𝐗𝑡

𝑖 and validate with 𝐶𝑉
5: Fitness evaluation 𝐽 and complexity evaluation 𝑀𝑐 of each

particle
6: Update 𝐗̂𝑖, 𝐗̂

𝑝
𝑖 and the ̂̂𝐗

7: if early stopping is satisfied then
8: return ̂̂𝐗
9: end if

10: Generation of new neighborhoods if ̂̂𝐗 did not improve
1: Update each 𝐋̂𝑖
2: Select elitist population 𝑃𝑒 from for reproduction
3: Obtain a pcrossover % of worst individuals 𝑃𝑤 to be

substituted with crossover
4: Crossover 𝑃𝑒 to substitute 𝑃𝑤 with new individuals
5: Update positions and velocities of 𝑃𝑒
6: Mutation of % of 𝐻 (hyperparameters)
7: Mutation of % of 𝐹 (features)
8: Limitation of velocities and out-of-range positions
9: end for
0: return best individual ̂̂𝐗

Fig. 3. Example of six curves created with different 𝛤 values to establish the
percentage of individuals to be replaced by crossover in each iteration.

4.1. Crossover strategy

A crossover phase is added just after calculating the local bests (𝐋̂)
of the neighborhoods. The purpose of the crossover is to distribute
good parts of the genome among individuals. To perform this crossover,
a selection phase is also added at that point, which is based on a
nonlinear-rank selection following Michalewicz [34]. In this way, the
selection of other individuals in addition to the best ones maintains
the diversity of the population and prevents premature convergence.
Furthermore, the best individuals are more likely to be selected for
crossover. Thus, they are selected for breeding more times to foster
good offspring. The crossover function was implemented by using
heuristic blending [35] for hyperparameters and random swapping for
features. It was also adapted to work properly with PSO: the positions
are crossed with each other, as well as the velocities according to the
crossover performed at the positions.

In addition, the way of replacing the particles differs from the
5

typical GA crossover. In this case, the new particles created from
the crossover replace the worst particles (those with the worst fitness
value) that appeared in the population. For this purpose, a parameter
pcrossover is incorporated, which fixes the percentage of worst
individuals to be substituted from crossover. This parameter can be
either a constant (such a percentage of particles is substituted in all
iterations) or an vector which indicates a different percentage for
each iteration. In this way, one can vary and encourage the crossover
process in the first iterations by setting high values of pcrossover (to
obtain a behavior similar to GA) and in further iterations decrease the
percentage or even make it equal to 0 to obtain a pure PSO algorithm.
Once the crossover step is done, PSO algorithm requires updating the
positions and velocities according the formulae. In this case, this step
is only applied to the particles that have not been substituted by the
crossover.

For the new hybrid method, the following equation is proposed to
calculate pcrossover, the percentage of particles to be substituted
by crossover, in each iteration 𝑡:

𝑝𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 = 𝑚𝑎𝑥(0.80 ⋅ 𝑒(−𝛤 ⋅𝑡), 0.10) (3)

Let us note that the formula presented above depends on a param-
eter 𝛤 . Intuitively, this parameter regulates the number of particles
to be substituted by crossover during the whole process: small values
of 𝛤 will cause many particles to be substituted by crossover over a
large number of iterations, while a large value will do the opposite.
Fig. 3 shows six curves obtained with different 𝛤 values. In the first
iterations the hybrid method performs the substitution by crossing a
high percentage of particles. As the optimization process progresses,
the number of substituted particles is reduced exponentially until it
ends up fixed at a percentage of 10%. Thus, the hybrid method begins
by facilitating the search for parsimonious models using GA-based
mechanisms and ends up using more PSO optimization.

4.2. Mutation strategy

PSO-PARSIMONY already included a mutation operator, for which
the mutation rate was set to 1∕𝑁 by default, where 𝑁 is the number of
features of the problem. In contrast, GA-PARSIMONY was fixed to 10%,
having a much more aggressive strategy in high dimensional datasets.
This explains one reason why the PSO algorithm performed worse in
terms of parsimony with high-dimensional datasets.

The new hybrid method also includes a similar aggressive uni-
form random mutation where three parameters are involved: pmuta-
tion represents the percentage of 𝐹 (hyperparameters) to be muted,
feat_mut_thres represents the probability of select a feature (in-
clude it in the selected features of the individual) when muting it,
and not_muted is the number of top best individuals that will
not be muted. Note that not_muted prevents losing the best in-
dividuals in the mutation step. The default values for pmutation,
feat_mut_thres, and not_muted are set to 0.1, 0.1 and 3, respec-
tively. These values are based on the default ones in GA-PARSIMONY,
which have experimentally demonstrated good performance in previ-
ous works.

5. Experiments

5.1. Performance with public datasets

In order to test the capacity of the proposed methodologies to find
accurate and parsimonious models, public datasets [33] with a high
number of features were again selected. In particular, experiments
compared HYB-PARSIMONY (HYB) with the original PSO method (Old-
PSO), the PSO-PARSIMONY method but with the new mutation pro-
posed in the hybrid method (New-PSO), and GA-PARSIMONY (GA).

To guarantee a fair comparison, all experiments were similar to
previous works with a population size of 𝑃 = 40, 𝑡𝑜𝑙 = 0.001, a

maximum number of iterations of 𝑇 = 200, and an early stopping of
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Table 1
Hybrid with different 𝛤 vs previous methods for 𝑐𝑟𝑖𝑚𝑒 dataset.
𝑀𝑒𝑡ℎ𝑜𝑑 𝛤 𝐽𝑏𝑒𝑠𝑡 𝑁𝐹𝑆𝑏𝑒𝑠𝑡 𝐽 𝑁𝐹𝑆 𝑖𝑡𝑒𝑟𝑠 𝑡𝑖𝑚𝑒

GA 0.00 .58070 19 .58503 20.4 146.8 86.2
OLD PSO 0.00 .58333 29 .58773 33.0 200.0 121.0
NEW PSO 0.00 .58155 26 .58419 25.2 362.8 211.9
HYB 0.02 .57981 22 .58650 24.4 229.6 132.0
HYB 0.04 .58142 17 .58571 22.6 200.8 118.8
HYB 0.06 .58397 23 .58747 26.8 206.6 119.1
HYB 0.10 .57844 24 .58402 26.6 200.4 115.6
HYB 0.12 .58106 24 .58576 25.8 184.4 97.6
HYB 0.14 .58143 24 .58856 28.8 190.0 109.9
HYB 0.16 .58151 19 .58304 23.4 228.8 121.5
HYB 0.18 .58603 26 .58773 27.4 148.6 85.9
HYB 0.20 .58251 23 .58517 25.2 185.6 111.0
HYB 0.22 .57964 23 .58434 23.4 241.4 138.9
HYB 0.24 .58229 25 .58554 26.4 167.4 98.0
HYB 0.26 .58368 23 .58656 25.4 176.0 101.2
HYB 0.28 .58054 24 .58340 23.6 235.6 135.0
HYB 0.30 .58343 29 .58540 25.6 143.8 82.7
HYB 0.32 .58050 22 .58193 20.2 242.2 139.1
HYB 0.34 .58247 17 .58421 23.6 233.2 123.5
HYB 0.36 .58001 23 .58378 21.6 221.6 127.4
HYB 0.38 .58119 20 .58544 23.2 197.2 117.9
HYB 0.40 .58117 27 .58493 24.6 209.8 120.6
HYB 0.45 .58304 22 .58494 24.8 176.8 101.9
HYB 0.50 .57938 24 .58319 23.6 213.4 123.0
HYB 0.55 .58314 24 .58555 25.4 193.8 111.5
HYB 0.60 .58158 22 .58378 24.2 218.2 115.8
HYB 0.70 .58080 24 .58582 26.6 195.8 116.5
HYB 0.80 .58065 19 .58232 23.2 215.0 123.7
HYB 0.90 .58101 25 .58437 24.8 187.4 108.5
Fig. 4. Comparison between HYB-PARSIMONY (blue) vs. PSO-PARSIMONY (green) and GA-PARSIMONY (red) in terms of the number of selected features and accuracy with the
𝑐𝑟𝑖𝑚𝑒 dataset.
35. MLP was chosen again as the training algorithm, with the same
hyperparameters to be optimized as the ones presented in Section 3.1.
Experiments were implemented in 9 separately 24-core servers from the
Beronia Cluster at the University of La Rioja. Each server was composed
of two Intel Xeon E5-2670 (2.30 GHz) with 128 GB of RAM memory.

Table 1 presents the results with the 𝑐𝑟𝑖𝑚𝑒 dataset with 128 features.
It shows results for the GA, the Old-PSO, the New-PSO and 26 𝛤
values of the hybrid method. The second and third columns indicate
respectively the validation error (𝐽 ) and the number of features (𝑁𝐹𝑆 )
of the best model obtained. The last four columns correspond to the
mean of 𝐽 , 𝑁𝐹𝑆 , 𝑡𝑖𝑚𝑒 and the number of iterations (𝑖𝑡𝑒𝑟𝑠) of five runs
for each algorithm. The hybrid method with 𝛤 = 0.10 obtained the best
model reducing 𝐽 to 0.57844 versus the previous best model achieved
with GA (𝐽 = 0.58070). However, the improvement in 𝐽 involved the
selection of 24 features (5 more) versus 19 in GA. On the other hand, the
6

hybrid method with 𝛤 = 0.04 obtained the most parsimonious model
with only 17 features and an error of 𝐽 = 0.58142, slightly higher than
the 𝐽 of GA. With respect to the mean values obtained from the five
runs of each algorithm, it is observed that the hybrid method with
𝛤 = 0.32 obtained the best mean values of 𝐽 and 𝑁𝐹𝑆 .

Fig. 4 shows in blue the range (minimum and maximum) and in
a solid black line the mean value of 𝑁𝐹𝑆 (left) and 𝐽 (right) for five
runs of the algorithm with different values of 𝛤 for the dataset 𝑐𝑟𝑖𝑚𝑒.
It also includes the range and mean value for GA (red) and for New-
PSO (green). Regarding 𝑁𝐹𝑆 , the hybrid method with 𝛤 between 0.32
and 0.36 was more stable, since it obtained lower ranges than the one
obtained with GA and with minimum values similar to the latter. On
the other hand, it clearly outperformed the New-PSO method. Fig. 5
shows that the hybrid method reduced the number of features more
drastically and converged earlier than the New-PSO method, similar
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Table 2
NEW PSO-PARSIMONY vs HYB-PARSIMONY with a population size of 𝑃 = 40 and 𝑡𝑜𝑙 = 0.001 (results are the average of the 5 runs).
𝐷𝑎𝑡𝑎𝑠𝑒𝑡 #𝑟𝑜𝑤𝑠 #𝑓𝑒𝑎𝑡𝑠 𝛤 𝑃𝑆𝑂𝐽 𝐻𝑌𝐵𝐽 𝑃𝑆𝑂𝑁𝐹𝑆

𝐻𝑌𝐵𝑁𝐹𝑆
𝑃𝑆𝑂𝑡𝑖𝑚𝑒 𝐻𝑌𝐵𝑡𝑖𝑚𝑒

slice 5000 379 0.34 .0238 .0231 146.8 132.2 819.4 609.0
blog 4999 277 0.70 .4087 .3983 127.6 113.8 1117.5 1051.6
crime 2215 128 0.32 .5842 .5819 25.2 20.2 211.9 139.1
tecator 240 125 0.50 .0331 .0331 55.0 48.6 11.9 8.7
ailerons 5000 41 0.70 .3947 .3934 10.6 10.2 473.4 466.1
bank 8192 33 0.50 .6514 .6511 21.4 21.4 2146.4 1536.6
puma 8192 33 0.50 .1817 .1817 4.0 4.0 1063.8 933.2
Table 3
Best individual obtained with PSO-PARSIMONY vs HYB-PARSIMONY using a population size of 𝑃 = 40 and 𝑡𝑜𝑙 = 0.001.
𝐷𝑎𝑡𝑎𝑠𝑒𝑡 𝛤 𝑃𝑆𝑂𝐽 𝐻𝑌𝐵𝐽 𝑃𝑆𝑂𝐽𝑡𝑠𝑡 𝐻𝑌𝐵𝐽𝑡𝑠𝑡 𝑃𝑆𝑂𝑁𝐹𝑆

𝐻𝑌𝐵𝑁𝐹𝑆
𝑃𝑆𝑂𝑡𝑖𝑚𝑒 𝐻𝑌𝐵𝑡𝑖𝑚𝑒

slice 0.70 .0228 .0218 .0012 .0017 124 112 1050.1 627.5
blog 0.38 .3948 .3879 .2523 .2023 115 129 1304.0 1277.4
crime 0.10 .5815 .5784 .5021 .4780 26 24 263.5 138.5
tecator 0.38 .0328 .0327 .0207 .0206 48 51 16.3 10.7
ailerons 0.15 .3935 .3922 .3675 .3698 13 10 484.2 494.3
bank 0.70 .6510 .6507 .5839 .5865 22 21 2428.5 1675.0
puma 0.38 .1817 .1817 .1776 .1776 4 4 1191.8 712.9
Fig. 5. Comparison of 𝑁𝐹𝑆 evolution between the Hybrid method (blue) (with 𝛤 =
0.32) and the new PSO-PARSIMONY (red).

than GA method. With respect to 𝐽 , Fig. 4b clearly shows that the new-
PSO method was more robust than GA as it had a much smaller range
of 𝐽 in the five runs of the algorithm. However, the hybrid method
obtained with 𝛤 = 0.32 better 𝐽 values than PSO with a significantly
ower range.

Finally, Fig. 6 presents the mean values of 𝑁𝐹𝑆 and 𝐽 for the four
methods and with the 𝑐𝑟𝑖𝑚𝑒 dataset. In this case, the hybrid model
with 𝛤 = 0.32 (blue) improved the reduction of 𝑁𝐹𝑆 and 𝐽 in a
alanced way, reducing the convergence time and obtaining accurate
ut low-complexity solutions.

Similar results can be observed with other high-dimensional
atasets. Tables 2 and 3 show respectively the average results and the
est model obtained with the Hybrid Method and the New-PSO. In
lmost all datasets, the hybrid method obtained more accurate models
ith less complexity, although it was necessary to find a suitable 𝛤
alue.

In the previous tables, HYB-PARSIMONY has been compared only
ith the methods that preceded it: PSO-PARSIMONY and
7

GA-PARSIMONY. As it was already said, previous publications have
demonstrated the effectiveness of these methods against other AutoML
tools. Now, it has been decided to perform new comparisons with
baseline approaches.

To allow a higher number of experiments, in this case the new
experiments used sklearn’s KernelRidge regression algorithm with
rbf kernel. Although KernelRidge tends to have lower predictive
power than MLP, it is much more efficient in terms of training time
as well as being an explainable model. As hyperparameters, alpha
ranged within the interval [10−5, 105] and gamma within the interval
[10−7, 100].

In order to determine the generalization capability of the tech-
niques, it was decided to choose a maximum of 2000 instances for
training and validation; the remaining instances were used to deter-
mine the generalization error (𝐽𝑡𝑠𝑡). If the dataset had a size smaller
than 2000 rows, it was divided in half. The procedure was performed
10 times for each dataset by randomly choosing each time different
partitions for training/validation and testing.

These three methods were compared:

- HO by Bayesian optimization (BO) with all features (BAY) and
200 iterations. The results of other baseline HO methods, such as
grid search and random search, were worse or similar to those
obtained with BAY, so they are not shown in the table. Among
those baseline methods, BO was selected because it is one of the
most used nowadays to perform HO.

- HYB-PARSIMONY (HYB) with 𝛤 = 0.50, 𝑡𝑜𝑙 = 0.001, 𝑇 = 200,
𝑃 = 15. In this case, the number of individuals was reduced to
only 15 to observe the ability of the methodology to find solutions
with a small population.

- Using Python’s sklearn-genetics package that allows the
realization of HO and FS with genetic algorithms (SKG). However,
this library does not allow to do simultaneous HO and FS so, first,
HO with GA was performed with all the features, then, FS with
GA was performed and, finally, HO with GA was performed again
with the features selected in the previous step. This procedure
is the most common approach when HO and FS have to be
accomplished separately. In all three steps of the GA the default
hyperparameters were selected, except 𝑇 = 200 and 𝑃 = 15.

In this sense, it is important to recall that most of the existing
AutoML methods make use of highly complex ensemble models where
FS is not performed, since each variable’s importance is implicitly
decided within the neural network or tree-based model. However, the
goal of HYB-PARSIMONY, PSO-PARSIMONY and GA-PARSIMONY, is
to obtain accurate simple models, but with a reduced number of input
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Fig. 6. Comparison with 𝑐𝑟𝑖𝑚𝑒 dataset of 𝑁𝐹𝑆 and 𝐽 between the four methods: the HYB-PARSIMONY method (blue) (with 𝛤 = 0.32), the new PSO-PARSIMONY (red), the old
PSO-PARSIMONY (green) and GA-PARSIMONY (black).
Table 4
Comparison between three methods: HO with Bayesian optimization using all features (BAY), HYB-PARSIMONY with 𝛤 = 0.50 (HYB) and sklearn-genetics (SKG) using three
teps (HO with all features, FS and HO with the selected features); with KernelRidge algorithm. The results correspond to the mean of 10 runs of 𝐽𝑡𝑠𝑡 and 𝑁𝐹𝑆 , and 𝑝𝑁𝐽𝑡𝑠𝑡

and
𝑝𝑁𝐹𝑆

to a 𝑝-value of a Wilcoxon–Mann–Whitney test between HYB and SKG.

𝐷𝑎𝑡𝑎𝑠𝑒𝑡 𝐵𝐴𝑌𝐽𝑡𝑠𝑡 𝐻𝑌𝐵𝐽𝑡𝑠𝑡 𝑆𝐾𝐺𝐽𝑡𝑠𝑡 𝑝𝐽𝑡𝑠𝑡 𝐵𝐴𝑌𝑁𝐹𝑆
𝐻𝑌𝐵𝑁𝐹𝑆

𝑆𝐾𝐺𝑁𝐹𝑆
𝑝𝑁𝐹𝑆

slice .1411 .1386 .1420 .0539 378 148.9 202.4 .0002
blog .8231 .8978 .8419 .0002 276 85.1 143.6 .0002
crime .6382 .6428 .6337 .0257 127 31.8 67.7 .0002
tecator .0558 .0544 .0578 .1859 124 27.3 63.0 .0002
ailerons .3980 .3978 .3985 .3447 40 9.1 22.9 .0002
bank .6750 .6784 .6761 .1212 32 16.9 19.8 .0050
puma .8805 .2079 .2587 .0004 26 3.6 11.0 .0001
pol .3192 .2434 .2767 .0002 21 6.8 15.7 .0001
cpu .1759 .1948 .2075 .0757 18 8.7 11.7 .0001
elevators .3456 .3353 .3419 .0002 17 9.3 14.2 .0001
meta .9383 .9513 .9373 .0002 14 1.9 4.7 .0003
bodyfat .2151 .2089 .2138 .0002 13 1.2 2.3 .0005
housing .3700 .3344 .3350 .4727 10 9.8 10.0 .3681
concrete .3454 .3687 .3698 .1212 6 5.1 5.0 .3681
pm10 .8064 .8371 .8377 .0173 7.0 5.0 5.0 1.000
no2 .6973 .7333 .7357 .2730 7.0 4.9 5.0 .3681
strike .9606 .9491 .9645 .0002 6.0 3.2 4.0 .0336
t
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features that facilitates bias detection, improves explainability, lowers
maintenance and energy costs, enhances robustness, and so on.

Table 4 shows the mean value of 𝐽𝑡𝑠𝑡 and 𝑁𝐹𝑆 for the 10 runs
and for the three methods. The results of the 17 datasets are ordered
from largest to smallest according to their dimensionality. 𝑝𝑁𝐽𝑡𝑠𝑡

and
𝑝𝑁𝐹𝑆

correspond to the 𝑝-value of a Wilcoxon–Mann–Whitney test
between HYB and SKG regarding the accuracy and number of features,
respectively.

The last four columns clearly show that HYB substantially reduced
the number of features compared to the total dataset (used by BAY).
Also, the improvement in 𝑁𝐹𝑆 compared to SKG was very relevant and
statistically significant in all datasets with more than 10 dimensions.

Regarding 𝐽𝑡𝑠𝑡, HYB obtained a better 𝐽𝑡𝑠t in 9 datasets while SKG
id it only in 2. However, BAY obtained the best model in blog, bank
nd cpu (besides the datasets with few features such as concrete,
m10 and no2 where the use of the HYB method does not make much
ense). Probably, tuning the hyperparameters 𝑡𝑜𝑙 and 𝛤 of the hybrid
ethod could help to obtain more competitive models in these datasets.

. Conclusions

This paper presents a new hybrid methodology that improves our
revious PSO-PARSIMONY methodology in the simultaneous search for
8

m

he best model hyperparameters and input features, with a balance
etween accuracy and complexity. Specifically, the hybrid method
ombines GA mechanisms such as selection, crossover and mutation
ithin the PSO-based optimization algorithm.

The main novelty of the hybrid model is that the optimization is
ased on PSO but includes common genetic operations of selection,
rossover and mutation to replace the worst particles. The percentage
f variables to be replaced at each iteration is selected by a decreasing
xponential function that is adjusted by 𝛤 . Thus, in the first iterations
arsimony is promoted by GA mechanisms, i.e., replacing by crossover
high percentage of particles at the beginning. Subsequently, optimiza-

ion with PSO becomes more relevant for the improvement of model
ccuracy. This differs from other hybrid methods in which the crossover
s applied between the best individual position of each particle or
ther approaches in which the worst particles are also replaced by new
articles, but at extreme positions. Experiments show that, in general,
nd with a suitable 𝛤 , the HYB-PARSIMONY methodology allows to
btain better, more parsimonious and more robust models compared
o PSO-PARSIMONY. It also reduces the number of iterations and,
onsequently, the computational effort.

Although it is a promising method, further research is required to
rovide an explicit formula that fixes the 𝛤 value for each dataset,
or instance, depending on the number of instances and features or by
eans of adaptive strategies.
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