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Application of near-infrared spectroscopy for
the estimation of volatile compounds in
Tempranillo Blanco grape berries during
ripening
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Abstract

BACKGROUND: The knowledge of volatile compounds concentration in grape berries is very valuable information for the wine-
maker, since these compounds are strongly involved in the final wine quality, and in consumer acceptance. In addition, it would
allow to set the harvest date according to aromatic maturity, to classify grape berries according to their quality and to make
wines with different characteristics, among other implications. However, so far, there are no tools that allow the volatile com-
position to be measured directly on intact berries, either in the vineyard or in the winery.

RESULTS: In this work, the use of near-infrared (NIR) spectroscopy to estimate the aromatic composition and total soluble solids
(TSS) of Tempranillo Blanco grape berries during ripening was evaluated. For this purpose, the spectra in the NIR range (1100~
2100 nm) of 240 intact berry samples were acquired in the laboratory. From these same samples, the concentration of volatile
compounds was analyzed by thin film-solid-phase microextraction-gas chromatography-mass spectrometry (TF-SPME-GC-
MS), and the TSS were quantified by refractometry. These two methods were used as reference methods for model building.
Calibration, cross-validation and prediction models were built from spectral data using partial least squares (PLS). Determina-
tion coefficients of cross-validation (R?cy) above 0.5 were obtained for all volatile compounds, their families, and TSS.

CONCLUSIONS: These findings support that NIR spectroscopy can be successfully use to estimate the aromatic composition as
well as the TSS of intact Tempranillo Blanco berries in a non-destructive, fast, and contactless form, allowing simultaneous
determination of technological and aromatic maturities.

© 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of
Chemical Industry.
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L. Tempranillo Blanco.®® This variety is a natural mutation of Vitis
vinifera L. Tempranillo, and has been grown since 2008 only in the
Appellation d'Origine Controlée (A.O.C.) Rioja. Today, Vitis vinifera
L. Tempranillo Blanco is the second white variety (12%) grown in
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Estimation of Tempranillo Blanco grape aroma by NIR

The volatile compounds present in grape berries are found in
very low concentrations (ng/L to mg/L),'® therefore, it is necessary
to conduct a previous sample preparation step before chromato-
graphic analysis.>"!

Analytical techniques, such as gas chromatography-mass spec-
trometry (GC-MS), have numerous drawbacks, including time
consumption, sample preparation, reagent and instrumentation
costs, the need for trained personnel among others.> Moreover,
they are destructive. All these reasons prevent the winemaker
from measuring the volatile compounds in the grapes throughout
the ripening period. However, a good understanding and knowl-
edge of the concentration of these compounds in the berries
would enable the winemaker to make decisions regarding viticul-
tural practices, the date of harvest, or to classify and grade the
fruit according to its aromatic quality, hence to separate in differ-
ent fermentation tanks according to their characteristics and final
price.'*'* This has become even more important in recent years
due to the imbalance between industrial maturity (whose main
measurement parameter is the total soluble solids, TSS) and phe-
nolic and aromatic maturities, caused by global warming and cli-
mate change." As a result, berries reach the appropriate TSS
content (°Brix), which is the most used parameter used by wine-
makers to schedule the harvest date, but the proper content of
phenolic and aromatic compounds is not always achieved.'>'®
In order to solve these problems, fast and non-destructive
methods have been developed to relate multivariate spectro-
scopic and chemical data to the concentration of specific chemi-
cal components associated with grape quality.'”"?

One of these technologies is near-infrared (NIR) spectroscopy
which is a very powerful tool for non-invasive measurement
of quality parameters during the grape ripening.'*'82024
NIR spectroscopy is based on the relationship between the
physico-chemical property to be measured and the absorption
of light at different wavelengths in the NIR region (750-
2500 nm)."®232526 Thjs technique is under constant evolution,
in terms of instrumentation, as well as the mathematical algo-
rithms used to extract and process the information provided
by the spectral data (chemometric analysis).>?” Some of the
main advantages of NIR spectroscopy include rapid data collec-
tion, non-destructive measurement of samples, low cost, and
accurate measurement.?'?32732 Some studies focused on NIR
spectroscopy to measure different quality parameters in grape
berries and wines have been published in the last decade.
Among them, some works have focused on the estimation of
general parameters (pH, tartaric acid, density, malic acid, gluco-
nic acid, assimilable nitrogen, etc.),'9?%263334 715g 12213035
amino acids,"? phenolic compounds,?®?¢3¢38 or acids.>*

Regarding the content of volatile compounds, there are some
works that have studied the wine aromatic composition'>2°3942
using NIR spectroscopy, but only a very limited number of them
have focused on grape berries.'®*3> Therefore, the aim of this
work was to evaluate the efficacy of NIR technology to assess
the evolution of the aromatic composition and TSS of Vitis vinifera
L. Tempranillo Blanco grape berries along ripening, during two
vintages.

MATERIALS AND METHODS

Vineyard characteristics and experimental design

The Vitis vinifera L. Tempranillo Blanco clusters were collected dur-
ing the 2019 and 2020 seasons in a vineyard owned by the
Gobierno de La Rioja, located in Finca La Grajera (Logrofio, La

Rioja, Spain). The clusters were hand-picked randomly. The exact
location of the vineyard plot is: 42°26'26.23” north latitude 2°
30'51.25” west latitude; 447 m above sea level. The grapevines
were grafted onto 110 Richter rootstock and were trained to a ver-
tically shoot positioned system. The vineyard was planted in 2002
in an east-west orientation, and with a spacing between rows and
within the row of 3.00 m x 1.10 m, respectively. Samples were
collected from veraison to postharvest in both seasons. In 2019
clusters were collected along five dates: 12 August 2019,
19 August 2019, 26 August 2019, 2 September 2019, and
9 September 2019. In 2020 clusters were collected along seven
dates: 29 July 2020, 5 August 2020, 12 August 2020, 19 August
2020, 26 August 2020, 2 September 2020, and 9 September
2020. At each date, 25 plastic bags were filled with 2-3 clusters
of Tempranillo Blanco in each one. The clusters were frozen at
—20°C until sample preparation.

Sample preparation

All frozen bunches belonging to the same collected date were
manually destemmed in a tray. The berries were mixed manually
until homogenization was achieved. Finally, 20 bags were labeled
and prepared, and 64 berries from the tray were added to each
bag. The same process was repeated for all dates, until 20 bags,
with 64 berries, were obtained per date. At the end of the process,
100 samples were obtained (5 dates x 20 samples/date) for 2019,
and 140 samples (7 dates x 20 samples/date) for 2020, giving a
total of 240 samples between the two seasons.

NIR spectroscopy measurements

Spectral data were acquired using a NIR spectrometer operating
in the range of 1100-2100 nm (PSS 2120, Polytec GmbH, Wald-
bronn, Germany) under laboratory conditions (Fig. 1). This spec-
trometer has a 2 nm resolution, with 501 datapoints per
spectrum.’? The spectrometer includes a polychromator as reflec-
tion light source selector, and an indium gallium arsenide
(InGaAs) diode array detector. This device presents a sensor head
(based on an integrated 20 W tungsten halogen lamp) for light
capturing, a processing unit and an optical fiber linking them.
Each spectrum was recorded under laboratory conditions at room
temperature (23 °C) in reflectance mode by an average of
32 scans, without any sample preparation (directly on intact grape
berries). The height between the sensor head and the sample to
be acquired was 250 mm. The sensor head is provided with an
embedded white and dark reference mechanism triggered by
the software. As advised by the spectrometer's manufacturer,
white and dark reference measurements were performed at the

Figure 1. NIR spectrometer covering the range 1100-2100 nm.
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beginning of the day and every 200 spectra approximately. The
white reference material is referred to as a Spectralon™-like mate-
rial by the manufacturer. Spectra were corrected using the white
and dark reference values according to Eqn (1).

R(/l)=)— (1)

where 1 is a wavelength (in nanometers), G is the intensity of the
light reflected by the berries (in nanometers), W is the intensity of
the light coming from the white reference (in nanometers), and
D is the dark reference (in nanometers). Afterwards,
the reflectance (R) was converted into absorbance [log(1/R)]
(in nanometers).

For the spectral contactless measurement of the 240 samples,
eight subsamples consisting of eight berries each were measured
and averaged. In this way, the 64 berries that formed each sample
were measured (eight subsamples x eight berries). These berries
were placed on a plate (fruit holder) within the measurement
area, with the pedicel of berries downwards to avoid differences
between the berry surface and the pedicel (Fig. 2(a)). Between
samples, the plate was cleaned to remove previous residues. Berry
samples were naturally thawed at ambient temperature, and they
were carefully dried with kimwipe paper before their measure-
ment with NIR.

Analysis of TSS and volatile compounds

Materials and reagents

Chromatographic standards a-terpineol, geraniol, linalool,
p-damascenone, f-ionone, benzaldehyde, 2-phenylethanol, ben-
zyl alcohol, octanoic acid, decanoic acid, 2-hexenal, hexanal,
1-hexanol, 2-hexen-1-ol, 2-octanol (internal standard, IS), and
the reagent sodium chloride (NaCl) and ethanol (EtOH), were pur-
chased from Merck (Darmstadt, Germany). Water was purified
through a Milli-Q system (Millipore, Bedford, MA, USA).

Thin film (TF) with polydimethylsiloxane and carboxen (PDMS/
CAR) (carbon fabric film thickness 450 pm), liners packed with
Tenax TA™, and borosilicate magnetic stirrers were obtained from
GERSTEL GmbH & Co (Milheim an der Ruhr, Germany). BP21 cap-
illary column [30 m length, 0.25 mm inner diameter (i.d.), and
0.25 pm film thickness] was purchased from SGE (Ringwood,
Australia).

Blender was bought from Philips (Amsterdam, the Netherlands).
The refractometer, oven, and six-position stirrer plates were pur-
chased from Actylab (Logrofio, La Rioja, Spain). Gas chromato-
graph (Agilent 7890A) and mass spectrometer (Agilent 5975C)
were purchased from Agilent Technologies (Palo Alto, CA, USA).
The autosampler system consisted of a multi-purpose sampler
(MPS) equipped with 98 tube tray, thermal desorption unit
(TDU), and cooled injection system (CIS-4) connected to a cryo-
static cooling device (CCD2). MPS, automated TDU, and CCD2
were provided from GERSTEL.

TSS measurement by refractometry

The same 64 berries from which the NIR spectra was acquired,
were triturated for 30 s in the blender. The paste obtained was
introduced into a 50 mL Falcon, and centrifuged at 3900 rpm,
for 15 min. For each sample, TSS were measured with a refractom-
eter, adding a few drops of the centrifuged must, and expressed
as °Brix.

Extraction of volatile compounds by TF-SPME

For the volatile compound analysis, the extraction method of
Marin-San Roman et al.*® was optimized. A 9 mL aliquot of centri-
fuged must sample were added in a 10 mL screw capped vial. In
addition, 25 pL of the 2-octanol solution (5 pL 2-octanol/100 mL
ethanol), and 2.5 g of NaCl, were added to the same vial. TF
(PDMS/CAR) was suspended in the screw capped vial. All samples
were stirred at 500 rpm, with a borosilicate magnetic stirrer, for
6 h at room temperature. After this time, the TF was removed with
tweezers, dried with a tissue paper, and placed in a TDU tube with
glass wool at the base. The TDU tube was sealed with a transport
adapter and placed in a 98 position Twister rack on the MPS
robotic for automated analysis. The analysis of volatiles was car-
ried out on a GC-MS, equipped with an automated TDU.

Gas chromatography-mass spectrometry (GC-MS) conditions

The chromatographic method described in Sdnchez-Gémez
et al.*” was used with some modifications adapted to the thin
film-solid-phase microextraction (TF-SPME). TF-SPME devices
were thermally desorbed at a constant pressure of 20.75 psi in
the TDU, in splitless desorption mode, increasing the temperature
from 40 °Cto 250 °C at a rate of 60 °C/min and holding at the final
temperature for 5 min. The analytes were focused in a
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Figure 2. (a) Detail of the sensor during spectral acquisition on eight grapes berries with the NIR spectrometer, (b) average absorbance spectra of the
20 grape berry samples, forming date 1 (29 July 2020) of the 2020 vintage, in the NIR range.

J Sci Food Agric 2023; 103: 6317-6329

© 2023 The Authors.

wileyonlinelibrary.com/jsfa

Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

a1 Aq peusenob afe sejoie YO ‘8sN JO S9N I0J ARIqIT8UIUQ AB]1/W UO (SUONIPUOD-PUR-SWLBIALIOD 3| 1M AlRIq 1 BU1|UO//STIY) SUONIPUOD PUe SWIB 1 8L 88S *[£202/2T/70] Uo Akeiqiauliuo A8|1m elord e|ep pepsiAlun Ag 90/2T eIS[/Z00T 0T/10p/woo 48| imAriq1jpuljuo//sdiy wo.j pepeojumod ‘€T ‘€202 ‘0T00L60T



http://wileyonlinelibrary.com/jsfa

WWW.S0Ci.org
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programmed temperature vaporizing injector (CIS-4), contain-
ing a Tenax TA™ — packed liner with 20 mg of Tenax, held at
—40 °C with the CCD2 prior to injection. After desorption and
focusing, the CIS-4 temperature was programmed from —40 °C
to 230 °Cat 12 °C/s and held at 230 °C for 5 min to transfer vol-
atiles onto the analytical column. The CIS-4 operated in solvent
vent mode (purge flow to split vent of 80 mL/min at 2 min, vent
60 mL/min and pressure 20.85 psi). The desorbed volatile com-
pounds were separated in the gas chromatograph system
coupled to a quadrupole electron ionization mass spectrometric
detector, equipped with a fused silica capillary column (BP21 sta-
tionary phase, 30 m length, 0.25 mm i.d. and 0.25 pm film thick-
ness). The helium carrier gas had a constant column pressure of
20.75 psi. The oven temperature of GC was programmed at 40 °
C (2 min), raised to 80 °C (5 °C/min, held for 2 min) then to 130 °
C (10 °C/min, held 5 min) then to 150 °C (5 °C/min, held for
5 min) and finally to 230 °C (10 °C/min, held 5 min). Transfer line
temperature was 235 °C. The MS operated in scan mode (35—
180 amu) with ionization energy set at 70 €V. In order to identify
each compound within the chromatogram, the mass spectra
obtained were compared with those provided in the NIST library
and with the retention time obtained for each standard. Com-
pounds for which no standard was available were identified
using the NIST library. All compounds were integrated in extrac-
tion ion chromatogram (EIC) mode by isolating the target ion of
each compound individually. In this way, matrix interferences
were eliminated. The target ions were m/z 41 for 2-hexenal,
m/z 43 for acetic acid, m/z 45 for 2-octanol (IS), m/z 56 for
hexanal, and 1-hexanol, m/z 57 for (E)-2-hexen-1-ol, and
2-ethyl-1-hexanol, m/z 59 for a-terpineol, m/z 60 for hexanoic
acid, octanoic acid, nonanoic acid, and decanoic acid, m/z
67 for 3-hexen-1-ol, m/z 69 for citral, p-damascenone, and
geraniol, m/z 71 for linalool, m/z 77 for benzaldehyde, m/z
79 for benzyl alcohol, m/z 91 for 2-phenylethanol, m/z 119 for
p-cymene, and m/z 177 for p-ionone. Quantification was based
on the calibration curves of the respective standards.

Calibration curves

The solutions of the calibration curves were analyzed by the
method optimized by Marin-San Roman et al.*® TF-SPME under
500 rpm stirring, for 6 h, at 20 °C. Standard solutions were pre-
pared in 50 mL of ethanol. Each one had different concentrations
of each of the compounds. After extraction, they were desorbed
and analyzed in GC-MS, performing three replicates of each.
The compounds used, and the determination coefficients (R?) of
the calibration curves were the following: a-terpineol (0.9942),
geraniol (0.9154), linalool (0.9643), p-damascenone (0.9684),
p-ionone (0.9803), benzaldehyde (0.9684), 2-phenylethanol
(0.9853), benzyl alcohol (0.9961), octanoic acid (0.9707), decanoic
acid (0.9846), 2-hexenal (0.9937), hexanal (0.9898), 1-hexanol
(0.9706), and 2-hexen-1-ol (0.9748). The curve of each compound
is formed by a minimum of four points and a maximum of seven
points of different concentrations. The concentration of some
volatile compounds, for which no calibration curve was avail-
able, was then calculated using the calibration curve of another
compound belonging to the same family, and whose concen-
tration was in a similar range. Likewise, for citral, the linalool
curve was used; for p-cymene, the a-terpineol curve was
employed; for acetic, hexanoic, and nonanoic acids, the
decanoic acid curve was utilized; and for 3-hexen-1-ol, the
2-hexen-1-ol curve was used.

Spectral data analysis

The spectral data collected with the Polytec PSS 2120 sensor were
analyzed through the SL Utilities software (version 3.1; Polytec
GmbH, Waldbronn, Germany). A visual analysis to examine the
behavior of each subsample and detect possible anomalous spec-
tra was carried out. The average spectrum of each sample was
represented by averaging the eight spectra acquired of the eight
subsamples, that is of the 64 berries.

The WinlSI Il software package version 1.50 (Infrasoft Interna-
tional, PortMatilda, PA, USA) was used for spectral data processing
and statistical analysis of NIR spectra. For each analytical parame-
ter, different mathematical treatments were evaluated for scatter
correction, including the standard normal variate (SNV) and
Detrending (DT) methods. Furthermore, two derivate mathemati-
cal treatments were tested in the development of NIR spectral cal-
ibrations models, in the spectral region 1600-2400 nm, where the
first digit is the number of the derivative (a), the second is the gap
over which the derivative is calculated (b), the third is the number
of data points in a running average or smoothing (c), and the
fourth is the second smoothing (d).*® The averaged spectrum for
each sample (Fig. 2(b)) was processed as input for a principal com-
ponent analysis (PCA) in order to explore the data structure, to
visualize the presence of spectra outliers and also to identify the
main sources of variability in the spectra.***° Modified partial
least squares (MPLS) regression was used for the prediction of
the individual and families of the volatile compounds and TSS
using the spectra acquired on intact grape berries in the NIR range
(1100-2100 nm). MPLS finds the combinations of predictor values
that have the greatest covariance with the response.’ To prevent
over-fitting, the appraisal of the calibration model was performed
by a four-fold cross-validation. In this method, the set of calibra-
tion samples was divided into four groups, using one of them to
check the results (prediction) and the remaining (four groups) to
build the calibration model. This was repeated as many times as
groups were (four in total), in such a way that all the samples were
used in both the calibration and prediction sets. In this process
another type of outlier (chemical outliers) was analyzed using Stu-
dent's t statistic, which indicates the difference between the refer-
ence and the predicted value. The Studentized residuals from the
regression models fitted using least-squares is a very common
approach to identifying discordant observations in linear regres-
sion problems.>2 A critical limit of t > 2.5 was used to identify sam-
ples as chemical outliers.”® In order to train robust models,
capable of predicting totally unknown samples, the original data-
set, with 240 samples was split into two independent datasets: a
calibration one, consisting of 192 samples (80%) assigned ran-
domly, and a prediction set (20%), which comprised the remain-
ing 48 samples (Table 1). Each set included samples that were
appropriately distributed and covered the entire range of the vol-
atile compounds and TSS. Although the same number of samples
were used for the data set (240), for the calibration set (192), and
for the external prediction set (48), not all the compounds could
be found in all of them, so the N value may change in each of
them (Table 1). The accuracy of the calibration depends on the
model errors, patently, standard error of cross-validation (SECV)
and standard error of prediction (SEP) used for internal validation
or external prediction, respectively. The number of latent vari-
ables (LVs) and determination coefficients of calibration, cross-
validation or external prediction (R’ R>., and R?,, respectively)
to represent the proportion of explained variance of the response
variables were also computed. The optimal number of LVs was
selected as the one yielding the lowest SECV. Additionally, the
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Estimation of Tempranillo Blanco grape aroma by NIR

residual predictive deviation (RPDcy), calculated as the ratio
between the standard deviation of the reference data for the
training set and the SECV, together with the bias and slope, was
also computed (Table 2).

RESULTS AND DISCUSSION

Content of grape volatile compounds and TSS

Table 1 shows the number of samples (N), mean, maximum and
minimum value, and standard deviation of the 20 volatile com-
pounds identified, their total content by chemical families, and
TSS. The number of samples is different for each compound. This
is due to the fact that, although the number of samples analyzed
was 240, not all the compounds appeared in all chromatograms.

The volatile compounds were classified into six groups: terpe-
noids, C;3 norisoprenoids, benzenoids, fatty acids, C6 compounds
and total positive compounds (the total of all groups except C6
compounds).

Volatile compounds and TSS were measured from veraison
to postharvest, covering a wide range of concentrations and °
Brix, as shown in Table 1. Volatile compounds concentration
ranged from 0.0006 pg/L for f-damascenone to 7964.66 ug/L for
2-hexen-1-ol.

Terpenoids are the most studied varietal compounds in grapes
and, in general, they are alcohols and oxides of ten carbon
atoms.>>>* They are synthesized during grape ripening, and are
located mainly in the grape skin,>® and are responsible for fruity
and floral aromas.>>>® They are found in berries in free and glyco-
sylated form, being the glycosylated fraction the most abundant.
In this work, five terpenoids were found (Table 1); a-terpineol, cit-
ral, geraniol, linalool, and p-cymene. a-Terpineol, geraniol, and lin-
alool are some of the most odoriferous ones>> The most
abundant terpenoid in Tempranillo Blanco was citral, followed
by linalool (Table 1).

The Cy3 norisoprenoids are compounds derived from the enzy-
matic degradation of carotenoids.>’® Since C;3 norisoprenoids
are terpenes, they can also be found in grapes in free or bound
form (glycoside glycosides). The C;3 norisoprenoids are present
in grape berries in very low concentrations, but they have a very
low perception threshold (700 ng/L for p-ionone and 200 ng/L
for p-damascenone), and therefore contribute significantly to
the aromatic potential.>* A positive correlation has been observed
between C;3 norisoprenoids and fruity aromas, especially in
p-damascenone (apple juice and tropical fruit).>* p-lonone is
related to violet aroma.>* In Vitis vinifera L. Tempanillo Blanco,
p-damascenone was the most abundant C;3 norisoprenoid
(Table 1). This result coincides with the only two works found in
the literature that have studied the volatile composition of Vitis
vinifera L. Tempranillo Blanco berries.”>®

Terpenoids and C;3 norisoprenoids are two of the families that
most contribute to the grape varietal aroma.>>>*

Benzenoids are a diverse group of volatile compounds that can
contribute significantly to the wine aroma.?® They are synthe-
sized late in the development of the grape, are present in very
low quantities in grapes, and are mostly found as glycosylated
precursors.”>*? It can be observed that 2-phenylethanol, with a
rose aroma descriptor,®’ was the most abundant benzenoid in
Vitis vinifera L. Tempranillo Blanco musts, followed by benzyl
alcohol, and finally benzaldehyde. These results are consistent
with those obtained by Garcia et al®? for grapes of the
white varieties Airén, Macabeo (Viura), and Chardonnay.
However, this result is not consistent with the results obtained

in Gutiérrez-Gamboa et al.>® and in Garde-Cerdan et al.’ in Vitis

vinifera L. Tempranillo Blanco grapes, where 2-phenylethanol
was the least abundant benzenoid.

Fatty acids can be short chain (< 6 carbons), medium chain (6-
12 carbons) and long chain (> 12 carbons).®® In this work, five
fatty acids were found, one of short chain (acetic acid), which
was the most abundant, and is formed as a metabolic intermedi-
ate in the synthesis of acetyl-CoA,?® and four corresponding to the
medium chain group (hexanoic acid, octanoic acid, nonanoic acid,
and decanoic acid).

The C6 compounds, also known as ‘green leaf volatiles’, are pre-
sent in all grapes in free form.>> These compounds are formed
from fatty acids by the lipoxygenase pathway, and are responsible
for the green aroma in the must.°* The most abundant family of
volatile compounds found in the Vitis vinifera L. Tempranillo
Blanco berries was the C6 compound-family (Table 1). This result
is consistent with the majority of studies on volatile compounds
in red,®*® and white grape berries,>* and specifically, also in Vitis
vinifera L. Tempranillo Blanco berries.”*? The most abundant C6
compound was 2-hexen-1-ol (Table 1). Despite being very abun-
dant compounds in grapes, they have a very high perception
threshold, so they are among the least odorous compounds®>>*
having a more limited impact in final olfactory perception of the
resulting wines.

With respect to the TSS, the range was from 11.30 °Brix,
obtained in less ripe grapes, to 24.90 °Brix, corresponding to ripe
grapes.

It can be observed that the standard deviation of the com-
pounds was very high, this is due to the difference between the
ripening stages of the grapes. Owing to carrying out such a wide
and representative sampling allowed us to build robust models.

Analysis of NIR spectra

Figure 2(b) shows the average absorbance spectra of the 20 sam-
ples from the first sampling date of 2020, in the range 1100 to
2100 nm. Three absorption peaks can be identified. The first
one, over 1143 nm, is assigned to the second C-H stretch over-
tone (aromatic structure and CHs). The other two peaks, over
1450 nm and 1900 nm are respectively related to the first over-
tone of the symmetric and asymmetric hydroxyl (O-H) bond
stretching and the combination of stretch and deformation of this
group in water, which is the predominant constituent of grape
berries.'**

Calibration, cross-validation, and external prediction

results for the NIR models of volatile compounds content
and TSS

Table 2 shows the mathematical pre-treatments that provided the
best results in calibration, cross-validation, and external predic-
tion for each volatile compound, their families, and the TSS. As
in Table 1, the standard deviation of the volatile compounds
was higher than the mean, because the berries were harvested
at different ripening times in order to obtain a wide range of both
volatile compounds and TSS.

Different mathematical treatments were tested in the develop-
ment of NIR spectral calibrations set (g, b, ¢, d), as previously dis-
cussed. In Table 2, N corresponds to the number of samples in
the calibration set, excluding the chemical anomalies (eliminating
the samples that had t > 2.5). Table 2 also shows the values of R%,
R%cy, and R%, which correspond to the coefficient of determina-
tion of the calibration, cross-validation, and prediction, respec-
tively. Volatile compounds, families and TSS with R’ values
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Estimation of Tempranillo Blanco grape aroma by NIR

between 0.3 and 0.5 are considered to provide good separation
between high and low values. The R’y values between 0.5 and
0.7 provide good separation between high, medium and low
values. The R’y values between 0.7 and 0.9 are considered a good
adjustment, and, finally, R2cy values > 0.9 provide an excellent
adjustment.*® Table 2 shows that all the volatile compounds and
their families had a R*cy > 0.5, so it can be affirmed that the
models obtained for all the compounds and families can differen-
tiate between high, medium, and low concentration values. In
turn, all compounds and families except citral, total terpenoids,
decanoic acid, and total fatty acids presented a R%cy = 0.7, which
indicated that the concentration of these compounds can be
quantified with the obtained models. This would have numerous
benefits in the wine industry, allowing to classify grape berries
according to their aromatic quality, as well as to choose the col-
lected date accurately. The R? of a set of samples depends mainly
on how those samples are distributed within the set. For this rea-
son, the main difference between R*-y and R% is the variability of
the data from the calibration set, and from the prediction set,
respectively. As the samples from the prediction set were ran-
domly selected, and there were far fewer than those from the cal-
ibration set, they were not uniformly distributed over the entire
range of concentrations, which is why R%, decreases, and there
is such a difference with R%y.

Table 2 also shows the number of LVs, a low number of LV favors
the robustness and the generalization capability of the developed
models, minimizing potential overfitting events, which ranged
from 2 to 11, and the RPD¢y, which presented values from 1.47
to 4.56. RPD indicates the precision behavior of the prediction in
comparison with the average of all the samples. Models with a
RPD < 1.5 are not considered adequate, while those showing
RPD values ranging from 1.5 to 2.0 are suitable for differentiating
the variability of the data. However, RPD > 2 shows very good
predictive performance, and RPD > 3 can be considered excel-
lent.>" It can be seen in Table 2 that all the models except for citral
have a RPD > 1.5. In addition, the models obtained for the linal-
ool, p-cymene, total C;3 norisoprenoids, benzaldehyde,
2-phenylethanol, total benzenoids, octanoic acid, nonanoic acid,
2-hexenal, 1-hexanol, 2-hexen-1-ol, 3-hexen-1-ol, and total C6
compounds, have a RPD¢y > 2, thus showing very good predic-
tive performance. Finally, the models obtained for the a-terpineol,
p-damascenone, p-ionone, benzyl alcohol, hexanal, total positive
compounds and TSS, show a RPDcy > 3, so the predictive perfor-
mance of these models can be considered excellent. Considering
that volatile compounds are found in very low concentrations in
grape berries, finding models that can predict their concentration
throughout ripening by taking non-destructive spectral measure-
ments, on intact berries, is a result of great value and with great
applications in the future. For instance, to define the harvesting
date accordingly to the aromatic profile of the aimed wine. That
would be of special application in the production of sparkling ver-
sus still wines, in addition to considering the TSS and acidity
parameters. However, some canopy management operations
usually performed in the vineyard, such as defoliation, may have
a direct impact on the metabolism (either biosynthesis or catabo-
lism) of some aroma compounds.®® Understanding the evolution
of grape aroma composition along ripening may help to take
informed decisions about the suitability or potential impact of car-
rying out a given canopy management operation.

The bias can be defined as the average difference between the
spectroscopy-predicted value and the real one. A positive bias
means that, on average, the model is over-estimating the

composition of a specific compound by this amount whilst a neg-
ative value reflects underestimation.

Finally, the values of SEC, SECV, and SEP, which are the calibra-
tion, cross-validation, and prediction errors, respectively, can be
observed in Table 2. The minimum values of SEC, SECV, and SEP
were presented by p-ionone, being 0.0061 pg/L, 0.0079 pg/L,
and 0.06 pg/L, respectively. The maximum values were presented
by 2-hexen-1-ol, being 268.70 ng/L, 329.40 pg/L, and 872.51 ug/L,
respectively. The removal of outliers reduced the range of concen-
trations covered by the models, leaving out of this range some
samples of the prediction set (destined for external prediction).
This caused a decrease in the prediction accuracy of samples out-
side this range, increasing the SEP.

In TSS, the PLS factor was 11, the RPD¢y was 4.35, the SEC was
0.55, the SECV was 0.79, and the SEP was 0.99. Furthermore, R*cy
was > 0.9, so a non-invasive and non-contact model has been
obtained that allows reliable, contactless quantification of °Brix
throughout ripening.

Figure 3 shows the prediction models with a R% = 0.5 in NIR
range. In order to facilitate the interpretation of the results, the
prediction samples (red color) are plotted next to the calibration
model (black color). As it can be seen in Table 2, the number of
samples used for the construction of the calibration models
(four-fold cross-validation), which are represented in black, were:
153 for a-terpineol, 163 for total terpenoids, 157 for f-damasce-
none, 147 for p-ionone, 132 for 2-hexen-1-ol, 177 for 3-hexen-
1-ol, 170 for total C6 compounds, and 168 for total positive com-
pounds. The red samples correspond to the set of samples used
for the external prediction (Table 1). Considering the large num-
ber of samples used to perform the calibration models (black
color), Fig. 3 shows that, for the volatile compounds represented,
most of the calibration samples are in the lower concentration
range (as is normal for grape volatile compounds), with a very
small number of samples in higher concentration ranges. This is
the reason why the models yielded greater error values, when
making the external prediction (red color), in the samples that
were in the highest concentration ranges. This fact is well
observed in Fig. 3(a),(c),(d)-(h) where the external prediction sam-
ples with highest concentrations are outside the prediction inter-
vals (dashed lines).

However, for the TSS (Fig. 3(i)), it can be observed how the cali-
bration samples (black) are well distributed throughout the entire
°Brix range, so that when it comes to external prediction (red), lit-
tle error is made, which decreases the SEP.

In addition, the loadings of the best PLS prediction models of
volatile compounds and TSS, for the NIR spectral range: 1100-
2100 nm, are plotted in Fig. 4. It can be seen how the wavelengths
showing the highest loading weights of the latent variables are
mainly located between 1100-1200 nm, 1300-1450 nm and
1850-1950 nm. This agrees with the absorption peaks found in
the spectra.

As mentioned in the introduction, there are very few studies
that have monitored the aromatic composition of grape berries
by NIR spectroscopy.

In a work of Boido et al.** the volatile compounds of 97 samples
of Vitis vinifera L. Tannat grape berries (red) were evaluated. The
RPDcy values obtained for volatile compounds in grape juice
were > 2, except for two of the compounds. These RPD¢y, values
were much lower than those obtained in our work. However, in
the work of Ripoll et al.** the profile of volatile compounds was
studied in 52 samples of Vitis vinifera L. Albarifio grapes (white)
during three stages of maturation. A total of 26 volatile

wileyonlinelibrary.com/jsfa

© 2023 The Authors.

J Sci Food Agric 2023; 103: 6317-6329

Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

85U8017 SUOWWOD A 8|l jdde ay) Ag peusenob a1e sooile VO ‘8sN JO S8|nJ o} Akeiqi8uljuO A8]IA UO (SUOTIPUCO-PUB-SWBIW0D A8 1M Akeiq 1 Bul [Uo//:Sdny) SUORIPUOD pue swie 1 8y} 88s *[£202/2T/70] uo Arlqiaulluo Ae|Im ‘lord elap pepsieAlun Aq 9021 ©iS(/200T 0T/10p/woo Aa 1M Aeiq pul|uoy/sdny Wolj pepeojumod ‘€T ‘€202 ‘0T00260T


http://wileyonlinelibrary.com/jsfa

@)
SClL

where science

Application of NIR spectroscopy for estimation of volatile compounds in grape berries WWW.s0ci.org meets busmess
________________________________________________________________________________________________________________________]

120 140 160 180 200 220 240 260
Measured TSS (°Brix)

Figure 3. Regression plots for volatile compounds determination using the best PLS prediction models in the NIR range with R% > 0.5: (a) a-terpineol;
(b) total terpenoids; (c) f-damascenone; (d) g-ionone; (e) 2-hexen-1-ol; (f) 3-hexen-1-ol; (g) total C6 compounds; (h) total positive compounds (the sum of
all families except C6 compounds); and (i) total soluble solids (TSS). Correlation line (solid) and predictions intervals (dashed lines).
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compounds were identified, some of which are common to those In a recent work of Gehlken et al** volatile compounds were
studied in the present work. In the work of Ripoll et al.** the RPD¢y ~ measured from a total of 725 grape mash samples, divided into
values ranged from 0.88 and 1.69, while. in the present study, in  more than 15 red and white grape varieties. The R’y values
which 240 samples were analyzed, the RPDcy was greater than  obtained ranged from 0.251 to 0.926. Although the volatile com-
1.47 in all cases. pounds studied are different from those studied in our work,
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Figure 4. Loadings weight plots for all LVs of each volatile compounds and TSS determination using the best PLS prediction models in the NIR range.
(a) a-terpineol; (b) total terpenoids; (d) g-ionone; (c) f-damascenone; (e) 2-hexen-1-ol; (f) 3-hexen-1-ol; (g) total C6 compounds; (h) total positive com-
pounds; and (i) total soluble solids (TSS). Gray areas indicate the highest loading weights.

some of them such as linalool, hexanal, 2-hexenal, and 1-hexanol varieties showed RPDcy values less than 2, while most of the aro-
are common. In general, it can be observed that, in the afore-  matic compounds identified in our work, showed RPD¢y values
mentioned work, the Ry and RPDcy values are lower than those  greater than 2, and even values greater than 3 in seven of them.
obtained in the present work. Focusing on the white varieties in There are some works that evaluate TSS in grapes using NIR
particular, 25 of the 26 aromatic compounds identified in these  spectroscopy. In general, °Brix is a parameter that offers very good
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results regardless of the NIR range, since sugars are found in very
high concentrations in grapes. In the works found related to the
grape varieties different to Tempranillo Blanco, the values of
R%cv, R%p, and RPDy, for the TSS are, respectively: 0.91, not calcu-
lated, and 3.34;%2 0.93, not calculated, and 3.31;%” 0.74, not calcu-
lated, and not calculated;*” 0.90, 0.91, and 3.36;*° and 0.95, 0.91,
and 4.27."> However, to the best of our knowledge this is the first
work applying NIR spectroscopy to estimate the aromatic compo-
sition and TSS in Vitis vinifera L. Tempranillo Blanco berries.
Based on the results obtained in the present work, the wine-
grower will be able to differentiate between high, medium, and
low values of volatile compounds in Vitis vinifera L. Tempranillo
Blanco grapes, as well as to quantify the TSS in a very reliable
and accurate way, simultaneously. If the device is transported to
the vineyard, it can track aromatic and technological maturity
throughout the berry ripening period, as attempted by Fernan-
dez-Novales et al.?® These authors estimated the TSS and the total
amounts of anthocyanins and phenolics in Tempranillo berries
from NIR spectroscopy acquired from a moving vehicle directly
in the vineyard. This will enable estimating the harvest date more
accurately according to oenological needs. In addition, if the
device is installed in the winery, it could help to separate the
grapes according to their aromatic quality, or their sugar content,
creating fermentation tanks with different aromatic profiles, and
finally obtaining wines with different characteristics and prices.

CONCLUSIONS

A new methodology, based on non-invasive, contactless NIR spec-
troscopy, has been developed to estimate volatile compounds
content, as well as TSS, in Vitis vinifera L. Tempranillo Blanco intact
grape berries throughout ripening. According to the results
obtained, the obtained models would help to discriminate
between high, medium, and low values in all volatile compounds,
total content by chemical families, and TSS. In addition, the built
models would enable to quantify the concentration of most vola-
tile compounds, their chemical families, and the TSS content
along ripening in Vitis vinifera L. Tempranillo Blanco berries.

For the first time, an easy, solvent-free, and fast tool has been
developed that enables the estimation of technological and aro-
matic maturities simultaneously and non-invasively at different
stages of ripening.
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