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Abstract 

 

This paper integrates Visible Light (VL) communication with the Kalman Filter (KF) to improve 

data prediction and estimation accuracy. The implementation utilizes Xilinx FPGA Arty A7 hardware 
and employs a two-dimensional Linear KF framework. The main objective is to implement VL 

positioning with a KF algorithm on FPGA using photodetectors (Photodiode and Photoresistor) as 

measurement sensors. The use of Xilinx FPGA Arty A7 hardware and Xilinx SDK ensures flexibility 

and reliability in the system. The results demonstrate accurate estimations using Xilinx FPGA Arty 

A7-35T with the KF algorithm in both 16 LED and 8 LED setups. The performance of the Photodiode 

LM393 (PD LM393) sensor is comparable to the Photoresistor LM393 (PR LM393). This study 

optimizes light measurements by combining the sensor-KF algorithm. The evaluation of KF 

performance, measured by Ro Mean Squared error (RMSE) results, shows that for the 16 LED 

system, KF with PR LM393 achieves an RMSE of approximately (𝟏, 𝟔𝟗 𝒙 𝟏𝟎−𝟐 𝑽 ), indicating 

accurate estimations. In the 8 LED system, KF with PR LM393 yields an RMSE of around 

(𝟏, 𝟕𝟏 𝒙 𝟏𝟎−𝟐), ensuring accuracy in estimation. Additionally, the 2D KF approach results in an 

RMSE of about (𝟕, 𝟖𝟒𝟕𝟖 𝒙 𝟏𝟎−𝟏 𝑽), demonstrating effective noise reduction and precise estimation 

in the LM393 Photodetector system with 16 LEDs. 
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1. INTRODUCTION  

 

Wireless communications have undergone a 

transformative shift by harnessing wireless 

carriers like Radio Frequency (RF) and Visible 

Light (VL) waves to transmit data. The 

escalating demand for high data rates, 

particularly in indoor environments, has 

overwhelmed traditional RF systems. In 

response, innovative strategies such as 

millimeter waves (mm-wave) and cognitive 

radios have been adopted to counteract the 

capacity constraints and spectrum scarcity of 

conventional RF systems. Furthermore, VL 

Communication (VLC), which utilizes light 

sources for both data transmission and 

illumination, presents itself as a promising 

alternative. 

Notably, VL technology exhibits robust 

resistance to electromagnetic interference, 

enjoys unlicensed channels, operates on 

minimal electrical power, and poses negligible 

health risks [1], diverse VL Platforms (VLPs) 

beyond photodetector-dependent ones exist, 

including those grounded on imaging sensors 

known as camera sensors. Transmitted VL 

signals can be received through an image 

sensor, a matrix, or an integrated circuit of 

numerous Photodetectors. However, the 

employment of an imaging sensor necessitates a 

considerable number of PDs to achieve high-

resolution photos, introducing limitations [2], a 

key element is the LED, modulating light while 

being accompanied by a receiver photodetector 

that adjusts the intensity of optically modulated 

data. The VLC Channel, constituting the 

fundamental aspect of the VL Receiver system, 

facilitates this communication [3], in the 

transmission process, the modulated signal, 

acting as a transmitter, is paired with a DC 

voltage to power the LED. LEDs serve the dual 

purpose of emitting light and transmitting 
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information. The receiver combines a 

photodetector and demodulator, wherein the 

photodetector converts received light into an 

electrical signal containing messages and noise. 

While the electrical domain might encapsulate 

noise comprehensively, a portion of noise stems 

from the communication channel. This 

phenomenon arises from the PD's capacity to 

transform optical noise and signals into electric 

current [4], integral to this discourse is the 

FPGA Artix-7/Arty A7 series developed by 

Xilinx, encompassing versatile Field-

Programmable Gate Array (FPGA) devices. A 

prominent member of the Xilinx 7 Series FPGA 

family, the Artix-7 offers high performance and 

flexibility for digital circuit implementation. 
Reprogrammable FPGA resources enable 

tailored digital circuit creation catering to 

specific application requirements. With 

advanced 28nm architecture, features such as 

block RAM, Digital Signal Processor (DSP) 

slices, and configurable Input/Output(I/O) 

bolster its capabilities [5], facilitating FPGA-

based systems' design and implementation is the 

Vivado Design Suite-HLx Editions, a suite of 

Xilinx tools supporting intricate system creation 

[6]. 

Crucial to wireless communication and 

FPGA implementation is the application of 

Hardware Description Languages (HDL). While 

other HDL have surfaced, Verilog and VHDL 

(VHSIC (Very High-Speed Integrated Circuit) 

Hardware Description Language) remain 

primary standards for documenting, modeling, 

and logic synthesis of electronic circuits. Their 

comprehensive use is highlighted by "HDL 

Chip Design" (1996) by Douglas J. Smith, a 

pioneering book showcasing examples of both 

languages for simulation and synthesis [7]. 

The Photodiode LM393 (PD LM393) 

Module, integral in robotics, measures 

brightness and ambient light intensity. PDs 

offer superior directionality compared to 

Photoresistors (PR), making PDs adept at 

locating light sources, while PRs excel at 

measuring light intensity. The PD module's 

digital output varies from HIGH to LOW based 

on ambient light, producing a high level when 

the light is below a threshold and a low level 

when it exceeds the threshold [8], on the other 

hand, the Light Depending Resistor (LDR) 

LM393 or Photoresistor LM393 (PR LM393) 

sensor utilizes the LM393 IC as a comparator, 

which is an electronic component that compares 

the input voltage with a reference and produces 

an output based on this comparison. In the LDR 

LM393 sensor, the output voltage changes 

based on the resistance of the LDR, which is 

influenced by the light intensity. By using the 

comparator, the sensor can generate a digital 

signal depending on the predetermined 

threshold. For example, when the light intensity 

exceeds the set threshold, the sensor output will 

be high (usually 5V), and when the light 

intensity is below the threshold, the sensor 

output will be low (usually 0V) [9], super 

Bright 5mm LEDs, revered for their exceptional 

brightness and wide beam angle, find utility in 

models, illuminations, headlamps, and 

automotive lighting [10]. 

Facilitating this fusion of hardware and 
software is the Xilinx SDK (Software 

Development Kit). Developed by Xilinx, a key 

player in programmable hardware, this SDK is 

tailored for real-time operating system (RTOS) 

development using Xilinx FPGA hardware. It 

empowers the creation and customization of 

BSPs (Board Support Packages) that bridge 

FPGA hardware and real-time operating 

systems such as FreeRTOS [11], an 

indispensable algorithm in this ecosystem is the 

Kalman Filter (KF), employed to predict future 

outcomes based on prior data and minimize 

noise. KF's linear system assumptions, coupled 

with its capacity to mitigate noise, render it a 

cornerstone in applications spanning navigation, 

robotics, and control systems. The integration 

of KF augments VLC systems by enhancing 

data accuracy and attenuating noise and 

fluctuations [12]. 

UAI's prior work encompassed exploring the 

application of KF in 3D indoor positioning, 

while also effectively demonstrating the 

successful implementation of VL 

Communication (VLC) Transmitter and 

Receiver utilizing Xilinx FPGA, this current 

project represents a fusion of these prior 

endeavors, integrating VL technology with KF 

methodology to enhance the precision of data 

prediction. This integration is anchored in the 

Xilinx FPGA Arty A7 hardware platform and 

employs a sophisticated 2D Linear KF 

framework. The implementation process 

encompasses hardware configuration, 

Photodetectors deployment, programming 

within the Vivado software, application of the 

KF algorithm to acquire data, and an extensive 

simulation of the KF algorithm. The primary 

objective of this project is to establish a 

functional VL system using Photodetectors on 



Exhibition and Seminar on Science and Creative Technology, University of Al-Azhar Indonesia (EXSACT-A 2023) 

 

13 

Xilinx FPGA Arty Hardware, with specific 

research objectives encompassing efficient data 

transfer, robust KF program testing, and 

effective noise reduction in Photodetectors data. 

 

 

2. METHOD 

 

In this research, the design process involves 

key stages for implementing the LED light 

system with the KF algorithm using FPGA. It 

starts with designing the receiving system and 

configuring it for FPGA in Vivado. Then, the 

receiver system for LED design is implemented, 

generating data. Processed data undergoes 

analysis. The Arty MicroBlaze block diagram 
and VHDL Programming are created in Vivado, 

and KF algorithm integration occurs through 

Xilinx SDK. This enhances accuracy by 

reducing noise. Data post-KF implementation is 

extensively processed, leading to an in-depth 

analysis of Vivado and SDK results. The 

conclusion offers insights drawn from the entire 

iterative journey and After all of the process is 

finished, the performance of the system can be 

evaluated. 

 

E. Implementation Process 

The process consists of two main steps. Step 

A involves setting up and implementing the 

reception system to store data, while Step B 

focuses on programming and implementing the 

KF algorithm using data from Step A. Step B is 

an advanced phase that utilizes the collected 

data to enhance measurements through the KF 

algorithm. 

 

 
Fig 1. Block Diagram of KF VL Implementation 

 

The Implementation of the Process 
Contained in Fig 1: (1). Configure Xilinx FPGA 

Arty A7-35T and Photodetectors, conduct 

experiments and testing (1-2-3). (2). Read 

actual data from Photodetectors based on LED 

light, store and display data on a computer (1-2-

3-4). (3). Implement KF System using Xilinx 

SDK with acquired light reading data (4-5). (4). 

Collect, process, and present data using the KF 

system on a computer (6). 

Each step outlines specific actions, from 

configuring hardware to presenting processed 

data, ensuring a coherent and efficient process. 

 

F. Kalman Filter Algorithm 

The KF is an algorithm utilized for 

predicting or estimating future outcomes 

through the analysis of previous data. Unlike 

general filters such as Low Pass Filter (LPF), 
High Pass Filter (HPF), or Band Pass Filter 

(BPF), KF operates as an estimator, particularly 

suited for predicting states within a signal that 

may contain noise. Within the KF system, a 

linear framework is assumed. KF's objective is 

to minimize the mean squared error of 

estimation for stochastic linear systems, 

incorporating linear sensor noise. Moreover, it 

also reduces the squared error function of 

estimation for linear dynamic systems affected 

by white measurement and disturbance noise. 

Its role encompasses the estimation of a 

dynamic system's state and performance 

analysis. As detailed in equations, the KF 

functions as a data processing tool to estimate 

the state of a dynamic system using 

measurements that are subject to noise 

contamination. The filter's primary aim is to 

enhance the accuracy of estimates by fusing 

historical information with the latest 

measurements. Comprising two main segments, 

the KF Algorithm consists of the prediction part 

and the updating part [15], the KF equation 

utilized in this research is outlined in equations 

(1) to (6). 

Prediction: 

�̂�(𝑘 + 1|𝑘) = 𝐴𝑡 . �̂�(𝑘|𝑘) (1) 

𝑃(𝑘 + 1|𝑘) = 𝐴𝑡 . 𝑃𝑡(𝑘|𝑘). 𝐴𝑡 + 𝑄𝑡 (2) 

Update: 

𝐾𝑡(𝑘 + 1) =  
𝑃𝑡(𝑘 + 1|𝑘). 𝐶𝑡

𝐶𝑡 . 𝑃𝑡(𝑘 + 1|𝑘). 𝐶𝑡 + 𝑅𝑡
 

(3) 

𝜀(𝑘 + 1) = 𝑦𝑡(𝑘 + 1) − 𝐶𝑡  . �̂�(𝑘 + 1|𝑘) (4) 

�̂�(𝑘 + 1|𝑘 + 1) = �̂�(𝑘 + 1|𝑘)

+ 𝐾𝑡(𝑘 + 1). 𝜀(𝑘 + 1) 

(5) 

𝑃𝑡(𝑘 + 1|𝑘 + 1) = (𝐼 − 𝐾𝑡(𝑘 +

1). 𝐶𝑡). 𝑃𝑡(𝑘 + 1|𝑘) 

(6) 
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Where �̂�(𝑘|𝑘) Is the State Estimate at Time 

(𝑘) Based On the Information at time (𝑘) (Prior 

State estimate). �̂�(𝑘 + 1|𝑘)  Is the Predicted 

State Estimate at Time (𝑘 + 1) Based on The 

Information at time (𝑘) . 𝑃𝑡(𝑘|𝑘)  is the State 

Covariance at Time (𝑘)  Based On The 

Information At Time (𝑘)  (Prior Error 

covariance matrix).  𝑃𝑡(𝑘 + 1|𝑘)  Is the 

Predicted State Covariance at Time (𝑘 + 1) 

Based on The Information at Time (𝑘) . 

𝜀(𝑘 + 1)  Is the Residual or The Difference 

Between the Actual Measurement Result at 

Time (𝑘 + 1)  And the Measurement Estimate 

Based on The State Prediction (Measurement 

Residual). �̂�(𝑘 + 1|𝑘 + 1) Is the State Estimate 

at Time (𝑘 + 1)  That Has Been Updated 

(Posterior State Estimate at Time 𝑘 + 1 ). 

𝑃𝑡(𝑘 + 1|𝑘 + 1)  Is the State Covariance at 

Time (𝑘 + 1)  That Has Been Updated 

(Posterior Error Covariance Matrix at Time 

(𝑘 + 1). 𝐴𝑡 Is The State Transition Matrix. 𝐶𝑡 Is 

The Measurement Matrix. 𝑄𝑡  Is The Process 

Noise Covariance Matrix. 𝑅𝑡  Is The 

Measurement Noise Covariance Matrix. 

𝐾(𝑘 + 1) Is the Kalman Gain Matrix at Time 

(𝑘 + 1). 𝐼  Is the Identity Matrix. In Equation 

(6) the prediction step, we predict the system 

state at time 𝑘 + 1  based on previous 

information at time 𝑘. The state estimate 𝑥𝑡  is 

updated using the state transition matrix 𝐴𝑡 , 

which represents how the state changes from 

time 𝑘  to 𝑘 + 1 . Furthermore, the state 

covariance 𝑃𝑡  is also updated, taking into 

account the previous state covariance and the 

process noise  𝑄𝑡  tepresents the uncertainty in 

the state prediction. 

In the update step, we update the state 

estimate 𝑥𝑡 based on the actual measurement at 

time 𝑘 + 1. The Kalman Gain matrix 𝐾𝑡 is used 

to determine how much we will trust the latest 

measurement and how much we will trust the 

previous prediction. The residual 𝜀  s the 

difference between the actual measurement and 

the measurement estimate based on the state 

prediction. Furthermore, the state estimate and 

state covariance are updated based on the latest 

measurement information and the Kalman Gain 

matrix. These equations collectively represent 

the KF process and are utilized to achieve 

accurate and reliable state estimation in 

dynamic systems while reducing the impact of 

noise in the measurements. 

Within the above equations, the variable 

state pertains to the specific attribute or 

parameter being estimated within the dynamic 

system. For instance, in this paper, this variable 

state could correspond to factors like light 

intensity or position. Notably, it is involved in 

Equations (1), (4), and (5), where the state 

estimate is calculated, refined, and employed 

for measurement prediction, respectively. 

Through adeptly integrating measured data and 

predictions, the KF process amplifies the 

accuracy and dependability of state estimation, 

particularly when confronted with noise in 

dynamic systems. 

 

G. VHDL Programming 

In the course of this research, the VHDL 

language played a pivotal role in both the 
XADC and Arty MicroBlaze projects in Fig 2 

and Fig 3. This decision was guided by the 

flexibility and capabilities that VHDL brings to 

the table. It's noteworthy that when it comes to 

choosing between Verilog and VHDL, the 

Vivado platform provides users with the 

latitude to decide based on their specific 

requirements and personal preferences. This 

level of choice, as illustrated in the 

accompanying image, underscores Vivado's 

commitment to accommodating diverse needs 

within the realm of hardware description 

languages. As the research delved into 

harnessing the power of VHDL for the XADC 

and Arty MicroBlaze projects, it exemplified 

how the Vivado platform empowers users to 

align their language selection with their project 

objectives and inclinations. 

 

 
Fig 2. VHDL for XADC on Vivado 

 



Exhibition and Seminar on Science and Creative Technology, University of Al-Azhar Indonesia (EXSACT-A 2023) 

 

15 

 
Fig 3. VHDL for Arty MicroBlaze on Vivado 

 

In the actual Vivado software utilization, 

VHDL takes on a pivotal role, serving as the 

programming language of choice for both the 

configuration of the XADC module and the 

creation of the Arty MicroBlaze project. VHDL 

presents itself as a structured and robust 

medium for intricately delineating the 

behaviours and functionalities of hardware 

components. This capability extends to 

configuring the XADC module, where VHDL 

enables engineers to define its operations 

meticulously. This empowers the module to 

adeptly process analogue signals, converting 

them into digital data with precision. This 

strategic application of VHDL allows for 

customization and aligns the XADC's behaviour 

seamlessly with the project's specific demands. 

Similarly, VHDL proves its mettle in the 

context of the Arty MicroBlaze project. This 

soft-core processor, a linchpin in embedded 

system development, finds its architectural 

essence defined through VHDL. Engineers 
harness its prowess to sculpt the MicroBlaze's 

fundamental attributes-its instruction set, 

memory interfaces, and more. This ensures that 

the processor is not just a component but an 

intricately tailored entity that harmonizes 

optimally with the project's needs. The 

deployment of VHDL here underscores its 

versatility in addressing complex, customized 

hardware description tasks. 

 

 

3. RESULT AND DISCUSSIONS 
 

This chapter discusses the Design of LEDs 

for data transmission, the Design of the 

Receiver using the FPGA Arty Xilinx and 

Photodetectors hardware, and the utilization of 

Vivado software to observe the transmission of 

light signal data sent by the Photodetectors. 

Additionally, this chapter will also present the 

results of the LEDs and Photodetectors system 

implemented with Xilinx FPGA Arty A7-35T 

on Vivado.  The outcomes of implementing the 

KF on the Vivado Design Suite using the Xilinx 

SDK will also be discussed. This research will 

reveal the Performance of KF Using the values 

of RMSE or for each KF result.  Furthermore, 

the analysis of the results will encompass the 

power utilization and implementation generated 
by the KF in the Vivado Design Suite, and it 

will compare the utilization and implementation 

of power between the KF 1D project and the KF 

2D. All results and analyses are presented 

comprehensively to provide a clear 

understanding of the efficiency and 

effectiveness of the entire developed system. 

 

A. Hardware Configuration 

In this section, we systematically designed 

an LED system to facilitate data transmission 

through light signals generated by LEDs. A 

crucial step was taken to connect the 

Photodetectors sensor to the Xilinx FPGA Arty 

A7-35T hardware, utilizing the VHDL language 

within the Vivado Design Suite software. This 

step is crucial because if not connected 

properly, the sensor will not function 

effectively. After completing the VHDL 

programming in Vivado, the next crucial step is 

to implement the design from Vivado Software 

to the Xilinx FPGA Arty A7 hardware. 

However, before proceeding with the 

implementation, three key stages must be 

completed in the Vivado Software: Run 

Synthesis, Run Implementation, and Generate 

bitstream. The illustration of the connection 

between the Photodetectors sensor and Xilinx 

FPGA Arty A7 through the Analog Output Port 

on the sensor and the ADC Connectors on the 

FPGA is shown in Fig 5 above. If all three 

stages are successfully completed, the designed 

programming can be directly implemented into 

the Xilinx FPGA Arty A7 hardware, enabling 

the Photodetectors sensor, which is already 

connected to the Xilinx FPGA Arty A7, to 

operate optimally in reading the data 

transmitted by the light. 
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Fig 4. LED source of 4 and 8 for testing 

 

In this research, a systematic design of LED 

systems has been conducted to facilitate data 

transmission through light signals generated by 

the LEDs. The primary objective of this design 

is to achieve optimal effectiveness and 

efficiency in the process of data transmission 

through light signals. To realize this objective, 

configurations employing 16 and 8 units of 

5mm LEDs have been utilized and organized in 

a 4x4 and 4x2 arrangement, respectively, as 

illustrated in Fig 4. Through this strategic 

arrangement of LEDs, it is anticipated that the 

transmission of data via light signals can be 

executed in an optimized and efficient manner. 

 

 

 
Fig 5. Connecting FPGA Arty 7 to Photodiode & 

Photoresistor 

 

Important steps must be taken to connect the 

Photodetectors sensor to the Xilinx FPGA Arty 

A7-35T hardware, which is done by connecting 

it through VHDL language in the Vivado 

Design Suite software. This connecting process 

is crucial because if not properly connected, the 

sensor will not function properly. After 

completing the programming using VHDL in 

Vivado, the next step is to carry out the 

implementation from the Vivado Software to 

the Xilinx FPGA Arty A7 hardware. However, 

before performing the implementation, there are 

three stages that must be done in the Vivado 

Software, namely Run Synthesis, Run 

Implementation, and Generate bitstream. The 

illustration of the connection between the 

Photodetectors sensor and Xilinx FPGA Arty 

A7 through the Analog Output Port on the 

sensor and the ADC Connectors on the FPGA 

can be seen in Fig 5 above. If all three stages 

have been successfully completed, the designed 
programming can be directly implemented into 

the Xilinx FPGA Arty A7 hardware, enabling 

the Photodetectors sensor, which is already 

connected to the Xilinx FPGA Arty A7, to work 

optimally in reading the data sent by the light. 

 
B. Photodetectors Testing 

This section shows the result and analysis 

involving comprehensive testing of 

measurement results from PD LM393 and PR 

LM393, utilizing variations of 16 LEDs and 8 

LEDs. 

 
Table 1. Measurement of PD  

PD 

LM393 
16 Leds 8 Leds 

Distance 

(cm) 

Lux 

meter 

(lx) 

PD 

measure 

(v) 

Lux 

meter 

(lx) 

PD 

measure 

(v) 

10 2183,8 0,0642 2026,4 0,1957 

20 1996,6 0,0363 797,5 0,215 

30 893,5 0,0187 360,1 0,4125 

40 416,7 0,0225 221,8 0,4433 

50 373,5 0,0461 175,6 0,5378 

60 231,7 0,0825 96,5 0,4798 

70 150,9 0,2631 79,3 0,5071 

80 139,8 0,2411 59,3 0,6475 

90 101,2 0,4638 41,3 0,8178 

100 66 0,7828 42 0,9791 

 

Table 1 contains measurement data 

employing PD LM393 with variations of 16 

LEDs and 8 LEDs. The data encompasses the 

distance between PD LM393 and LEDs, light 

intensity gauged by a Lux Meter (lx), and 

output voltage measured via Vivado software. 

Fig 6 Shows data through a graph, 

showcasing output voltage measurements from 
PD LM393 at varying distances using 16 LEDs 

(blue line) and 8 LEDs (orange line). The 
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recorded data includes distance (cm), light 

intensity (lux) measured by a Lux Meter, and 

output voltage (V) gauged via the Vivado 

device. The graph reflects the direct relationship 

between increased distance and augmented 

output voltage for both LED variations. The 16 

LEDs variation exhibits output voltage ranging 

from 0.0642 V to 0.7828 V, while the 8 LEDs 

variation spans from 0.1957 V to 0.9791 V. 

 

 
Fig 6. Voltage output on PD LM393  

 

Comparing measurements between 16 LEDs 

and 8 LEDs with PD LM393 uncovers 

intriguing insights. At equal distances, the 

employment of 8 LEDs yields higher output 

voltage than 16 LEDs. Other factors, including 

PD LM393 characteristics and Implementation 

of the Process, can influence output voltage and 

light intensity in measurements. However, the 

data suggests that 8 LEDs offer enhanced 

responsiveness, generating higher output 

voltage in PD LM393 when contrasted with 16 

LEDs. 
Table 2. Measurement of PR LM393 

PR  

LM 
16 Leds 8 Leds 

Distance 

(cm) 

Lux 

meter 

(lx) 

PR 

measure 

(V) 

Lux 

meter 

(lx) 

PR 

measure 

(V) 

10 4709,9 0,064 1179,4 0,1818 

20 2273,1 0,1651 992,6 0,3587 

30 994,4 0,2978 478,4 0,5339 

40 492,6 0,3809 203,4 0,7532 

50 335,5 0,6151 175 0,8668 

60 203,5 0,6675 113,8 0,9757 

70 113,1 0,7828 68,1 0,9287 

80 112,4 0,8571 51,4 0,9425 

90 105 0,8767 36,4 0,9459 

100 80,3 0,8834 26,4 0,9485 

 

Table 2 displays measurement data using PR 

LM393 with variations of 16 LEDs and 8 

LEDs. The data encompasses distance between 

PR LM393 and LEDs, light intensity measured 

in lux via a Lux Meter, and output voltage 

measured in volts using Vivado Software. The 

results yield significant insights. Firstly, 

measured light intensity diminishes as the 

distance between PR LM393 and LEDs 

increases, evident from decreasing Lux Meter 

values at each distance. Particularly noteworthy 

is the substantial intensity drop between 10 cm 

and 100 cm distances. Secondly, the output 

voltage, measured through Vivado Software, 

follows a similar pattern, increasing as the 

distance between PR LM393 and LEDs grows. 

This trend applies to measurements using both 

16 LEDs and 8 LEDs. A comparison between 
16 LEDs and 8 LEDs with PR LM393 reveals 

higher light intensity and smaller output voltage 

for 16 LEDs at equal distances. 

 

 
Fig 7. Voltage output on PR LM393  

 

Based on Fig 7, it is evident that the output 

voltage from PR LM393 shows a proportional 

increase with an increase in the distance 

between PR LM393 and LEDs, both in 

variations of 16 LEDs and 8 LEDs. The range 

of output voltage for the 16 LEDs variation 

ranges from 0.064 V to 0.8834 V, while for the 

8 LEDs variation, the range of output voltage is 

0.1818 V to 0.9485 V. In the context of 

comparing the measurement results using 16 

LEDs and 8 LEDs with PR LM393, some 

interesting findings are discovered. At the same 

distance, the use of 8 LEDs results in a 

relatively higher output voltage compared to the 

use of 16 LEDs. This indicates that the use of 8 

LEDs can generate a stronger signal in the PR 

LM393. based on the overall results and the 

data presented, that the use of 8 LEDs provides 

relatively better responsiveness in generating 
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higher output voltage in PR LM393 compared 

to the use of 16 LEDs. 

 

 
Fig 8. Mapping of measured light intensity on PD 

output voltage  

 

Fig 8 illustrates output voltage 

measurements of Photodetectors concerning 

received light intensity. Data encompasses PD 

LM393 and PR LM393 sensors using 8 and 16 

LEDs. The output voltage is in volts, light 

intensity is in lux. Four lines represent each 

kind of PD LM393 and PR LM393 with 8 and 

16 LEDs. Blue and orange lines show PD 

LM393 and PR LM393 values using 16 LEDs. 

Grey and yellow lines show PD LM393 and PR 

LM393 values using 8 LEDs. In 16 LEDs, PD 

LM393 output voltage (blue line) tends to be 

lower than PR LM393 (orange line) for each 

distance and light intensity, indicating PR 

LM393's higher response to light. With 8 LEDs, 

the yellow line (PR LM393) still surpasses the 

grey line (PD LM393) in response, but the 

difference is smaller than with 16 LEDs. 

Comparative results reveal PR LM393's higher 

sensitivity to light intensity detection. LED use 

influences the response of both components, 

with 8 LEDs yielding a higher output voltage 

response due to lower light intensity. In 

conclusion, the graph compares PD LM393 and 

PR LM393 in light intensity measurement using 

8 and 16 LEDs. PR LM393 is more sensitive 

and using 8 LEDs generates more responsive 

measurements, indicating PR LM393's superior 

sensitivity and 8 LEDs' effectiveness in 

capturing light changes. 

 

C. Kalman Filter Implementations 

This section, based on these results an in-

depth analysis was carried out through various 

tables and figures to compare the measurement 

values with the KF estimation algorithm for the 

PD LM393 and PR LM393 sensors using 

different LED configurations. Table III 

provides a comparative overview of KF 

measurements and values, highlighting the 

improvement in KF accuracy in both LED 

scenarios. The corresponding Figure 9 

graphically represents these values, 

demonstrating the effectiveness of the KF 

algorithm in increasing accuracy for both types 

of LEDs. 
 

Table 3. KF Performance with PD LM393 

 16 Leds 8 Leds 

Distance 

(cm) 

PD 

meas(v) 

KF (v) PD 

meas (v) 

KF (v) 

10 0,0642 0,0661 0,1957 0,1958 

20 0,0363 0,0361 0,215 0,2149 

30 0,0187 0,0187 0,4125 0,4124 

40 0,0225 0,0225 0,4433 0,4433 

50 0,0461 0,0460 0,5378 0,5374 

60 0,0825 0,0826 0,4798 0,4713 

70 0,2631 0,2634 0,5071 0,5030 

80 0,2411 0,2412 0,6475 0,6527 

90 0,4638 0,4672 0,8178 0,8196 

100 0,7828 0,7835 0,9791 0,9799 

 

Table 3 compares measurement and KF 

values for PD LM393 using 8 LEDs and 16 

LEDs. Differences exist between Measurement 

(v) and KF (v) values at each distance, favoring 

KF's accuracy enhancement in both LED 

scenarios. Overall, 16 LEDs yield more 

accurate results than 8 LEDs, evidenced by 

smaller Measurement-KF differences. Data 

highlights KF's effectiveness in enhancing PD 

LM393 measurement accuracy, particularly 

with 16 LEDs, offering improved outcomes 

compared to 8 LEDs. 

 

 
Fig 9. KF Performance with PD LM393 

 

Fig 9 shows a line graph showcasing four 
variables. The blue line signifies Original 

Values from PD LM393 measurements with 16 
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LEDs, while the orange line represents KF 

algorithm output using 16 LEDs. Also, a gray 

line shows Original Values from PD LM393 

measurements with 8 LEDs, and the yellow line 

represents KF algorithm output using 8 LEDs. 

Data on the graph highlights significant 

differences between measurements using 16 

LEDs and 8 LEDs for PD LM393. At 10 cm 

distance, Sensor Measurement (V) is 0.0642V 

for 16 LEDs, contrasting with 0.1957V for 8 

LEDs. This trend continues at other distances, 

with 16 LEDs yielding lower Sensor 

Measurements (V) compared to 8 LEDs. 

However, KF implementation for both types of 

measurements demonstrates KF (V) values 

approximating original Sensor Measurements 
(V). This implies KF's effectiveness in 

improving measurement accuracy for both LED 

types, aligning them closer to PD LM393 

measurements. 
 

 

Fig 10. Relative errror of KF with PD 

 

Fig 10 illustrates a comparison of the data 

results, indicating that measurements using PD 

LM393 with 8 LEDs yield lower relative errors 

compared to the use of 16 LEDs at various 

distances. However, at greater distances (60 - 

80 CM), the relative error values with 8 LEDs 

are comparatively higher. Conversely, for 

measurements taken at other distances, the 

configuration with 8 LEDs demonstrates better 

stability and lower relative error values. In 

terms of providing higher accuracy in 

estimating received light intensity, it can be 

concluded that the configuration with 8 LEDs 

delivers more precise results across different 

distances.  

Table 4 compares the measurement results 

and KF estimation values for PR LM393 using 

16 LEDs and 8 LEDs. The table includes 

"Measurement (V)" and "KF (V)" columns for 

both LED configurations. The KF algorithm 

effectively approximates Measurement (V) 

values in both cases, aligning KF (V) values 

with the original measurements. Despite 

significant differences between measurements 

using 16 LEDs and 8 LEDs with PR LM393, 

the KF algorithm mitigates these differences, 

aligning both LEDs types' results with PR 

LM393's true values. 
 

Table 4. KF Performance with PR LM393 

 16 Leds 8 Leds 

Distance 

(cm) 

PR 

measure 

(v) 

KF    

(v) 

PR 

measure 

(v) 

KF    

(v) 

10 0,064 0,06415 0,1818 0,1812 

20 0,1651 0,16499 0,3587 0,35884 

30 0,2978 0,29791 0,5339 0,53349 

40 0,3809 0,38091 0,7532 0,75374 

50 0,6151 0,61518 0,8668 0,86804 

60 0,6675 0,66989 0,9757 0,97552 

70 0,7828 0,78463 0,9287 0,92876 

80 0,8571 0,85814 0,9425 0,94257 

90 0,8767 0,87671 0,9459 0,94584 

100 0,8834 0,88438 0,9485 0,94855 

 

 
Fig 11. KF Performance with PR LM393 

 

Fig 11 shows a graph displaying four 

variables, representing PR LM393 

measurements using 16 LEDs and 8 LEDs. The 

blue line illustrates True Values from 

measurements with PR LM393 and 16 LEDs, 

while the orange line depicts the KF algorithm 

output at each position using the same setup. 

Additionally, the grey line signifies True Values 

from measurements using PR LM393 and 8 

LEDs, with the yellow line showcasing KF 

algorithm results for the corresponding 

positions with 8 LEDs. Differences exist 

between readings obtained by PR LM393 using 

16 LEDs and 8 LEDs. At a 10 cm distance, 

Measurement (V) is 0.064 V for 16 LEDs and 
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0.1818 V for 8 LEDs. This trend continues at 

other distances, indicating lower Measurement 

(V) values with 16 LEDs than with 8 LEDs. 

Nevertheless, implementing the KF algorithm 

for both scenarios leads to KF (V) values 

approximating or matching True Values. This 

underscores the KF algorithm's effectiveness in 

enhancing measurement outcomes for both 

LEDs types, aligning them with PR LM393's 

true values. 
 

 

Fig 12. Relative error of KF with PR LM393 

 

Fig 12 illustrates a comparison of the 

outcomes from utilizing 16 & 8 LEDs within 

the PR LM393 configuration. This comparison 

showcases a more consistent and accurate 

estimation of the received light intensity across 

various distances when employing 8 LEDs. 

Although there is a slightly elevated Relative 

Error Value observed with the 8 LEDs at 

specific points (10, 30, 40, and 50 CM), the 

overall trend highlights the superiority of the 8 

LED configuration in mitigating relative errors. 

Consequently, these findings conclusively 

underscore the enhanced capability of the PR 

LM393 configuration with 8 LEDs in providing 

precise and consistent estimations of light 

intensity across varying distances. 

Table 5 compares measured values and KF 
algorithm estimations for photodiode (x) and 

photoresistor (y) sensors with 16 LEDs. KF 

estimations closely match actual measurements, 

indicating accurate estimations. The small 

difference between them underscores estimation 

accuracy. Notably, the gap narrows as distance 

increases, highlighting KF's superiority in 

accurate estimations at greater distances. 

Overall, 2D KF use for both sensors effectively 

reduces fluctuations and enhances measurement 
estimation precision. 

 

 

Table 5. Performance of KF 2D with 16 LED 

 Photodiode (x) Photoresistor (y) 

Dist(cm) PD (v) KFx(v) PR (v) KFy(v) 

10 0,108 0,0972 0,0678 0,0610 

20 0,0424 0,0382 0,1624 0,1462 

30 0,0182 0,0164 0,3002 0,2702 

40 0,023 0,0207 0,3802 0,3429 

50 0,044 0,0396 0,6188 0,5569 

60 0,0846 0,0761 0,6998 0,6298 

70 0,2854 0,2569 0,8072 0,7265 

80 0,244 0,2196 0,8598 0,7738 

90 0,480 0,4320 0,8772 0,7895 

100 0,8172 0,7355 0,8884 0,7996 

 

 
Fig 13. Performance of KF 2D with 16 LED 

 

Fig 13 depicts a comparison between 

measurement results and 2D KF estimations for 

PD LM393 and PR LM393 sensors with 16 

LEDs. The 2D KF implementation effectively 

reduces fluctuations and enhances estimation 

stability. In PD LM393, fluctuations in 

measurement values diminish with KF 

estimations approximating actual values, 

especially at greater distances. Similarly, PR 

LM393 experiences reduced fluctuations and 

improved estimations with KF implementation, 

showcasing accuracy enhancement. Overall, 2D 

KF implementation significantly reduces 

fluctuations and provides accurate estimations 
for both sensors with 16 LEDs. 

Based on Table 6, it can be seen that the use 
of the 2D KF on the PD LM393 sensor (x) and 

PR LM393 sensor (y) with 8 LEDs yielded 

good results. The comparison between the 

measurement values and the estimated data 

showed small differences, indicating high 

estimation accuracy. At greater distances, the 

differences between the measurements and 

estimations decreased, indicating an 

improvement in estimation accuracy. Overall, 

the 2D KF was relatively effective in reducing 

fluctuations and enhancing measurement 
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accuracy on the Photodetectors sensor with 8 

LEDs. 
 

Table 6. Performance of KF 2D with 8 LED 

 Photodiode (x) Photoresistor (y) 

Dist(cm) PD (v) KFx(v) PR (v) KFy(v) 

10 0,1956 0,17604 0,168 0,1512 

20 0,2124 0,19116 0,371 0,3339 

30 0,411 0,3699 0,5206 0,46854 

40 0,4446 0,40014 0,771 0,6939 

50 0,5896 0,53064 0,9008 0,81072 

60 0,366 0,3294 0,9704 0,87336 

70 0,4984 0,44856 0,9284 0,84556 

80 0,752 0,6768 0,9446 0,85014 

90 0,8416 0,75744 0,9442 0,84978 

100 0,9864 0,88776 0,9488 0,85392 

 

 
Fig 14. Performance of KF 2D with 16 LED 

 

 
Fig 15. Relative error of KF 2D 

 

Fig 14 shows a comparison between 

measurements and 2D KF estimations on PD 

LM393 and PR LM393 sensors with 8 LEDs. 

Fluctuations in PD LM393 measurements 

decrease with KF implementation, leading to 

more stable estimations near true values. A 

similar trend was observed in PR LM393 

measurements, where KF reduces fluctuations 

at greater distances, enhancing stability. 

Differences between measurements and KF 

estimations decrease at longer distances, 

signifying accuracy improvement. 

Fig 15 illustrates a comparative analysis of 

the utilization of Photodetectors LM393 with 16 

& 8 LED configurations, showcasing a 

consistent 20% relative error value at each 

measurement point spanning distances from 10 

to 100 CM for both configurations. Notably, 

when employing the 8 LED configuration at a 

distance of 70 CM, a marginal reduction in the 

relative error value to 18.93% is observed, 

while the 16 LED configuration remains 

constant at 20%. Overall, it is evident that both 

configurations exhibit similar relative error 

performance across various measurement 

distances. These findings imply that both the 16 
LED and 8 LED configurations yield consistent 

relative error values at specific distances. The 

outcomes underscore a comparable and stable 

relative error performance for the 

Photodetectors LM393 configurations 

employing 16 & 8 LEDs across varying 

distances.  

 

D. Root mean square error 

RMSE is a widely used evaluation metric in 

regression analysis and forecasting, assessing 

the accuracy of prediction models by measuring 

the squared differences between predicted and 

actual values, followed by computing the square 

root of the average of these squared differences 

[16]. 

This section examines the outcomes of 

applying the KF method to PD LM393 and PR 

LM393 sensors with varying LED setups. The 

goal is to assess the performance and prediction 

error levels of each approach in measuring 

LED-emitted light. Four RMSE results are 

obtained, representing prediction error for KF 

on PD LM393 with 16 LEDs, PD LM393 with 

8 LEDs, PR LM393 with 16 LEDs, and PR 

LM393 with 8 LEDs. RMSE serves as a 

comparative indicator for prediction accuracy 

across methods. Additionally, RMSE values are 

calculated for 2D KF on PD LM393 with 16 

LEDs (x) and PR LM393 with 16 LEDs (y), as 

well as PD LM393 with 8 LEDs (x) and PR 

LM393 with 8 LEDs (y). This analysis unveils 

accuracy and effectiveness differences among 

methods, highlighting factors affecting 

prediction outcomes. The RMSE calculation 

formula is as follows: 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑓𝑖 − 𝑜𝑖)2𝑛

𝑖=1         (7) 
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Where 𝛴 is the summation o all values. 𝑓 is 

the predicted value. 𝑜 s Measurements Value. 

(𝑓𝑖 −  𝑜𝑖)2  are the differences between 

predicted and observed values and Squared. 𝑛 is 

the total sample size [16]. The RMSE values 

obtained in Table 7 and Table 8 are used as 

specific evaluation metrics for measurement 

results within the range of 0.1 to 1. 
 

Table 7. RMSE Values of KF 1D 

 E (v) RMSE  

PD, 16 LED  0,022642 2,2642 

PR, 16 LED 0,016914 1,6914 

PD, 8 LED 0,053404 5,3404 

PR, 8 LED 0,017076 1,7076 

 

 
Fig 16. RMSE of KF 1D 

 

In the Graph in Fig 16, four variables are 

represented by different colours. The KF values 

for PD LM393 with 16 LEDs are shown in 

blue, while the KF values for PR LM393 with 

16 LEDs are displayed in orange. Furthermore, 

the KF values for PD LM393 with 8 LEDs are 

depicted in grey, and the KF values for PR 

LM393 with 8 LEDs are presented in yellow. 

From the above RMSE values, we can observe 
the performance comparison of the KF on two 

types of systems, namely the PD LM393 system 
and the PR LM393 system, both using either 16 

or 8 LEDs. First, on the system with 16 LEDs, 

The RMSE results show that the KF in 

combination with PD LM393 has an RMSE of 

approximately (2,26 𝑥 10−2 𝑉), while with PR 

LM393 has an RMSE of approximately 

(1,69 𝑥 10−2 𝑉). Next, for the system with 8 

LEDs, the RMSE results show that KF & PD 

LM393 has an RMSE of approximately 

(5,34 𝑥 10−2 𝑉), while KF & PR LM393 has 

an RMSE of approximately (1,71 𝑥 10−2 ). 

Overall, the results show that KF in 

combination with the PR LM393 system tends 

to provide relatively more accurate estimations 

and can be more effective in reducing noise and 

fluctuations in measurements. compared to the 

PD LM393 system in both cases, with 16 or 8 

LEDs. Although the difference in RMSE is 

relatively small, the results suggest a preference 

for using KF with the PR LM393 system in VL 

application. 
 

Table 8. RMSE Values of KF 2D 

 E (V) RMSE 

16 LED 0,78478 7,8478 

8 LED 1,2778 12,778 

 

 
Fig 17. RMSE of 2D KF  

 

Based graph in Fig 17, two variables are 

represented by different colours. The KF values 

for Photodetectors with 16 LEDs (xy) are 

displayed in blue, while the KF values for 

Photodetectors with 8 LEDs (xy) are shown in 

orange. From the above RMSE values, we can 

observe the performance of the KF in two types 

of systems, namely the Photodetectors LM393 

system with 16 LEDs and 8 LEDs. First, let's 

review the results for the Photodetectors 

LM393 system with 16 LEDs. The RMSE 

result for KF in this system is approximately 

7,8478 𝑥 10−1 𝑉.  Next, in the Photodetectors 

LM393 system with 8 LEDs, the RMSE result 

for KF is approximately 12,778 𝑥 10−1 𝑉 . 

`Similar to the previous system, the estimations 

provided by KF have small errors compared to 

the true measurement values. From these 

results, it can be concluded that in both cases, 

with 16 LEDs and 8 LEDs, KF is relatively 

successful in providing accurate and stable 

estimations. The lower RMSE values indicate 

good accuracy between the KF estimation 

results and the true measurement values. This 
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demonstrates the effectiveness of KF in 

reducing noise and improving estimation 

accuracy in the Photodetectors LM393 system 

with 16 or 8 LEDs. 

 

E. Utilization of FPGA Resources 

The stage in the analysis using the Vivado 

Design Suite software is to perform a synthesis, 

where the results of this process will provide 

results in the form of information on the 

percentage of resources resulting from the 

utilization of the Xilinx FPGA Arty A7-35T 

board for the project being carried out. 

 
Table 9. Utilization of FPGA Arty A7-35T 

Proje

ct 

Resourc

es 

Utilizati

on (unit) 

Availab

le (unit) 

Utilizati

on (%) 

KF 

1D 

LUT 1.152 20.800 5.54 

FF 65 41.600 0.16 

DSP 2 90 2.22 

I/O 51 210 24.29 

KF 

2D 

LUT 2.320 20.800 11.15 

FF 193 41.600 0.46 

DSP 4 90 4.44 

I/O 98 210 46.47 

 

Table 9 represents the post-synthesis 

comparison results for the KF 1D & 2D project, 

analyzed using vivado Software with Xilinx 

FPGA Arty A7-35T hardware. This table 

provides information about the FPGA resource 

utilization, such as Look Up Table (LUT), Flip 

Flop (FF), DSP, and I/O, along with the 

percentage of utilization that occurred in the 

project.  

The Graph in Fig 18, for the implementation 

of 1D KF, the resource utilization is as follows: 

1,152 LUT, 65 FF, 2 DSP, and 51 I/O. The 

percentage of resource utilization on Xilinx 

FPGA Arty A7-35T for LUT is 5.54%, FF 

0.16%, DSP 2.22%, and I/O 24.29%. 

Meanwhile, for the implementation of 2D KF, 

the resource utilization on Xilinx FPGA Arty 

A7-35T is as follows: 2,320 LUT, 193 FF, 4 

DSP, and 98 I/O. The percentage of resource 

utilization on Xilinx FPGA Arty A7-35T for 

LUT is 11.15%, FF 0.46%, DSP 4.44%, and I/O 

46.47%. From the results, several conclusions 

can be drawn. First, the implementation of 2D 

KF relatively utilizes more Xilinx FPGA Arty 

A7-35T resources compared to the 

implementation of 1D KF. This is evident from 

the higher numbers in LUT, FF, DSP, and I/O 

utilization for the 2D KF implementation. 

Second, the percentage of resource utilization 

on Xilinx FPGA Arty A7-35T for the 2D KF 

implementation is also relatively higher than the 

1D KF implementation, indicating a higher 

level of Xilinx FPGA Arty A7-35T resource 

utilization in the 2D KF implementation. 

 

 
Fig 18. FPGA Resource Utilization of KF 1D & 2D 

 

F. Power Usage 

In This Section checking the implementation 

of power, use the power analysis feature in 

Vivado to estimate power using post-synthesis. 

The activity performed by the expended power 

is determined by the number of I/O Block pins 

used. The more I/O Block pins, the more power 

is released. Once the power analysis is 

complete, the summary will show to review the 

total on-chip power. 

Table 10 shows KF 1D relatively lower 

power consumption compared to KF 2D in all 
aspects of power usage, including signals, logic, 

DSP, and I/O. However, both KF 1D and KF 

2D still maintain relatively minimal power 
consumption in percentage scale of the total 

available power. 

 

Table 10. Power usage of KF 1D & 2D on Xilinx FPGA Arty A7-35T  

On Chip Power 

Projects Dynamic 

(W) 

Device 

Static(W) 

Signals 

(W) 

Logic 

(W) 

DSP 

(W) 

I/O (W) 

KF 1D 56.033 0.327  16.121  18.961  1.914  19.038  

KF 2D 112.954 0.327  33.427  37.736  4.020  37.772  



Exhibition and Seminar on Science and Creative Technology, University of Al-Azhar Indonesia (EXSACT-A 2023) 

 

24 

 
Fig 19. Power usage of KF 1D & KF 2D 

 

The Graph in Fig 19, illustrates significant 

differences in power consumption between the 

two projects, KF 1D and KF 2D, across various 

aspects of power usage. In terms of dynamic 

power consumption, KF 2D requires relatively 

twice the amount of power compared to KF 1D. 

This indicates that KF 2D has a higher level of 

complexity and power requirements compared 

to KF 1D. The KF 1D project consumes 56.033 

W (99%) in dynamic power, mainly from 

circuit switching. Device static power is low at 

0.327 W (1%). Logic uses the most power at 

18.961 W (34%), followed by IO at 19.038 W 

(34%) and DSP at 1.914 W (3%). KF 2D has 

double the power of KF 1D, with 112.954 W 

(99%) in dynamic power and 0.327 W (1%) in 

device static power. Logic remains the biggest 

power consumer at 37.736 W (33%), while 

DSP and IO each use 4.020 W (4%) and 37.772 

W (33%), respectively. 

 

 

4. CONCLUSION 

 

The research demonstrates that Using 8 

LEDs in both PD LM393 and PR LM393 

configurations yields lower relative errors 

compared to 16 LEDs across distances, with 

better stability and accuracy at shorter  

distances. Photodetectors LM393 with 16 & 8 

LEDs show consistent 20% relative errors from 

10 to 100 CM, and the 8 LED setup slightly 

reduces to 18.93% at 70 CM, while the 16 LED 

remains at 20%. KF implementation with PR 

LM393 yields superior outcomes, evident from 

the lower RMSE values of approximately 

(1,69 𝑥 10−2 𝑉 ) for 16 LEDs and 

(1,71 𝑥 10−2) for 8 LEDs. The 2D KF achieves 

an RMSE of about (7,8478 𝑥 10−1 𝑉 ), 

showcasing effective noise reduction and 

measurement fluctuation management in the 

LM393 Photodetectors system with 16 LEDs. 

The research successfully implements Xilinx 

FPGA Arty A7-35T to process data from PD 

LM393 and PR LM393 sensors for light 

measurement and further processing. Utilizing 

the KF algorithm on Xilinx FPGA Arty A7-35T 

leads to relatively accurate estimations, reduced 

noise, and improved measurement accuracy. 

The comparison of resource utilization between 

KF 1D and KF 2D on Xilinx FPGA Arty A7-

35T highlights relatively the higher complexity 

of KF 2D. The power consumption comparison 

underscores that KF 2D requires twice the 

power of KF 1D, indicating relatively higher 

complexity and power needs. Furthermore, 
testing reveals that the KF implementation, 

coupled with PD LM393 and PR LM393 

sensors and 16 LED/8 LED light sources, 

consistently provides relatively accurate results. 

Overall, the research establishes the viability of 

Xilinx FPGA Arty A7-35T and KF 

Implementation for light measurement using 

Photodetectors. 
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