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Abstract: Whenever additional states of a plant can be measured, closing nested feedback loops can
be exploited in a variety of ways. The goal here is to reduce the bandwidth of feedback controllers and
thus reduce the amplification of sensor noise that can otherwise spoil the expected performance when
the actuator saturates. This can be particularly relevant for demanding tracking specifications and
large plant uncertainties. In this context, the current work proposes a novel model-matching control
architecture with a feedforward controller and two feedback controllers, which is accompanied by a
new robust design method in the frequency domain of Quantitative Feedback Theory (QFT). The use
of a feedforward controller reduces the amount of feedback to the minimum necessary to constrain
the spread of the tracking error responses as specified. Furthermore, this amount of feedback is
quantitatively distributed along the frequency between the inner and outer loops to reduce the
total sensor noise at the control input as much as possible. A theoretical example illustrates the
method and highlights the advantages of the new architecture over two other previously feasible
QFT solutions: one with double feedback and another with single feedback plus feedforward. The
importance of choosing the correct switching frequency between loops is also demonstrated. Finally,
the angle of rotation of a commercial servo motor is successfully controlled using the motor speed as
an internal measure.

Keywords: Quantitative Feedback Theory (QFT); robust control; cascade control; frequency domain;
tracking error

MSC: 93B51; 93C80; 93C35; 93B52

1. Introduction

Robust control methods ensure compliance with performance and stability specifica-
tions for a given set of plants. Among them, Quantitative Feedback Theory (QFT) provides
a transparent design framework for balancing the amount of feedback across the frequency
band [1,2]. In fact, the native QFT philosophy [3] recommends using the open-loop control
gain that is strictly necessary at low frequencies to achieve the required performance and
then reducing that gain as fast as stability requirements allow to minimize the amount
of feedback at mid-high frequencies. Whatever the practical limitations to narrowing the
control bandwidth, one of its immediate benefits is to reduce the amplification of sensor
noise. This can saturate actuators and prevent the satisfactory functioning of the feedback
system, especially for systems with severe tracking sensitivity specification and/or large
plant uncertainty [2,4]. The effect of sensor noise amplification can be diminished if ad-
ditional states of the plant are accessible for measurements and more than one feedback
loop can be closed as Figure 1a illustrates. To this end, an outer-inner sequence in the
loop closure is proposed in [2,5]: the initial design of C1 sets the maximum bandwidth;
then, C2 is designed, which allows reducing the bandwidth of C1 in a new design iteration.
At this point, let us mention that many other cascaded methods prefer the inner-outer
sequence of design. Thus, a fast inner loop aims to improve the closed-loop performance by
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quickly attenuating disturbances enclosed in the inner loop before they affect the primary
output [6–9]. However, this has an unpredictable effect on how large the outer controller
bandwidth might be [10]. Bandwidth saving is prioritized hereafter, and robust QFT design
strategies are considered.

Figure 1. Earlier control architectures: (a) Cascade control, and (b) Model matching.

QFT designs are made on the complex plane (logarithmic magnitude-phase axis) by
shaping a nominal open-loop frequency response that must meet certain bounds at specific
frequencies [1,2]. These bounds are a formal map from the plant uncertainty and the
closed-loop specifications; these specifications are first formalized as constraints on the
magnitude frequency responses of closed-loop transfer functions. Ingenious manual (i.e.,
graphical) procedures were provided to sketch the bounds in seminal works (see [2,5]
for cascaded loops). Later CAD tools alleviated much of the tedious burden for bound
generation and eased the design procedure; the toolbox [11] is probably the most-widely
used. It deals with classical problems inside structures with a feedback controller C and a
prefilter F, and the bounds are computed as formal solutions to quadratic inequalities [12].
Some multi-loop problems are included as long as the specification can be formulated
by a single inequality. Its standard form is |(A + B C)/(D + E C)| < W, where C is
the feedback controller to be designed, A, B, D, E are known functions of elements in
the system, and W is the constraint placed on the magnitude frequency response of the
closed-loop transfer function. A sequential design of C1 and C2 is affordable with the
said formulas, and therefore the tool [11] allows solving robust disturbance rejection and
robust stability problems in cascade architectures. However, a robust tracking, which must
incorporate a feedforward prefilter F, is not affordable (Figure 1a). Robust tracking is
formulated in classical QFT by a double inequality: the magnitude frequency response
of the complementary sensitivity function is constrained above and below. In the case of
double feedback and following the same procedure as in [12] to compute the bounds, the
said double-inequality specification is mapped into a quartic inequality, which cannot be
simplified to a quadratic one as it happens in single feedback plus prefilter structures.

A recent branch of QFT formulates the robust tracking problem with a single-inequality
specification that constrains the tracking error. The design of a prefilter F and a feedback
controller C were involved in [13,14]. Those works provided a conservative solution to
the problem since the bounds expressed the need of more controller gain than the strictly
necessary. Later, Ref. [15] found a non-conservative solution equivalent to the classical
tracking problem. This proposed a model-matching structure (Figure 1b), which explicitly
incorporated the desired tracking model M, and then the tracking-error signal appeared in
the control scheme. A new formalism was provided to make the design of feedforward
G and feedback C controllers independent, which led to a quadratic inequality that could
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be added to the standard algorithms in [11] to compute the bounds. In fact, the new
functions could deal with specifications of the form |(A + P G)/(1 + P C)| < W, with
P being the plant. Following the same procedure, Ref. [16] solved a quartic inequality
to handle specifications of a more general form |(A + B G)/(D + E C)| < W, where the
coefficients of G and C were independent functions. The said work [16] faced a robust
tracking problem for a multi-input single-output (MISO) system. Other notable works on
QFT model matching and tracking error include [17,18].

Under these premises, the current work will present a model-matching structure
to deal with the robust QFT tracking problem in cascaded feedback systems. The wise
arrangement of elements will allow using the functions in [11,16] to compute the bounds
and then perform the design of double-feedback and feedforward controllers with the
following advantages. On the one hand, the use of feedforward will reduce the need of
feedback to the minimum necessary to satisfy the tracking-error specification. On the other
hand, that total amount of feedback will be conveniently allocated along the frequency
between the inner and outer loops with the aim of conveniently reducing each controller
bandwidth. The optimum will be to reduce as much as possible the amplification of sensor
noise at the actuator. A pioneering work, Ref. [19] studied the best distribution of feedback
in MISO systems, where plants and controllers were not arranged in cascade but in parallel
to solve a disturbance rejection problem. A second work, Ref. [20] arranged the control
loops in cascade to feed the parallel-plant inputs. New structures incorporated feedforward
controllers for tracking [16] and measurable disturbances [21]. All these control pioneers
for MISO systems chose the best-conditioned plants to work along the frequency such that
feedback controllers with the lowest possible gain at each frequency were obtained; these
controllers inhibited or enabled the participation of plants (inputs). There were provided
methods to compute the bounds and strategies to shape the open-loop functions. In a
similar fashion, the current work will provide a method to decide the best participation
of inner and outer open-loop functions along the frequency, which is linked to the plants.
Once the design of the double-feedback and feedforward controllers has been executed
accordingly, a function will evaluate the total noise at the control input.

In summary, the present work claims two main contributions to the control of systems
where additional plant states are accessible for measurement:

• A new control structure with nested feedback loops from the states and feedforward
loops from the set point will be proposed. A novel QFT solution will be given to
compute the bounds and design the feedforward and the two feedback controllers for
robust tracking, robust stability, and robust disturbance rejection.

• A method will be provided for determining the best distribution between the inner and
outer loops of a predetermined amount of feedback over a fixed control bandwidth;
a switching frequency will separate the working frequency bands of each loop. This
will result in a pair of feedback controllers that minimize the amount of noise at the
control input coming from the sensors. A sequential method will be detailed to design
first the inner feedback controller, then the outer feedback controller, and finally the
feedforward controller.

A theoretical example will illustrate the method and highlight the benefits of the new
structure. The proposal will be compared with those solutions feasible to date: on the one
hand, double feedback with no feedforward (Figure 1a), and on the other hand, single
feedback plus feedforward (Figure 1b); this will reveal the utility of the new degrees of
freedom. For the new control structure, two other robust control solutions will also be given,
which distribute the amount of feedback between the two loops differently; this will validate
the proposed method for selecting the best switching frequency between loops. Finally, an
application example will validate the new contributions in a commercial servomotor.

The paper is organized as follows. Section 2 describes the new control architecture,
defines the robust control problem to be solved under the QFT paradigm, and justifies
the method to allocate the control bandwidth between loops. Section 3 describes the
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sequential method for designing the controllers. The theoretical and application examples
are presented in Sections 4 and 5, respectively. Section 6 summarizes the main conclusions.

2. Architecture and Control Fundamentals
2.1. Control Structure

Figure 2 shows the proposed architecture. Transfer-function models and signals in the
block diagram can be described as follows. The inner measurement y2 divides the plant
from the single control input u to the controlled output y into two plant models: the outer
P1 and the inner P2 ones. Outer y and inner y2 measurements are contaminated with high
frequency-band noise of zero mean, v1 and v2, respectively. External disturbances d1 and
d2 can be also incorporated in the system. The model M expresses the desired behavior of
the controlled output y for the tracking of the reference r; deviations between rM and y are
detected in the feedback error signal e1 to be corrected. Similarly, M2 is the r tracking model
for y2, and e2 detects the mismatches. The elements object of design are the two feedback
controllers, C1 and C2, and the feedforward controller, G. The use of a single feedforward
controller G will impose some restrictions to solve the robust control problem under QFT
paradigm. In particular, the tracking model for y2 must be defined in close relation to the
tracking model for y = y1 as follows:

M2 = M/P1, (1)

under the assumption that P1 is a fixed transfer function, i.e., no uncertainty can be defined
for this plant model. This corresponds to reality when P1 is a pure integrator, and the
output and its derivative can be measured for feedback; position and speed are illustrative
examples in motion systems [9,22,23]. M should be also cautiously chosen to obtain a
strictly proper transfer function in (1).

M C1 C2 P2 P1

M2

G

d2 d1

v2

v1

r
e1 e2 u y2

y−−

Figure 2. Cascade model matching (proposed architecture).

According to the control scheme, the controlled output depends on the external inputs
as follows:

y =
(MC1C2 + M2C2 + G)P1P2

1 + Lt
r +

(1 + L2)

1 + Lt
d1 +

P1P2

1 + Lt
d2 −

L1

1 + Lt
v1 −

Lt/C1

1 + Lt
v2, (2)

where Lt is the total open-loop transfer function

Lt = L1 + L2, (3)

which is contributed by the open-loop transfer functions of the outer loop

L1 = C1C2P1P2 (4)

and the inner loop
L2 = C2P2. (5)
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The tracking error e = e1 can be obtained by computing Mr− y, which after substitut-
ing y of (2) and some simplifications yields

e =
M− GP1P2

1 + Lt
r− (1 + L2)

1 + Lt
d1 −

P1P2

1 + Lt
d2 −

(1 + L2)

1 + Lt
v1 −

C2P1P2

1 + Lt
v2. (6)

Some intermediate results to obtain the first term of (6) are

er = Mr− yr = Mr− (MC1C2 + M2C2 + G)P1P2

1 + L1 + L2
r

=
M + ML1 + ML2 −ML1 −M2C2P1P2 − GP1P2

1 + L1 + L2
r =

M− GP1P2

1 + L1 + L2
r, (7)

considering
M2C2P1P2 = MP−1

1 C2P1P2 = MC2P2 = ML2. (8)

The control action, expressed as a function of the external inputs, is

u =
(MC1C2 + M2C2 + G)

1 + Lt
r− C1C2

1 + Lt
d1 −

Lt

1 + Lt
d2 −

C1C2

1 + Lt
v1 −

C2

1 + Lt
v2. (9)

2.2. Robust Control under QFT Paradigm

Robust reference tracking, robust disturbance rejection, and robust stability mean
that those control specifications are met by any plant in the uncertain set defined. For the
present study, let us define the vector

q = [q1, q2, q3, . . . , qw], (10)

which contains the w parameters used to define the parametric uncertainty of model P2.
The value of each parameter qi ∈ q can vary in-between a lower q−i and an upper q+i limit.
Hence the uncertainty vector q belongs to an hyper-rectangle in Rw called the uncertainty
space Q, i.e.,

q ∈ Q , {q ∈ Rw|q−i ≤ qi ≤ q+i , i = 1, . . . , w}, (11)

which yields a set of inner plant models

P2 = {P2(s; q) : q ∈ Q}. (12)

Let us remember that no uncertainty is possible for P1, and the most common case will be
adopted hereinafter for the outer plant:

P1 =
1
s

. (13)

QFT is a frequency domain method. The frequency response (s = jω) of a discrete set
of plants in P2 together with the frequency response of P1 will be handled. Robust control
specifications will be formulated as inequalities that constrain the magnitude frequency
response of closed-loop transfer functions.

Robust stability requirements affect both feedback loops, which is formulated as∣∣∣∣ C1(jω)C2(jω)P1(jω)P2(jω)

1 + C2(jω)P2(jω) + C1(jω)C2(jω)P1(jω)P2(jω)

∣∣∣∣ ≤ Bs1(ω); ∀P2 ∈ P2 (14)

and ∣∣∣∣ C2(jω)P2(jω)

1 + C2(jω)P2(jω)

∣∣∣∣ ≤ Bs2(ω); ∀P2 ∈ P2, (15)
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where Bs1(ω) and Bs2(ω) are upper tolerances for the complementary sensitivity function
of their respective feedback loops. These tolerances are related with the desired stability
margins [24]; includes some arguments about it. At designer’s discretion, take

Bsi=1,2 =
1

2 sin(PM/2)
, (16)

if the phase margin (PM) is chosen, or

Bsi=1,2 =
GM

GM− 1
, (17)

if the gain margin (GM) is preferred.
Robust disturbance rejection can be considered by∣∣∣∣ e(jω)

d2(jω)

∣∣∣∣ = ∣∣∣∣ −P1(jω)P2(jω)

1 + C2(jω)P2(jω) + C1(jω)C2(jω)P1(jω)P2(jω)

∣∣∣∣ ≤ Bd2(ω); ∀P2 ∈ P2 (18)

for disturbances at the plant input, and by∣∣∣∣ e(jω)

d1(jω)

∣∣∣∣ = ∣∣∣∣ −(1 + C2(jω)P2(jω))

1 + C2(jω)P2(jω) + C1(jω)C2(jω)P1(jω)P2(jω)

∣∣∣∣ ≤ Bd1(ω); ∀P2 ∈ P2 (19)

for disturbances at the plant output. Upper tolerances Bd1 and Bd2 can be selected as in
any other QFT problem [1,25]. As long as the novelty of the new structure is for reference
tracking, disturbance rejection specifications play a secondary role hereinafter.

Robust reference tracking constrains the tracking error as∣∣∣∣ e(jω)

r(jω)

∣∣∣∣ = ∣∣∣∣M(jω)− G(jω)P1(jω)P2(jω)

1 + Lt(jω)

∣∣∣∣ =∣∣∣∣ M(jω)− G(jω)P1(jω)P2(jω)

1 + C2(jω)P2(jω) + C1(jω)C2(jω)P1(jω)P2(jω)

∣∣∣∣ ≤ Br(ω); ∀P2 ∈ P2 (20)

The selection of the upper tracking tolerance Br follows the criteria of error-tracking or
model-matching works, as per example [1,15].

The design of G must be separated from the design of C1 y C2 as follows. In a similar
fashion to [15], Equation (20) is rewritten as∣∣∣∣ −M(jω)

P1(jω)P2(jω)
+ G(jω)

∣∣∣∣ ≤ Br(ω)

∣∣∣∣ 1 + Lt(jω)

P1(jω)P2(jω)

∣∣∣∣; ∀P2 ∈ P2, (21)

which reveals as valid G those inside the region delimited by a circumference of center

−M(jω)

P1(jω)P2(jω)
, (22)

and radii

Br(ω)

∣∣∣∣ 1 + Lt(jω)

P1(jω)P2(jω)

∣∣∣∣ (23)

in the complex plane. For a discrete ω frequency, each plant within a discrete set P2 defines
its own circumference. Then two plant cases P2u , P2v ∈ P2 share a common solution G if
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the distance between the centers of circumferences is equal to or shorter than the sum of
their radii. This condition responds to∣∣∣∣ M(jω)

P1(jω)P2u(jω)
− M(jω)

P1(jω)P2v(jω)

∣∣∣∣ ≤
Br(ω)

∣∣∣∣ 1 + Ltu(jω)

P1(jω)P2u(jω)

∣∣∣∣+ Br(ω)

∣∣∣∣ 1 + Ltv(jω)

P1(jω)P2v(jω)

∣∣∣∣, (24)

which evidences the mission of the feedback controllers C1 and C2 in Lt. These must
enlarge the circumference radii (23) sufficiently such that any plant pair in the uncertainty
set, ∀P2u , P2v ∈ P2, met (24), which in turn ensures the existence of G. Hence, to achieve
(20), C1 and C2 are firstly designed for (24), and then G to finally satisfy (21).

Let us notice that (24) expresses the strictly minimum amount of feedback Lt that is
necessary, and this would be the same whatever the number of nested loops; global feedback
Lt only depends on the global plant P1P2 and the specification M, Br. That unique Lt is
contributed by Lt = CP1P2 for single feedback (Figure 1b) and by Lt = C1C2P1P2 + C2P2
for double feedback (Figure 2), which reveals C1C2 < C. Then, a relevant benefit of double
feedback is reducing the individual controller bandwidth, which mainly reduces the sensor
noise amplification at u. For single feedback, the v noise transmission is u = −C/(1+ Lt) v,
whereas for double feedback how the two noise sources v1, v2 are transmitted to u (9) can
be shaped and the v1 = v noise transmission u = −C1C2/(1 + Lt) v1 is definitely reduced
in comparison to single feedback.

To quantify the global influence of all noise sources, let us define the Root Mean
Squared value Vt of total noise at u such that

V2
t = V2

t1
+ V2

t2
=
∫ ∞

0

∣∣∣∣C1(jω)C2(jω)

1 + Lt(jω)

∣∣∣∣2Φ1(ω) dω +
∫ ∞

0

∣∣∣∣ C2(jω)

1 + Lt(jω)

∣∣∣∣2Φ2(ω) dω, (25)

where Φi=1,2 is the power spectral density of noise source vi=1,2 (sensors are modeled
as white noise sources, i.e., Φi(ω) takes a constant value over the frequency band), and
V2

ti
represents a mean-squared value that measures the individual contribution. Then, Lt

can be conveniently allocated between L1 = C1C2P1P2 and L2 = C2P2 to reduce as much
as possible the gain of feedback controllers over the frequency band: |C1(jω)C2(jω)| on
the one side and |C2(jω)| on the other side. In this case, the branches L1 and L2 are not
independent since C2 contributes to both, similarly to what happened in the serial structure
of controllers for MISO systems [20]. A similar procedure to [19,20] will be followed to
allocate the bandwidth. Thus, the new method firstly analyzes the two extreme cases in
which only one of the two loops provides the Lt that is fixed by (24). If only L2 works
(C1 = 0), the needed controller becomes C2(jω) = Lt(jω)/P2(jω). On the other hand, if
only L1 works (the inner loop is opened), the needed controller becomes C1(jω)C2(jω) =
Lt(jω)/(P1(jω)P2(jω)). Therefore, since Lt is fixed, the magnitude frequency response of
controllers will depend on the magnitude frequency response of the plants. The higher
the plant magnitude, the lower the controller gain. In the present case, P1 is an integrator,
|P1(jω)P2(jω)| is higher than |P2(jω)| over low frequencies, and the other way round
happens over high frequencies. The switching frequency is ω = 1 from |P1(jω)P2(jω)| =
|P2(jω)| and P1(jω) = jω−1. Consequently, L1 should work over ω ≤ 1 and L2 over
ω ≥ 1 to obtain the minimum possible gain of C1C2 and C2 over the whole frequency
band; the working band of one loop must be understood as the frequencies where this loop
contributes with a higher gain than the other.

For any other plant P1 different from an integrator, a comparison between |P1(jω)P2(jω)|
and |P2(jω)| should be done. Thus, L1 should work over the frequencies where |P1(jω)| ≤ 1,
and L2 over the frequencies where |P1(jω)| ≥ 1.

The previous strategy minimizes Vt (25) under the assumption that the noise sources
v1 and v2 are equal, which is probably not a real case. If Φ1 < Φ2, the working band of
L1 should be widened with respect to the previous criterion, whereas Φ1 > Φ2 should
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widen the working band of L2. In summary, any Lt load-sharing between L1 and L2 can be
established. Once the working bands are chosen, a method for designing the controllers
that satisfy them is indicated below.

3. Design Methodology

As usual in QFT, feedback controllers C1 and C2 are designed first, and then the
feedforward controller G. Feedback C1 and C2 are in charge of achieving robust stability
specifications (14) and (15), robust disturbance specifications (18), and (19) if they exist,
and the part of the robust reference tracking (20) that attains feedback, i.e., (24). Later, the
design of the feedforward G at a second stage must meet (21), which finally implies that
the set C1, C2, and G achieves (20).

The designs are performed in the frequency domain by shaping certain functions of ω
that must meet bounds at a discrete set of frequencies

Ω = [ω1, ω2, ω3, . . . ωz]. (26)

The bounds that guide the loop-shaping are depicted on the complex plane (phase, loga-
rithmic magnitude).

For feedback designs, the bounds represent the closed-loop specifications in terms of
a nominal open-loop transfer function, L10(jω), or L20(jω), in such a way that if Li0(jω)
satisfies its bound set for the nominal plant case, the whole set of plants will satisfy it.
Previously, plant templates were computed. They represented the frequency response of a
discrete set of plants plants in P2 (12) multiplied by plant P1 (13); any plant in the template
could be chosen as the nominal case P10 P20 . Templates and bounds could be computed
with standard CAD tools whenever the specifications followed standard formulas (the
terminology in the original works has been adapted to the current nomenclature). In
particular, tracking specifications with feedback C and feedforward G must respond to the
general format [16] ∣∣∣∣A + B G

D + E C

∣∣∣∣ ≤W, (27)

and specifications with solely feedback C must follow the format [11]∣∣∣∣A + B C
D + E C

∣∣∣∣ ≤W. (28)

In these equations, G and C denote the feedforward and feedback controllers, respectively;
W is the upper tolerance for the magnitude of the closed-loop frequency response; and A,
B, D and E are expressions that include known functions such as the plants P1 and P2, the
models M and M2, or the feedback controller that is taken as fixed when the other feedback
controller is going to be designed. The work [16] developed how to separately obtain the
bounds for feedback and feedforward from (27), and how to integrate them in the CAD
tool [11]; a procedure similar to the one in Section 2.2 and [15] was followed. Specifications
of the form (28) were handled with the original function genbnds of the toolbox [11].

There are infinity couples, C1(jω), C2(jω), which achieve the control specifications.
The targets are those that allocate the control bandwidth between L1 and L2 as per prede-
fined. There is a single pair of feedback controllers that reduces as much as possible the
sensor noise amplification Vt (25). A sequential procedure is proposed in the following
to shape firstly L20(jω), which is in charge of the high frequencies, and secondly L10(jω),
which is in charge of the low frequencies; Section 2.2 proposed guidelines to choose the
switching frequency between both loops. Step-by-step procedures of loop-shaping to
allocate the control bandwidth between loops are given in [19,20]. Once C1 and C2 are
designed, some guidelines on the design of G will be given for the full achievement of
tracking specification.
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3.1. First Stage: Design of the Inner Feedback Controller

The controllers are initially set to zero, C1 = C2 = 0; in the case of returning back to
this step, the controllers could take non null values. The sequence begins with the design of
C2 by shaping L2o (jω) = C2(jω)P2o (jω); this inner loop will be in charge of the mid-high
frequencies inside the control bandwidth. Bounds for L2 loop are computed as follows
considering that C2 is the unknown.

Comparing (15) with the standard (28), the L2-bounds for inner loop stability can be
computed by choosing A = 0, B = P2, D = 1, E = P2, C = C2 and W = Bs2 in (28).

Comparing (14) with the standard (28), the L2-bounds for outer loop stability can be
computed by choosing A = 0, B = C1P1P2, D = 1, E = P2 + P2P1C1, C = C2 and W = Bs1

in (28).
Comparing (20) with the standard (27), the G-bounds and the L2-bounds for tracking

can be independently computed by choosing A = M, B = −P1P2, G = G, D = 1,
E = P2 + P2P1C1, C = C2 and W = Br in (27). At the current step, only the L2-bounds are
being considered.

In a similar fashion, the L2-bounds for disturbance rejection problems can be obtained
comparing (18) and (19) with the standard (28). For the sake of clarity, no disturbance
rejection specifications are being considered hereinafter.

Once the whole set of bounds is found, the less favorable set is computed by intersect-
ing the bounds that represent the specifications at each frequency. A single bound prevails
at each discrete frequency: βL2(ω), ω ∈ Ω (26). Subsequently, L2o (jω) is shaped to only
meet the bounds βL2(ω) at frequencies in Ω above the switching frequency between loops
L1 and L2. Therefore, L2o (jω) momentarily violates the bounds at the working frequencies
of the other loop. The L2-shaping yields C2.

3.2. Second Stage: Design of the Outer Feedback Controller

This outer loop will be in charge of the low frequencies (up to the switching frequency).
Bounds for L1 loop are computed as follows considering that C1 is the unknown; let us
take for C2 the controller that was obtained in the previous step.

Comparing (14) with the standard (28), the L1-bounds for outer loop stability can
be computed by choosing A = 0, B = C2P2P1, D = 1 + C2P2, E = C2P2P1, C = C1 and
W = Bs1 in (28).

Comparing (20) with the standard (27), the G-bounds and the L1-bounds for tracking
can be independently computed by choosing A = M, B = −P1P2, G = G, D = 1 + C2P2,
E = C2P2P1, C = C1 and W = Br in (27). In the present step, only the L1 bounds are being
taking into account.

In a similar fashion, the L1-bounds for disturbance rejection can be obtained comparing
(18) and (19) with the standard (28). For the sake of clarity, no disturbance rejection
specifications are being considered hereinafter.

The intersection of the whole set of previous bounds at each discrete frequency (26)
yields βL1(ω), ω ∈ Ω. Subsequently, L1o (jω) is shaped to meet the bounds βL1(ω) at
the whole set of frequencies Ω (26). At this design step, L2 has already provided the
necessary feedback for tracking at frequencies above the inter-loop switching frequency,
and consequently the bounds βL1(ω) take on a circular shape at these frequencies to
preserve the necessary stability margins. The switching frequency between loops can be
taken as a roll-off frequency for L1 in such a way that it is advisable to reduce the L1o (jω)
gain as fast as possible from this frequency ahead. The L1-shaping yields C1.

Once C1 is designed, the L2-bounds are updated. As a result the new disposition of
βL2(ω) must evidence that L2o (jω) now satisfies them at the whole set of design frequencies
Ω (26). A new iteration (coming back to the first stage) is recommended if this does not
happen or over-design is detected (more L2o gain than βL2 demands at certain ω). Then,
L2o (jω) and L1o (jω) can be sequentially re-shaped, which yields new feedback controllers;
these will be used as initial values to recompute the bounds on the other loop. Let us recall
that the final objective of double feedback was reducing as much as possible the controller
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gains to minimize Vt (25). Thus, it is recommended that L2o (jω) and L1o (jω) finally lie on
their respective bounds, βL2(ω) and βL1(ω), or as close as possible to them.

For a different switching frequency between loops, there would be another pair of
L2o (jω), L1o (jω) that exactly lie on their bounds, i.e., that satisfy the performance and
stability specifications. Then, it is convenient to compute Vt (25) in such a way that the
switching frequency between loops may be altered at any moment in the design sequence
to reduce Vt.

3.3. Third Stage: Design of the Feedforward Controller

Let us take the feedback controllers C1 and C2 that were computed after the previous
steps. The unknown is now the feedforward element G, which must complete the fulfill-
ment of the tracking specification (20). Comparing it with the standard (28), the G-bounds
can be computed by choosing A = M, B = −P1P2, D = 1 + P2C2 + P1P2C1C2, E = 0, and
C = G in (28) .

Let us denote the G-bounds as βG(ω). At each discrete frequency ω ∈ Ω (26), βG(ω)
delimits a closed region in the complex plane, which contains possible solutions for G(jω).
Those regions enlarge with the over-design of feedback controllers; over-design happens
when controllers have more gain than the strictly necessary to satisfy the specifications
or, in other words, when Lio (jω) does not exactly lie on βLi (ω) bounds. Some feedback
over-design is recommended to ease the shaping of G(jω) or to reduce the order of G(s).
The price paid is that Vt (25) increases.

4. Design Example and Comparisons

The following robust control problem is proposed. The plants are

P2(s) =
k× a
(s + a)

, k ∈ [1 10], a ∈ [1 10]; P1(s) =
1
s

. (29)

The tracking specification (20) considers the model

M(s) =
ω2

n
(s2 + 2δωns + ω2

n)
=

32.65
(s2 + 8s + 32.65)

, (30)

and the upper tolerance for the magnitude frequency response of error

Br(ω) =

∣∣∣∣0.2s(s/25 + 1)
(s/4 + 1)2

∣∣∣∣
s=jω

. (31)

A phase margin of at least 40◦ is desired for robust stability of the outer and inner
loops. Taking PM = 40 in (16), the upper tolerances for the magnitude frequency response
of complementary sensitivity functions (14) and (15) became

Bs1(ω) = Bs2(ω) = 1.46. (32)

For the sake of clarity, no disturbance specifications will be considered. In addition,
identical power spectral Φ1 = Φ2 of the noises from both sensors v1 and v2 will be assumed.
The set of discrete frequencies is

Ω = [0.1, 0.3, 0.6, 1, 3, 6, 10, 100]. (33)

Firstly, the said robust control problem will be solved to illustrate the new design
methodology and the benefits of the new control structure. A second subsection will
establish some comparisons to highlight the novelties of the proposal. The new structure
[Figure 2] will be compared with the two control architectures that were feasible to date in
robust QFT control [Figure 1, cascading and model-matching structures]; this will reveal
the utility of the new degrees of freedom. For the new control structure, two other robust
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QFT control solutions will be given that allocate the feedback control bandwidth differently
between both loops; this will validate the proposed method to choose the best switching
frequency between loops. In all the comparisons, let us remember that the final objective is
to reduce as much as possible the amplification of sensor noises v1 and v2 at the actuation
u. Equation (9) revealed that this was closely related to the magnitude frequency response
of feedback controllers in the outer loop (C1C2) and the inner loop (C2). In addition,
Equation (25) computed an accumulative impact of this noise transmission along the
frequency; V2

t1
and V2

t2
measured the total impact of each source, which were added to

give V2
t . Then, to compare all solutions mentioned, a figure will show the magnitude

frequency response of feedback controllers and a table will collect the noise impacts. To
compute (25), the noise sources will be simulated as Band-Limited White Noise of power
amplitude = 0.0001, sample time = 0.001 s; integrals will be approximated by a discrete
integration over the frequency range ω ∈ [10−2, 103].

4.1. Solution Achieved by the New Proposal

As Section 3 indicated, L1(jω) should work over ω ≤ 1 and L2(jω) should work over
ω ≥ 1, and accordingly a design method of three main steps was proposed. For the current
robust control problem (29)–(33) , it yields the feedback controllers

C2(s) =
93451(s + 40)(s + 1.56)(s + 0.018)

(s + 0.019)(s2 + 9.462s + 32.49)(s2 + 535.7s + 8.294× 104)
, (34)

C1(s) =
53.9

(s2 + 9.8s + 49)
, (35)

and the feedforward controller

G(s) =
722.35s(s + 1.2)(s2 + 16.32s + 277.2)

(s + 86)(s2 + 6.702s + 24.5)(s2 + 14.98s + 207.4)
. (36)

Figure 3 depicts how the bounds βL1(ω), βL2(ω) and βG(ω) are finally met by shaping
of L1o (jω), L2o (jω) and G(jω), respectively.

Figure 4 validates the designs by showing those frequency responses of interest (mag-
nitude Bode diagrams are used). Fourteen plant cases were considered for (29). Figure 4a
shows the fulfillment of the robust tracking-error specification; let us note as the upper
tolerance Br is tightly met up to ω ≈ 40 rad/s. Figure 4b shows the fulfillment of robust
stability; inner T2 and outer T1 complementary sensitivity functions are depicted. Figure 4c
shows the prescribed frequency allocation of Lt between both loops with a switching
frequency around ω = 1. Figure 4d shows the implicit target about the transmission
of sensor noises v1 and v2 to the plant input u; it is depicted the magnitude frequency
response of the transmission functions |C1C2/(1 + Lt)| and |C2/(1 + Lt)|. These reveal
how noise amplifications happen from the switching frequency ω = 1 up to around the
gain cross-over frequency of each Li, i.e., up to ω = 20 for L1 and up to ω = 200 for L2.
Obviously, the noise amplification of the inner sensor is larger since L2 has a higher gain
cross-over frequency than L1. Plot (d) will gain meaning in the comparisons with other
solutions. In a quantitative manner, the accumulative noise transmission at the control
input (25) yields Vt = 0.3429, and the individual squared contributions of each sensor are
V2

t1
= 0.01 and V2

t2
= 0.1076.
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Figure 3. Bounds (colored lines) and shaping functions (black lines) for: (a) feedback controller C1,
(b) feedback controller C2, and (c) feedforward controller G.

Figure 4. Magnitude frequency responses: (a) tracking error, (b) complementary sensitivity functions,
(c) inner and outer open-loop functions, and (d) noise inputs to control effort.

Figure 5 shows the time-domain behavior of fourteen plant cases. It considers the
following external inputs: the reference r(t) suffers a unity step change at t = 1 s, and the
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sensor noises v1(t) and v2(t) are built with Band-Limited White Noise sources (power ampli-
tude = 0.0001, sample time = 0.001 s). Figure 5a shows how the closed-loop responses y(t)
are conveniently distributed up and down the desired response m(t), which corresponds
to the model M (30). Let us recall that the contained dispersion obeys to the tolerance
Br (31). There are also depicted the control efforts [Figure 5b,c]: the control action to the
actuator u(t) is built by the sum of feedback uc(t) and feedforward ug(t) actions. It could
be assimilated ug(t) to the control effort that is needed to produce m(t) whereas uc(t)
compensates output deviations due to the plant uncertainty. Sensor noises hardly affect the
output while they are noticeable at the control input; a moderate impact has been achieved
thanks to an adequate distribution of the amount of feedback between both loops.
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Figure 5. Time-domain responses: (a) output and model output, (b) control effort and its feedforward
component, and (c) feedback contribution to control effort.

4.2. Comparatives with Other Structures and Strategies

Another solution to the robust control problem (29)–(33) is given below using a model-
matching structure of single feedback [see Figure 1b]. It yields a feedback controller

Cout(s) =
92434(s + 68.74)(s + 0.5971)

(s + 16.87)(s2 + 346.2s + 8.325× 104)
(37)

and a feedforward controller

Gout(s) =
556.16s(s + 1.293)(s + 2.206)(s + 24.87)

(s + 10.29)(s + 2.792)(s + 68.04)(s2 + 9.704s + 35.35)
. (38)
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Figure 6a shows how the solution of outer single feedback implies a considerably large
bandwidth of controller Cout since it has been forced to work in the high frequency band
where P1P2 presents very small magnitude in comparison with P2. In addition, since Lt
is the same as in double feedback (C1C2), the magnitude frequency response |u/v1| will
have a much larger peak than in Figure 4d. Finally, this means a huge amplification of
the single sensor noise at the actuator. It results in a RMS value (25) of Vt = 78.0065, this
being much higher than for the new architecture that employs double feedback [see rows 1
and 2 of Table 1]. This situation would spoil the expected performance in real life, which
if this noise did not exist would coincide with y(t) in Figure 5a. This fact highlights the
usefulness of cascade feedback loops when inner state measurements are available.

10−3 10−2 10−1 100 101 102 103 104
−100

−50

0

50

Frequency (rad/s)

M
ag

ni
tu

de
(d

B
)

(a)

C1C2

C∗
1 C∗

2
C∗∗

1 C∗∗
2

Cfb
1 Cfb

2
Cout

10−3 10−2 10−1 100 101 102 103 104
−40

−20

0

20

40

Frequency (rad/s)

M
ag

ni
tu

de
(d

B
)

(b)

C2

C∗
2

C∗∗
2

Cfb
2

Cin

Figure 6. Magnitude frequency responses of feedback controllers: (a) outer loop, and (b) inner loop.

Table 1. Effective values of sensor noise transmissions at the actuator (25).

Design Strategy Degrees of Freedom Vt V2
t1

V2
t2

New architecture; ωsw = 1 G (36) C1 (35) C2 (34) 0.3429 0.001 0.1076
Model matching; outer feedback Gout (38) Cout (37) —— 78.0065 6085 0
Model matching; inner feedback Gin (40) —- Cin (39) 0.3780 0 0.1429
Double feedback; no feedforward —– C f b

1 (42) C f b
2 (43) 1.1882 0.0053 1.4065

New architecture; ωsw = 5 G∗ (46) C∗1 (44) C∗2 (45) 0.6929 0.3797 0.1004
New architecture; ωsw = 0.5 G∗∗ (49) C∗∗1 (47) C∗∗2 (48) 0.3586 0.00022 0.1284

* * *

The control structure of previous solution [Figure 1b] is equivalent to cut off the
feedback and feedforward connections to e2 sum point in the new control architecture
[Figure 2]. Similarly to only using the outer loop, let us consider as another theoretically
possible solution the use of only the inner loop, i.e., feedback and feedforward connections
to e1 sum point are cut off. This control architecture would be viable for tracking since
P1(s) has no uncertainty, but the constant presence of disturbances makes the feedback
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of output necessary in practice. Nevertheless, the solution will help to understand how
the load-sharing between loops affects the noise amplification. To solve the robust control
problem (29)–(33), the said structure employs the feedback controller

Cin(s) =
70976(s + 56)(s + 2.9)(s + 1)

s(s2 + 15.3s + 72.25)(s2 + 322.4s + 6.76× 104)
, (39)

and the feedforward controller

Gin(s) =
739.14s(s + 1.2)

(s + 70)(s2 + 6.72s + 23.04)
. (40)

Figure 6b shows how the solution of inner single feedback implies a considerably larger
gain of Cin at low frequencies since the inner loop has been forced to work at low frequencies
without the help of the outer controller. However, |1 + Lt| also reaches high values over
these frequencies, which constrains |Cin/(1 + L2)|. Therefore, it is around the cross-over
frequency of Lt = L2 where the excess of feedback gain affects the noise amplification.
Finally, the inner single feedback results in an RMS value of Vt = 0.3780; it is entirely
contributed by V2

t2
= 0.1429, which results slightly higher than that of the new architecture

with double feedback [compare rows 1 and 3 of Table 1]. However, let us remark that the
weak point of this architecture is the impossibility of rejecting disturbances outside the
internal feedback loop, i.e., the output is in open loop.

* * *

Until the present work, there was no formal method for the design of double-feedback
plus feedforward within the QFT paradigm. In fact, the architecture of Figure 1a, which
lacks of feedforward loops, was used for robust disturbance rejection problems. Now,
the architecture of Figure 2 with G = 0 will be used to solve the robust tracking problem
(29)–(33). Let us note that feedforward loops with known information (M and M2) remain
for a fair comparison with the new structure, i.e., the only difference is the lack of tunable
feedforward. Then, Equation (20) turns into∣∣∣∣ e(jω)

r(jω)

∣∣∣∣ = ∣∣∣∣ M(jω)

1 + C2(jω)P2(jω) + C1(jω)C2(jω)P1(jω)P2(jω)

∣∣∣∣ ≤ Br(ω); ∀P2 ∈ P2, (41)

which corresponds to the format (28). Then, Li-bounds can be computed by using the
classical function genbnds of the Terasoft toolbox [11]. The same frequency band assignment
will be made for L1 and L2 as in the first solution (switching frequency at ω = 1). The same
design method yields the feedback controllers

C f b
1 =

19.66
(s2 + 6.58s + 22.09)

(42)

and

C f b
2 =

8.7098× 105(s + 132)(s + 1.5)
(s + 29)(s + 2.6)(s2 + 868s + 3.844× 105)

. (43)

Figure 6 shows how both feedback controllers have more gain than their counterparts C1
(35) and C2 (34). Feedback has supplied the lack of adjustable feedforward in the current
case. However, feedback has a negative side effect: the amplification of sensor noise that
becomes especially important around the crossover frequency of Lt. Thus the total RMS
value of noise amplification at the control input results in Vt = 1.1882, which is 346.5%
higher than in the feedforward solution [compare rows 1 and 4 of Table 1]. The contribution
of individual noise sources is V2

t1
= 0.0053 and V2

t2
= 1.4065. Notice how the gain of C f b

2 is
much higher than the gain of C2, while Lt is the same for both solutions. This results in a
larger increase of V2

t2
compared to the solution with feedforward.

* * *
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The new proposal includes a method [Section 2.2] to allocate the working frequency
band (frequencies until the cross-over frequency of Lt(jω)) between loops in order to
reduce the noise amplification at the plant input as much as possible; a switching frequency
ωsw separates the working frequencies for L1 and L2. Since the plant P1 is a pure integrator
and both sensors v1-v2 introduce identical noise (Φ1 = Φ2), the switching frequency should
be ωsw = 1. The consequences of a different selection are discussed below. Two cases will
be considered: ωsw = 5 and ωsw = 0.5, above and below the recommended switching
frequency, respectively.

The former case, ωsw = 5, yields the set of feedback controllers:

C∗1 (s) =
7500

(s2 + 80s + 2500)
, (44)

C∗2 (s) =
82275(s + 40)(s + 0.8)

(s2 + 10.2s + 46.24)(s2 + 495s + 7.563× 104)
; (45)

and the feedforward controller

G∗(s) =
446.19s(s + 1.25)(s2 + 36.96s + 576)
(s + 50)(s + 19.3)2(s2 + 7.28s + 31.36)

. (46)

The switching at ωsw = 5 widens to the right the working frequency band of L1 and
increases its gain cross-over frequency. Thus, Figure 6a shows how C∗1 C∗2 magnitude is
larger than C1C2 magnitude over ω ≥ 1. This will have special impact until the gain cross
over frequency of L1. Finally, a considerable increase is noticed in V2

t1
[compare rows 1

and 5 of Table 1]. On the other hand, the working frequency band of L2 widens to the left;
thus, C∗2 magnitude is smaller than C2 magnitude over ω ≤ 10 [Figure 6b]. This has little
impact on the gain of u/v2 over the frequency range between the switching frequency and
the L2 gain cross-over frequency. Thus, V2

t2
is slightly reduced at the cost of a considerable

increase in V2
t1

, which ultimately makes Vt worse [compare rows 1 and 5 of Table 1].
The latter case, ωsw = 0.5, yields the set of feedback controllers

C∗∗1 (s) =
10.08

(s + 6)2 , (47)

C∗∗2 (s) =
61643(s + 56)(s + 3.6)(s + 0.93)

(s + 0.3)(s2 + 15.3s + 72.25)(s2 + 308.8s + 6.2× 104)
; (48)

and the feedforward controller

G∗∗(s) =
1051.6s(s + 1.3)(s2 + 56s + 1600)

(s + 87.5)(s + 41)2(s2 + 7.28s + 27.04)
. (49)

The switching at ωsw = 0.5 narrows to the left the working frequency band of L1, which
reduces its gain cross-over frequency. Hence, the magnitude of C∗∗1 C∗∗2 becomes smaller
than the magnitude of C1C2 over frequencies ω ≤ 0.5 [Figure 6a], which has little impact
around the new cross-over frequency of L1. Thus V2

t1
, which already had a small value,

now reaches a negligible value of V2
t1
= 2.2214× 10−4 [compare the first and last rows of

Table 1]. On the other hand, the working frequency band of L2 widens to the left and the
magnitude of C∗∗2 becomes larger than the magnitude of C2, which is especially noticeable
over frequencies ω ≤ 1 [Figure 6b]. Note that a higher gain requirement at low frequencies
results in a slightly higher gain at high frequencies (including the cross-over frequency of
Lt = L2), which increases V2

t2
more than the decrease of V2

t1
. The total noise impact yields

Vt = 0.3586, which is slightly worse than the first solution [compare the first and last rows
of Table 1].
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4.3. Remarks on Disturbance Rejection and Integral Control

The contribution of the present work concerns tracking problems. Therefore, in order
to clearly illustrate the advantages of the new architecture over the previous ones, the
example omitted specifications for disturbance rejection. Since the plant contained an
integrator, the feedback controllers did not need to add an integral part for zero tracking
error in steady state. Of course, integrators should be added to the inner and/or outer
feedback controllers to achieve zero steady-state error in the output when disturbances are
considered, as is common in the cascade control literature [7,9,23,26].

5. Validation on a Real System

Cascade structures are widely used in servo motor control [23]. This section presents
the implementation of the proposed design strategy for the control of a servo motor
marketed by Feedback Instruments Ltd., Crawley, UK. A permanent magnet motor is DC
armature controlled by a single excitation signal u(t) in the range ±10 [V]. Two analog
sensors, a potentiometer and a tachogenerator, measure the state of the servo motor. Thus,
the output shaft angle θ(t) [deg] and its rotational speed ω(t) [deg/s] are obtained for
cascading feedback within the control architecture shown in Figure 2. The mechanical unit
33–100 is equipped with a magnetic brake, which can be adjusted manually to provide
different loads. The behavior of the motor changes significantly with the applied braking
torque. This results in a dynamic model with parameter uncertainty. Specifically, the motor
speed response can be approximated by a first-order model

P2(s) =
k

(τs + 1)
, k ∈ [28.125 63.750], τ ∈ [0.08 0.2], (50)

and the servo position P1(s) corresponds to a pure integrator (13).
Robust tracking error (20) and robust stability (14) and (15) are required as control

specifications. The desired tracking behavior is determined by the output model

M(s) =
204.1

(s2 + 20s + 204.1)
(51)

and the error tolerance

Br(ω) =

∣∣∣∣0.2s(s + 50)
(s + 10)2

∣∣∣∣
s=jω

, (52)

while the stability requirements use bounds Bs1(ω) = Bs2(ω) = 1.46 on complementary
sensitivity functions to ensure phase margins of at least 40◦ in both loops.

The proposed strategy yields the feedback controllers

C1(s) =
5.5

(s + 5.5)
, (53)

C2(s) =
951.56(s + 12.85)(s + 8)

(s + 62)(s + 1.3)(s2 + 169.6s + 1.124× 104)
; (54)

and the feedforward controller

G(s) =
64.949s(s + 7)

(s2 + 21.84s + 161.3)(s + 108)
. (55)

Figure 7 shows the performance of the proposed control system in the real servomotor;
the experiment corresponds to 0 % of magnetic brake. Figure 7a shows how the angle
θ(t) behaves faithfully to the model m(t) in tracking the reference r(t). Further deviations
are expected for other brake torques. However, let us remember that the tracking error is
limited by the tolerance Br (52). Figure 7b shows the internal state, i.e., the rotating speed of
the output shaft ω(t). The signal ωr(t) sums the output of C1 and the output of M2 = sM
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and can therefore be interpreted as a virtual reference for the internal feedback loop that
controls the speed. Finally, Figure 7c shows the control action u(t), which attacks the DC
armature circuit. This action is provided by the feedback and feedforward components,
uc(t) and ug(t), respectively. Note how moderate noise affects the states θ(t) and ω(t), and
the feedback action uc(t). This limited amplification of sensor noise was made possible by
a smart use of feedback: first, the use of feedforward channels reduced the total amount of
feedback needed, and, second, this feedback was split between two controllers.
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Figure 7. Time-domain behavior: (a) angle-related responses, (b) speed-related responses, and
(c) control signals.

6. Conclusions

For a given robust performance, the current work has focused on reducing the band-
width of the feedback controllers as much as possible in order to cut off the sensor noise at
the actuator. To this end, a new control architecture has been proposed. It takes advantage
of two structural elements that have been used separately or suboptimally in the past. On
the one hand, it is possible to feedforward the reference in tracking problems. By using
a feedforward controller within a model-matching structure, the amount of feedback has
been reduced to the minimum necessary for all plants in the uncertainty set to satisfy the
robust tracking error specification. On the other hand, in systems where internal plant
states are accessible, it is possible to close nested feedback loops. A method of frequency
distribution of the total feedback between the internal and external loops has been proposed
in such a way that the total sensor noise at the plant input is reduced to a minimum. All
this has been done within the framework of QFT, allowing robust designs to be made
using standard CAD tools. The new contributions may be particularly relevant in control
systems with demanding tracking specifications and large plant uncertainties. Thus, for
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the sake of clarity, robust stability and reference tracking problems have been addressed in
the examples. However, robust disturbance rejection could also be included in the specifi-
cations. The new proposal assumes an inner measurement that divides the plant from the
control input to the controlled output into two plant models, and that no uncertainty can
be defined for the outer plant model; a pure integrator is probably the most realistic case.

Two examples were presented. A theoretical example illustrated the design method-
ology and verified the expected control behavior. The same example then highlighted
the advantages of the new architecture (double feedback plus feedforward controllers)
compared to other feasible QFT solutions so far (a structure with double feedback and
no feedforward, and two different structures with single feedback plus feedforward). In
addition, the same case was solved by performing a non-optimal distribution of the fre-
quency band between the two feedback loops. A total of five different cases (structures
and/or loop frequency assignments) were compared with the current proposal, whose set
of feedback controllers offered the least amplification of sensor noise at the plant actuator
to achieve the same tracking performance. Quantitative comparisons were made using
magnitude-frequency responses of the controllers and calculating representative values of
total sensor noise transfer to the control input. Finally, a second example validated the new
architecture and design method in practice. The angle of rotation of a commercial servo
motor was successfully controlled using its speed as an internal measure.
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