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ABSTRACT 

The Ph.D. dissertation consists of developing a series of innovative computational methods for 

improving digital holographic microscopy (DHM). DHM systems are widely used in quantitative 

phase imaging for studying micrometer-size biological and non-biological samples. As any 

imaging technique, DHM systems have limitations that reduce their applicability. Current 

limitations in DHM systems are: i) the number of holograms (more than three holograms) required 

in slightly off-axis DHM systems to reconstruct the object phase information without applying 

complex computational algorithms; ii) the lack of an automatic and robust computation algorithm 

to compensate for the interference angle and reconstruct the object phase information without 

phase distortions in off-axis DHM systems operating in telecentric and image plane conditions; 

iii) the necessity of an automatic computational algorithm to simultaneously compensate for the 

interference angle and numerically focus out-of-focus holograms on reconstructing the object 

phase information without phase distortions in off-axis DHM systems operating in telecentric 

regime; iv) the deficiency of reconstructing phase images without phase distortions at video-rate 

speed in off-axis DHM operating in telecentric regime, and image plane conditions; v) the lack of 

an open-source library for any DHM optical configuration; and, finally, vi) the tradeoff between 

speckle contrast and spatial resolution existing in current computational strategies to reduce the 

speckle contrast. This Ph.D. dissertation is motivated to overcome or at least reduce the six 

limitations mentioned above. Each chapter of this dissertation presents and discusses a novel 

computational method from the theoretical and experimental point of view to address each of these 

limitations. 
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PREFACE 

This dissertation document has been written with the intention of summarizing the research work 

elaborated on during my Ph.D. studies. The Ph.D. was focused on improving the Digital 

Holographic Microscopy technique, encouraged by the wide range of applications in live and 

material sciences and its current limitations.  

The dissertation is based on five published papers and seven peer-review conference 

publications. For instance, Chapters 3, 4, 6, and 8 are based on published peer-reviewed papers: 1) 

R. Castaneda et al., “Fast-iterative blind phase-shifting digital holographic microscopy,” Appl. 

Opt. 59, 7469-7476 (2020); and 2) R. Castaneda and A. Doblas, “Fast-iterative automatic 

reconstruction method for quantitative phase image with reduced phase perturbations in off-axis 

digital holographic microscopy,” Appl. Opt. 60, 10214-10220 (2021); 3) R. Castaneda et al. 

“pyDHM: A Python library for applications in Digital Holographic Microscopy,” Plos ONE 17: 

e0275818 (2022); 4) R. Castaneda et al. “Speckle noise reduction in coherent imaging systems via 

Hybrid Median-Mean Filter,” Opt. Engineering 60, 233107 (2021). Chapter 5 presents a joint 

phase compensation and autofocusing method for telecentric off-axis DHM and has been accepted 

to be presented at 2023 SPIE Photonics West. Finally, Chapter 7 is an extended version of the peer-

reviewed paper entitled “Video-Rates Quantitative Phase Imaging Using a Digital Holographic 

Microscopy and Generative Adversarial Networks” and published in Sensors. These results have 

been presented at the 2021 IEEE Photonics Conference and 2022 OSA Imaging and Applied Optics 

Congress. 
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1. INTRODUCTION 

Biological research relies heavily on cell imaging to evaluate cellular physiological status and 

behavior. Cells provide structure and function for all living things, containing whole biological 

machinery responsible for what happens inside bodies, from microorganisms to humans. Since 

cells’ dimensions vary approximately from 1- 100 μm, advances in microscopic imaging systems 

with high magnification are essential to enhance our understanding of cellular mechanisms such 

as cell division, motility, proliferation, and interaction. Such fundamental knowledge can result in 

transformative advances in new diagnostic methods and disease treatment. Different microscopy 

techniques have been developed by the need to study cells and understand the micro-size world. 

The simplest microscopic imaging modality to analyze biological samples is bright-field 

microscopy (BFM)  [1,2]. Since most unstained biological specimens are colorless and translucent, 

BFM images of them have poor contrast. Another disadvantage of BFM is that it is not suitable 

for thick samples since they do not present optical sectioning (OS) capability, restricting its use for 

cells grown in monolayers. Therefore, BFM cannot accurately image the three-dimensional (3D) 

shape of live cells in complex, 3D spatial environments. This limitation results in a significant gap 

in our understanding of dynamic changes occurring in the 3D cell shape and behavior of thick 

unstained specimens. Nonetheless, these unstained (i.e., transparent) biological specimens induce 

phase shifts in the transmitted light beam, making them suitable for imaging using phase imaging 

modalities such as phase-contrast microscopy (PCM)  [3,4], differential interference contrast 

microscopy (DIC)  [5,6] and Hoffman contrast modulation  [7]. Although the optical principle is 

different in PCM and DIC, both techniques are traditionally qualitative phase methods, aiming to 

convert optical path changes into intensity variations. Because they are traditionally qualitative, 

there is no information on the actual phase value, not being able to convert these phase changes 
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into thickness and refractive index values. Also, ideal phase contrast samples in PCM and DIC 

should generally have features with an optical path difference of less than one-tenth 

wavelength  [8], limiting its use for thick samples. Single- and multi-photon fluorescence 

microscopic modalities such as confocal scanning microscopy (CSM)  [9,10] and two-photon 

excitation microscopy (TPEM)  [11,12] allow imaging of thick samples with a spatial resolution 

power up to 115 nm. Nonetheless, all fluorescent-based microscopic imaging modalities suffer 

from chemical phototoxicity. The presence of any chemical toxicity could lead to misleading 

information due to the cellular damage caused by long-term light exposure. Cell toxicity induced 

by the chemical toxicity induced by the fluorophores may result in severe organ dysfunction and 

disease, making fluorescent-based imaging modalities unsuitable for studies that investigate the 

response to therapy in the variations of the images.  

This chemical toxicity problem can be reduced by using label-free (i.e., unstained) imaging 

modalities such as optical coherence tomography (OCT)  [13,14] and digital holographic 

microscopy (DHM)  [15–17], among many others  [18–20]. While the hallmark of OCT is the 

understanding of the dynamics in 3D processes thanks to its high imaging depth (up to a couple of 

millimeters) and fine axial resolution, its poor lateral resolution limit (>1 μm) prohibits its 

feasibility evaluating sub-domain cell differentiation. In contrast, DHM technology offers 3D real-

time imaging capability of dynamic processes with nanoscale temporal sensitivity and a lateral 

(xy) resolution as low as 200 nm. Although the reconstructed amplitude and phase images in each 

transverse plane provided by DHM systems may contain out-of-focus information, the axial 

position of sample’ organelles and cells within the sample’s volume is well determined in DHM 

systems from a single image after applying computational autofocusing approaches thanks to the 

optical recording of the complex amplitude distribution scattered by the sample. This feature is a 
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main difference between DHM and other imaging techniques, including BFM, widefield 

fluorescent microscopy, PCM, and DIC. Another advantage of DHM is that any phototoxicity 

problem is significantly avoided since this imaging modality requires low-power radiation. 

Nonetheless, there is no DHM system able to image thick samples, restricting the thickness of the 

microscopic samples to be less than 30 μm (e.g., samples are considered optically thin). Over the 

last decade, DHM systems have become one of the most innovative and relevant label-free imaging 

techniques for quantitative phase imaging (QPI)  [21,22]. The hallmark of QPI-DHM is the 

reconstruction of 3D topographic profiles of biological and non-biological samples using a single-

shot technique. Such topographic reconstruction is possible since the complex (e.g., both 

amplitude and phase information) wavefield scattered by the microscopic object can be recorded 

using DHM systems. Therefore, one can accurately reconstruct the amplitude and phase 

distributions of the microscopic object under research after applying a computational method. 

DHM systems have been applied to a broad range of biomedical studies, including cells 

proliferation  [23–26], analysis of cellular volume  [27], and detection of carcinomas tissues  [28–

30]. Moreover, DHM systems have been used for detecting and diagnosing diseases such as 

malaria  [31,32], diabetes  [33], anemia  [34], among others  [35–37]. 

Although the potential of DHM is clear, current DHM systems present some limitations (i.e., 

hardware and software), which are related to the operation principle of DHM. Among the hardware 

limitations, reconstructed amplitude and phase images in DHM are limited by diffraction  [38], 

and affected by speckle noise  [39], since the illumination source in DHM must be coherent. The 

software limitations are related to the computational efficiency and accuracy of DHM. High-

performance DHM computational algorithms, which provide accurate amplitude and phase 

images, should be robust, automatic, and fast (i.e., they should take a reduced processing time). 
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We understand automatic computational algorithms as such computational methods that require 

minimum user input, being suitable for beginning graduate students and researchers without 

knowledge of computational reconstruction approaches (i.e., biologists). Ideally, DHM 

computational algorithms should be video-time algorithms enabling live cell imaging.  

Despite the success of DHM as a measuring, classifying, and diagnostic tool in life and material 

sciences, DHM systems have not achieved their full potential yet due to their current limitations. 

For instance, because DHM systems can be utilized for quantitative analysis of biological systems 

and disease diagnostics, their performance in reconstructing phase information with high accuracy 

is a factor to be followed closely. This Ph.D. work is devoted to improving the performance of 

DHM systems, and investigating new computational strategies and approaches. In particular, the 

Ph.D. work focuses on six limitations. Firstly, we investigate the current limitation on the number 

of holograms required in phase-shifting methods applied to slightly off-axis DHM systems. 

Conventional phase-shifting methods require more than three holograms and accurate knowledge 

of the phase shifts between the registered holograms to reconstruct the object phase information. 

In this dissertation, we introduce a computational method to reconstruct object phase information 

in slightly off-axis DHM by applying a computational method that only requires two holograms 

with an arbitrary phase shift. The second limitation is the lack of an automatic and robust 

computational algorithm to compensate for the interference angle and reconstruct the object phase 

information without phase distortions in off-axis DHM systems operating in telecentric and image 

plane conditions. Here we present a fast and automatic algorithm to reconstruct the quantitative 

phase distribution of unstained biological samples with a minimum or no phase perturbation for 

holograms recorded in off-axis architecture. The third limitation is the necessity of an automatic 

computational algorithm to simultaneously compensate for the interference angle and numerically 
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focus out-of-focus holograms on reconstructing the object phase information without phase 

distortions in off-axis DHM systems operating in telecentric regime. We present a fast and 

automatic algorithm to reconstruct the in-focus information to solve this limitation. Another 

limitation is the deficiency of reconstructing phase images without phase distortions at video-rate 

speed in off-axis DHM operating in telecentric regime, and image plane conditions, easing 

applications in particle tracking. We have investigated deep-learning approaches to reconstruct 

quantitative phase images from holograms recorded in off-axis DHM systems for this limitation. 

The lack of an open-source library for any DHM optical configuration is also addressed in this 

Ph.D. work by creating a Python library for DHM applications. Python is an open-source high-

level programming language used by hundreds of researchers worldwide. The proposed library, 

called pyDHM, allows the numerical processing of digital holograms registered by many DHM 

systems. Finally, the last limitation addressed in this Ph.D. thesis is the tradeoff between speckle 

contrast and spatial resolution existing in current computational strategies to reduce the speckle 

contrast. To mitigate this tradeoff, we have proposed a single-shot denoising technique that reduces 

speckle noise with minimum penalization of the spatial resolution. The proposed single-shot 

denoising method is based on the synergetic combination of two well-known approaches in image 

processing: the median filter and the mean approach  [40].  

This Ph.D. thesis is organized as follows: Chapter 2 describes the principles of DHM. Chapter 3 

discusses a fast-iterative computational reconstruction algorithm for blind phase-shifting DHM. 

Chapter 4 is related to investigating and validating a fast-iterative computational reconstruction 

algorithm for off-axis DHM systems operating in telecentric regime and image plane. Chapter 5 

extends the application of the fast-iterative computational reconstruction for out-of-focus off-axis 

holograms. In Chapter 6, we present our open-source Python library for DHM applications. Three 
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different deep learning models have been described and discussed to reconstruct off-axis raw 

holograms in Chapter 7. Finally, Chapter 8 demonstrates the applicability of the hybrid median-

mean filter to reduce speckle noise without severe resolution penalization. 

1.1 Contributions and novelties of the dissertation  

 

The main objective of this Ph.D. dissertation is the reduction or mitigation of some of the main 

drawbacks that cramp the DHM applications. We have investigated and developed new strategies 

to overcome such DHM limitations and increase its scope during this work. In particular, we have 

focused on addressing the following DHM disadvantages: i) the absence of robust, fast, simple, 

and automatic computational methods to reconstruct free-of-aberration phase images in DHM 

applied to static and dynamic samples; ii) the lack of a simple computational approach to reduce 

the speckle noise with minimum penalization of the resolution in the denoised images; and finally, 

iii) the lack of a robust and complete open-source library for DHM. The more remarkable 

contributions and novelties of this dissertation are: 

i) Fast-iterative blind phase-shifting digital holographic microscopy using two images -we 

have implemented a new computational strategy to obtain phase images for slightly off-axis DHM 

using two raw holograms with unknown and arbitrary phase shifts. The proposed computational 

method provides reconstructed phase images 4 times faster in the processing time than the previous 

blind phase-shifting method also based on demodulation of the hologram’s terms  [41], without 

reducing the accuracy of the reconstructed phase maps. The main novelties for this contribution 

are: 

➢ Development of a cost function whose minimum corresponds to reconstructed phase 

images free of aberrations.  
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➢ A minimum number of raw holograms with unknown and arbitrary phase shifts recorded 

in a slightly off-axis DHM. 

➢ Reduced processing time (e.g., 8.6× and 4× in simulation and experimental data, 

respectively) without reducing the accuracy of the reconstructed information. 

ii) Fast-iterative automatic reconstruction method for quantitative phase image with reduced 

phase perturbations in off-axis digital holographic microscopy - We have developed a novel 

automatic and fast algorithm to reconstruct quantitative phase images of unstained biological and 

non-biological samples with minimal or no phase perturbation. The proposed method is available 

for image-plane holograms recorded by off-axis DHM systems operating in telecentric regime. 

One of the main contributions of this work is a ready-to-use MATLAB GUI plugin. The source 

code, example datasets and short user manual can be found on GitHub. The main novelties for this 

contribution are: 

➢ Development of a cost function that quantified the number of phase jumps present in the 

reconstructed phase image. 

➢ Minimizing the proposed cost function enables the automatic reconstruction of quantitative 

phase images without or minimum phase aberrations. 

➢ The proposed method requires minimum input parameters (e.g., the raw off-axis hologram, 

the wavelength of the illumination source, and the pixel size of the sensor). 

➢ The proposed method is 40× faster than the nested-loops algorithm and 2.3× faster than 

the centroid-based algorithm. 

iii) Fast-iterative automatic reconstruction method for off-axis digital holographic 

microscopy operating in non-image-plane (e.g., reconstruction of out-of-focus holograms) - 

We have presented a novel approach for automatic focusing and compensation of the interference 
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angle in QPI-DHM using out-of-focus holograms. The proposed method automatically finds the 

best-focused plane of an out-of-focus hologram and reconstructs its free-of-aberration phase 

image. The main novelties for this contribution are: 

➢ Development of the protocol to synergically find the best-focused axial plane and 

reconstruct phase images with reduced phase distortions. 

➢ The proposed computational approach has reduced processing time; it is 20× faster than 

the nested-loops autofocusing strategies. 

➢ The proposed method provides the 3D reconstruction of in-focus and out-of-focus 

holograms, being suitable for particle tracking DHM applications.  

iv) Open-source Python Library for DHM - We have introduced the pyDHM library, an open-

source library to reconstruct holograms recorded by a broad range of optical DHM configurations. 

The library enables the focusing of out-of-focus holograms. The pyDHM library is posted publicly 

on GitHub  [42]. The main novelties for this contribution are:  

➢ An open-source python library for DHM. The library contains different computational 

implementations for: (1) reading and showing the complex distribution of a sample (e.g., 

utility package); (2) performing numerical propagations of complex wavefields to provide 

in-focus DH and DHM images (e.g., numerical propagation package); (3) reconstructing 

the phase distribution of samples in in-line and slightly off-axis DH and DHM systems 

using PS techniques (e.g., phase-shifting package); and (4) reconstructing phase images in 

single-shot off-axis DHM systems operating in telecentric and non-telecentric 

configuration using automatic methods to estimate the best digital reference wavefront 

(e.g., fully-compensated phase reconstruction package). 

➢ Instructional videos for using the proposed library.  
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v) Deep learning model to computationally reconstruct off-axis holograms - We have 

investigated a convolutional autoencoder, U-Net, and conditional adversarial network (cGAN) to 

fully reconstruct quantitative phase images recorded in off-axis DHM systems operating in 

telecentric regime. The proposed cGAN model was trained using two customized metrics, which 

were specifically designed for tracking the imaging characteristics in DHM: (1) the number of 

phase discontinuities using a thresholding-and-summation metric (TSM) and (2) the noise level 

measured in homogenous regions of the reconstructed phase maps using the standard deviation (

 ). The main novelties for this contribution are: 

➢ Investigation of the best learning-based method to reconstruct off-axis DHM holograms of 

biological samples with minimum phase distortions from raw holograms without the need 

for robust pre- or post-numerical procedures. 

➢ The proposed cGAN model allows the retrieval of inner structures of experimental RBCs’ 

information, whereas convolutional autoencoders and U-Net models do not.  

➢ The proposed cGAN model is suitable for video-rate quantitative phase imaging of 

dynamic samples. 

vi) Speckle noise reduction in DHM via Hybrid median-mean - We have proposed a new 

single-shot image processing method, named hybrid median-mean filter (HM2F), to reduce 

speckle noise in digital holography (DH) and DHM. The proposed HM2F is based on the average 

of conventional median-filtered images with different kernel sizes. Our experimental results 

demonstrate that the HM2F is an effective denoising tool for reducing the speckle noise in color 

laser-based photography, DH, and DHM systems with minimum addition of blurring effects. The 

synergic combination of the median filter and mean approach provides a denoised image without 

significant spatial resolution reduction. The performance of the HM2F approach has been 
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compared with the state-of-the-art methods in speckle denoising (e.g., BM3D, NLM, WFT2F, and 

Wiener). The HM2F has been implemented as a Python and MATLAB script and is available on 

GitHub. The main novelties for this contribution are: 

➢ A single-shot denoising method for reducing speckle noise by the synergic combination of 

two well-known image processing methods: the median and mean filters.  

➢ The performance of the HM2F is more constant across the different types of images 

➢ The HM2F is a simple but efficient method, requiring only a single parameter (e.g., the 

maximum kernel size of the median filter). 

➢ The HM2F has the lowest processing time compared to the state-of-the-art speckle 

denoising methods (BM3D, NLM, and WFT2F). 

➢ The HM2F is suitable for any image distorted by speckle noise. 
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2. PRINCIPLES OF DIGITAL HOLOGRAPHIC MICROSCOPY 

DHM can be understood as a hybrid imaging technique based on two stages: i) the optical 

recording of a hologram and ii) the numerical reconstruction of the hologram recorded. The first 

stage consists of recording the interference pattern produced by the coherent superposition of two 

wavefields, named reference and object waves, using a digital sensor (e.g., CMOS or CCD 

cameras). This interference pattern is commonly known as a hologram. Figure 2.1 shows the 

optical configuration of a Mach-Zehnder DHM system, one of the most common configurations 

for studying transmissive samples (e.g., biological samples). On the contrary, Michelson 

interferometers are the most common DHM optical systems for studying reflective samples (e.g., 

material inspection). The second stage refers to the computational reconstruction process, which 

depends highly on the optical configuration of the DHM.  

 

Fig. 2.1. Optical Mach-Zehnder DHM system. 

 

2.1 Recording stage 

An optical interferometer is required to record a hologram in a DHM system. For instance, one 

can use a Mach-Zehnder interferometer for investigating transmissive samples, Fig. 2.1. In this 
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optical configuration, the collimated light emitted by a coherent source such as a laser of 

wavelength λ is split into two beams by a first beamsplitter (BS1). The reflected beam (e.g., the 

object beam) illuminates a sample with a 2D complex amplitude distribution o(x,y). A microscopic 

imaging system, comprised of an infinity-corrected microscope objective (MO) lens and a tube 

lens (TL), is inserted within the optical path of the object arm. This imaging system collects the 

light scattered by the sample and generates the image of the wavefront scattered by the microscopic 

sample at the back focal plane (BFP) of the TL, named the image plane (IP) of the DHM system. 

If the object is set at the front-focal plane (FFP) of the MO lens, the image of the sample whose 

amplitude distribution is uIP(x,y) is then obtained at the back-focal plane (BFP) of the TL. This 

plane is known as the microscope's image plane (IP). The complex amplitude distribution uIP(x,y) 

produced by the microscope at the IP is given by 
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 (2.1) 

where k =2π/λ is the illumination wavenumber, 2  denotes the 2D convolution operator, fMO is 

the focal length of the MO lens, fTL is the focal length of the TL, d is the distance between the BFP 

of the MO and TL lenses , and M = - fTL / fMO stands for the lateral magnification of the imaging 

system which does not depend on the distance d. P(u,v) is the 2D Fourier transform of the 

amplitude transmittance of the pupil distribution, p(x,y). The quadratic phase factor 
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f d
 is associated with a non-telecentric 

geometry (d ≠ fTL) for the optical microscope  [38]. When the microscope operates in the telecentric 

regime (d = fTL), no quadratic phase factor appears in Eq. (2.1).  

The transmitted beam passing the BS1 (e.g., the reference beam) is a plane wave with 2D 

complex amplitude distribution r(x,y). The reference beam propagates with no perturbation 
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through a second mirror (M2). The reference wave is reflected by a second beamsplitter BS2 that 

recombines both object and reference waves, generating an interference pattern (e.g., hologram) 

at any transverse plane after the BS2. The BS2 transmits the object beam without any perturbation.  

A digital sensor records the intensity distribution of the interference between the complex 

wavefield produced by the microscope at a distance z from the IP interference pattern. The 

hologram, captured at any plane from the IP, is the result of, 
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k
u x y z e u x y x y

z z

  
=  +  

  
 (2.2) 

and a tilted plane wavefront, 

 ( )
2

( ) exp i sin sinR x yr x, y I x+ y


 


 
=  

 
 (2.3) 

where IR is the irradiance of the reference wavefront, and θ=(θx,θy) is the vector representation of 

the titled reference angle to the optical axis, which coincides with the center of the object 

wavefront. In Mach-Zehnder-based DHM systems, this angle can be changed by tilting the optical 

elements that reflect the reference wavefront R (e.g., the BS2 and/or M2 in Fig. 2.1). The irradiance 

distribution of the hologram h(x;z) is 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2

,h ;z u ; z r u ; z r u ; z r = + + +x x x x x x x  (2.4) 

where ( , )x y=x  are the lateral spatial coordinates, z is the propagation distance between the IP 

(e.g., the BFP for the TL) and the sensor’s plane, |·|2 represents the square modulus, and * is the 

complex conjugate operator. Note that z < 0 refers to planes in front of the IP. In Equation (2.4), 

the first two terms are related to the irradiance of both object and reference wavefronts. On the 

other hand, the third and fourth terms in Eq. (2.4) encode the complex amplitude information of 

the object wavefront scattered by the sample. These terms represent the object’s real and twin 
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images. From Eq. (2.4), it is clear that the object information o(x,y), encoded in u(x,y;z) is mixed 

with other undesired terms. 

 

2.2 Numerical reconstruction stage  

The reconstruction algorithms aim to separate the object information from these undesired terms 

in Eq. (2.4) to provide well-contrast amplitude and phase images from the complex in-focus 

amplitude distribution uIP(x,y) = u(x,y;z = 0) with minimum distortions. Considering that the 2D 

Fourier transform of a tilted plane wave is a shifted Dirac function, ( )  and that the convolution 

property of the Delta function  [43], the 2D Fourier transform of the hologram, H(u;z) is 

 ( ) ( ) *
sin sinsin sin

; ; , ; , ; ,u u
  

   

   
= + − − + + +   

   

y yx xH z DC z U u v z U u v z  (2.5) 

where u = (u,v) are the transverse spatial frequencies. The first term in Eq. (2.5) corresponds to the 

DC diffraction term, ( ) ( ) ( ) 2 2 * *

2 2; FTu x x= + =  + DC z u ; z r ; z U U R R  where 2  is the 2D 

cross-correlation operator. The capital letters and FT[·] refer to the 2D Fourier transform 

distributions to simplify our notation. The spatial frequencies of the DC term are always placed at 

the center of the hologram spectrum. The second and third terms in Eq. (2.5) are the +1 and -1 

diffraction order, respectively. Those terms encode the complex amplitude information of the 

object wavefront scattered by the sample. The spatial frequencies of the 1 terms, respectively the 

U(·) and U*(·) terms, are located symmetrically around the DC term at locations that depend on 

the interference angle ( , )x y = , see [Fig. 2.2(a)]. In other words, the different components of 

the hologram spectrum may overlap based on the interference angle between the two wavefronts 

of the DHM system. Knowledge of the hologram’s spectral composition is critical to selecting the 

reconstruction method. For example, off-axis DHM systems are those in which the angle between 
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the object and reference wavefronts is such that the terms in Eq. (2.5) are not superimposed [Fig. 

2.2(d)]. The reconstruction method for off-axis DHM systems involves a spatial filtering approach 

using a single hologram  [44,45]. The other extreme case occurs when no interference fringes are 

observed in the hologram since the interference angle between wavefronts is zero. Therefore, the 

three terms in Eq. (2.5) entirely overlap [Fig. 2.5(b)]. These DHM systems operate in an in-line 

(or on-axis) regime. The third DHM configuration, slightly off-axis DHM systems, lies between 

these two extremes; the interference angle between both wavefronts is not null but small enough 

to produce some overlapping between the different components of the hologram spectrum [Fig. 

2.2(c)].  

 

Fig. 2.2. Representation of the three possible DHM configurations. Panel (a) shows the 

interference angle between the object and reference waves. Panels (b)-(d): in-line, slightly off-axis, 

and off-axis. Blue and red circles mark the ±1 and DC diffraction orders, respectively. 

 

For in-line and slight off-axis DHM systems, the reconstruction algorithms involve phase-

shifting (PS) techniques, requiring the recording of multiple holograms in which the phase of the 

reference wavefront is shifted (e.g., phase-shifted holograms)  [46,47]. The main advantage of PS 

algorithms is that the reconstructed phase images are obtained via point-wise subtractions and 

division operations between the recorded phase-shifted holograms. Traditionally, PS algorithms 

are aimed exclusively at strictly in-line DHM systems. We highlight the traditional PS algorithms 
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requiring five, four, and three phase-shifted holograms among the different PS algorithms. In the 

five- and four-step algorithms, the phase shift between the holograms is π/2. Consequently, the 

point-wise phase images are reconstructed by 

 ( )
( ) ( )

( ) ( ) ( )
1

2 , ;3 / 2 , ; / 2
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2 , ; , ;0 , ;2

h x y h x y
x y
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 
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and 
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for the five- and four-step algorithms, respectively. The third variable of the hologram distribution 

in these equations refers to the phase shift of the reference wavefront. For example, h(x,y;3π/2) is 

a recorded hologram in which there is a phase shift of 3π/2 to the first hologram. One can 

reconstruct the phase distribution using a three-step PS algorithm with a phase shift of 2π/3 

between holograms as 

 ( )
( ) ( )

( ) ( ) ( )
1

, ; / 3 , ;5 / 3
, tan 3 .

, ;5 / 3 , ; / 3 2 , ;

h x y h x y
x y

h x y h x y h x y

 


  

−
 −

=   + − 
 (2.8) 

Although the three-step PS algorithm requires fewer holograms, being more suitable for real-

time DHM imaging, this implementation is more sensitive to noise than the four- and five-step PS 

algorithms in experimental conditions. For this reason, four- and five-step algorithms are still used 

in many phase-shifting DHM configurations. 

Due to the experimental difficulty in perfectly aligning the object and reference wavefronts, 

thus achieving a strictly in-line setup, slightly off-axis DHM systems are commonly preferred. For 

slightly off-axis DHM systems, traditional PS algorithms must be modified to compensate for the 

interference angle between both interfering wavefronts. De Nicola et al. proposed a four-step PS 

strategy with a phase shift of π/2 between consecutive holograms  [48]. In this quadrature method, 
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the complex amplitude distribution of the object can be reconstructed by summing the individual 

products between the recorded holograms and their corresponding digital reference wavefronts  

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

ˆ ˆ ˆ, , ;0 , ;0 , ; / 2 , ; / 2

ˆ ˆ, ; , ; , ;3 / 2 , ;3 / 2 .

u x y h x y r x y h x y r x y

h x y r x y h x y r x y

 

   

= +

+ +
 (2.9) 

Equation (2.9) provides the complex amplitude distribution of the specimen without the DC 

term and the conjugate image, enabling the computing of amplitude and phase images via ( )ˆ ,u x y  

or ˆ ˆatan(imag[ ( , ) / real( ( , ))])u x y u x y , respectively.  

The main disadvantage of traditional in-line and slightly off-axis PS approaches is that most of 

these methods require i) accurate knowledge of the phase shift between the recorded holograms, 

and ii) this phase shift must be equal within the acquisition sequence  [46,47] These two 

requirements can be experimentally challenging due to inaccuracies prevalent in most phase-

shifting devices, particularly those based on mechanical movements. In addition, the 

reconstruction algorithms in in-line and slightly off-axis DHM systems using PS strategies require 

multiple recorded holograms, restricting the use of those systems for live-cell imaging and 

dynamic analysis. Therefore, DHM systems operating in an off-axis regime are the most used 

DHM system for real-time imaging  [49]. These systems allow the reconstruction of an object's 

amplitude and phase information from a single recorded hologram. The reconstruction algorithms 

for reconstructing a phase image in off-axis DHM systems involve two steps. The first step is the 

spatial filtering of the frequencies related to the object from the hologram spectrum. Due to the 

off-axis configuration, the ±1 diffraction orders are arranged symmetrically around the DC term 

in the Fourier space [Fig. 2.2(c)]. From the hologram spectrum [Eq. (2.5)], the spectral object 

information (i.e., the +1 term) can be filtered  [44,45]. 
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

 

 
= − − 

 
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Equation (2.10) represents the filtered hologram spectrum, which is the spectrum of the sample 

displaced at the spatial frequencies (sinθx/λ, sinθy/λ). Now, suppose the hologram is recorded under 

IP conditions. In that case, (e.g., z = 0), the amplitude distribution scattered by the sample can be 

obtained as the absolute value of the inverse Fourier transform of Eq. (2.10). In contrast, the spatial 

filtering step is enough for amplitude imaging, quantitative phase image requires the phase 

compensation of the tilting angle between the object and reference wavefronts (the second step of 

the reconstruction procedure. The compensation can be performed by multiplying the inverse 

Fourier Transform of Eq. (2.10), hF(x), by a replica of the reference wavefront, called digital 

reference wavefront, rD(x). The generation of the digital reference wavefront requires the 

knowledge of the interference angle ( , )x y = , which depends on the wavelength λ of the light 

sources used to record the hologram, the features of the sensor (i.e., M×N square pixels of Δxy), 

and the subtraction between the pixel locations of the DC and the +1 terms in the hologram 

spectrum  [50]. Once the digital reference wavefront is generated, the quantitative phase image is 

estimated as the angle of 

 ˆ( ) ( ) ( )D Fu r h= x x x  (2.11) 

where ˆ( )u x is the reconstructed complex distribution of the object wavefront after filtering the +1 

term from the off-axis hologram and compensating for the titled reference wavefront.  

The relevant parameters to properly filter the object frequencies from the hologram’s spectrum, 

( )uFH , are the radius and center of the circular mask. A circular mask with the appropriate radius 

and center enables the reconstruction of accurate amplitude and phase images limited by 

diffraction (e.g., diffraction-limited images). The radius of the circular mask depends on the lateral 
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magnification ML and numerical aperture NA of the DHM system  [38]. Both requirements are 

satisfied if the radius  of the circular mask is equal to 
2 2

0 max 0 max1/ 3 − + −u u v v , where 0 0( , )u v  

are the DC coordinates, being equal to u0 = M/2+1 and v0 = N/2+1. Note that the size of the DC 

term is always 2uc being uc = NA/(λML). If the DHM system works in the diffraction limit and 

telecentric regime (C = ∞), the size of the ±1 terms is uc (e.g., half size of the DC term)  [38]. 

Figure 2.3 shows the reconstructed phase image in an off-axis DHM system operating in the 

telecentric regime for different radius of the circular mask. Figure 2.3(a) is the original phase object 

(i.e., ground truth), and its Fourier transform is shown in Fig. 2.3(b). The colored circles in the +1 

diffraction order mark the different circular masks. Note that the dashed red circle corresponds to 

the diffraction limit condition (e.g., the diameter of the circular mask is equal to the maximum 

spatial frequency passing through the imaging system, uc). Figures 2.3(c)-(e) are the reconstructed 

phase images for the different circular masks. Panel (c) corresponds to the reconstructed phase 

image filtering the object spectrum using the yellow circle in Fig. 2.3(b). The diameter of the 

yellow mask is uc  Panel (d) corresponds to the reconstructed phase image filtering the object 

spectrum using the purple circle in Fig. 2.3(b). The diameter of the purple mask is 0.8uc  Finally, 

panel (e) is the reconstructed phase image when the size of circular mask corresponds to the 

diffraction limit condition, dashed red circle in Fig. 2.3 (b). The smallest resolvable detail 

distinguished on the reconstructed star target has been marked by a solid red circle. In this pattern, 

the high spatial frequencies are found towards the center of the pattern. The higher the spatial 

frequencies, the highest the spatial resolution, being able to distinguish finer details. As one can 

realize, we can observe the same details on the star target if the circular mask in the spatial filter 

is equal or larger than uc. Otherwise, the reconstructed star target shows reduced spatial resolution. 
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Fig. 2.3. Demonstration of reconstructed phase images for the different circular masks. The lower 

the radius of the circular mask, the worse the spatial resolution in the reconstructed amplitude and 

phase images, providing images not limited by diffraction.  
 

In addition to accurately determining the interfering angle between the object and reference 

wavefronts, the reconstruction algorithms depend on the microscope's optical configuration. The 

shape of the 1 diffraction orders change between DHM systems operating in telecentric and non-

telecentric configurations  [38], depending on the radius of the curvature of the spherical wavefront 

in Eq. (2.1), C-1. The smaller the radius of curvature C, the wider the ±1 orders, being the area of 

the ±1 diffraction orders inversely proportional to C  [38]. Figure 2.4 illustrates the changes in the 

size of the 1 diffraction orders based on the radius of curvature C. The ±1 diffraction orders are 

rectangular-based compact support functions in non-telecentric DHM systems. However, these 

terms are circular compact support functions in telecentric-based DHM systems whose diameter 

is related to the resolution (uc) of the microscopic imaging system  [38]. The reconstructed phase 

image from a non-telecentric DHM system is distorted by the quadratic phase factor that appears 

in Eq. (2.1). Figure 2.5 illustrates the relevance of difference in the hologram’s spectrum and the 
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reconstructed phase images for non-telecentric and telecentric DHM systems. The first row in Fig. 

2.5 shows the Fourier transform of holograms for two non-telecentric systems [panels (a)-(b)] and 

the telecentric-based DHM system [panel (c)]. It is clear that the reconstructed phase image from 

a non-telecentric DHM system is distorted by the quadratic phase factor. Therefore, this quadratic 

phase factor should be suppressed to reconstruct accurate quantitative phase images in non-

telecentric DHM systems. This quadratic phase factor can be suppressed computationally by a 

point-wise subtraction of the reconstructed phase with and without a sample, e.g., performing a 

double-exposure technique where two holograms should be recorded  [51]. Single-shot 

computational approaches have also been proposed to eliminate the quadratic phase factor by 

multiplying the inverse Fourier transform of Eq. (2.11), hF(x), with the conjugated replica of the 

distorted phase term, ( ) ( )
2 22

exp i C Cx x y y
C





  − − + −   
 knowing its center (xC, yC) and radius of 

curvature (C). These parameters can be estimated by analyzing the hologram’s spectrum  [52]. 

 

 
Fig. 2.4. Spreading of the ±1 diffraction orders when the DHM system does not operate in 

telecentric regime. 
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Fig. 2.5. Comparison between non-telecentric and telecentric DHM systems. The first and second 

rows show the holograms spectrum and the reconstructed phase images. (a)&(d) and (b)&(e) 

correspond to two different non-telecentric DHM systems with different radii of curvature C. The 

last column [(c) and (f)] is the result of a telecentric DHM system 

Finally, numerical propagators of complex wavefields are required in DHM if digital holograms 

are not recorded at the IP since the object's reconstructed information must be numerically focused 

considering the axial distance z between the sensor/hologram plane and the in-focus plane  [53]. 

Conventional numerical propagators are based on the angular spectrum or Fresnel Transform 

approaches  [54]. The angular spectrum approach represents a complex amplitude wavefront as a 

combination of infinite plane wavefronts following Huygens’ principle. Therefore, the in-focus 

complex amplitude distribution can be estimated as 

 ( ) ( ) ( )1 2 2 22ˆˆ , FT , ; exp i 1 ,IPu x y U u v z z u v





−   
= − − +  

  
 (2.12) 

where FT-1[·] denotes the inverse 2D Fourier transform operator, and ˆ ( , ; )U x y z  is the 2D Fourier 

transform of the reconstructed complex amplitude distribution [ ˆ( , ; )u x y z ] after applying PS 



 

23 
 

algorithms or spatial filtering and phase compensation to the interfering angle. The phase map of 

the ˆ( , ; )u x y z  distribution should have been compensated for any quadratic phase factor. The 

Fresnel Transform approach is another method to solve the Fresnel-Kirchhoff diffraction equation 

using the paraxial approximation  [54]. The paraxial approximation involves the sensor/hologram 

plane dimensions are smaller than the propagation distance, i.e., large propagation distances. Based 

on the Fresnel Transform, the relationship between the out-of-focus distribution, ( )û x, y;z , and 

the in-focus complex amplitude distribution, ( )ˆ ,IPu x y , is expressed as 

 ( ) ( ) ( ) ( )2 2

0 0 0 0 0 0

i 2
ˆ ˆ, , ; exp i exp i d d .

2
IPu x y u x y z x y xx yy x y

z z

 

 

−    
= − + +   

   
  (2.13) 

Some constant phase factors have been neglected in Eq. (2.13). The third term within the 

integral in Eq. (2.13) is related to the kernel of a 2D Fourier transform with frequencies u = x/z 

and v = y/z. Although the low-computational complexity of the Fresnel transform enables fast 

numerical processing, this traditional approach imposes a fixed magnification of the propagated 

wavefield according to the illumination wavelength and the system's geometry. A third numerical 

propagator can be employed to overcome this limitation. In a modified version of the Fresnel 

approach, the kernel of the Fourier transform in Eq. (2.13) is modified by inserting the Bluestein 

substitution  [55] to convert this expression into a convolution operation in which the 

magnification of the propagated wavefield can be chosen at will at the expense of higher 

computational complexity.  
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3. FAST-ITERATIVE COMPUTATIONAL RECONSTRUCTION ALGORITHM 

FOR BLIND PHASE-SHIFTING DIGITAL HOLOGRAPHIC MICROSCOPY 

WITH REDUCED HOLOGRAMS 

In-line DHM systems are the most efficient ones based on the spatial bandwidth of the camera 

since the angle between the reference and object waves is zero. Conventionally, the main drawback 

of in-line DHM systems is its applicability to the study of dynamic samples, since it requires 

recording at least three phase-shifted holograms and the subsequent application of phase-shifting 

methods optimized for DHM (PS-DHM) to reconstruct the complex object information. To 

increase the applicability of PS-DHM, the phase-shifting technique should be fast in both 

recording time and processing time. Over the years, different approaches have been developed to 

address these requirements. It has been proven that accurate results can be obtained with a 

minimum of two recorded holograms in in-line DHM systems with or without prior knowledge of 

the phase shifts  [56–59]. Most of those approaches need precise knowledge of the phase step 

between both recorded holograms. However, such knowledge can be experimentally arduous 

without achieving accurate enough values. A rigorous study of two-frame algorithms in in-line 

DHM systems has been recently presented by Flores et al.  [60], showing the potential of these 

approaches. Alternatively, two-frame algorithms have been successfully demonstrated in slightly 

off-axis DHM systems. It is important to mention that slightly off-axis systems refer to those in 

which the DC term and the ±1 diffracted terms partially overlap. Several reconstruction methods 

have been proposed to reconstruct the phase map in slightly off-axis DHM systems in which there 

is no overlap between the ±1 terms. In 2011, Han et al. proposed a multicolor, slightly off-axis 

DHM system in which a color sensor simultaneously recorded a hologram within the red channel 

and the intensity of the object beam using the blue channel  [61]. The complex object distribution 

was then reconstructed after subtracting these two images, compensating the reference wave and 
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the spatial filtering of the object frequencies. Another widely used algorithm is the subtraction of 

two recorded phase-shifted holograms, which removes the DC term in the spectrum. Then, as in 

the previous approach, the complex object distribution is reconstructed after compensating the 

reference wave and filtering the object frequencies  [62,63]. In those approaches, the intensity of 

the reference wave needs to be measured in advance, and its intensity should not be less than 2 

times the maximum intensity of the object wave. The major limitation of those approaches is their 

application to live imaging due to the additional recording of the reference wave. Also note that 

the reference intensity depends on the object intensity, which depends on the imaged sample, 

meaning that a recording protocol is needed to change the reference intensity for each sample 

automatically. An alternative approach has also been demonstrated using a Hilbert transform  [64]. 

It is important to mention that this approach requires the compensation of the global phase shift 

introduced between both holograms. If the interference fringes are horizontal or vertical, one can 

estimate the phase step by subtracting the phase value of each hologram. From each hologram, the 

phase is estimated by summing the fringe pattern columns or rows, depending on the direction of 

the fringes, and fitting the resulting vector to a sine wave  [64]. Otherwise, this phase shift, which 

introduces a constant phase value, can be determined as the residual phase in the absence of sample 

and subtracting from the measured phase. In other words, the recorded holograms should exhibit 

an area free of the specimen such that the constant phase can be measured. This condition may 

reduce the usable field of view to provide accurate phase measurements. In Refs.  [65–68] authors 

describe alternative two-frame reconstruction algorithms applied to slightly off-axis DHM systems 

that reconstruct the complex information of the object without prior knowledge of the hologram 

phase shift, namely blind PS methods. However, some of these works require the object and/or 

reference intensities, demanding a total of four images  [65], or cannot retrieve aberration-free 
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phase images  [66,67]. In 2014, Guo et al., proposed a method based on a phase derivative 

approach  [69]. The main limitation of that method is that it requires a hologram and the recording 

of the object and reference beams, namely three shots. However, an advantage of that phase 

derivative method is that it is a purely local method, not requiring any integral operation such as 

the Fourier transform or the Hilbert transform, which could significantly reduce the computing 

complexity and memory demands of the data processing system. In 2019, a π-shifted spatially 

multiplexed interference microscope was proposed  [70,71]. In that work, the authors 

simultaneously recorded two holograms mutually phase-shifted by π radians in a single shot. 

Reconstructed phase images of high quality were obtained by employing the Hilbert spiral 

transform on the π hologram. To finish this brief review, in 2019, Doblas et al. presented an 

iterative-blind phase shift (PS) extraction method based on the demodulation (i.e., Fourier 

spectrum) of the different components of the recorded holograms  [41]. Although the blind PS 

method yields an accurate estimation of the phase shifts and the phase distribution, it requires three 

phase-shifted recorded holograms, reducing the applicability of PS-DHM in live imaging.  

This chapter presents an alternative fast-iterative blind PS method that provides accurate phase 

reconstruction using two recorded holograms with arbitrary phase-shift. The algorithm has the 

features of recovering complex object information without having any knowledge of the phase 

shift in each recorded hologram. This algorithm is also based on the demodulation of the terms 

composing the Fourier transform of the hologram, as recently published  [41]. The advantages of 

the proposed two-frame approach are: a minimum number of images needing only two recorded 

holograms, a minimum phase error of the order of 0.005% independently of the phase step ranging 

from 0 to 180 deg., a maximum correlation coefficient between the phase and the retrieved phase 

image equal to 1, and, finally, a reduced processing time compared with the previous three-frame 
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approach  [41]. This chapter is organized as follows: Section 3.1 describes the theoretical 

framework. In Section 3.2, presents the proposed method. The experimental validation of the 

proposed method is shown in Section 3.3. This chapter finishes with the conclusions of the 

proposed method in Section 3.4. This work has been published in Applied Optics  [72] and 

presented at the 2020 OSA Imaging and Applied Optics Congress  [73]. 

3.1 Theoretical framework   

In PS-DHM systems, the complex wavefield distribution (e.g., amplitude and phase) of a 

microscopic sample is reconstructed after the optical recording of multiple holograms and their 

corresponding processing. The hologram can be written as a linear combination between three 

unknown components {d0, d+1 and d-1}, where the weighting of each component depends on the 

phase shift n  introduced by the reference wave. Assuming that the reference wave is a plane 

wave with an arbitrary phase shift, the hologram can be rewritten as 

 ( ) ( ) ( ) ( )0 11 ,   i ih d e d e d − 

+ −

= + +x xx x   (3.1) 

where 
2

0 ( ) 1 ( )IPd u= +x x  is the two first terms of Eq. (3.1) assuming that the irradiance of the 

reference plane wave is 1, and 1 0exp( sin ) ( )IPd ik u =  x x  are the real and virtual images of the 

complex object distribution ( )IPu x . Note that x = (x, y) is the vector representation of the lateral 

spatial coordinates, and ( , )x y =  is the vector representation of the interference angle of the 

titled reference angle to the optical axis, representing the center of the object wave. Based on the 

composition of the hologram distribution in terms of {d0, d+1, and d-1}, the object information (uIP) 

can be reconstructed from either the d+1 or d-1 components using three recorded holograms {h1, h2, 

and h3}, with their respective phase shift {Δφ1, Δφ2, and Δφ3}, to determine the unknow 
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components. Conversely, without lack of generality, the hologram can also be written as the sum 

of two components as 

 ( ) ( ) ( )0 3 ,   ni
h d e d


= +x x x  (3.2) 

where,  

 ( ) ( ) ( )3 1

2

1  .id d e d− 

−+= +x x x  (3.3) 

From Eq. 3.2, one realizes that only two recorded holograms, {h1, h2} with the corresponding 

phase shifts {Δφ1, Δφ2}, are needed to estimate the two unknow components. Without a lack of 

generality, it is assumed that the first phase shift is zero, and therefore one must only introduce one 

phase step 2 2 1'   =  − 
. Using matrix notation, the estimated unknown components are 

computed by solving 
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 (3.4) 

This equation shows that the estimated values of the unknown components {d0, d3} depend on 

the value of the phase step Δφ’2 involved in recording the holograms. Equation (3.4) is applicable 

if the phase step is not an integer multiple of 2π, Δφ’2 ≠ 2mπ being m an integer number. 

3.2 Proposed blind PS-DHM using two images  

Figure 3.1 illustrates the impact of the correct phase step in the reconstruction of the unknown 

components simulating a numerical pure phase object (i.e., amplitude distribution is equal to 1). 

The Fourier spectrum of the simulated hologram of the amplitude distribution of this object with 

a slightly tilted reference plane wave is shown in Fig. 3.1(b). In this simulation, the phase step of 

the reference wave was 
2 60 =  . Panels in Fig. 3.1(c) show the Fourier transforms of the 
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estimated two unknown components [Fourier Transform of Eq. (3.4)] for two different values of 

the 
2 . Figure 3.1 shows that only when the phase step 

2 coincides with the real one of the 

reference waves [column named as True in [Fig. 3.1(c)], the spectrum of the 0d  component is 

composed by two orders: the DC term, set at the center of the spectrum ( 0D ), and the other order 

is located at the frequency um = sin(θ)/λ0 (i.e., spatial frequency proportional to the interference 

angle ( , )x y = . When the phase step used in Eq. (3.4) is different from the real one, three orders 

can be observed in the 0D  component. The second column in Fig. 3.1(c) shows the spectrum of 

the unknown components when the value of 
2  is wrong. The position of the additional order, 

which is a residual order, is located at -um. Based on this observation, the cost-function to be 

minimized is defined as 
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−
=
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u

u
 (3.5) 

The cost-function J quantifies the ratio difference between the expected central and the residual 

order in the estimated 0D component. The value of the cost-function Eq. (3.5) is reported in the 

first row of Fig. 3.1(c). If the phase step used in Eq. (3.5) is the correct one, then 0 ( ) 0mD − =u , and 

the value of the cost-function is equal to zero, J = 0. Note that for the particular case shown in Fig. 

3.1(a), the cost-function is almost zero, J = 2.9 × 10 −5, whereas for 
2 = 80 deg, the cost function 

is J=0.12. Therefore, the utilization of a phase-step value different from the correct one produces 

a higher cost-function value. Note that there is a difference of four orders of magnitude between 

both reported J values. This approach is based on the simultaneous estimation of the phase step 

and the unknown components by minimizing the cost-function Eq. (3.5) using the Matlab built-in 

function fminunc, which finds a local minimum of an unconstrained multivariable function using 
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a quasi-Newton algorithm. The input parameters of the fminunc function are the cost-function [Eq. 

(3.5)], an initial phase step, which is a random value between 0–360 deg generated using the 

Matlab built-in function randi, and a set of optimization options. In this algorithm, the input 

parameters of the cost-function are the two recorded holograms and the positions of the expected 

and residual orders in the Fourier spectrum. The optimization options are the maximum number 

of iterations allowed and a termination tolerance on the cost function. The tolerance has been set 

up to 10-6, which is the default value, since a lower tolerance value does not lead to improved 

results. Although up to 30 iterations were allowed, it did not take more than eight iterations in the 

simulated data. Experimentally, the maximum number of iterations was four. It is important to 

mention that this work does not provide a rigorous study of these optimization options, and the 

selection of a different algorithm and/or optimization options may yield better results. The last 

image in the estimated column, Fig. 3.1(c) shows the estimated unknown components provided by 

our method. The estimated phase step was 
2 60.003 =  , which means a difference error of 

5×10−3 % compared with the real value and the value of the cost-function was almost zero, 

J=1.6×10−5. 

 

Fig. 3.1. Demonstration of the proposed algorithm based on the estimation of the spectral 

components 0D  and 3D  using two raw holograms. The panels are: (a) ground truth phase 
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distribution of the simulated object; (b) Fourier transform of the hologram using a reference 

slightly tilted; (c) Fourier transform of the demodulated components using Eq. (3.4) for different 

values of the phase steps. The phase steps were 60 deg (True), 80 deg (Wrong), and 60.003 deg 

(Estimated), respectively. Note that only when the phase step is wrong, it appears and additional 

order in the 0D  component. 

Once the unknown components have been estimated, one dismisses the d0 component since 

the complex object information is only encoded on the d3 component. In fact, the d3 component 

contains both the real (d+1) and virtual (d-1) information of the object, as seen in Eq. (3.4). Figure 

3.2 shows the steps to reconstruct the phase distribution of the object. These steps consist of the 

spatial filtering of the d+1 component, the compensation of the tilt angle introduced by the reference 

wave, and, finally, the computation of the angle of the resultant image. It is important to mention 

that this approach is suitable for slightly off-axis DHM systems in which the interference angle is 

such that there is no overlap between the d±1 components. The quality of the estimated phase is 

quantified by the mean-square error (MSE) between the true phase map and the estimated phase 

map. This error is reported in Fig. 3.2(c). Note that the value of the MSE is 1.56×10−6. 

 

Fig. 3.2. Evaluation of the phase distribution estimated by the proposed method. The panels are: 

(a) estimated D3 component; (b) Fourier transform of the d1 demodulated component by spatial 
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filtering of D3; (c) estimated phase image after compensating the interference angle. The mean 

MSE between the true and the estimated phase images is 1.56×10-6. 

The flowchart of the proposed method is illustrated in Fig. 3.3. The input parameters for the 

proposed method are: two recorded holograms with an arbitrary phase-shift, the wavelength   

used to record the hologram, and the pixel size of the camera 
xy .  

 

Fig. 3.3. Flowchart of the proposed algorithm. 

Testing the validity of the proposed method using two holograms was completed by estimating 

the MSE value between the true and estimated phase maps after running the proposed method 20 

times. The only difference between the realizations is the initialization of the phase steps, which is 

a random value between 0–360 deg. While the true phase step was 60 deg, the estimated phase-

step (mean ± standard deviation) value obtained by minimizing the proposed cost function was 

(60.0028 ± 0.0004) deg, showing high accuracy of the calculated phase step. There is an error 

difference of 4.7×10−3 % between the estimated phase step and the ground truth. This accurate 

estimation of the phase-step results on well-estimated phase images, as quantified by the maximum 
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value of the correlation coefficient (a value of 1 computed using the Matlab built-in function corr2 

between the true and estimated phase maps) and the small values of the MSE error (mean = 

1.6×10−6; and standard deviation = 2×10−22). Note that the small value of the standard deviation in 

the MSE value is correlated with the repeatability of the proposed method. Regarding the 

processing time, the computing time was 9.3 ± 1.4 s (mean ± standard deviation) for a phase image 

of 1024 × 1024 pixels and a Windows-based i7-6700 CPU (3.40 GHz) 16.0 GBytes RAM desktop 

computer. Compared with the previous three-hologram-based blind PS-DHM algorithm, the 

proposed method is 8.6× faster in processing time. The average computing time has been reduced 

from 80 s  [41] to 9.3 s. Although the MSE error of the simulated-reconstructed phase image is 

smaller when one uses the algorithm of Ref.  [41] (i.e., three instead of two recorded holograms), 

which is 3.87×10−12 compared to 1.6×10−6, the experimental results of the following section show 

that this difference is not observable. In addition, a simulation study was conducted to investigate 

the influence of the phase step in the proposed two-frame blind PS algorithm. For this study, the 

true phase step was changed from 5 deg to 180 deg, in steps of 5 deg. The error difference between 

the calculated phase step and the true value was (0.0015 ± 0.0012) %, showing the high accuracy 

of the proposed approach to estimate the true phase step independently of its value. Again, this 

accurate estimation leads to well-estimated phase images with a reduced MSE value (mean = 

4.9×10−7). The proposed approach was verified to work for a minimum phase step equal to 1 deg. 

The phase steps higher than 180 deg were not considered since they behave the same. 
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Table 3.1.  Performance of the proposed algorithm under Noise Conditions: SNR 

SNR(dB) 
2  (deg) MSE×10-5 (a. u.) 

5 60.001 ± 4.0×10−3 2 ± 0.60 

10 60.002 ± 1.7×10−3 1.1 ± 0.30 

15 60.002 ± 1.9×10−3 0.61 ± 0.18 

20 60.003 ± 6.0×10−4 0.30 ± 0.09 

25 60.003 ± 3.0×10−4 0.24 ± 0.11 

30 60.003 ± 1.8×10−4 0.18 ± 0.02 

35 60.003 ± 1.3×10−4 0.16 ± 0.01 

40 60.003 ± 7.0×10−3 0.16 ± 0.01 

45 60.003 ± 5.0×10−3 0.16 ± 0.01 

Notation (mean ± standard deviation). 

Finally, the sensitivity of the proposed PS algorithm is evaluated for noisy conditions. For this 

study, it has been considered that the ground truth phase map [Fig. 3.1(a)] is distorted by noise that 

follows a white Gaussian distribution. The resultant noisy phase image is generated by adding the 

noise map to the truth phase image. For a particular signal-to-noise ratio (SNR), 15 noisy phase 

images were generated. Table 3.1 shows the estimated phase step provided by the proposed 

approach and the MSE value between the estimated phase image and the noisy truth map. The true 

phase step was again 60 deg. With the proposed approach, the lowest and highest error difference 

between the true and estimated phase shift was 0.0017% and 0.005%, respectively. The root-mean-

square error (RMSE) between the estimated phase shift and the ground truth one is 0.0026. Based 

on these two values, one concludes that the proposed method is quite robust under noisy 

conditions. Note that the similarity between the true noisy phase map and the estimated phase map 

is still high, with an MSE value smaller than 2×10−5. 

3.3 Experimental validation  

The validation of the proposed method has been performed by reconstructing two QPI targets by 

Benchmark Technologies. Figure 3.4 illustrates the optical setup of the experimental DHM setup. 

The employed PS-DHM system was a Mach–Zehnder interferometer using a rotating glass in the 
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reference wave to generate the phase shifting of the interferential fringes. As an illumination 

source, a laser diode emitting at a wavelength of 535 nm (CPS532, Thorlabs) was used. In the 

object arm, a telecentric imaging system was inserted composed of an infinity-corrected 4×/0.1 

MO (Olympus) and a TL of a focal length of 300 mm. The utilization of a telecentric imaging 

system in DHM ensures that the DHM is shift-invariant without the need to compensate any 

spherical phase factor on the reconstructed phase image  [74,75]. This imaging system generates 

a magnified 6.67× image of the sample under research; this lateral magnification is estimated by 

the ratio between the focal lengths of the TL and the MO, / 6.67TL MOM f f= − =  . To ease the 

reconstruction stage, in-focus holograms were recorded by setting a CMOS camera (acA1920-25um, 

Basler) with 1920 × 1080 square pixels of a 2.4 µm pixel size at the IP of the imaging system. The 

optical setup was fixed to ensure that the real and virtual images of the hologram do not overlap 

in the Fourier domain. Still, these terms overlap with the 0D  component (i.e., our system operated 

in slightly off-axis mode). The condition that the phase-shifting must differ from a multiple of 2π 

is experimentally satisfied by plotting a profile of the interference pattern and rotating the glass 

slide until the positions of the maximum intensity values have been laterally displaced. Note that 

one can implement different approaches to provide the required phase shifting of the holograms, 

such as beam splitters  [71,75,76] or polarization elements  [62,63]. 
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Fig. 3.4. Optical setup of a DHM. The DHM system operates in the telecentric regime. The 

recorded holograms with the needed phase shift are recorded by rotating a glass slide, which is 

mounted on a rotational stage. 

 

In the first experiment, a USAF 1951 target was used. Figures 3.5(a) and 3.5(b) show one of 

the two holograms (h1) needed in the algorithm and its Fourier spectrum (H1), respectively. As 

shown in Fig. 3.5(b), the holograms were recorded in slightly off-axis architecture. It was 

guaranteed that no overlapping occurred between the spectrum of d+1 and d−1, so one can spatially 

filter the d+1 from the d3 term without losing high spatial frequencies (i.e., high-resolution images 

should be reconstructed). Figures 3.5(c)-(d) show the Fourier transforms of the estimated unknown 

components, 0D  , and 3D , respectively. The algorithm only required a maximum of four iterations 

for successfully determining both 0D , and 3D . From the results of the method is found that the 

phase shift between both recorded holograms is 146.78 deg. Once one has estimated the 3D  

component, one can filter the D+1 term and compensate for the interference angle introduced by 

the titled reference wave. After these two processes, the reconstructed 2D phase image and its 3D 

rendering are shown in Fig. 3.5(e). Clearly, Fig. 3.5(e) shows the good quality of the reconstructed 

information being able to distinguish up to the three vertical bars in element 5 of group 7, which 

corresponds to a separation of 2.461 µm, thus being the experimental resolution limit. Note that 
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there is a high agreement between the experimental value and the sparrow resolution limit of the 

experimental imaging system, defined by 0.47λ/ NA = 2.50 µm being NA, the numerical aperture 

of the MO lens  [77]. The resolution limit could be improved by using a MO lens with a higher 

NA. The goodness of the proposed blind two-frame PS algorithm is not affected by the choice of 

the MO lens.  

 

Fig. 3.5. Experimental validation of the proposed method. Panel (a) shows one of the recorded 

holograms; panel (b) corresponds to the FT of the hologram shows in panel (a). Panels (c)-(d) 

illustrate the Fourier transforms of the two unknown components, D0 and D−3. Panel (e) shows the 

2D reconstructed phase map and its 3D rendering. 

Finally, a second experiment is aimed at validating the accuracy of the proposed blind two-

frame PS-DHM approach by comparing its quantitative results to the blind PS-DHM method that 

uses three phase-shifted holograms  [41]. For this comparison, the QPI star target from Benchmark 

Technologies was selected. After applying the corresponding algorithms, the phase steps were 

estimated as: 
2 274.52 =  , and 

2 273.89 =   for the proposed method and the method 

reported in Ref.  [41], respectively. Note that the MSE value between both 
2  estimated is 0.4, 

corresponding to an error difference of 0.23%. Panels (a) and (b) in Fig. 3.6 show the normalized 

phase images reconstructed by both approaches. Note that each phase map has been normalized 
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by each map’s maximum and minimum values. Clearly, there is a high similarity between both 

retrieved phase maps. This high similarity is verified by the high correlation coefficient (correlation 

coefficient = 0.97) and the low value of the MSE (MSE value = 4.3×10−2) between both images. 

The high agreement of both methods is also verified by comparing the measured phase heights at 

different spatial distances of the object (marked by dashed black lines). The profiles for two 

different radial distances from the star’s center (radio equal to 70 µm and 90 µm) are shown in Fig. 

3.6(c). From an observation of these profiles, one can conclude that there is a nearly perfect overlap 

between both estimated phase-height profiles regardless of the object’s frequency. Therefore, the 

accuracy of the proposed algorithm is demonstrated against the previous one which requires three 

phase-shifted holograms  [41]. In addition, it is important to mention that the processing time has 

been reduced from 52 s to 13 s, resulting in an experimental reduction of the processing time by a 

factor of 4. Thereby, the proposed method requires a smaller number of phase-shifted holograms 

and less processing time, making a PS-DHM approach more suitable for live imaging and video-

rate QPI visualization. Finally, the phase map of the star target was estimated using the approach 

described in Ref.  [62] and the estimated phase step from this method as the global phase value. 

The correlation coefficient between the estimated phase map presented here [Fig. 3.6(a)] and the 

one obtained by Ref.  [62] is 0.99, verifying the high similarity of the phase step. 
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Fig. 3.6. Experimental comparison of the proposed method using a Star target. Panels (a) and (b) 

show the normalized phase image of the star using 2 holograms and 3 holograms, respectively. 

Panel (c) shows the phase-height profiles of the reconstructed phase maps at two different 

positions, r1 = 72 µm and r2 = 90 µm, radial positions measured from the center are marked in panel 

(b). In panel (c), the red and blue profiles correspond to the reconstructed phase profiles using 2 

and 3 raw holograms, respectively. The area of the star is 358 × 358 µm2. 

 

3.4 Conclusion 

In this chapter, a fast-iterative PS-DHM method based on the demodulation of the different 

components of phase-shifted holograms was presented. The proposed blind method only uses two-

frame holograms with an arbitrary phase shift. The main advantage of the proposed method is the 

reduction in both the acquisition and computation time; the final phase image is restored using 

33% fewer data since only two phase-shifted holograms are needed, as opposed to the standard 

three-frame PS algorithms. The processing time of the proposed approach was compared to the 

previous three-frame approach reported in  [41]. The simulated and experimental results show that 

the processing time has been improved by a factor of 8.6 and 4 times, respectively, without 

reducing the phase reconstruction accuracy. The only requirement of this approach is that the PS-

DHM system must operate in slightly off-axis regime without overlapping between the spectrum 

of the d±1 terms. Regarding the limitation of the proposed algorithm in terms of the intensity 

between the object and reference beams, it is predicted that the proposed algorithm will always 
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work as far as the maximum peaks of the D±1 terms in the hologram spectrum are distinguishable. 

Some preliminary simulated results (not shown here) confirm that the proposed blind PS approach 

is suitable for an amplitude difference of 20× between the object and reference beams, which 

provides a hologram with fringes’ contrast as low as 0.1. A more detailed investigation of this 

difference will be reported in future work. The simulated and experimental results show that the 

proposed approach provides accurate quantitative phase images paving the route for video-rate PS-

DHM in live and material sciences. Table 3.2 provides a summary of the advantages and limitations 

of the proposed method. More information about the implementation for Python and MATLAB 

can be found online in the public repository, https://oirl.github.io/Blind-PS-DHM-methods/. 

Table 3.2. Advantages and limitations of the proposed blind phase-shift method for two raw 

holograms. 

Advantages Limitations 

✓ Two holograms are required with an 

arbitrary and unknown phase-shift. 

✓ The processing time is reduced 8.6 times 

in simulation data. 

✓ The processing time is reduced 4 times in 

experimental data without reducing the 

accuracy of the phase and amplitude 

reconstruction maps. 

 

➢ Just operate for slightly off-axis without 

overlapping between the D±1. 

➢ The optical configuration of the DHM 

system should be telecentric 

➢ The phase-shift between the two 

holograms cannot be a multiple of 2π. 

 

 

https://oirl.github.io/Blind-PS-DHM-methods/
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4. FAST-ITERATIVE COMPUTATIONAL RECONSTRUCTION ALGORITHM 

FOR OFF-AXIS DIGITAL HOLOGRAPHIC MICROSCOPY OPERATING IN 

TELECENTRIC REGIME AND IMAGE PLANE  

 

This chapter presents a reconstruction algorithm to reconstruct the complex object information for 

an off-axis DHM operating in the telecentric regimen and IP. Because DHM systems can be 

utilized for quantitative analysis of biological systems and diagnostics of diseases, its accuracy for 

retrieving the phase information is without doubt a factor to be followed closely. The DHM 

technology relies on computational approaches for retrieving the amplitude and phase sample 

distribution. The mandatory numerical steps used in off-axis DHM technique are spatial frequency 

filtering  [44,78]  of the hologram spectrum and the compensation of the tilt between the reference 

and object waves, see Chapter 2 for more details. Depending on the optical configuration of the 

DHM system, numerical propagation and/or aberration correction may be required. The DHM 

computational processing should be performed automatically and adaptable to different sample 

and imaging conditions to increase its applicability in biomedicine. An inaccurate compensation 

of the tilt between the reference and object waves could introduce errors in the quantitative phase 

measurements. One straightforward compensation method for precise extraction of the phase is 

manually selecting the tilt of the reference wave. This approach requires the manual generation of 

several reference waves until obtaining a phase reconstruction without sawtooth fringes. Selecting 

the best-reconstructed phase image can be a challenging task for the end-user in DHM since it 

depends significantly on the user's expertise. Several research works have focused on developing 

computational approaches to automatically reconstruct phase images without any phase 

perturbations automatically. In 2004, Carl et al. proposed an automatic method for reconstructed 

phase images in an off-axis DHM system  [79]. In their method, the parameters to compensate the 

tilt and the spherical wave introduced by the non-telecentric configuration of the DHM system 
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were estimated from a recorded hologram in which no sample was used (e.g., blank hologram). 

This method was implemented following an iterative process in which the optimized parameters 

were obtained by minimizing the standard deviation of the unwrapped reconstructed phase image 

in the blank hologram. The major inconveniences of this method are the computational time, the 

need for a blank hologram, the user’s input of the size of the object spectrum, and the need for an 

unwrapping method. The drawbacks of a blank hologram, and the use of an unwrapping method 

were overcome in an upgraded version of this method  [52] , and the estimation of the size of object 

spectrum can be overcome by thresholding the spectrum of the hologram  [78,80]. The main 

difference between these two approaches is the estimation of the tilt parameters. Whereas the 

authors in Ref.  [78] used a centroid-based algorithm to determine the tilt parameters, Trujillo et 

al. generated multiple tilted plane waves with different parameters and searched for the 

reconstructed phase image without sawtooth fringes [22]. Whereas these algorithms aim to correct 

phase aberrations due to the interference tilt and the spherical wave introduced by the DHM system 

operating in non-telecentric configuration, automatic reconstruction phase methods based on 

polynomial curve fitting can correct high-order aberrations. In 2006, Colomb et al. proposed an 

automatic method in which the coefficients of the phase aberrations were estimated by fitting 

selected line profiles into polynomial curves  [81]. Originally, these line profiles were extracted 

from regions in the unwrapped reconstructed phase image where the sample information was 

constant. To avoid the user’s input in selecting these flat regions, Nguyen et al. proposed the use 

of a convolutional neural network (CNN) to perform automatic background region detection  [82]. 

The performance of those fitting-based automatic methods are significantly dependent on the size 

of the flat regions as well as the performance of the unwrapping algorithm. In 2014, Liu et al. 

avoided these issues by proposing a nonlinear optimization procedure to estimate the Zernike 
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coefficients of the phase aberrations  [83]. These coefficients were estimated by maximizing the 

spectral energy metric of a single recorded hologram. The method described in Ref.  [83]. works 

for DHM systems operating in a non-telecentric regime. In this Chapter, we present a different 

type of nonlinear optimization procedure to provide fast, accurate, and automatic compensation of 

the interference tilt in QPI-DHM operating in telecentric mode. The proposed approach is based 

on minimizing a cost function to provide precise phase measurements in off-axis DHM systems 

operating in telecentric regime. The proposed method has been implemented in a user-friendly 

tool, and it is available at https://oirl.github.io/tuDHM/. We intend to offer a more accessible 

reconstruction tool, which could increase the applicability of DHM systems. The developed 

software tool will allow researchers in life and material sciences, even those without computational 

reconstruction knowledge, to analyze their results accurately, leading to new discoveries. This 

Chapter follows the next structure. Section 4.1 presents the theoretical framework of the proposed 

automatic algorithm to reconstruct quantitative phase images with minimum phase distortions. In 

Section 4.2, describes the proposed method. Section 4.3 is devoted to validating the method 

experimentally. Finally, Section 4.4 summarizes the main achievement of this procedure. This 

work has been published in Applied Optics  [84] and presented at the 2021 OSA Imaging and 

Applied Optics Congress  [85].  

4.1 Theoretical framework  

In DHM systems, the compensation process is a key step in reconstructing aberration-free 

quantitative phase images. The mandatory numerical steps used in off-axis DHM technique 

operating in telecentric regime are the spatial frequency filtering  [44,78] of the hologram spectrum 

and the compensation of the tilt between the reference and object waves. Equation (2.10) represents 

the filtered hologram spectrum, which is the spectrum of the sample displaced at the spatial 

https://oirl.github.io/tuDHM/
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frequencies, (sinθx/λ, sinθy/λ) being θ = (θx, θy) the angle of the reference beam to the optical axis, 

assuming that the center of the object beam coincides with the optical axis. The amplitude 

distribution scattered by the sample can be obtained as the absolute value of the inverse Fourier 

transform of Eq. (2.10). However, the phase distribution requires the compensation of the lateral 

displacement introduced by the tilted reference beam. Thus, for QPI-DHM measurements, one 

should compensate the reference tilt. This compensation can be performed in both real and Fourier 

space. To compensate the reference angle using the Fourier space, the filtered hologram spectrum 

[Eq. (2.10)] should be centered on a new matrix. In the real space, the reference angle is 

compensated by multiplying the inverse Fourier transform of Eq. (2.10), ( )Fh x , and a digital 

replica of the reference wave, ( )Dr x , commonly called the digital reference wave. If the sensor 

plane coincides with the IP of the microscope, the reconstructed phase image ( )o x  is given by 

the angle of 

 ( ) ( ) ( )D Fo r h= x x x  (4.1) 

Otherwise, when the hologram is not recorded under IP conditions, one must numerically 

refocus the complex information of the object reconstructed by [Eq. (2.12)] via angular spectrum 

or Fresnel transform  [54]. If the hologram is recorded onto the surface of a discrete sensor with 

M N square pixels of 
xy side, the discrete digital reference waver ( , )Dr m n is expressed as 

 ( )
,

2
( , ) exp sin sin ,D x y xy

m n

r m n i mM nN


 


 
= +  

 
  (4.2) 

where ( , )m n  are the discrete lateral coordinates of the sensor. As Eq. (4.2) shows, the computation 

of the numerical digital reference wave requires information about the optical setup, and precise 
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knowledge of the interference angle ( , )x y = . For the case of a titled uniform plane wave, this 

interference angle is estimated as 

 0 max1sin ,x

xy

u u

M


 −

 −
=    

 (4.2) 

and 

 0 max1sin ,y

xy

v v

N


 −

 −
=    

 (4.3) 

where 0 0( , )u v , and max max( , )u v  are the lateral pixel positions of the center of the DC and +1 terms 

in the Fourier domain, respectively. The angle of the reference wave is determined by the 

wavelength of the light source, the features of the digital sensor, and the subtraction between the 

pixel positions of the DC and the +1 terms. The DC term is always placed at the center of the 

Fourier spectrum, being equal to 0 ( / 2) 1u M= + , and 0 ( / 2) 1v N= + . Therefore, the only 

parameter to be known is the position of the maximum peaks in the +1 term, max max( , )u v , for 

estimating Eq. (4.2) and Eq. (4.3). If the frequency of the plane reference wave coincides with an 

integer pixel position [Fig. 4.1(a)], the values of max max( , )u v  can be determined directly by 

estimating the maximum peak in the +1 term. However, experimentally, this condition may not 

always be satisfied due to the discretization of the continuous complex distribution provided by 

the sensor. Figure 4.1(b) shows the most common experimental scenario where the maximum peak 

of the +1 term does not accurately represent in an integer position, leading to an imprecise 

compensation of the reference wave. In this case, one should find the optimal non-integer discrete 

position of the maximum peak. 
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Fig. 4.1. Representation of the center position of the +1 term, (umax, vmax). (a) The frequential 

position of the maximum peak coincides with an integer value, and (b) the frequential position of 

the maximum peak does not coincide with an integer position. The latter case is the most common 

in experimental DHM systems. The green circle denotes the position of the maximum peak to 

compute the digital reference wave and reconstruct accurate phase images. 

 

4.2 Proposed method  

This section is devoted to describing our approach to finding the optimized non-integer values of 

max max( , )u v . Different approaches have been proposed to solve this problem. For instance, in 2017, 

Trujillo et. al., estimated the optimized values of max max( , )u v  using an iterative approach based on 

double nested loops  [80]. In particular, Trujillo’s method was based on a mean-thresholding-and-

intensity-summation metric. For each value of max max( , )u v , including non-integer values, the 

authors compute the digital reference wave ( )Dr x , reconstruct the phase image, generate the binary 

phase image using a fixed threshold and sum all pixels in each binary image. For the optimal values 

of max max( , )u v , no phase perturbations (i.e., aberration-free) should appear in the reconstructed 

phase image (or minima phase perturbations in the presence of high-order aberrations such as 

astigmatism and coma). Therefore, its binary image should be white (i.e., all pixels in the binary 

phase image should be 1). Nonetheless, if the values of max max( , )u v  are not the optimal ones, the 

reconstructed phase image is distorted by a residual plane tilt and, therefore, its binary image is a 
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combination of black and white pixels. The higher the number of black pixels in the binary phase 

image, the higher the residual plane tilt.  

 

Fig. 4.2. Reconstructed phase images of a section of the head of a Drosophila melanogaster fly for 

different values of (umax, vmax). Values are reported in the upper right corner. 

 

Figure 4.2(a) shows the reconstructed phase images of a section of the head of a Drosophila 

melanogaster fly using different values of the position of the maximum peak, max max( , )u v , to 

generate the digital reference wave. All figures illustrate non-optimal compensations, 

corresponding to erroneous positions of max max( , )u v . However, at the center on Fig. 4.2(a), the 

optimal compensation of the reference wave is shown. The values of max max( , )u v  are reported in 

the upper right corner of the reconstructed phase images. As expected, the best-reconstructed phase 

image should provide a free-aberration phase. In other cases, reconstructed phase images with 
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perturbations (i.e., non-optimal phase reconstructions) have a higher number of dark pixels. These 

dark pixels are related to the off-center in the spectrum of the non-optimal phase reconstructions.  

The difference between Ref.  [80] and the proposed method is the implementation of the search 

for the optimal values of max max( , )u v . Trujillo et al. implemented their approach using nested loops 

to find the values of max max( , )u v by searching the maximum number of pixels equal to 1 in the 

binary image  [80], Fig. 4.2(b). Conversely, in this work, the implementation is based on 

unconstrained nonlinear optimization algorithms, based on the minimization of a cost-function 

which is intrinsically faster than nested loops. The values of max max( , )u v  are found by searching 

the minimum number of pixels equal to 0 (e.g., black pixels) in the binary image. Therefore, the 

proposed cost function tracks the number of black pixels, 

 
,

( )o

m n

J M N binarization =  −  . (4.4) 

The first term in Eq. (4.4) is the maximum possible number if the reconstructed binary phase 

image has no perturbation. The second term corresponds to the summation over all the pixels of 

the reconstructed binary phase image, providing the highest value when the reconstructed phase 

image is optimal, it entails the lowest value of the cost-function J . The binary phase images for 

the Drosophila melanogaster and their resulting cost-function is illustrated in Fig. 4.2(b), the value 

of the cost-function is reported in the top right corner for each binarized phase images. The plot 

for the cost-function value with respect to the values of max max( , )u v  is shown in Fig.4.3. The reader 

can notice that the cost-function J contains a well-defined global minimum (blue rectangle in Fig. 

(4.3)). For non-optimal reconstructed phase images, the value of the second term in Eq. (4.4) starts 

to decrease due to the presence of dark values, resulting in a cost function with a value higher than 
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its minimum. Whereas the binary images for non-optimal reconstructions show a higher number 

of dark pixels, the binary image for the optimal compensation is almost white, demonstrating that 

the best phase reconstruction provides the minimum cost function value [Eq. (4.4)].  

 

Fig. 4.3. 3D surface plot for the cost-function J [Eq. (4.4)] vs different values of (umax, vmax). These 

values were obtained for a Drosophila melanogaster fly. 

The block diagram of the proposed method is shown in Fig. 4.4. The block diagram comprises 

four main stages: input parameters, spatial filtering, compensation, and output. The input 

parameters of the proposed algorithm are an image-plane hologram ( )h  recorded in a telecentric 

architecture and IP, the source’s wavelength ( ) , and the pixel size 
xy . The second stage is the 

spatial filtering of the +1 order. This filtering is performed by applying a circular mask filter and 

multiplying for the Fourier transform hologram. The center for the circular mask is estimated by 

the integer position of the maximum peak of the +1 term in the hologram spectrum. The radius of 

the circular mask filter depends on the magnification and numerical aperture of the DHM 

system  [38]. Nonetheless, without knowing this information, the radius of the circular mask can 

be assumed to be equal to 
2 2

0 0

0 max 0 max1/ 3 u u v v− + − . The next step is the compensation of the 
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tilt of the plane reference wave. This stage is split into two parts: the setting of the cost function 

and its minimization. In MATLAB we have used the built-in function fminunc. This function finds 

a local minimum of an unconstrained multivariable function using the quasi-Newton or trust-

region algorithms. The scope of this research work is the investigation and validation of an 

automatic reconstruction approach for DHM that requires the minimum number of user inputs 

(e.g., hologram, wavelength, and pixel size). Because the trust-region algorithm requires a gradient 

function as the input of the minimization process, we have implemented the quasi-Newton 

algorithm. This work does not thoroughly study the minimization solver and algorithm. Note that 

the selection of a different solver and algorithm, and the use of parallel computing may yield 

reduced response time; however, that investigation is beyond the scope of this research. 

The input parameters of the fminunc function are the cost-function [Eq. (4.4)], the integer 

position of the maximum peak in the filtered hologram spectrum, max max( , )u v , and a set of 

optimizations options. The optimization options are the maximum number of iterations allowed 

and a termination tolerance on the cost function. The tolerance has been set to 10−3 since a lower 

tolerance value does not improve results. Regarding the number of iterations, the steps of the 

proposed method are repeated until convergence. Convergence is defined when the norm of the 

gradient of the cost-function is smaller than the tolerance. For the tested holograms, convergence 

is achieved within the first five iterations. The number of iterations is highlighted dependent on the 

initial value in the minimization approach. Since the hologram has been recorded in a telecentric-

based DHM system and the reference wave is a tilted plane wave, the center integer position of 

the +1 term, 0 0

max max( , )u v , is the best candidate to start the search of the optimal non-integer spatial 

frequency max max( , )u v  since the optimal values should be close to the integer position of the +1 
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term. Nonetheless, in the event of not achieving convergence, we have set 30 iterations as the 

maximum number of iterations allowed before the algorithm breaks the execution. 

The estimation of the cost function [Eq. (4.4)] requires the binarization of the reconstructed 

phase image that depends significantly on the digital reference wave via the position max max( , )u v . 

The binary image is obtained by applying the MATLAB built-in function imbinarize to the 

reconstructed phase image. The imbinarize function uses Otsu’s method, and its input parameter 

is the reconstructed phase image. In this study, the default threshold value of Otsu’s method is used 

since it provides the best-reconstructed phase image with minimum phase perturbations. For each 

iteration of the minimization process, the algorithm finds a pair of possible values max max( , )u v , 

generates the corresponding digital reference wave, and computes the reconstructed phase image 

reconstruction. This resulting phase image is binarized, and the cost function J is computed. The 

proposed algorithm is an iterative method, starting with the integer position of the maximum peak 

in the +1 term, 0 0

max max( , )u v until finding the optimal non-integer position. Once the optimal values 

of max max( , )u v  are estimated, the final phase image can be reconstructed without phase aberrations 

due to the interference tilt. It is important to remember that the amplitude image can be estimated 

after the spatial-filtering step. 
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Fig. 4.4. Block diagram of the proposed method. 

 

4.3 Experimental validation 

To evaluate the proposed method's performance, we have compared the performance of our 

method to the one from nested loops  [80] and centroid-based  [78] algorithms. For this 

comparison, we have used three different optically-thin samples, a USAF target of Benchmark 

Technologies, a transverse section of the head of a Drosophila melanogaster fly, and glioblastoma 

cells. Figure 4.5. shows the respective reconstructed phase images. For the phase USAF target, we 

have measured the average phase and its standard deviation of the elements in Group 6 to be equal 

to (2.00 ± 1.90) rad for the nested loops algorithm, (1.32 ± 0.17) rad for the centroid-based 

algorithm, and (1.83 ± 0.16) rad for the proposed method. Regarding manufacturer specification, 

the nominal phase value of these elements is 1.84 rad, considering (= 2π(n − 1)t/λ) for a wavelength 

of λ = 532 nm, thickness of t = 300 nm, and refractive index of n = 1.52. The error difference 

between the experimental and nominal phase values is 0.54%, verifying the high accuracy of the 

proposed method to quantify phase measurements. The error difference for the nested loops and 

centroid-based algorithms is 8.7% and 28.3%, respectively, being higher due to the wrapped phase 

values. It is important to remember that, in biological imaging, phase measurements enable the 
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estimation of biological parameters such as the integral intracellular refractive index  [86]. 

Therefore, accurate phase measurements are imperative since variations in phase values are used 

as a diagnostic and measuring tool in biological research.  

The accuracy of the performance of each compensation method is estimated by binarizing its 

reconstructed phase image and counting the ratio between the total number of white pixels versus 

the total number of pixels in the reconstructed phase image. Considering that the best reconstructed 

phase image’s binarized phase image has a very minimal or no dark pixels at all. For example, in 

the USAF target, the image has 61024 1024 1.408 10 =  , and the binarized phase image has 

59.96 10  white pixels, resulting in 95% of the total image (i.e., the performance of the method is 

0.95). These values are reported in the left bottom corner of each phase image in Fig. 4.5. Based 

on these values, the reconstructed phase images estimated by our proposed method provide the 

best reconstructed phase images without residual phases. This high performance is achieved 

because our proposed method achieves high precision in calculating the position of max max( , )u v . 

The values for max max( , )u v  are reported under each phase image. The phase measurements are 

strongly dependent on ambient fluctuations and the experimental implementation. The maximum 

number of the decimal digits in the max max( , )u v  values should be the one that generates a trustable 

reference wave and provides accurate phase measurements.  



 

54 
 

 

Fig. 4.5. Reconstructed phase images of the phase USAF target of Benchmark Technologies (first 

row), a section of the Drosophila melanogaster fly (second row), and glioblastoma cells (third 

row) for three different algorithms: nested-loops-based algorithm (first column), centroid-based 

algorithm (second column), and the proposed method (last column). 

Regarding the processing time, the proposed method was evaluated using a Windows-based i7-

8700 K CPU (3.70 GHz) 16.0 Gbyte RAM desktop computer. The average processing time of our 

method is 1.55 s for holograms of 1024 × 1024 pixels, and 2.95 s for a hologram of 2048 × 2048 

pixels. Note that the processing time has been reduced by a factor of 2.3× compared with the 

centroid-based algorithm  [78]. Regarding the nested-loops-based algorithm  [80], which is the 

slowest algorithm in this comparison, our method is around 40 × −90× faster than the nested-loops-

based method. The processing time is reported in the upper right corner for each phase image. 
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Based on this analysis, the proposed method provides precise values of umax and vmax, and precise 

phase measurements without phase perturbations.  

To finalize the discussion of the proposed method, Fig. 4.6 shows the behavior of the 

reconstructed phase regarding the number of decimal digits (e.g., 1, 2, 4, and 6 decimal digits) to 

report the max max( , )u v  values. By default, the output values of the MATLAB fminunc function have 

six decimal digitals. The values max max( , )u v are reported in the top right corner of the reconstructed 

phase images in Fig. 4.6. Testing the accuracy of the reconstructed phase images based on the 

precision of the values of max max( , )u v  has been performed by comparing the reconstructed phase 

images and measuring the mean square error (MSE) between the reconstructed phase image using 

6 decimal digits and the corresponding one using less digits. The MSE values are reported in the 

bottom left corner of the reconstructed phase images in Fig. (4.6). As expected, the highest the 

precision of the values max max( , )u v , the minimum the error in the reconstructed phase image. 

However, this statement does not address the question of how many decimal digits are sufficient. 

Because phase measurements are strongly dependent on ambient fluctuations and the experimental 

system, we have defined a trustable digital reference wave (e.g., precise reference wave) as the 

one that provides phase measurements with an error smaller than the phase divergence of the 

experimental system. Among the different DHM systems, common-path DHM systems provide a 

phase error in the order of 0.0003 rad  [87]. Based on these phase errors and the reported MSE 

values in Fig. 4.6, we conclude that we need at least three decimal digits in the values of 

max max( , )u v  to generate a trustable reference wave and provide accurate phase measurements 

across any DHM implementation. 
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Fig. 4.6. Illustration of the accuracy of the reconstructed phase images based on the precision of 

the (umax, vmax) values. 

  

4.5 Conclusions 

This work presents an automatic and fast method to reconstruct the quantitative phase distribution 

of unstained biological samples with a minimum or no phase perturbation. The proposed method 

compensates for the tilt between the reference and object waves in off-axis DHM systems 

operating in telecentric configuration. The input parameters in our method are an in-focus 

hologram, the wavelength of the source, and the pixel size. The limitations of the proposed 

technique are: (1) one cannot reconstruct phase images of defocused holograms; (2) the approach 

only works for off-axis DHM systems operating in the telecentric regime; and (3) there is no 

compensation of high-order aberrations. Compensation for high-order aberrations, such as 

astigmatism, and coma, is required to ensure accurate quantitative phase analysis. Future work will 

address these limitations to provide a more general reconstruction approach to ensure accurate 

quantitative phase analysis applicable to any off-axis DHM system. In addition, future work will 

also investigate the applicability of the technique for optically thick samples by integrating our 

method with phase unwrapping methods. Among the hallmarks of the proposed approach is the 

high accuracy in estimating the parameters of the digital reference wave. The interference angle is 

calculated precisely, within three decimal places, without compromising the computation time. 

The proposed method performs 40× faster than a previously reported automatic approach based 
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on nested-loops and 2.3× faster than the centroid-based algorithm. The experimental results show 

that the proposed approach provides quantitative phase images without phase perturbations. 

Although the proposed method has been validated for transparent biological samples, it can also 

be applied for reflective-based DHM systems. A ready-to-use version of the MATLAB GUI plugin 

(Appendix A provides short user manual), the source code, example data sets, and a short user 

manual can be found online. All resources will be posted publicly on GitHub  [88]. 

Table 4.1. Achievements and limitations of the proposed method. 

Achievements Limitations 

➢ Automatic method 

➢ Quantitative aberration-free quantitative 

phase images for off-axis telecentric-

based DHM systems operating in IP. 

➢ Accuracy of three decimals for the 

interference angle 

➢ 40× faster than the nested-loop 

algorithm 

➢ 2.3× faster than the centroid-based 

algorithm 

➢ Not operational for defocused 

holograms (e.g., DHM operating 

outside the IP). 

➢ Not operational for non-telecentric-

based DHM systems.  

➢ Samples must be optically thin. 
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5. FULL ABERRATION COMPENSATION METHOD FOR NON-IMAGE-PLANE 

OFF-AXIS DIGITAL HOLOGRAPHIC MICROSCOPY 

 

One of the main attributes of DHM is its capability to focus computationally at different transverse 

planes within the sample’s volume from a single off-axis hologram. This advantage of DHM is 

possible because of the ability to record the complex amplitude information of inspected objects 

within an intensity-like hologram image. This advantage makes DHM systems suitable to live cell 

imaging applications, such as particle tracking to determine the three-dimensional location of 

specimens such as cells and bacteria  [89–91]. Other application examples of such property are the 

study of the motility of biological samples  [92–94], the tracking of gold nanoparticles  [95], and 

polystyrene  [35] or particle tracking to allow the characterization of fluids  [96].  

Regardless of the DHM systems, the applicability of DHM technology can be hampered by the 

inaccurate reconstruction of the phase images due to the presence of phase aberrations, such as 

tilting, defocus, spherical and high-order aberrations. These aberrations distort the phase images, 

generating unreal phase information that misleads the measurement of the thicknesses and 

refractive index. In DHM, first-order (e.g., defocus) aberrations appear when the out-focus 

holograms are reconstructed. Out-of-focus holograms are those holograms in which the sensor 

plane is different than the image plane of the DHM imaging system or the transverse section of the 

sample is different than the object plane of the MO lens (e.g., the sample is not placed at the 

working distance from the MO lens). In other words, the sample and the sensor planes are not 

located in conjugated planes (e.g., no direct imaging processing between both planes). Under this 

experimental condition, one reconstructs out-focus amplitude and phase images, disallowing the 

direct observation and analysis of samples. Several computational autofocusing methods have 

been proposed in DHM to correct the defocus aberration, reconstructing in-focus amplitude and 
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phase images. Most of those approaches use sharpness quantification criteria for determining the 

correct propagation distance (e.g., the axial separation between the recorded out-of-focus plane 

and the image plane)  [97–100]. Generally, those approaches produce a stack of images 

amplitude/phase images with different propagation distances. A sharpness quantification metric is 

evaluated for each reconstructed amplitude/phase image  [101] to select the optimal propagation 

distance within the stack of reconstructed images. 

The integrated amplitude modulus (AMP)  [97], the Tamura coefficient  [102], energy of 

Laplacian  [103], normalized variance  [104], and Tenengrad variance  [105], are counted among 

the state-of-the-art sharpness quantification metrics. The main limitation of these strategies is they 

require the generation of multiple reconstructed amplitude/phase images with different 

propagation distances using nested loops to search for the sharpest reconstructed amplitude/phase 

images. The selection of the sharpest reconstructed amplitude/phase images is highly dependent 

on the range (e.g., maximum and minimum value) and step of the propagation distances, leading 

to methods with high computational effort and processing times due to the fine search of the 

propagation distance parameter. Note that the correct selection of the minimum, maximum, and 

step values for the propagation distances are fundamental to ensure that in-focus amplitude/phase 

images are properly reconstructed.  

Other approaches based on the learning-based models have been presented to avoid the user’s 

input in selecting the range and step for the propagation distance. For instance, in 2017, Pitkäaho 

et al, presented one of the first applications of deep learning for DHM, demonstrating the use of 

convolutional neural networks for autofocusing strategies  [106]. One year after, Lam et al, 

implemented a machine learning approach based on a convolutional neural network to predict the 
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best/focus plane for amplitude and phase objects in DH  [107] (e.g., DHM systems without the 

imaging system – no MO and TL lenses in the object arm). 

This chapter presents an accurate and automatic reconstruction method for out-focus pure phase 

objects. The proposed autofocusing DHM method is based on the minimization of two cost 

functions. The minimization of the first cost function is responsible for estimating the best focal 

plane (e.g., propagation distance), reducing the computational effort of conventional nested loop 

approaches. The second cost function compensates for the tilt interference angle, providing 

quantitative phase images with reduced phase aberrations. This second cost function is the same 

one as implemented in Chapter 4. The synergetic minimization of both cost functions allows us to 

reconstruct in-focus quantitative amplitude and phase distributions in off-axis DHM systems 

operating in telecentric regime. To the best of our knowledge, this is the first work in which the 

autofocusing and accurate compensation of the interference angle introduced in off-axis DHM 

systems are tackled simultaneously. The Chapter is organized as follows. Section 5.1 presents a 

brief framework for out-focus DHM imaging reconstruction. In Section 5.2, the proposed method 

is described and compared with a nested-loop autofocusing approach. Experimental results and 

Conclusions are reported in Sections 5.3 and 5.4, respectively.  

 

5.1 Theoretical background: out-focus DHM imaging reconstruction 

In DHM, the reconstruction procedure consists of recovering the complex object information from 

the recorded hologram [Eq. (2.4)]. In off-axis DHM, the complex amplitude distribution of the 

object is given by Eq. (2.11). Note that, in this chapter, the hologram is not recorded under IP 

conditions (e.g., camera not placed at the back focal plane of TL or the sample not placed at the 

front focal plane of the MO lens), needing to numerically refocus its complex information via 

angular spectrum  [108] and the Fresnel transform  [109]. The selection between the angular 
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spectrum algorithm and the Fresnel transform method depends on the propagation distance and the 

optical parameters of the DHM system, including the source’s wavelength (λ), the dimension of 

the camera’s sensor (e.g., M ×N pixels) and the pixel size (e.g., Δxy)  [110]. As the authors shown 

in Ref.  [110], the propagation distances commonly used in most DHM systems required the 

angular spectrum approach. Following the Huygens' principle, the angular spectrum approach 

represents a complex amplitude of a wavefront as a combination of infinite plane wavefronts. 

Therefore, the in-focus complex amplitude distribution, ˆ ( , )IPu x y , can be estimated as 

 ( ) 2 2 22
, , IFT FT{ ( , ;0)}exp 1 ( ) ,

z
z h x y i u v


  



  
 = − +  

  
 (5.1) 

where z is the propagation distance in the image space, (u,v) are lateral spatial frequencies, and 

IFT[·] and FT[·] are the 2D inverse Fourier transform and the Fourier transform, respectively. In 

Eq. (5.1), the ˆ( , ; )u x y z  complex distribution is the reconstructed object wavefront after filtering 

the +1 term from the off-axis hologram and compensating for the titled reference wavefront [Eq. 

(4.3)]. The phase map of ˆ( , ; )u x y z  distribution, ˆ( , ; ) x y z , should have been compensated for any 

quadratic phase factor. Whereas the in-focus amplitude object distribution is estimated by the 

absolute square modules of Eq. (5.1), the in-focus phase object information is given by the angle 

of Eq. (5.1). It is important to mention that Eq. (5.1) only compensates the first-order aberration 

(e.g., defocus) introduced by recorded out-of-focus hologram. Note that the object phase 

distributions may be distorted by additional aberrations, such as the well-known spherical 

aberration introduced by non-telecentric imaging configurations and high-order aberrations (e.g., 

coma, astigmatism).   

To finish this section, let us emphasize more the propagation distance (z). Technically, out-of-

focus holograms refer to such holograms in which the object plane and the image plane are not 
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conjugated. Based on this definition, there are two possibilities. The first one is related to the 

optical configuration in which the sample is placed at the working distance of the MO lens (e.g., 

the object plane is the front focal plane of the MO lens), but the sensor’s plane is different than the 

image plane (e.g., the back focal plane of the TL lens). In this case, the propagation distance z is 

the axial separation between the image and sensor planes. The second scenario is where the sensor 

plane coincides with the image plane, setting the object outside the front focal plane of the MO 

lens. This configuration is more suitable for commercial DHM prototypes, and particle tracking 

applications since the 3D object is moving within the imaging volume. In this scenario, the 

propagation distance z used in Eq. (5.1) is related to the axial separation between the front focal 

plane of the MO lens and the actual object position and the axial magnification of the DHM system. 

The optical imaging configuration of a telecentric-based DHM system follows a 4f system between 

the MO and TL lenses. In other words, the axial separation between the MO and TL lenses is equal 

to the sum of their focal length, meaning that the back focal plane of the MO lens coincides with 

the front focal plane of the TL lens (Fig. 2.4). In this configuration, one finds a plane wave in both 

object and image spaces. One of the main features of this afocal configuration is that the lateral 

magnification ML is the same for any transverse plane within the image space. Also, in this 

configuration, the axial magnification is given by the square of the lateral magnification, MA = 

ML
2. This axial magnification must be considered when inserting the z value. The z value used in 

Eq. (5.1) should be equal to z = ML
2×zobj being zobj the axial distance between the front focal plane 

of the MO lens and the actual object position (e.g., how far the sample is from the front focal plane 

of the MO lens). For instance, if an object is located at a distance equal to 15 µm from the front 

focal plane of the MO lens, and the lateral magnification of the 4f DHM system is 40×, one 
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reconstructs the in-focus information using Eq. (5.1) and a propagation distance equal to z = 15 × 

402 =24,000 µm.  

5.2 Full aberration compensation proposal: DHM autofocusing and tilting angle phase 

compensation for telecentric setups 

This section presents a two-stage computational approach for reconstructing phase images from 

raw out-of-focus holograms. In the first stage of the proposed method, we have implemented a 

minimization algorithm to determine the best in-focus plane of any specimen automatically (e.g., 

find the z value in Eq. (5.1)). The second stage focuses on the reconstruction of phase images with 

reduced phase distortions by compensating the interference angle of the off-axis configuration. 

This second stage is a replica of the proposed cost function discussed in Chapter 4 that tracks the 

minimum number of phase discontinuities in the reconstructed phase image. 

The cost function in the first minimization algorithm uses a sharpness metric (e.g., a function 

that quantifies the grade of focusing in an image  [103]) to determine the best in-focus plane. The 

common principle of these sharpness functions is that in-focus images are those images in which 

their object’s edges are well-defined. Therefore, one can estimate the optimal value of the 

propagation distance by analyzing the sharpness function on the amplitude distribution provided 

by Eq (5.1) for different values of the propagation distance and searching for the propagation 

distance that provides a maximum or minimum value in the sharpness metric. A singularity of 

DHM is that the in-focus amplitude image of pure phase objects is uniform (e.g., equal to 1), 

making only the edges of the objects on the amplitude images visible when the objects are out of 

focus. The most common five sharpness metrics for pure phase objects are: (1) AMP; (2) the 

Tamura coefficient (TC)  [102], the energy of Laplacian (EL)  [103]; (4) the normalized variance 

(NV)  [104]; and (5) Tenengrad variance (TV)  [105]. Table 5.1 shows the definition of these 
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sharpness functions. Note that in this table, ˆ ˆ=IP IPa u  refers to the reconstructed amplitude image 

for a given z value, and ˆ
IPa and ( )ˆ IPa  are the mean and standard deviation values of the 

reconstructed amplitude image. Also, in Table 5.1, ( , )m n  are the discrete pixel coordinates, and 

,x yS S  and L are filters. 

Table 5. 1. Definition of the studied sharpness metrics 

Sharpness 

curve function 

Definition 
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,
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We have evaluated the behavior of these sharpness metrics by reconstructing an out-focus 

hologram of a pure phase USAF target for 100 different propagation distances. The propagation 

distance used in Eq. (5.1) ranges from -0.125 m to 0 m, with steps of 0.002 m. Figure 5.1(a) 

plots the normalized sharpness metrics versus the propagation distance (z). Figures 5.1(b)-(d) show 

the reconstructed amplitude images ( ˆ ˆ=IP IPa u ) at different propagation distances. 
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Fig. 5.1. (a) Performance of different sharpness focusing metrics in terms of the propagation 

distance (z) of a pure phase USAF target. Panels (b)-(d) correspond to the reconstructed amplitude 

image at three different propagation distances: -0.11 m, -0.074 m (e.g., in-focus plane) and -

0. m. The red rectangle indicates the best in-focus amplitude images. 

 

The block diagram of the proposed autofocusing phase method for off-axis telecentric-based 

DHM hologram is shown in Fig. 5.2. The proposed method contains three steps. The first step 

involves the definition of the input parameters: the out-of-focus hologram (h), the wavelength of 

the illumination source (λ), and the pixel dimensions of the camera (e.g., Δxy). The second step is 

focused on the minimization algorithm using the TC sharpness metric as the cost function to 

determine the in-focus propagation distance. Remember that the TC metric is estimated from the 

reconstructed amplitude image, ˆ ˆ=IP IPa u . The reconstructed amplitude image is independent of 

the phase compensation of the interference angle. Therefore, to alleviate the computation effort in 

this step, the reconstructed amplitude image is equal to the modulus square of the inverse Fourier 

transform of the filtered hologram, ( )ˆ , ;=z Fa h x y z . The minimization of the TC metric is 

provided by the MATLAB built-in fminunc function, which finds a local minimum of an 
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unconstrained multivariable function using the quasi-Newton algorithm  [111]. The fminunc 

function requires four parameters: (i) the function to be minimized (e.g., the TC metric defined in 

Table 5.1); (ii) the reconstructed amplitude image after filtering the +1 term from the off-axis 

hologram, ( )ˆ , ;=z Fa h x y z ; (iii) the initial value (e.g., seed) of the propagation distance; and (iv) 

a set of optimization options. Because the TC metric only contains a global minimum, we have set 

the initial propagation distance equal to zero to reduce the user's input. Regarding the optimization 

options, these parameters are the maximum number of iterations allowed and a termination 

tolerance on the cost function. Whereas we have set the maximum number of iterations equal to 

100, the tolerance has been set up to the default value (10-6) since a lower tolerance value does not 

lead to different propagation distances. It is important to mention that, in this work, we have not 

provided a rigorous study of the minimization solver, algorithm, and optimization options. The 

selection of different solver, algorithm, and optimization options may give a different result. 

Nonetheless, this fine-tuning investigation is beyond the scope of this chapter and may be 

investigated in the future. 
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Fig. 5.2.  Block diagram of the proposed three-stage method. 

 

After estimating the propagation distance for the best in-focus plane based on the reconstructed 

amplitude image, the third step compensates for the interference angle introduced by the off-axis 

configuration. In this step, we have also implemented a minimization algorithm using the 

MATLAB built-in fminunc function. The cost function to be minimized is given by Eq. (4.4) aand 

Fig. 5.3 shows the behavior of the cost-function. The input parameters required in this second 

minimization algorithm are the inverse Fourier Transform of the filtered hologram spectrum, hF, 

the pixel position of the maximum peak of the +1 term, the pixel sizes, and the propagation distance 

found in the previous step. The detailed procedure of this minimization is explained in Chapter 4.  
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Fig. 5.3. In panel (a) 3D surface plot for the cost-function J [Eq. (4.4)], using a pure phase USAF 

target. Panel (b) is the 2D heatmap of J. Panels (c)-(e) are phase images reconstructed for different 

values of (umax, vmax). Whereas in (c) and (d) illustrate non-optimal compensation, panel (e) 

corresponds to the optimal compensation for the values of (umax, vmax) reported in panel (b). 

 

To finalize this section, we have compared the performance of the proposed method and the 

same procedure (e.g., first searching for the propagation distance based on the amplitude image 

and second compensation of the interference angle) using for-nested loops. The TC sharpness 

metric was also used for the for-nest-loop approach, selecting the propagation distance of the in-

focus plane as the minimum value  [101]. Note that one constraint of the nested loops is that the 

range of the propagation distance must be large, while the search step must be as minimum as 

possible. In the phase-compensation stage, we also have nested loops to find the optimal non-

integer pixel center of the +1 term  [80]. More details of this implementation are reported in 

Chapter 4. Table 5.2 compares the performance of these two algorithms reconstructing two 

experimental out-of-focus holograms: a phase USAF and star target. The quantitative comparison 

is evaluated based on five parameters: (1) the minimum TC value; (2) the in-focus propagation 

distance; (3) the optimal values of max max( , )u v  that generate a reconstructed phase image with 
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minimum phase aberrations; (4) the accuracy of the reconstructed phase image based on the 

number of pixels that are wrapped; and (5) the processing times for each stage and the total method. 

From Table 5.2, it is possible to observe that both methods find the in-focus propagation distance 

since the TC value is the same. Although the proposed method estimates the propagation distance 

with a higher precision (e.g., two decimal digits), we have not observed major differences in the 

reconstructed amplitude images. Nonetheless, it is important to mention that the nested-loop 

implementation could lead to a very different result if the search step is not adequate. Regarding 

the compensation of the interference angle, the difference in the estimation of the umax and vmax 

values is up to a pixel. Remember that Chapter 4 shows that a difference of a pixel in the estimation 

of these parameters can be detrimental for quantitative phase imaging. In fact, the reconstructed 

phase images estimated by the proposed method have the highest accuracy, being equal to 0.98 in 

both experimental reconstructions. Finally, the most noticeable difference between these strategies 

is the processing times. The average processing time for the nested-loop approach is 282.19 and 

50.5 seconds for holograms of 2048 × 2048 and 1024 × 1024 pixels, respectively. The processing 

time in our method has been reduced by a factor 20× compared to the nested-loop implementation. 

This processing time is reported based on a Windows-based AMD Ryzen 5 3500U CPU (2.10 

GHz) 8.00 Gbyte RAM desktop computer.  
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Table 5.2. Comparison of Nested-Loop (NL) and Proposed method. 

Sample Phase USAF target Star target 

Method NL Proposed 

method 

NL Proposed 

method 

Image size 2048 × 2028 1024 × 1024 

TC value  0.6817 

 

0.6816 0.7494 0.7494 

In-focus plane (mm) -121 

 

-121.11 -39 -39.18 

maxU  1611.11 

 

1610.02 805 806 

maxV  425.20 

 

425 214 214 

Accuracy phase 

 

0.83 0.98 0.92 0.98 

 

 

Processing 

times (s) 

Auto 

focusing 

182.93 10.43 31.56 3.09 

Full 

compensation 

94.29 2.53 15.50 0.25 

Total 282.19 14 50.5 5.46 

 

5.3 Results for experimental statics samples  

We have evaluated the performance of the proposed method using three different specimens: a star 

target by Benchmark Technologies, red blood cells (RBCs), and human cheek cells. Figure 5.4 

shows the results from the star target. The out-of-focus hologram of this sample has been recorded 

using a DHM setup using a Fresnel biprism. A CCD digital sensor acquiring images of 5,472 × 

3,648 square pixels of 2.4-µm pitch is employed. A monochromatic low-power 532 nm laser diode 

module (CPS532, Thorlabs) is used as a light source. The DHM imaging system comprises a 200-

mm TL lens and an infinity-corrected 40×/0.75 NA Nikon MO lens. The imaging system operates 

at the telecentric regimen to compensate for the optical spherical aberrations introduced by the MO 

lens. More information on this DHM system can be found in  [112].  



 

71 
 

 

Fig. 5.4. Experimental validation of the proposed method using a phase star target. Panel (a) the 

out-of-focus hologram. Panel (b) and (c) are the reconstructed phase images at two different 

propagation distances: 140 mm (zobj = 87.5 µm) and 120.6 mm (zobj = 75 µm), respectively. Panel 

(d) shows the radial profile of the in-focus reconstructed phase images along the green line marked 

in panel (c). 

The star target has been located approximately at 75 µm from the front focal plane of the MO 

lens to record a defocused hologram, Fig. 5.4(a). Assuming the system's magnification equal to 

40×, the propagation distance in Eq. (5.1) is approximately 120 mm. Figures 5.4(b) are the 

reconstructed phase images at two different axial planes: an out-of-focus plane located at z = 140 

mm (zobj = 87.5 µm) and the image plane located at zIP = 120.6 mm (zobj = 75 µm). The zoom-in 

areas in panels (b) highlight the differences between both reconstructed phase images. Although 

the off-axis compensation methods yield aberrations-free phase reconstructions, only our proposal 

provides in-focused information on the sample. The profile for a radial distance marked in panel 

(b) for each phase reconstruction is shown in Fig. 5.4(c). The red and blue profiles correspond to 

the reconstructed phase for out-of-focus and in-focus reconstruction, respectively. From these 

profiles, we quantified the distance on the base (blue and red narrows in Fig. 5.4(c)), the distance 

of the base for the out-focus profile increases by a factor of 1.3× respect to the in-focus profile. 

This behavior shows that blurry effects on the edge image are presented for the out-focus phase 

reconstruction. 
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This proposed method has been further evaluated using two biological samples: RBCs and 

check cells. For the RBC sample, the optical setup to record the RBC hologram is the same as the 

one from the star target. However, in this experiment, the sample was located at 15 µm from the 

front focal plane of the MO lens, being approximately z = 24 mm the image plane. Figure 5.5(a) 

corresponds to the experimental out-of-focus RBC hologram. The yellow rectangle in Fig. 5.5(a) 

encloses a zoom-in region to ease the observation of the out-of-focus RBCs. Figure 5.5(b) is the 

best-reconstructed phase image found by the proposed method at a distance z = 23.32 mm (e.g., 

zobj = 15 µm). Since the shape of the RBCs is well-defined in the reconstructed phase image, one 

can conclude that the proposal yields phase information without or with minimum phase 

distortions. The red rectangle in Fig. 5.5 (b) encloses a zoom-in region of the studied sample to 

display its three-dimensional (3D) pseudocolor phase distribution. The processing time to find the 

best focal plane and compensate for the interference angle from the out-of-focus RBCs hologram 

is 8.52 s. 

Figures 5.5(c) and (d) show the hologram and reconstructed unwrapped phase images of out-

of-focus check cells. The unwrapping algorithm is based on the proposed method by Herraez et 

al.,  [113]. This experimental hologram was recorded in a Mach-Zehnder interferometer with a 

632-nm diode laser as the illumination source and a monochromatic 23U445 camera from Imaging 

Source built with a sensor of 1280×960 square pixels of 3.75-µm pitch. The telecentric-based 

DHM imaging system has a 40×/0.65 NA Olympus, MO lens and a 200-mm TL lens. We do not 

have any prior information on the axial location of the sample, mimicking a more realistic scenario 

in 3D particle tracking. Nonetheless, the proposed method found that the sample plane was located 

at a distance zobj = 0.037 µm (e.g., z = 14.80 mm) from the front focal plane of the MO lens. In 

this case, the processing time is 5.09 s. 
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Fig. 5.5. Experimental validation of the proposed method using biological samples. Panel (a) and 

(c) are the out-of-focus hologram of RBCs and cheek cells. Panels (b) and (d) are the reconstructed 

phase images at the in-focus plane. 

 

We have tested the performance and robustness of the proposed method with different 

defocused holograms from RBCs, which are not completely pure phase samples. The propagation 

distance has been changed from of the in-focus plane (e.g., front focal plane of the MO lens) to an 

axial plane that is located 95 µm from the front focal plane of the MO lens. For a complete study, 

we have recorded two different fields of views in each transverse plane. We have reconstructed 

the phase image for each FOV 100 times to find that the estimated propagation distance was almost 

identical (e.g., the STD of the 100 estimated propagation distances is approximately 10-14). 

Regarding the accuracy of the reconstructed phase images, the values of the umax and vmax were 

always the same, demonstrating that the proposed method always converge to the global minimum. 

Figure 5.6 shows that the reconstructed phase images for the highest propagation present low 

quality since the angular spectrum is not valid anymore.  However, Fig. 5.6 shows that the 

algorithm's performance is sample dependent. We do not always obtain the reconstructed phase 

images with the smaller number of phase jumps. This result is due to the assumption that the system 
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operates in telecentric regime, which is not entirely true due to ambient fluctuations. Future work 

should increase the kernel function of the phase compensation, allowing high-order phase terms 

to complete phase compensation. 

   

Fig. 5.6. The behavior of the proposed method for different out-of-focus RBCs holograms. For 

each transverse plane, two different sceneries (FOV-1 and FOV-2) have been recorded. In-focus 

columns correspond to the in-focus recorded holograms. Columns called Out-focus (15 µm), Out-

focus (45 µm), and Out-focus (95 µm), are holograms recorded after displacement the sample 15 

µm, 45 µm, and 95 µm, respectively. 

 

5.4 Conclusions 

This work presents a new strategy for autofocusing defocused phase images in off-axis telecentric-

based DHM. The proposed method finds the best in-focus plane of pure phase objects by 

minimizing the TC sharpness function using the reconstructed amplitude images. This propagation 

distance is inserted as an input parameter on a second minimization stage to reconstruct phase 

images with minimum phase aberrations. This proposed method addressed one of the limitations 

of DHM computational methods, enabling the simultaneous and automatic reconstruction of phase 

images from out-of-focus holograms. Our experimental results demonstrate the capability of the 

proposed method for high-quality quantitative phase imaging of biological samples. The 
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synergetic implementation of two minimization algorithms reduces the processing time, being 11 

seconds for a hologram of 2048 × 2048 pixels. This processing time has been reduced by a factor 

20× compared with the conventional nested-loop method (11 seconds versus 282.19 seconds). The 

advantages of our method are its reduced number of inputs and processing time, without penalizing 

the accuracy. 
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6. OPEN-SOURCE PYTHON LIBRARY FOR DHM 

 

The reconstruction algorithms in DHM are significantly dependent on the optical architecture: in-

line, slightly off-axis, and off-axis DHM architectures. At present, individual DHM research 

groups have developed and implemented their own numerical reconstruction algorithms to obtain 

amplitude and phase images [17]. In this Chapter, we implemented a DHM Python library, named 

as pyDHM, for reconstructing amplitude and phase images for a broad range of optical DHM 

configurations. The pyDHM is a user-friendly library written in the robust programming language 

of Python. The pyDHM implements phase-shifting approaches for in-line and slightly off-axis 

systems and enables phase compensation for telecentric and non-telecentric systems. In addition, 

pyDHM includes three propagation algorithms for numerical focusing complex amplitude 

distributions in DHM and digital holography. This chapter follows the following structure. Section 

6.1 provides a literature overview of existing libraries in DH and DHM to motivate the need for 

an additional library suitable for any optical configuration. In Section 6.2, the pyDHM library 

framework is introduced. Section 6.3 shows the library structure and examples. Finally, in Section 

6.4, the conclusions, and limitations of the pyDHM are presented. This work has been published 

in PLOS ONE  [114] and was presented at the 2022 OSA Imaging and Applied Optics 

Congress  [115]. 

6.1 Libraries in DH and DHM  

The performance of DHM technologies relies heavily on computational reconstruction processing 

to provide trustworthy sample information. The required computational reconstruction algorithms 

are uniquely dependent on the optical configuration of the DHM system. An incorrect selection of 

the reconstruction algorithms leads to distorted and inaccurate amplitude and phase measurements. 
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DHM systems record the interference pattern (e.g., hologram) generated between the scattered 

light from the sample, named object wavefront, and a known reference wavefront. DHM systems 

operate in off-axis, slightly off-axis or in-line (also known as on-axis) configurations based on the 

interference angle. Therefore, the selection of the DHM reconstruction algorithms depends on this 

interference angle. For example, off-axis DHM systems enable the reconstruction of the complex 

amplitude distribution of an object wavefront from a single hologram since the three components 

of the hologram are entirely separable in the Fourier domain   [44,45]. Therefore, the 

reconstruction algorithm in off-axis DHM systems requires spatial filtering of the sample 

frequency components in the Fourier domain of the recorded hologram. In contrast, the spectral 

components of a hologram in the Fourier domain overlay totally or partially in in-line and slightly 

off-axis DHM systems, respectively, requiring the acquisition of multiple phase-shifted holograms 

and the application of phase-shifting (PS) techniques  [116,117] to reconstruct the desired object 

information. In addition, the selection of the DHM reconstruction algorithms also depends on 

whether the DHM imaging system operates in telecentric or non-telecentric regimes. As previously 

explained in Chapter 2, DHM systems operating in the telecentric regime only require the 

interference angle compensation in the off-axis and slightly off-axis configuration. Oppositely, 

non-telecentric DHM systems should compensate for the spherical phase factor recognized in 

DHM and associated with a non-telecentric imaging system  [74,75,118,119]. Finally, the DHM 

configuration can operate in an IP configuration, meaning that in-focus DHM holograms are 

recorded, so there is no need to apply numerical propagations to focus the amplitude and phase 

images. However, if out-of-focus holograms are recorded, the user should numerically propagate 

the complex amplitude distribution to provide in-focus images. Among the different numerical 
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propagation algorithms to reconstruct DHM images, the most used computational approaches in 

DHM are the angular spectrum  [54,120] and the Fresnel transform  [121]. 

Considering the wide range of DHM configurations, each research group within the DHM 

community develops and implements its own computational reconstruction algorithms based on 

its experimental digital holography (DH) and DHM systems [17]. Nonetheless, some research 

groups have developed and implemented libraries and plugins to address the need for an open-

source reconstruction toolbox in DHM and DH. Maybe, GWO is the first library for numerical 

propagation, and was presented in 2010 by Shimobaba et al. GWO library enables diffraction 

calculations of complex amplitude distributions using the angular spectrum and Fresnel 

approaches using a Graphics Processing Unit (GPU)  [122]. Since the GWO library was based on 

the C language and, consequently, was not user-friendly, in 2012, the same authors developed a 

new C++ class library for diffraction and calculations using computer-generated holograms 

(CGHs)  [123]. In 2015, Piedrahita-Quintero et al. developed a JAVA plugin for numerical 

wavefields propagation  [124]. This plugin enabled the propagation of complex amplitude 

distributions using angular spectrum, Fresnel, and Fresnel–Bluestein approaches. This plugin's 

most important feature is embedded within the well-known open-source software for image 

processing called ImageJ  [125]. In 2017, the same authors upgraded their previously-developed 

JAVA-based plugin to a GPU-accelerated library, JDiffraction  [126]. In 2020, Trujillo et al. 

developed an ImageJ-based open-source plugin for in-line digital lensless holographic microscopy 

(DLHM)  [127]. This plugin contains two modules to simulate holograms using the discrete 

version of the Rayleigh–Somerfield diffraction formula and to reconstruct holograms using the 

Kirchhoff–Helmholtz diffraction integral. That same year, Hong et al. introduced the OpenHolo 

library, a library capable of generating holograms using the most popular CGH algorithms [128]. 
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This library also includes standard tools for holography, like phase unwrapping algorithms, and 

reconstruction algorithms for simulated holograms recorded in off-axis and in-line architecture 

using the Rayleigh-Sommerfeld diffraction integral. From 2014 to date, the Manoharan Lab at 

Harvard University has implemented the HoloPy library, a Python-based library, to perform 

scattering and optical propagation theories focusing on in-line DLHM systems  [129]. Table 6.1 

summarizes the existing DH and DHM libraries with their respective applications.  

Table 6. 1. DH and DHM libraries. 

Library Propagation 

algorithms/focusing 

In-line Slightly 

off-axis 

Off axis DHM or 

DLHM? 

 

GWO 

 

 

Yes 

 

No 

 

No 

 

No 

 

DHM 

Numerical 

Wave 

propagation 

 

Yes 

 

No 

 

No 

 

Yes 

 

DHM 

 

JDifraction 

 

Yes 

 

No 

 

No 

 

Yes 

 

DHM 

 

ImageJ 

DLHM 

 

Yes 

 

Yes 

 

No 

 

No 

 

DLHM 

 

OpenHolo 

 

Yes 

 

No 

 

No 

 

Yes 

 

DHM 

 

HoloPy 

 

Yes 

 

Yes 

 

No 

 

No 

 

DLHM 

 

pyDHM 

 

Yes 

 

Yes 

 

Yes 

 

Yes 

 

DHM 
 

Despite all these efforts, a library containing the needed computational reconstruction 

approaches to reconstruct DHM images, regardless of the optical configuration of the system, does 

not still exist. This Chapter presents a Python library focused on DHM applications, named 

pyDHM, for reconstructing DHM images for various experimental DHM implementations. We 

aim to provide the DH and DHM community with a complete set of tools for holographic 

processing in a widely supported and easy-to-use programming language. Note that any DH/DHM 
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user has access to our codes so that they can modify them for their own application. The library 

consists of four packages. The first package contains a set of useful functions, such as calculating 

the hologram spectrum and displaying the amplitude and phase images. The second package is 

related to reconstructing in-line and slightly off-axis DHM systems using phase-shifting 

techniques. The third package reconstructs phase images from off-axis DHM holograms using 

telecentric and non-telecentric configurations. Finally, the last package includes algorithms for 

propagating the complex amplitude distribution using the angular spectrum and the Fresnel and 

Fresnel-Bluestein transform approaches. Our proposed library has been validated with 

experimental and simulated holograms recorded using different setups. 

6.2 Library framework 

DH and DHM systems are based on optical interferometry, which involves the digital recording 

of the interference pattern (e.g., digital hologram) between the complex amplitude distribution 

scattered by a microscopic object (e.g., the object wavefront) and a uniform reference wavefront. 

This section briefly describes different DHM configurations and their corresponding numerical 

reconstruction algorithms. The reconstruction approach depends on the interference angle between 

the reference and object waves in the recorded hologram (e.g., in-line, slightly off-axis or off-axis 

configuration), the regime of the microscopic imaging system (e.g., telecentric versus non-

telecentric configuration), and the position of the hologram plane to the image plane of the 

microscopic imaging system (e.g., in-focus versus out-of-focus). The pyDHM library contains 

three algorithms for in-line DHM systems (5 Frames, 4 Frames, and 3 Frames). We also have 

included here algorithms for slightly off-axis DHM systems (quadrature method, 3-blind-raw and 

2-blind-raw) in the library. Regarding the approaches for compensating off-axis holograms, 

pyDHM implements three different automatic approaches for holograms recorded in telecentric 



 

81 
 

architecture, and one strategy for holograms recorded in non-telecentric configuration. Finally, we 

have included three algorithms for propagating optical fields, such as the angular spectrum and the 

Fresnel and Fresnel-Bluestein transform approaches. Table 6.2 summarizes some approaches 

implemented in the pyDHM library.  

Table 6. 2. Summary of the different approaches implemented by the pyDHM library. 

DHM 

system 

Approach Equation 
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6.3 Library Structure: available packages in pyDHM 

The pyDHM library consists of four packages. The first utility package includes essential functions 

such as reading, displaying images, and filtering Fourier spectrums of holograms. The second 
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package is related to reconstructing in-line and slightly off-axis DHM systems using phase-shifting 

techniques. The third package reconstructs phase images from off-axis telecentric-based DHM 

holograms. Finally, the last package includes algorithms for propagating complex amplitude 

distributions using the angular spectrum, the Fresnel and Fresnel-Bluestein transform approaches. 

This section explains each package in detail, including the functions and required parameters. We 

also present sample codes and results for illustrating the performance of the pyDHM library. Figure 

6.2 illustrates the utility packages included in pyDHM library and the implemented functions.  

 

Fig. 6.1. pyDHM library structure. The library is composed of utility (1), phase-shifting (2), fully-

compensated phase reconstruction (3), and numerical propagation (4) packages. 

 

6.3.1 Package 1: Utility package 

The first package in the pyDHM library contains functions for reading and displaying images, 

computing the Fourier transform (FT), and applying filters to reduce speckle noise  [130]. Since 

the library focuses on DHM applications dealing with complex amplitude distributions, one can 

display any complex wavefield's amplitude, intensity, or phase map. Although these operations 

can be straightforwardly implemented in Python for experienced users, this package is aimed to 
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provide compact and user-friendly codes. This package is imported by typing the following code 

lines, from pyDHM import utilities. Figure 6.3 shows the information for each package function, 

including the declaration statement and the parameters needed. Examples of the use of this package 

are shown in the upcoming figures.  

 

Fig. 6.2. Available functions in the utility package. 
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Fig. 6.3. Available functions in the phase-shifting package. 

 

6.3.2 Package 2: Phase-shifting package 

The second package in the pyDHM library contains the phase-shifting strategies for reconstructing 

the complex amplitude distribution in in-line and slightly off-axis systems: the following code line, 

from pyDHM import phaseShifting, calls this package. The package is composed of six different 

phase-shifting approaches: the traditional phase-shifting techniques in which the phase shifts are 

known using 5 (PS5), 4 (PS4), and 3 (PS3) phase-shifted images, which corresponds to 5 Frames, 

4 Frames, and 3 Frames, whose mathematical equations are shown in Table 6.2. Besides, this 

package contains the quadrature PS method (SOSR), this method is based on the SOSR approach 

proposed by De Nicola et al  [48], and two blind PS approaches using 3 (BPS3) and 2 (BPS2) 
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frames  [41,73] for slightly off-axis DHM systems. The two blind PS approaches require a DHM 

operating in a telecentric regime. Figure 6.4 illustrates the different PS strategies implemented in 

the phase-shifting package, their definition line statement, and respective parameters. These {PS5, 

PS4, PS3} functions require the input (inp) of multiple phase-shifted holograms. The number of 

holograms and the phase shift value depend on the phase-shifting strategy used. For example, 5 

holograms (e.g., inp0, inp1, inp2, inp3, inp4) are required with phase shift of π/2 (e.g., 0, π/2, π, 

3π/2, 2π) for the PS5 function. The phase shift in the PS4 algorithm is the same as the one from 

PS5. However, for the PS3 function, the phase shift is equal to 2π/3. The SOSR strategy is based 

on the quadrature phase-shifting method proposed by De Nicola et. al  [48]. The main difference 

between the original SOSR strategy and our implementation is that we have upgraded the method 

to automatically calculate the best digital reference wavefront to reconstruct fully compensated 

phase maps. The best digital reference wavefront is found using the ROI search  [80]. The SOSR 

function requires 10 input parameters: 4 phase-shifted holograms with a phase shift of π/2; a 

True/False Boolean variable, upper, which is related to the position of the spectrum of the real 

image in the Fourier domain; wavelength is the wavelength of the illumination source used to 

record the hologram; dx and dy are the pixel sizes for both the input and output planes along the 

x- and y- directions; and s and step are two parameters for determining the ROI in the spatial 

frequencies domain for the compensation step. This ROI (centered at its brightest pixel) is gridded 

into a regular rectangular grid, whose size in pixels is given by 1 2s+  in each dimension. The 

number of points inside this grid in each dimension is given by step; these points are placed apart 

equidistantly. Therefore, step2 is the total number of points to be used inside the ROI. For instance, 

if using s=1 and step=4, a 3x3 pixels ROI size with 16 points inside is selected. If using s=2 and 

step=4, a 5x5 pixels ROI size with 16 points is selected, implying that a larger ROI with a lesser 
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density of points will be used for the search. The user can adjust these parameters at will, 

considering that although a more accurate search can be performed by increasing their values, the 

procedure's computational complexity also increases. Finally, the parameters of the BPS3 and the 

BPS2 algorithms are the input phase-shifted holograms with arbitrary phase shift, and the 

wavelength of the illumination source and the pixel size along the x- and y-direction (e.g., dx and 

dy, respectively) to generate the digital reference wavefront and reconstruct fully-compensated 

phase maps. The variables (e.g., wavelength, dx, dy) in the functions should be inserted in the 

same units. 

 

Fig. 6.4. Verification of the in-line PS function: (a) an example code; (b) simulated in-line DHM 

holograms of a phantom model. Panels (c) - (e) and the reconstructed phase images for the PS5, 

PS4 and PS3 strategies, respectively. 

 

These six PS algorithms have been validated using simulated and experimental holograms. 

Figure 6.4 shows the code and an example for the PS5, PS4, and PS3 algorithms. The code starts 

importing the utility package and the PS package, lines 2-3 in Fig. 6.4(a). Lines 5-9 are the 

commands to read the phase-shifted holograms. For simplicity, we do not display any of these 
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input holograms. Line 11 calls functions to display the PS5, PS4 or PS3 implementation. Finally, 

line 13 is the command to display the phase distribution reconstructed by the selected algorithm. 

Figure 6.4(c) illustrates the reconstructed phase distribution from the simulated phase-shifted 

phantom hologram [Fig. 6.4(b)] recorded in an in-line DHM system with a phase shift of π/2. 

Figures 6.4(d) and (e) show the reconstructed phase images of the simulated phantom hologram 

using PS4 and PS3 functions, respectively. 

The performance of the slightly off-axis PS strategies is evaluated using two different 

experimental samples. The SORS function is validated by reconstructing the phase image of a 

Fresnel lens with a phase shift of π/2 between holograms introduced by a liquid lens [131]. The 

sample used for validating the blind strategies (i.e., the BPS3 and BPS2 algorithms) is a phase 

USAF test target. Figure 6.5(a) shows the sample code to use the slightly off-axis strategy 

algorithms, see the Fourier spectrum of one hologram from the Fresnel lens in Fig. 6.5(b). Again, 

line 10 corresponds to the command for the slightly off-axis strategies (e.g., SOSR, BPS3, and 

BPS2) with their corresponding parameters. Figures 6.5(c) to (e) show the reconstructed phase 

images of the Fresnel lens and the USAF target with minimum phase distortions.  

 

Fig. 6.5. Example of use of the slightly off-axis strategies. (a) a sample code; (b) FT of recorded 

hologram showing that the DHM system is operating in slightly off-axis configuration. Panel (c) 
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is the reconstructed phase image of a Fresnel lens by the SOSR function using four holograms 

with a π/2 phase shifting. Panels (d) and (e) are the reconstructed phase images of a USAF test 

target using the BPS3 and BPS2 strategies, respectively. 

 

6.3.3 Package 3: Fully-compensate phase reconstruction package 

The third package of the pyDHM library is devoted to the phase reconstruction of DHM holograms 

without or with minimal perturbations (e.g., fully-compensated reconstructed phase images 

without distorting sawtooth fringes) using an off-axis system. One includes the library from 

pyDHM import phaseCompensation line to call this package. This package implements four 

functions, three functions for holograms recorded in telecentric regime: the full-ROI-search (FRS) 

function, the efficient-ROI -search (ERS) function, and the cost-function-search (CFS) function. 

And one function for holograms recorded in non-telecentric regime, the compensation non-

telecentric (CNT) function. Figure 6.6 shows the definition statement and a brief description of 

each package function. For example, the FRS function has seven input parameters: the off-axis 

hologram (inp), a True/False Boolean variable (upper) for choosing the region where the algorithm 

would find the maximum peak value of the +1 or -1 order for the filtering step. Wavelength 

corresponds to the wavelength used to record the hologram; dx and dy are the pixel size of the 

camera sensor for the acquisition of the hologram along the x- and y- direction, respectively, and 

s and step are parameters for selecting the search region to find the best phase reconstructed image. 

These parameters determine the ROI size and the number of points inside this search region. For 

example, if using s = 2 and step =10, a 2×2 pixels ROI size with 100 spatial frequency locations 

is selected to search for the best phase reconstructed image  [80]. For using the efficient ROI 

search, the EFR function must be executed. This function has the same parameters as the FRS 

function. To run the cost-function search, the CFS function must be called. The parameters for this 

function are inp, wavelength, dx, and dy. By the other hand, the CNT function contains 8 
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parameters. Whereas the first ones are inp, wavelength, dx, dy, already defined parameters, (x1, x2, 

y1, y2) are the pixels position to create a rectangular mask for filtering the +1 diffraction order, 

where (x1, y1) and (x2, y2) are the pixel position of the upper-left and bottom-right corner, 

respectively. 

 

Fig. 6.6. Available functions in the fully-compensate phase reconstruction package. 

 

Two examples are shown as examples for evaluating the performance of the fully-compensate 

phase reconstruction package using an off-axis DHM system operating in the telecentric regime. 

The full and efficient ROI search strategies have been validated using the hologram of a transverse 

section of the head of a Drosophila melanogaster fly  [75]. The parameters of the DHM system to 

record this sample are wavelength λ = 633 nm and a camera with a pixel size dx = dy = 6.9 µm. 

The hologram of a phase star target has been used to validate the cost-function search strategy 

using λ = 532 nm, and dx = dy = 2.6 µm. These two holograms were recorded at the IP of the 
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microscope. Therefore, no refocusing step is necessary for the reconstruction stage. The sample 

code is shown in Fig. 6.7(a). The code starts with the import of the utility and the fully-

compensated phase reconstruction packages; lines 2-3 in [Fig. 6.7(a)]. In line 5, the hologram is 

loaded. Line 7 calls the functions for reconstructing off-axis holograms in telecentric regimen: 

FRS, ERS, or CFS function. In Fig. 6.7(b), the common logarithm of the power spectrum of the 

hologram of a transverse section of the head of a Drosophila melanogaster fly is shown to 

demonstrate that an off-axis setup in telecentric regime is used. After applying the three different 

approaches in this package, the reconstructed phase images are illustrated in Fig. 5(c) – (e).  

 

 

Fig. 6.7. Example of the fully-compensated phase reconstruction package for off-axis DHM 

holograms recorded in telecentric configuration: (a) a sample code; (b) FT of a recorded hologram 

to show that the DHM system operates in off-axis and telecentric configuration. Panels (c)-(d) are 

the fully-compensated reconstructed phase images of a Drosophila melanogaster fly using FRS 

and ERS functions. Panel (e) shows the fully-compensated reconstructed phase image of a star 

target using the CFS function. 

 

Regarding the CNT function, a hologram of a Drosophila melanogaster fly recorded in non-

telecentric regime has been used  [75]. The parameters of the DHM system to record this sample 



 

91 
 

are wavelength λ = 633 nm and a camera with a pixel size dx = dy = 6.9 µm. The sample code is 

shown in Fig. 6.8(a). The CNT function allows the spatial filtering of the object frequencies from 

the hologram spectrum using a rectangular mask defined by their pixel corners (e.g., x1, x2, y1, 

and y2) or manually drawn using a popup window. Before running the CNT function with the 

spatial filter option sfr, the user may need to select the pixels position (x1, y1) and (x2, y2) of the 

rectangular mask to filter the +1 term. For this task, one should compute the Fourier transform of 

the hologram (line 7). Figures 6.8(b) and (c) show the Fourier transform and the binarized Fourier 

transform of the hologram. The latter display is recommended to select the positions of the 

rectangular mask, the red rectangle inside Fig. 6.8(c). Line 11 runs the CNT function using the two 

possible filter options (e.g., sfr and sfrm). When running this function, the binarized phase image 

is shown after compensating the interfering angle but without compensation of the quadratic phase 

factor [Fig. 6.8(d)]. Using this image, the user selects the central pixel position (X_cent, Y_cent) 

of the quadratic phase mask. After closing this image, the CNT function asks the user the values 

for this position: “Enter the pixel position X_cent for the center of circular phase map on x-axis,” 

and “Enter the pixel position Y_cent for the center of circular phase map on y-axis” for X_cent 

and Y_cent, respectively. The curvature of the quadratic phase factor is estimated by the size of 

the rectangular mask since the spreading of the +1 term and the curvature value are inversely 

related  [38]. When these values are introduced, the search for the reconstructed phase image starts, 

providing the optimal reconstructed phase image with minimum phase distortions [Fig. 6.8(e)]. 
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Fig. 6.8. Example of the CNF function for off-axis DHM holograms recorded in a non-telecentric 

configuration: (a) a sample code; (b) FT of a recorded hologram, notice that the hologram operates 

in off-axis and non-telecentric configuration. Panel (c) is the binarized image of the FT to select 

the dimensions of the rectangular filter with parameters (x1, x2, y1, y2). Panel (d) corresponds to 

the binarized reconstructed phase image after compensating the interfering angle, where X_cent 

and Y_cent positions are marked. Finally, panel (e) shows the reconstructed phase image of a 

Drosophila melanogaster fly with minimum phase distortions. 

 

6.3.4 Package 4: Numerical propagation package 

The final package in pyDHM is the numerical propagation package. This package allows the 

numerical propagation of the scalar complex diffractive wavefield at different propagation 

distances. The package is called by the following code line from pyDHM import numerical 

Propagation. The package implements three different propagators: angular spectrum 

(angularSpectrum), the Fresnel transform (fresnel), and the Fresnel-Bluestein transform 

(bluestein). Figure 6.9 shows the declaration statement and the parameters needed for each 

propagator. For example, the angularSpectrum and fresnel propagator functions have five 

parameters. field is the input complex wavefield to be propagated. The distance to propagate the 

input wavefield is represented by z. Wavelength is the wavelength of the illumination source used 
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to record the hologram. Finally, dx and dy are the pixel size for the input and output planes along 

the x- and y- directions. The bluestein propagator function has two additional parameters (e.g., 

dxout and dyout) related to the pixel size at the output plane. 

 

Fig. 6.9. Available functions in the numerical propagation package. 

The evaluation of the numerical propagation package is shown in Fig 6.10. The focusing for a 

out-of-focus hologram of a USAF test target recorded in off-axis configuration is done using the 

angularSpectrum propagator. The hologram was recorded using a wavelength of 633 nm. The 

camera with a pixel size dx=dy=6.9 µm was located approximately 3 cm from the back focal plane 

of the TL. Figure 6.10(a) shows a sample code. The code starts with the import of the utility, and 

the numerical propagation packages; see lines 2-3 in Fig. 6.10(a). In lines 5-6, the hologram is 

loaded and displayed [Fig. 6.10(b)]. The Fourier Transform of the hologram is computed (line 8) 

and displayed (lines 9-10) in Fig. 6.19(c). We have applied a circular mask (line 12) to filter the 

spatial frequencies of the object from the hologram spectrum [Fig. 6.10(d)]. Line 14 calls the 

angular spectrum function. Finally, lines 16-17 are used to show the reconstructed intensity image. 

Figs. 6.10(e)-(g) show the numerical intensity reconstruction for three different propagation 
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distance (z = 0, 1, and 3.3 cm). Inside each panel, the zoom-in rectangle areas highlight the effect 

of the propagation distance to focus the USAF target.  

 

Fig. 6.10. Example of the angular spectrum approach to numerically focus a hologram using a 

circular spatial filter tool. Panel (a) is the sample code. Panels (b) show the hologram (c) its 

spectrum without (c) and with (d) a circular mask. Panels (e) – (g) are the reconstructed intensity 

images for three propagation distances (z). 

 

Finally, the performance of the Fresnel and Fresnel-Bluestein transform propagators has been 

validated by propagating an experimental hologram recorded using a Mach-Zehnder 

interferometer  [132]. A hologram of a horse model is used for the Fresnel propagator, whereas a 

1cm edge dice is used for the Fresnel-Bluestein propagator. The sample code for the Fresnel and 

Bluestein propagators is shown in Fig. 6.11(a). Lines 2-3 are used to import the utility and 

numerical propagation packages. In lines 8-10, the computing and display of the Fourier transform 

of the hologram is implemented. In these examples, we have used a rectangle mask (line 12) to 

filter the hologram spectrum's object frequencies [Figs. 6.11(b) and (e)]. Lines 14 and 15 calls the 

Fresnel and the Bluestein propagators, respectively. The parameters for the horse model hologram 
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are z = 45 cm, wavelength = 633 nm, and dx = dy = 5 μm. Figures 6.11(c)-(d) are the reconstructed 

amplitude images without [Fig. 6.11(c)] and with [Fig. 6.11(d)] spatial filtering of the object 

frequencies in the hologram spectrum. The reconstruction parameters for the dice hologram are z 

= 30 cm, λ = 633 nm, and dx = dy = 7.4 μm. The most important feature of the bluestein function 

(line 15) is that the output pixel sizes (dxout and dyout) are required as input parameters. Therefore, 

one can control the magnification of the reconstructed image using the Fresnel-Bluestein approach 

by modifying the value of these parameters. For this example, the output pixel sizes have been 

adjusted to 14.8 μm [Fig. 6.11(f)], and 18.5 μm [Fig. 6.11(g)]. These values provide an effective 

lateral magnification of 2× and 2.5× to the output size of the original hologram.  

 

Fig. 6.11. Examples of the Fresnel and Fresnel-Bluestein propagation approaches to numerically 

focus holograms using a rectangular mask to filter the object frequencies from the hologram 

spectrum. Panel (a) is the sample code. Panels (b) show the hologram spectrum (b) and the 

reconstructed intensity image without (c) and with (d) a rectangular mask of a horse model using 

the fresnel propagator. Panels (e) – (g) are the hologram spectrum (e), and the reconstructed 

intensity images after filtering the object frequencies from the hologram spectrum using two 
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different magnifications [2× and 2.5× in panels (f) and (g), respectively] for a 1-cm edge dice using 

the bluestein propagator. 

 

6.4 Conclusion 

This work presents the pyDHM library, a Python library for the numerical processing of digital 

holograms registered in DHM systems. The library contains different computational 

implementations for: (1) reading and showing the complex distribution of a sample (e.g., utility 

package); (2) performing numerical propagations of complex wavefields to provide in-focus DH 

and DHM images (e.g., numerical propagation package); (3) reconstructing the phase distribution 

of samples in in-line and slightly off-axis DH and DHM systems using PS techniques (e.g., phase-

shifting package); and (4) reconstructing phase images in single-shot off-axis DHM systems 

operating in telecentric and non-telecentric configuration using automatic methods to estimate the 

best digital reference wavefront (e.g., fully-compensated phase reconstruction package). We have 

presented a sample code for each function implemented in the pyDHM library and validated its 

performance using simulated or experimental images. To increase the applicability of this library 

in our community, we have also included simulated and experimental holograms and some 

instructional videos on using the library. The pyDHM library is posted publicly on 

GitHub  [42,133]. The GitHub repository includes complete documentation of the functions 

implemented, sample codes, and troubleshooting guidelines for correctly using the library. To 

increase the applicability of this library in our community, the GitHub repository also includes 

simulated and experimental holograms and some instructional videos on how to install and use the 

library  [134–137]. In future works, we will expand the codes within our library and reduce its 

processing time using GPU implementations. Current implementations within the pyDHM library 

require that the users select the adequate reconstruction method based on the optical configuration 
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of the DHM systems. Future work will focus on an automatic algorithm to reconstruct DHM 

holograms without prior knowledge of the DHM configuration (e.g., only hologram, source’s 

wavelength, and sensor’s pixel size). Because of the broad applicability of DHM systems in 

biology and medicine, we will create a graphical user interface (GUI) for the pyDHM library, 

aiming that users who lack coding skills and background in Optics and DHM could adopt this 

library. Such an app will allow the users to input a single hologram or a sequence/video of 

holograms, enabling the processing of the whole hologram series. Some reprocessing steps will be 

avoided, such as selecting the spatial filter mask to optimize such video processing. Our final goal 

is to expand such app further so that pyDHM can be used to analyze biological systems, including 

motility analysis for microorganism tracking and cell counting. 
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7. LEARNING-BASED MODELS FOR VIDEO-RATE QUANTITATIVE PHAS 

IMAGING USING AN OFF-AXIS DIGITAL HOLOGRAPHIC MICROSCOPE 

 

The conventional quantitative phase reconstruction methods in off-axis image-plane DHM rely on 

computational processing that involves the spatial filtering of the sample spectrum and the tilt 

compensation between the interfering waves to reconstruct the phase of biological samples 

accurately. An incorrect selection of the frequency components may lead to phase measurements 

that are not limited by diffraction (e.g., low-resolution images), and inaccurate tilting angle 

compensation could introduce errors in the quantitative phase measurements. Any DHM 

reconstruction algorithm should be automatic and adaptable to any sample and imaging conditions 

to increase its applicability in life and materials studies. One of the biggest challenges in DHM is 

the recovery of phase maps free of aberration at video rates, providing quasi-real-time data 

processing  [138]. Regardless of the implementation, current DHM reconstruction methods present 

a long processing time of 2.95 seconds for an image with 2048x2048 pixels, hampering the use of 

DHM for video-rate renderings of dynamic biological processes. This chapter investigates deep 

learning (DL) approaches to reconstructing phase images in off-axis DHM. In particular, firstly, 

we have investigated a convolutional autoencoder (ConvA) using simulated and experimental data. 

Next, we implemented a conditional generative adversarial network (cGAN) for robust and fast 

quantitative phase reconstruction imaging in DHM. 

This Chapter is organized as follows. In Section 7.1, there is a review of the state-of-art of DL 

approaches used in DH and DHM. Section 7.2 shows the implementation of a ConvA for obtaining 

amplitude and phase images using simulated and experimental data. In section 7.3, a cGAN model 

is presented and validate using experimental holograms of statics and dynamics RBCs. Section 7.4 
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is devoted to comparing the performance of the proposed cGAN model against the U-Net and 

autoencoder Models. In Section 7.5, we validate the generalization ability of the trained cGAN 

method regarding system diversity using DHM holograms were recorded in a common-path DHM 

system. Finally, in Section 7.6, we summarize the main achievements of the Chapter. This work 

has been published in Sensors  [139], and presented in the 2021 IEEE Photonics Conference 

(IPC)  [140]; the 2022 Optica Imaging and Applied Optics Congress  [141].  

7.1 Introduction 

Despite the successful performance of DHM systems, its applicability to in situ clinical research 

has been partially hampered by the need for a standard phase reconstruction algorithm that 

provides quantitative phase distributions without any phase distortion  [17]. Accurate phase 

measurements are imperative since variations in phase measurements are used as a diagnostic and 

measuring tool in life sciences  [17,69,142]. As was explained in previous chapters, the DHM 

technology retrieves this phase distribution after applying a computational reconstruction 

approach. At present, individual DHM research groups have developed and implemented their 

numerical algorithms to reconstruct their phase images [17]. The DHM reconstruction algorithm 

should be automatic and adaptable to any sample and imaging conditions to increase its 

applicability in life and material sciences. Although several automated DHM reconstruction 

approaches have been proposed, see Chapters 4 and 6, often these proposals yield reconstructed 

phase images with phase nuisances, preventing any quantitative analysis. In addition, the 

computational complexity of all these methods still restricts the proper recovery of phase maps 

free of aberration at video rates, providing quasi-real-time data processing. In biological imaging, 

phase measurements enable estimating biological parameters such as the integral intracellular 

refractive index (RI)  [27,86,143]. The phase value (φ) is proportional to the sample thickness (t) 
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and RI. Accurate phase and RI measurements are imperative since variations in RI values are used 

as a diagnostic and measuring tool in biological research  [17,33]. RI can be used to determine cell 

biophysical parameters (such as dry mass and protein concentration) and to study certain cell 

metabolic activities (such as cell division and infection). For example, optical diagnosis of 

malignant tissues can be distinguished from healthy tissues by comparing their RI values. Since 

RI values could be used for cell morphology and growth in cell biology, disease diagnosis in 

hematology, and cancer cell and circulating tumor cell detection in pathology, accurate RI values 

are mandatory. Dr. Kedar Khare stated in  [17] the need for standardization of phase estimation 

algorithms in digital holographic microscopy. 

As in many areas of science and engineering, deep learning strategies have been used to 

improve the potential of DHM technology. Deep learning and neural networks have enhanced the 

performance of traditional reconstruction algorithms. For example, deep learning has been utilized 

to automatically determine the in-focus reconstruction plane in DHM  [106,144] and obtain color 

holographic microscope reconstructions  [145]. Yin et al. proposed a deep learning framework for 

a reflection digital holographic setup without a microscopic imaging system (e.g., lensless 

configuration) in which the sample information was loaded on a phase-only spatial light modulator 

(e.g., non-biological samples)  [146]. In 2019, Rivenson et al. presented a neural network model 

to retrieve the amplitude and phase reconstruction for lens-free DHM systems  [147]. The same 

year, Wang et al. proposed a different approach for retrieving the complex information (e.g., 

amplitude and phase) of holograms using a neural network based on the Y-Net model  [148] in 

common-path microscopy. In 2020, Vijayanagaram implemented a neural network model based 

on a U-Net architecture for numerical reconstruction of artificially generated in-line 

holograms  [149]. Recently, Di et al. proposed a powerful strategy for quantitative phase image by 
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implementing the PhaseNet convolutional neural network for reconstructing phase maps of size 

128 × 128 recorded from a common-path digital holographic microscope in times of ~0.014 s 

(~71.43 fps)  [150]. In a recent paper, Moon et al. experimentally validated a conditional 

generative adversarial network (cGAN) for removing superimposed noise in the Gabor (in-line) 

holograms of red blood cells and elliptical cancer cells; the proposed cGAN model required the 

processing of off-axis DHM holograms before training the learning-based model  [151]. The 

cGAN reported in   [151] was applied to noise removal, not phase reconstruction. The inputs to 

that cGAN were reconstructed phase images obtained using a Fresnel propagator. The aim of that 

work was not quantitative phase imaging in off-axis DHM. Ma et al, proposed a two-stage 

generative adversarial network GAN) to provide accurate phase maps in DHM  [152]. The two-

stage GAN required a preprocessing stage to remove the interference fringes of the sample that 

were in the DHM hologram by background segmentation. Then, the vacancy sample area was in 

painted with fringes generated by a deep learning algorithm prior to recovering the compensated 

phase maps. Since the implementation of the two-stage GAN was focused on a reflection (e.g., 

Michelson-based) DHM system, the model was not validated with biological samples. Although 

many studies have been reported involving deep learning models for holographic reconstruction, 

to the best of our knowledge, no learning-based method has been reported in the literature for full 

phase compensation (e.g., no phase aberrations) in transmission off-axis DHM using biological 

samples. In this study, a conditional generative adversarial network (cGAN) is presented. The 

cGAN is trained to reconstruct quantitative phase images free of aberration without the need for 

any pre- or post-numerical procedures, reducing the computational complexity of traditional 

reconstruction methods. Our cGAN reconstructs and compensates phase images from DHM 

holograms as inputs. The main differences (not the only ones) between our cGAN and the one 
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reported in Ref.  [152] are: (1) the number of layers of the generator is different, since the size of 

the input images and the task to be performed are different; (2) The activation function of the 

symmetrical layers is different; (3) The authors used the structural similarity index to evaluate the 

performance of the trained network while we use two customized metrics focused on phase images 

with minimum phase aberrations and noise; and (4) the discriminator is difference (Markovian 

[146] vs. our CNN pathGAN discriminator). 

7.2 ConvA framework and performance in off-axis DHM 

7.2.1 ConvA framework 

The first learning-based model investigated to reconstruct amplitude and phase images from raw 

holograms recorded in off-axis DHM systems is the convolutional autoencoder (ConvA). This DL 

approach (e.g., ConvA) is an unsupervised neural network (NN) that encodes features and 

structures from unlabeled data. Generally, the ConvA compresses the input data into lower-

dimensional, retrieving the data from this representation. The ConvA model consists of two main 

parts: the encoder and decoder. Whereas the NN in the encoder learns to represent information 

using lower-dimensional representation to recreate the original input, the decoder recreates the 

high-dimensional data from the lower-dimensional representation  [153]. Previous research studies 

have shown the application of ConvA to reduce noise  [154,155]. However, in this contribution, 

we investigate the performance of a ConvA model to fully reconstruct amplitude and phase images 

from raw DHM holograms without the need for any spatial filtering process, thus reducing the 

computational complexity of the DHM reconstruction method once the ConvA model is properly 

trained. The structure of the proposed ConvA model is depicted in Fig. 7.1. The encoder part of 

this model is composed of three convolutional layers, with 256, 128, and 64 filters, each having a 

stride of 2 pixels. Finally, a flattened layer is added to transform the bi-dimensional information 
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obtained by the stack into a one-dimensional vector, which is further summarized by a latent layer 

of 512 neurons. As expected, the decoder part of the model is a mirrored version of the autoencoder 

resulting in an output grayscale image of 256×256 pixels. The training of this model was performed 

via a logarithmic loss function with a batch size of 16 images, a gradient descent optimizer. The 

epochs differed from amplitude and phase imaging, being 20 for amplitude reconstructions and 30 

for phase reconstructions. These epochs were estimated by calculating the MSE between the true 

and predicted image during the validation. The ConvA model was implemented in Python 3.7.6, 

and the libraries of Keras and TensorFlow were used.  

 

Fig. 7.1. The convolutional autoencoder (ConvA) structure for amplitude and phase imaging in 

off-axis DHM. 

 

7.2.2 Performance of ConvA model using simulated data 

Initially, due to the lack of an accessible database of biological off-axis holograms, we tested the 

performance of the ConvA model for reconstructing amplitude and phase information using 

simulated data. We created a simulated database mimicking the recording of in-focus holograms 

using an off-axis DHM system. The simulated biological samples consist of six different cells [A, 
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B, C, D, E, and F in Fig. 7.2(a)], located at random spatial positions within an imaged field of view 

of 256 256  pixels. To simulate a realistic distribution of the cells, the density of cells ranges 

from 3 to 8 cells within the field of view, see raw cell distributions in Fig. 7.2(b). Finally, simulated 

off-axis holograms were generated by interfering with a uniform plane wave and the object beam 

in which its phase information is the distribution of the cells. Considering that the change of the 

interfering angle (e.g., the tilt of the uniform plane wave) yields a different set of reconstruction 

parameters, the simulated holograms were generated using different interfering angles between the 

object and reference beams, see Fig. 7.2(b). Note that we always guarantee the off-axis architecture 

(e.g., not overlapping between the diffraction orders in the hologram’s spectrum). A total of 4,338 

simulated off-axis holograms were created. Each hologram was reconstructed to generate the 

corresponding amplitude and phase images using the automatic method proposed by Trujillo et 

al.  [80]. 80% of this dataset was used to train the ConvA network, and the remaining 20% was 

used to test its performance. 

 

Fig. 7.2. Simulated holograms of six different types of cells. (a) Simulated cells’ distribution used 

as phase information; (b) raw off-axis holograms generated by the coherent interference between 

the simulated cells’ distributions in (a) and a tilted uniform plane wave. The interference angles in 
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the holograms are diverse to increase the method's applicability. The size dimension of each sample 

is 256×256 pixels. 

 

Figure 7.3 shows the reconstructed amplitude and phase images of the three cells’ distribution 

from the testing dataset (e.g., unseen data during the training) after training the ConvA model. The 

reconstructed amplitude images are shown in the top row of Fig. 7.3 (green rectangle), and the 

bottom images in Fig. 7.3 are the reconstructed phase images (red rectangle). Figures 7.3(a) and 

(d) are the true amplitude and phase images. Figures 7.3(b) – 7.3(e) are the reconstructed amplitude 

and phase images using the conventional method  [80]. Finally, Figs. 7.3(c) – 7.3(f) are the 

reconstructed amplitude and phase using the trained ConvA model. Clearly, both amplitude and 

phase images look alike. We have compared the accuracy of the ConvA model to reconstruct 

amplitude and phase images using raw holograms by measuring the minimum square error (MSE) 

between the conventional reconstructed images and the predicted. The MSE value was below 

0.0005 (e.g., 2.3591×10-4 for reconstructing amplitude images and 1.1584×10-4 for phase 

imaging), validating the performance of the ConvA model to reconstruct simulated noiseless 

holograms.  
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Fig. 7.3. Comparison between the reconstructed amplitude (top row) and phase (bottom row) 

images using unseen dataset. First column: true images. Second column: amplitude and phase 

images reconstructed using the conventional method. Third column: amplitude and phase images 

generated by the trained ConvA model.  

7.2.3 Performance of ConvA model using experimental data 

Next, we validated the performance of the ConvA model using experimental data. For this 

reason, we have set up a traditional Mach-Zehnder off-axis DHM system, Fig. 7.4(a), to record 

experimental holograms. In this setup, the light source is a 532-nm diode laser, which is expanded 

and collimated by a beam expander and then divided into two waves by a first beam splitter. The 

object wave illuminates the sample after being reflected by a plane mirror. The light scattered by 

the specimen is collected by an imaging system 40×/0.65NA infinity-corrected MO lens and a tube 

lens TL of focal distance fTL = 200 mm. The MO and TL lenses operate in the telecentric regime 

to avoid spherical aberrations introduced by the optical configuration. On the other hand, the 

reference wave propagates with no perturbations to the second beam splitter after being reflected 

by a plane mirror, where this wave is recombined with the object wave to create the off-axis DHM 

hologram finally. In this configuration, the off-axis angle between the interfering waves is adjusted 

by tilting the mirror in the reference arm or the second beam splitter. The hologram is recorded by 
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a CMOS sensor of 1920×1200 square pixels with a 5.86 μm side. The CMOS sensor is located 

precisely at the back focal plane of the tube lens (e.g., IP of the microscope), recording in-focus 

holograms.  

A microscopic slide containing normal (healthy) human red blood cells (RBCs) from Carolina 

Biological Supply Company (item #C25222) is used to create our experimental dataset to train and 

validate the proposed learning-based methods. Although these RBCs present some absorption, 

they can be considered phase objects when no staining is applied. Unstained RBCs have been 

widely imaged in DHM, enabling the detection of malaria  [31,32] and screening of diabetes  [33], 

and sickle cell anemia  [24], as well as other inherited anemias   [34].  

 

 

Fig. 7. 4. Illustration of the RBC dataset: (a) Conventional off-axis Mach–Zehnder DHM setup 

operating in telecentric regime. Input holograms after image orientation; and their respective phase 

maps reconstruction. The colors squares are used to illustrate the tilt of the interference fringes. 

To create a dataset of DHM holograms and their corresponding fully compensated phase 

reconstructions, the following procedure is executed: i) a sample of unstained red blood cells is 

placed at the sample plane of the DHM setup and a total of 120 records are done, Fig. 7.4(b). The 

recorded holograms were augmented via image orientation by rotating the holograms randomly in 

90 or 180 degrees and applying data augmentation a total of 858 holograms were obtained. ii) For 

the DHM hologram obtained in i), a fully compensation and phase reconstruction process is 
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performed using a computationally faster version of  [80] (reference method). iii) Finally, sections 

of 256x256 pixels are cropped from every obtained hologram and their respective phase map, Fig. 

7.4(b). to make up the database. 

Our dataset is composed of raw DHM holograms and their corresponding reconstructed phase 

images. The procedure to create this dataset is the following. A microscopic slide containing 

unstained red blood cells is placed at the sample plane of the DHM system. We have recorded a 

total of 120 different in-focus DHM holograms, Fig. 7.4(b). The recorded holograms were 

augmented via image orientation by rotating the holograms randomly in 90 or 180 degrees. After 

this data augmentation, a total of 858 in-focus RBCs holograms were obtained. We have 

reconstructed the quantitative phase images of these holograms [second row in Fig. 7.4(b)] using 

an optimized version of  [80]. After reconstructing the holograms, each pair of holograms and 

reconstructed phase images are cropped into patches of 256×256 pixels. Based on the camera 

specifications, each pair of holograms and reconstructed phase images is divided into 28 pairs of 

images (i.e., holograms and reconstructed phase images) to generate an experimental dataset of 

1,820 instances. 

The results of the learning-based ConvA model after its proper training are illustrated in Fig. 

7.5. Figures 7.5(a)-(d) show four different holograms of the validation dataset. These holograms 

[Figures 7.5(a)-(d)] present different experimental conditions, such as the presence of dust in the 

sample, some defocusing effects, and changes in the background intensity. The latter may be 

related to temporal fluctuations in the experimental conditions from the illumination source and/or 

the implementation of the system. Whereas panels (e-h) in Figure 7.5 [second row] show the 

reconstructed phase images for the conventional method  [80], panels (i-l) are the reconstructed 
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phases for the ConvA model [third row]. Apart from the presence of some noise in the RBCs’ 

edges, the ConvA model can recover the phase information of the RBCs. Even note that some 

detailed features inside the RBCs, highlighted by the green circles, are retrieved by the ConvA 

model. The ConvA method also reduces the background noise in the phase reconstructions, as it 

can be visually validated within the regions encircled by the red lines. Moreover, the blue circles 

show that the proposed ConvA learning-based model properly reconstructs the information of 

some cells that are incorrectly imaged by the conventional method. This failure of the traditional 

approach is due to the illumination inhomogeneities for different regions of the acquired DHM 

holograms. After training the model, the convolutional autoencoder requires 5 ms to compute a 

phase map of 256×256 pixels running on a personal computer powered by an Intel Core i7-8700 

@ 3.20GHz. The conventional method requires 35 ms to reconstruct the same image using the 

same laptop, leading to a 7-fold reduction in time achieved by the ConvA model. In summary, the 

ConvA method recovers the phase information of biological samples accurately from a single 

DHM hologram with reduced computational complexity.  
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Fig. 7.5. Results of the proposed ConvA method applied to RBCs sample in DHM.  Panels (a–d) 

are the DHM holograms. Panels (e–h) are the phase results obtained via the reference method  [80]. 

Panels (i–l) show the phase map obtained by the proposal method. The colored circles in panels 

(e–l) show differences between the reconstructed phase images; see text for further details. 

 

7.3 cGAN and performance in off-axis DHM  

Despite the success of the ConvA model in reconstructing phase images, the convolutional encoder 

introduces some noise in the cells’ edges, reconstructing RBCs with irregular shapes. For this 

reason, we have investigated the performance of a conditional generative adversarial network 

(cGAN) to reconstruct quantitative phase images free of aberration without needing any pre- or 

post-numerical procedures. 

7.3.1 cGAN framework 

The structure of the cGAN model for image-to-image translation (pix2pix cGAN  [156]) is 

depicted in Fig. 7.6. This cGAN model comprises two submodules: a generative model and a 

discriminator model. The pix2pix cGAN refers to a type of cGAN neural network that learns to 
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map from an input image, generating an image that is conditional on the discriminator. The 

discriminator must establish if the output image from the generator is a believable alteration of the 

input image.  

 

Fig. 7.6. Structure of the image-to-image translation conditional generative adversarial network 

(pix2pix cGAN) for reconstructing quantitative phase images in off-axis DHM. See text for further 

details. 

 

The generative model produces free-of-aberration phase maps given DHM holograms as inputs. 

The supervised training of this submodule is defined by a weighted sum of two loss functions. The 

first function is an L1 loss which penalizes the difference between the model’s generated 

reconstructed phase maps, ( )G x , and the traditional method’s target reconstructed phase maps, y

. The second function is the adversarial loss from the discriminator model. The discriminator model 

is trained to determine whether the generator has built an input phase map (i.e., yielding to a 

fake/artificial signal) or a target phase map (i.e., an actual signal). The factor   is fixed as 100 to 
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favor the L1 loss ( )G x y−  during training  [156]. This parameter encourages the generator to 

produce plausible translations of the DHM holograms, not just plausible phase maps in the target 

domain. The models were trained with the Adam version of the stochastic gradient descent  [157] 

with a small learning rate of 0.002 during 100 epochs.  

A U-Net architecture  [158] was used as the generative model because it accurately reconstructs 

high spatial frequencies features  [159]. The hallmark of the U-Net model is an accurate 

reconstruction of the phase values in those regions where the sample presents sharp jumps, such 

as the edges of the RBCs. The U-Net structure is based on a traditional bidimensional 

convolutional autoencoder for image-to-image translation with skip connections, Fig. 7.8. The 

additional skip connections between asymmetrical layers in the U-Net structure guarantee that the 

bottleneck of the autoencoder structure can be circumvented. In other words, the skip connections 

shuttle the low-level information of the input DHM holograms directly across the network  [159]. 

The model’s encoder part comprises eight convolutional layers with a 2-pixel stride in each 

dimension to downsample their feature size from 256 × 256 to 1 × 1. The number of filters in these 

convolutional layers was increased from 64 to 512 to account for the information from the datasets. 

The decoder part of the model is almost a mirrored version of the encoder. The differences between 

the encoder and decoder parts are the transpose bidimensional convolutional layers and the 

implemented dropout layers after its first four layers. The output in the generator model is a 256 × 

256 × 3 entries array produced with a final hyperbolic tangent activation function which presents 

better results for different GAN architectures. 
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Fig. 7. 7. Structure of the U-net model used for the proposed cGAN. 

In the proposed cGAN architecture, the discriminator model is a deep convolutional neural 

network for binary classification. Each input to this model is a pair of an off-axis in-focus DHM 

hologram and its corresponding phase image concatenated horizontally in a 256 × 256 × 6 entries 

array. This patchGAN discriminator [51] processes 70 × 70 pixel regions of the input images, and 

the results of all patches are averaged to obtain an overall classification outcome for the input 

image. The model consists of six bidimensional convolutional layers in which the stride is fixed at 

2 in each dimension to down sample the feature maps size after each convolution, Fig.7.7. The 

activation function of the first five layers is the LeakyReLu  [160] to avoid blockage during training 

due to negative values in the input signals. In layers 2 to 5, batch normalization is also applied 

over every instance. The number of feature maps increases in each of these convolutional layers 

up to 512 to adjust the complexity of the model according to the data.  
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Fig. 7.8. Structure of the discriminator model used for the proposed cGAN. 

Since the composite loss functions of the GAN models do not converge, due to the adversarial 

fitting of the two involved sub-models, customized metrics must be used to guide the proper 

training of this learning-based proposal. Two metrics were selected in every epoch of the training 

stage to quantify the method’s performance at reconstructing phase maps without phase 

perturbations from raw DHM holograms. The first metric was a thresholding-and-summation 

metric (TSM) which accounted for phase discontinuities in every generated phase map. Whereas 

distorted phase images in DHM generate thresholder phase images with a mix of black and white 

pixels  [80], the reconstructed phase image without phase aberrations is the one whose thresholder 

phase image is white (i.e., all pixels in the thresholder phase image should be one). Therefore, the 

customized metric (TSM) counted the number of black pixels in the binary phase image is 
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In Eq. (7.1), ˆ
norh  stands for the normalized reconstructed phase map generated by the method in 

every training step; m and n are integer numbers running from 0 to M and N, respectively; M, and 

N are the number of pixels in each dimension of the output phase image, which coincides with the 

dimensions of the input hologram;  Thres  represents a thresholding operator that converts each 

image pixel value larger than 0.2 into one, otherwise zero  [80]. Figure 7.9(a) shows the plot of the 

average TSM values measured from reconstructed phase maps generated by the model for the full 

training (orange curve) and validation (blue curve) DHM holograms. Fig. 7.9(a) shows that the 

normalized TSM for the validation dataset does not change considerably after the 10th epoch. 

Therefore, the network has converged in terms of the number of reconstructed phase 

discontinuities after the 10th epoch. Figure 7.9(c) shows a set of generated phase maps at different 

epochs for the same hologram of the validation dataset. The proposed model reconstructed the 

phase discontinuities correctly after reaching the convergence.  

The second customized metric Involved measurement of the standard deviation ( ) inside one 

background region of the phase maps (i.e., an area in which the phase measurement is constant). 

For simplicity, the region must be selected where no RBCs is present in the reconstructed phase 

images. An example of the region chosen to calculate the   value is shown in Fig. 7.9c; see the 

area enclosed by the blue square. This metric was calculated only for 15 generated phase maps per 

dataset, which provided a good representation of the   metric for the whole dataset. Fig. 7.9c plots 

the average   values for the selected 15 phase maps per dataset. The   metric allows quantifying 

the noise of the generated phase images, which must converge (i.e., the   value is as low as 

possible) after the proposed method is adjusted correctly. According to this metric, the generated 

phase maps for the validation dataset present the minor noise level at the 12th epoch. After this 
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point, the   value starts increasing again. The average metric converges at the 12th epoch for the 

training dataset. Nonetheless, after this epoch, the model appears to start overfitting. Overfitting in 

supervised learning occurs when the tendency of the model’s performance on the training data 

diverges from the performance of the model on the validation data. The latter implies that the 

model is being fine-tuned to predict the training samples while at the same time it is failing to 

adequately predict the validation samples, which are the actual targets of the learning procedure. 

Therefore, considering that the model presented the least noise level at the 12th epoch, and the 

normalized TSM had already converged, we concluded that the best-fitted model coefficients for 

our learning-based method were found at this epoch (i.e., the 12th epoch). 

 

Fig. 7.9. Performance of the cGAN model for the training and validation dataset: (a) The average 

TSM value of the reconstructed phase maps measured for the complete validation and training 

dataset; (b) the average STD values for the background regions of the selected 15 phase images 

per dataset; (c) reconstructed phase maps of the identical hologram of the validation dataset 

provided by the proposed cGAN model at different epochs. 

 

7.3.2 Experimental results 
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Once the generator was adjusted correctly within the GAN training, the learning-based model is 

used to reconstruct free-of-aberration phase images of static and dynamic human RBCs from 

experimental holograms recorded in an off-axis telecentric DHM system. To use the proposed 

learning-based method, a sample code to reconstruct quantitative free-of-aberration phase images 

from RBC holograms recorded in an off-axis telecentric-based DHM is freely available in 

Ref.  [161]. The model in this repository contained the weights yielded during the training stage 

described in Section 7.3.1 and used in this section to retrieve the reported results. Therefore, any 

user can use this implementation to process off-axis diffraction-limited DHM recordings without 

needing further fitting stages or robust pre- or post-processing procedures. Note that it is only 

required to match the field of view between the input hologram and the one used to train the 

network. 

In our first experiment, we have compared the performance of our learning-based cGAN model, 

after proper training, to that of the traditional reconstruction method  [80] to analyze human RBCs 

in static conditions, see Fig. 7.10. For the comparison, four different holograms were randomly 

selected from the validation dataset, see Figs. 7.10(a)–(d). Again, these holograms present different 

experimental conditions, marked by magenta dashed rectangles, such as the presence of dust in the 

sample, some defocusing effects, and changes in the background intensity. The latter may be 

related to temporal fluctuations in the experimental conditions from the illumination source and/or 

the implementation of the system. Whereas panels (e-h) in Fig. 7.10 (second row) show the 

reconstructed phase images for the conventional method, panels (i-l) are the reconstructed phases 

for the proposed learning-based method (third row). Based on these results, our proposed cGAN 

model achieves similar performance as the traditional reference method [Figs. 7.10(e) –(h)]. 

However, the conventional method introduces some random phase distortions in some holograms, 
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reconstructing low-quality phase images [Figs 7.10(f) – (g)]. Contrarily, the cGAN model 

reconstructs these quantitative phase maps successfully without undesired phase distortions [Figs 

7.10(j) – (k)]. The colored arrows in these panels show other differences between the reconstructed 

phase images. For example, the green arrows indicate background regions in the reconstructed 

phase images with different phase values. Whereas the conventional method fails to quantify the 

background phase level correctly, the proposed method successfully provides a homogeneous 

background level for most testing DHM holograms. The blue arrows highlight RBCs whose phase 

distribution presents some distortions in the traditional method. The poor reconstruction 

performance of the conventional approach is related to the reliance on the estimated parameters of 

the digital reference wavefront to the temporal fluctuations in the experimental recording 

conditions. Although the performance of the cGAN method seems superior, the cGAN model 

introduces some blurring effects when reconstructing the contour of some RBCs, as the red arrows 

show. 

For a better comparison of the differences between the reconstructed phase maps produced by 

the traditional reference method [Fig. 7.10(e)–(h)] and the cGAN model [Fig. 7.10(i)–(l)], we have 

measured the two customized metrics described in Section 7.3.1 (i.e., the TSM and  ). The values 

of these two metrics are reported below each phase map image, Figs 7.10(e)–(l). Based on the 

reported TSM values, the cGAN model reconstructs phase images with lower TSM values than 

those obtained by the conventional method. Equation (7.1) shows that the best-reconstructed phase 

image (i.e., phase image with minimum phase aberration) provides the lowest TSM value. 

Regarding the   value, the metric was measured in the region highlighted by the yellow rectangle 

in panels (e)–(h) of Fig. 7.10. Based on the reported   values, the cGAN model reconstructs phase 

images with lower   values than those obtained by the conventional method. These results allow 
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us to conclude that the performance of the proposed learning-based method is better in terms of 

the quality of the reconstruction (i.e., minimum phase aberration and reduced background noise). 

 

Fig. 7.10. Results of the proposed learning-based method for aberration-free phase reconstruction 

of RBC samples in DHM. Panels (a–d) are the DHM holograms, illustrating different experimental 

conditions, marked by magenta dashed rectangles. Panels (e–h) are the results obtained via the 

conventional method. Panels (i–l) show the phase map obtained by the proposal cGAN model. For 

the whole set of phase maps presented their  and TSM values were computed and reported below 

each phase map image. The colored arrows in panels (e-l) show differences between the 

reconstructed phase images; see text for further details. 

 

We have compared the highest- and the lowest-quality reconstructed phase images provided by 

the conventional reference method to those obtained by the cGAN model to further validate of 

method performance for the static holograms. Figure 7.11 shows the unwrapped reconstructed 

phase images and their corresponding 3D topographical view. We have used the Goldstein 

algorithm to unwrap the reconstructed phase images is used  [162]. The unwrapped phase values (

 ) have been converted in RBC’s thickness ( t ) via 02 / [ ( )]s mt n n  = −  where 0 532 =  nm is 
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the illumination wavelength, 1.406sn =  is the RBC refractive index  [163], and 1sn =  is the 

surroundings’ refractive index. As Fig. 7.11 shows, both methods provide similar results for the 

highest-quality reconstructed phase image reconstructed by the reference method [Figs. 7.11(a)–

(f)]. However, the cGAN model achieves improved results for the lowest-quality phase map 

reconstructed by the conventional method, comparing Fig. 7.11(g)–(i) versus Fig. 7.11(j)–(l). Note 

that the presence of phase aberrations in Fig. 7.11(g) leads to reconstructing an RBC with negative 

optical thickness with respect to the background phase level. Quantitatively, the optical thickness 

of an RBC is around 0.8 µm, as was previously reported via a phase-shifting DHM  [131]. Whereas 

the cGAN method provides RBCs with an optical thickness of around 0.8 µm in Figures 7.11(f) 

and 7(l), the optical thickness of the RBCs in Figure 7.11(i) is around 1.5 µm. Apparent 

morphological changes are introduced by the erroneous reconstruction of the phase image 

provided by the reference method. This inaccurate result could lead to misleading sample 

identification, illness screening, or other diagnostics based on quantitative phase imaging. 

 

Fig. 7.11. Quantitative comparison between the highest (a–f) and the lowest (g–l)-quality 

reconstructed phase images provided by the conventional reference method (first row) to those 

obtained by our cGAN model (second row). Panels (a), (d), (g), and (j) are the reconstructed phase 

images. Panels (b), (e), (h), and (k) display the unwrapped reconstructed phase images. Finally, 
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panels (c), (f), (i) and (l) show the three-dimensional (3D) pseudocolor distribution of the optical 

thickness. 

In our next experiment, we investigate the performance and the robustness of the cGAN model 

for reconstructing aberration-free phase images in time-lapse DHM imaging. For this study, we 

mimicked the flow of red blood cells in a capillary by mounting a static microscopic sample of 

RBCs in a motorized translational stage. The velocity of the motor was such that the RBCs’ flow 

was 2.75 μm/s. We have recorded a sequence of 300 holograms that tracks the flow of RBCs within 

blood plasma. It is important to highlight that all the recorded cells were in focus (e.g., the image 

plane condition was met for all cells). This experiment would be completely equivalent to the one 

in which the capillary depth is smaller than the depth of field of the objective lens, which is 

approximately 0.69 µm based on the manufacturer’s specifications. These recorded holograms 

were used as input images of our trained cGAN model. Figure 7.12 summarizes the performance 

of the traditional reference method  [80] and the proposed learning-based model. This figure 

displays five randomly selected phase images. The n value stands for the i-th frame in the time-

lapse recording sequence. Whereas the RBC flow is marked by the blue arrow in Fig. 7.12(b), the 

yellow star is a visual aid to track the identical RBC across the time-lapse sequence. One realizes 

that the traditional reference method reconstructs phase images with phase aberrations and varying 

background levels across the time-lapse sequences, see the red arrows in Fig. 7.12(a). In addition, 

the poor performance of the traditional method inhibits the proper visualization of inner structures 

in the dynamic imaged sample. In contrast, the performance of the cGAN model is superior, 

providing reconstructed RBCs images with fewer phase aberrations, a homogeneous background 

marked by the green arrows in Fig. 7.12(b), and reduced noise. However, the proposed cGAN 

model does not exploit one of the major advantages of DHM, which is the reconstruction of 

quantitative phase images of defocused samples (e.g., cells, bacteria, and organisms located at 
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different depths). In future work, we will investigate the performance of the cGAN model to 

reconstruct defocused holograms at different depths for several biological samples by 

implementing a microscopic slide with a flow path, enabling the recording of out-of-focus 

holograms. 

 

Fig. 7.12. Evaluation of the traditional reference and GAN models to reconstruct aberration-free 

phase images in time-lapse DHM imaging. The blue arrow marks the flow direction. The yellow 

star marks the identical RBC across the time-lapse sequence. The red and green arrows show 

differences between the reconstructed phase images. 

Video S1  [164] displays the rendering of the time-lapse reconstructed phase images for both 

the conventional method and the cGAN model. This video demonstrates the superior performance 

of our proposed method. Note that all the reconstructed phase images generated by the cGAN 

model present a homogenous background, resulting from the accurate compensation of the digital 

reference wavefront. In addition, the majority of inner structures in the imaged RBCs are retrieved 

without any phase distortion. Contrarily, the conventional method fails to reconstruct several 

frames in the time-lapse sequence, resulting in an unstable reconstruction technique. To finalize, 

we have estimated the number of frames per second (FPS) required for each method to reconstruct 

these phase images from the raw DHM holograms. For simplicity, we have excluded the 
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acquisition time in the estimation of the FPS. The processing time for each DHM reconstruction 

method is reported based on a laptop powered by an Intel Core I7 6700HQ CPU running at 2.60 

GHz with 8 GB of RAM and hosting an NVIDIA Geforce GTX 960M GPU with 2 GB of RAM 

running at 1 GHz. Whereas the conventional method requires approximately 115 ms to reconstruct 

each raw hologram, the proposed fitted generator reconstructs each quantitative phase image in 

14.8 ms on average, being 7.7× faster. According to these processing times, the video 

reconstruction is equal to 9 and 67 FPS for the conventional and the proposed method, respectively. 

The values of the FPS are also reported in Fig. 7.12 and Video S1. 

7.4 Comparison of the Proposed cGAN Model against the ConvA and U-Net Models  

In this section, we compare the performance of the cGAN model with respect to the one of the 

equivalent U-Net and ConvA models. For a fair comparison, the U-Net and the ConvA models 

have the same architecture as the cGAN generator, omitting the skip connections in the ConvA 

model. The three models have been trained using an experimental dataset of 1,820 pairs of DHM 

holograms, and their corresponding reconstructed phase images: 1,512 and 308 pairs for training 

and validating, respectively. Whereas the parameter adjusting during the cGAN fitting has been 

dictated by two adversarial L1 loss functions and its convergence by customized metrics, a 

logarithmic loss function has been used to tune the parameters of both the ConvA and U-Net 

models. The number of epochs required for each model to be correctly fitted has been determined 

following different convergence criteria: minimizing a thresholding-and-summation metric (TSM) 

and the standard deviation (σ) for the cGAN (Section 7.3), and the root-mean-square error (RMSE) 

for the U-Net and ConvA models.  
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Fig. 7.13. Phase reconstructions by the tested learning-based models. The performance is 

quantitatively performed in terms of the thresholding-and-summation metric and the normalized 

standard deviation. 

Once the models have been appropriately trained, they have been used to reconstruct unseen 

DHM holograms that were not included during the training stage. Figure 7.13 shows three different 

holograms and their reconstructed phase images for each model. The TSM, which accounts for the 

number of phase discontinuities in the reconstructed phase maps, is smaller on average for the 

cGAN (0.12) than the ConvA (0.31) and the U-Net (0.43) models. The cGAN model also provides 

the lowest noise level (e.g., an average σ of 8.73). The average σ is 16.7 and 13.8 for the ConvA 

and the U-Net, respectively. These quantitative results suggest the superior performance of the 

cGAN model for reconstructing high-quality phase images with minimum phase nuisances in 

DHM. We have also measured each model's training and prediction times to complete the 

performance comparison. The training time has been calculated by considering all the required 

epochs during the training stage. The prediction time is computed on a batch reconstruction of 100 
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holograms. The results are reported in Table 1. The systems’ hardware specifications of the models 

training and prediction are detailed in   [165] and  [139], respectively. According to the results in 

Table 1, although the cGAN model requires around five times the training time of the other models, 

once they are correctly fitted, their prediction time is in the same order. Based on all these metrics 

(e.g., TSM, noise level, training, and prediction time), the cGAN model is the most promising 

strategy for fully-compensated phase images without phase aberrations in image-plane off-axis 

DHM. 

Table 7.1. Training and prediction times for the compared learning-based approaches 

Model Training time (min) Prediction time (ms) 

CA 

U-Net 

cGAN 

21 

24 

108 

1211 

1456 

1492 

Figure 7.14 provides a more detailed comparison between the performance of the cGAN 

method against that of the U-Net model. Again, the implemented U-net model has the same 

parameters as the generator model in the proposal cGAN model. Overall, the training 

hyperparameters of this U-Net model are the same employed by the cGAN model generator. The 

main difference is using a logarithmic loss function to adjust the U-Net model weights. The U-Net 

model converged after 50 epochs. For each image in the validation dataset, this convergence was 

estimated by measuring the root-mean-square error (RMSE) between the reconstructed phase 

images of the conventional method and the one of the U-Net model at every epoch. Considering 

the training dataset for the cGAN model (1,508 pairs of images), the measured RMSE on the 

validation data was 0.25. Since the input reconstructed phase images were normalized before 

training and prediction, this RMSE value means that there is an error of 25% between the target 

phase images and the reconstructed U-Net images. To minimize the RMSE error, increasing the 

training dataset to 24,491 pairs of images was mandatory. In this case, the convergence of the U-
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Net model was reached with an RMSE value of 0.04 at epoch 28. Figure 7.14 compares the 

reconstructed phase images obtained by the traditional method, the U-Net model (trained with 

24,491 pairs of images), and the proposal cGAN model (trained with 1,512 pairs of images).  

 

Fig. 7.14. Comparison between the U-Net model and our cGAN model. The first column displays 

the selected DHM holograms from the testing dataset. The reconstructed phase images obtained 

by the conventional method are illustrated in the second column. Columns 3 and 4 show the 

reconstructed phase images achieved by the U-Net and our cGAN model. The colored circles and 

arrows indicate differences between the reconstructed phase images. 

Note that Figure 7.14 also shows the performance of the U-Net and proposed cGAN models using 

the new validation dataset to assess the goodness of these models for different experimental 

conditions and show that no overfitting occurs. This second testing dataset consists of 7,005 pairs 

of images recorded to avoid similarities between the training and testing datasets due to the 

identical experimental conditions of the one-time acquisition process. This dataset has been used 
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to assess the effectiveness of the proposed model for different experimental conditions and to show 

that no overfitting occurs during the training of our proposed cGAN model. The proposed cGAN 

model outperforms the U-Net model based on the reported TSM values even though the training 

dataset of the cGAN model is 16.2× smaller than the one used in the U-Net model. The cGAN 

model reconstructs phase images with lower TSM values than those obtained by the U-Net model. 

In addition, the cGAN model retrieves the edges of the RBCs with greater accuracy than the U-

Net model, as pointed out by the green circles and the orange arrows. We have measured the   

values were measured in the regions encircled by the dark blue lines in Fig. 7.14 to quantify the 

difference in the noise level. Based on these   values, the U-Net model reconstructs phase images 

less sensitive to noise than the reconstructed cGAN phase images (e.g., lower σ values). 

Nonetheless, the   values are approximately 2.24× lower than those provided by the conventional 

method. Although the cGAN model may introduce some remaining nuisances in the reconstructed 

phase images, as indicated by the red circles in Fig. 7.14, overall, the proposed cGAN method 

achieves better results than the traditional method and the U-Net model. 

7.5 Validation of the Proposal’s Generalization Ability to System’s Diversity 

To validate the generalization ability of the proposed method in regard to system diversity, DHM 

holograms were recorded in a common-path DHM system using a Fresnel biprism. This DHM 

system was comprised of a 40×/0.7 Nikon MO lens, and the camera used had 5471 × 3648 square 

pixels of 2.4-µm side. The Fresnel-biprism-based DHM system still operated in the telecentric 

regime, and the camera was located at the microscope’s image plane. More details on this DHM 

system can be found in  [166]. Note that a minimum preprocessing of the DHM holograms 

recorded by the Fresnel-based DHM system is required. The preprocessing step consisted of 

resizing the raw holograms to reduce their size by 40% and matching the field of view to those 
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provided in the Mach–Zehnder-based holograms. After this step, we have evaluated the traditional 

method and the U-Net and cGAN models to reconstruct these Fresnel-based DHM holograms. 

Figure 7.15 shows selected holograms from the Fresnel-based DHM system and their 

corresponding reconstructed phase images to test the generalization ability of the proposed cGAN 

model. As shown in Fig. 7.15, the reconstructed phase images obtained by the traditional method 

present RBCs with a different phase value even though all cells are expected to yield the same 

phase values within experimental error margins. This phase difference in the RBCs is due to a 

phase difference of π introduced by the Fresnel biprism between each interfering wave. 

Nonetheless, both learning-based methods reconstruct all cells with the same phase values. The 

green arrow and the region enclosed by the red circle in Fig. 7.15(g)-(k) illustrate that the U-Net 

model provides distorted details of RBCs. In contrast, the cGAN model reconstructs the 

specimen’s details accurately, as shown in the region inside the green circles and pointed out by 

the orange arrows. The measured   values, computed for the region encircled by the dark blue 

circle, are similar for the three methods. In summary, the cGAN model can reconstruct quantitative 

phase images from off-axis DHM holograms with minima distortions, highlighted by the red 

circles in Fig. 7.15, regardless of the optical configuration of the transmission DHM system. 
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Fig. 7.15. Evaluation of the generalization of the cGAN model to a common-path DHM system. 

The first column shows selected DHM holograms recorded using a Fresnel-based DHM system. 

Columns 2, 3, and 4 display the reconstructed phase images obtained by the conventional method, 

the U-Net model, and the proposed cGAN model, respectively. The dark blue circles mark the 

region where we estimated the  value. 

 

7.6 Conclusions 

This chapter reports a conditional generative adversarial network (cGAN) to fully reconstruct 

quantitative phase images from human red blood cells (RBCs). To the best of our knowledge, this 

is the first learning-based method to reconstruct off-axis DHM holograms of biological samples 

with minimum phase distortions from raw holograms without the need for robust pre- or post-

numerical procedures. The raw RBCs holograms were recorded using an off-axis DHM system 

operating at the telecentric regime. The proposed cGAN model was trained using a L1 adversarial 
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loss whose convergence was dictated by two customized metrics specifically designed for tracking 

the imaging characteristics in DHM: (1) the number of phase discontinuities using a thresholding-

and-summation metric (TSM) and (2) the noise level measured in homogenous regions of the 

reconstructed phase maps using the standard deviation ( ). Because we used two customized 

metrics (i.e., TSM and  ), the proposed cGAN model converges rapidly (i.e., only 12 epochs are 

needed). This learning-based method was trained using 1,512 pairs of raw holograms and their 

reconstructed phase images obtained by a traditional reference method  [80]. Besides, the proposed 

cGAN model and the U-Net model are compared to evaluate the performances of both methods 

and validate the superior performance of the cGAN model. In summary, the proposed cGAN 

method surpasses the setbacks of the reference method, resulting in quantitative phase images with 

reduced noise and constant background level. These improvements are consequences of the model 

used (i.e., conditional generative adversarial networks) since these supervised models were 

initially designed for the specific abstraction of low-level information. Additional advantages of 

the cGAN model are: (1) the retrieval of inner structures of the RBCs’ information and (2) its 

training time (approximately 2 h).  

The high performance of our cGAN model paves the way for video-rate quantitative phase 

imaging of dynamic studies using DHM. The main disadvantages of the proposed method are the 

data field of view and the cell density, which are reduced to 40 µm × 40 µm (256 × 256 pixels) 

and up to 9 cells for the field of view, respectively. In future work, we will increase the cell density 

and the field of view by expanding the image size fed into the model. In addition, although the 

cGAN model was validated using RBCs, it could be straightforwardly extended to reconstruct 

quantitative phase images of any dynamic biological sample. Future studies will upgrade the 

training dataset, including anemic RBCs, glioblastoma cells, and diatoms. The limitation of the 
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cGAN model is that this method only works for off-axis DHM systems operating in the telecentric 

regime. Table 7.2, summarize the main advantages and limitation of the proposed cGAN model. 

Table 7.2. Advantages and limitations of the proposed cGAN model to fully reconstruct 

quantitative phase images from human red blood cells (RBCs). 

Advantages Limitations 

✓ Reconstructed phase images with 

minimum phase distortions from raw 

off-axis DHM holograms 

✓  No need for robust pre- or post-

numerical procedures. 

✓ Reconstructed phase images with 

reduced noise and constant background 

level.  

✓ Suitable dynamics RBCs samples. 

✓ System diversity; the trained cGAN 

model reconstructs RBCs holograms 

for different off-axis DHM systems 

operating in the telecentric regime. 

➢ Only work for off-axis DHM systems 

operating in telecentric regime. 

➢ Only work for RBCs 

➢ Reconstructed phase images with 

reduced field of view (e.g., approx. 40 

µm × 40 µm, corresponding to 256 × 256 

pixels). 

➢ Reconstructed phase images with 

reduced cell density, up to 9 cells for the 

field of view. 
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8. SPECKLE NOISE REDUCTION IN DHM VIA HYBRID MEDIAN-MEAN 

FILTER  

 

Speckle noise is inherited by all imaging techniques that utilize a coherent light as a source of 

illumination. The speckle is generated due to the illumination of a surface with roughness in 

dimensions comparable to the coherent wavelength of the light source  [167]. Following Huygens' 

principle  [168], each point of the surface acts as a spherical wave scatter emitting light with 

random phase distribution among them. The coherent superposition of these spherical wavefronts 

creates a random intensity pattern of constructive and destructive interference, dark and shiny 

spots, to produce the speckle pattern  [167]. The speckle noise is, therefore, a random pattern of 

dark and shiny spots that appears on the images in any coherent (e.g., laser-based) imaging system, 

including laser-based photography  [169], DH  [170], and DHM  [116]. While laser-based 

projectors provide a wide color gamut for vivid, super bright, and high contrast images, their major 

limitation is the speckle noise caused by the lasers’ coherent nature. Akram and Chen  [169] 

reviewed the current state-of-the-art solutions to reduce speckle noise. These approaches involve 

the decorrelation of the light through the wavelength using a source with the fast tuning of lasing 

wavelength or an array of sources with different wavelengths. Another decorrelation approach can 

involve the use of a source with reduced spatial coherence (e.g., spatial decorrelation) or the use 

of an array of sources with different angles at one spot on the screen (e.g., angular decorrelation). 

The angular decorrelation can also be achieved by changing the illumination angle at one spot or 

rotating a diffuser. Finally, light can be decorrelated using polarization with a source with fast 

changing polarization or splitting the light into two paths with sufficient path length difference and 

different polarizations. On the other hand, several approaches have been developed in DHM to 

diminish the adverse speckle effects, which ruin the image contrast and reduce the spatial 
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resolution. In general, these methods can be grouped into two categories: i) physical  [171–176] 

and ii) computational  [177–184] approaches. The physical techniques are commonly based on 

two methodologies. One method involves recording the same scene hologram Q  times under 

different physical conditions. Because of the random behavior of the speckle noise, the speckle 

noise in each of the recorded holograms is uncorrelated with the others. Therefore, the average of 

the reconstructed images provides a numerical reconstruction with reduced speckle noise 

following a 1/ Q  law  [185]. Such holograms can be acquired by changing the angle of 

illumination through a rotating mirror  [171], slightly rotating the object  [172], and lateral shifting 

the object  [173] or the sensor  [186]. Another reported physical technique uses different 

wavelengths to register multiple holograms  [187]. In addition, other physical methods use some 

optical elements to reduce the light’s spatial coherence partially. Examples of these elements 

include rotating diffusers  [174], spatial light modulators  [175,176], and holography 

diffusers  [188].  

Due to the number of holograms that need to be recorded to produce significate effects, ranging 

from 20 to 100 images, the common disadvantage of all of these physical methods is the lengthy 

acquisition time, which limits the techniques to static samples. Computational techniques aim to 

reduce the speckle noise in dynamic applications. The main idea of these techniques is the use of 

filters applied in the spatial  [189–191] or Fourier domain  [192,193] to reduce the speckle noise. 

Other computational methods are based on the same idea as the physical approaches in which one 

averages Q  partially uncorrelated speckle-distorted reconstructed images from a single hologram. 

These methods include the introduction of a spatial jittering in the Fresnel kernel  [183], the use 

of a mask to generate Q  sub-holograms  [184], and the sequential sampling of the discrete Fourier 

transform of the hologram  [179]. A standard limitation of these computational approaches is the 
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requirement of some parameters for improving the performance. For example, the WFT2F 

technique requires 10 input parameters  [193,194]. The quality of the final denoised image depends 

significantly on the correct selection of those parameters. Those parameters vary from image to 

image. Unfortunately, the paper describing that technique does not provide information about the 

optimal values of those parameters. This could be a limitation for inexperienced users who may 

not have prior knowledge of the technique. In addition, computational methods are subject to a 

tradeoff between spatial resolution and speckle noise. The higher the reduction in the speckle noise 

is, the lower the spatial resolution in the denoised image is. This tradeoff has been avoided by 

implementing approaches in which physical and computational methods are 

integrated  [179,195,196]. In particular, Bianco et al., proposed a framework that combines the 

acquisition of multiple digital holograms with optimized joint-action computational image-

denoising methods. In that work, the authors demonstrated their technique using computer-generated 

holograms from a single-shot recording and validated it using dual-wavelength holographic 

recordings  [196].  

With the significant advancement of deep learning (DL) techniques over the last years, DL 

approaches have also been applied to restore sharp images from their degraded version in the 

presence of speckle noise. Among the different DL approaches, speckle-free images have been 

achieved using a convolutional neural network  [197] and conditional generative adversarial 

network  [198], which were applied to underwater sonar images and laser-illuminated ex vivo 

porcine gastrointestinal tissues, respectively. Whereas traditional DL algorithms require the 

speckle-free image for training the model, Yin et al. proposed a DL method that does not require 

prior knowledge of speckle-free object distribution  [199]. Even though DL algorithms are robust, 

their performance depends heavily on the number of training data and their quality. 
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In this Chapter, we propose a single-shot image processing method to reduce the speckle noise 

based on the synergetic combination of two standard denoising methods in imaging processing: 

the median filter and the mean approach. This single-shot image processing method aims to: (i) 

minimize the tradeoff between speckle noise and spatial resolution in computational denoising 

techniques; (ii) be a user-friendly tool with a simple understanding of the role of the parameters; 

and (iii) be robust for the majority of samples and speckle-distorted systems. The novelty of the 

presented approach, named the hybrid median-mean filter (HM2F), is the cascaded application of 

these techniques to the speckle-distorted images. In this work, we have focused on the 

implementation of the HM2F method in speckle-distorted images from different optical systems: 

laser-based photography, DH, and DHM. Using the HM2F, the speckle noise is reduced up to 49% 

for laser-based photography, 72% for DH, and 14% for DHM, which corresponds to a speckle 

contrast of 0.51, 0.28, and 0.86, respectively. The resolution is kept up to 97% from the original 

value, reducing the adding of blurring effects for all imaging modalities (e.g., laser-based 

photography, DH, and DHM).  

This chapter follows the next structure: Section 8.1 contains a brief description about speckle 

noise. In section 8.2, the proposed HM2F is presented. Section 8.3 is devoted to validate the 

proposed method in Laser-Based RGB photography, DH and DHM. Finally, the conclusions are 

presented in Section 8.4. This work has been published in Optical Engineering  [200], and 

presented in the 2021 OSA Imaging and Applied Optics Congress  [201].  

8.1 Speckle noise 

Each time that coherent light is used as a source on illumination to form an image, speckle noise 

is generated. The speckle noise is generated due to the roughness of the sample has a comparable 
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dimension as the wavelength of the source. The whole set of roughness can be understood as 

emitters source of spherical waves according to the Huygens´s principle. Those wavelengths 

emanating from each roughness mutually impinging in a particular point ( , )p x y  with a random 

phase generating destructive and constructive interference. Now, consider the particular point 

( , )p x y  inside a rectangular array of dimensions M×N,  the interference pattern is produced on all 

the points inside the rectangular array, producing a random pattern of dark and bright points called 

speckle. The complex amplitude at a point ( , )p x y can be obtained add up the whole complex 

distribution originating by each roughness,  

 ( ) ( )
1 1

( , )
, exp ( , ) ,

M N

m n

A m n
x y i m n

M N


= =

 = −


  (8.1) 

Where A and φ are the amplitude and phase distribution generated by each roughness contribution. 

The complex amplitude should be understood as a field with random distribution that follows the 

assumptions made by Goodman i) The complex field follows a uniform statistical distribution, ii) 

for each distribution ( , )x y its amplitudes ( , )A m n  are statistically independent, and iii) for each 

distribution ( , )x y its phases ( , )m n  are statistically independent and is uniformly distributed 

over the interval  , − . A metric to quantify the speckle noise is the speckle contrast SC  defines 

as 

 SC .
I


=  (8.2) 

where   and I  are the standard deviation and mean intensity, respectively, inside region of 

interest in the original noisy image.  
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Fig. 8.1. (a) Pseudocode of the hybrid median-mean filter (HM2F).  (b) Illustration of the hybrid 

median-mean filter for a maximum kernel size of k = 5. The input image correspondst to the noisy 

image. Each median filter creates a reduced speckle-noise image (e.g., denoising speckle image). 

The final denoised image is obtained as the average between the median filtered image and the 

mean result of the previous iteration.  

 

8.2 Hybrid Median-Mean Framework  

The HM2F method is an iterative method based on applying i  times a median filter over the 

original noisy speckle-distorted image g . For each i  iteration, the image after applying the median 

filter is saved in the variable h . The square kernel size of the median filter increases by (2 1)i −  

for each iteration. Because the median filter with kernel size [1 1]  provides an identical image to 

the noisy input image ( )g , the first iteration in the HM2F corresponds to 2i = . The novelty of 

the HM2F to other methods reported in the literature is the combination of several median-filtered 

images ( )h  to provide a final denoising image ˆ( )g . We propose the average between the i’th 

median-filtered image  ( )h  and the previous ( 1)i − ’th denoised image ˆ( )g . Therefore, in the first 

iteration ( 2)i = , median( ,[3 3])= h g  and ˆ ( ) / 2g g h= + . Figure 8.1(a) shows the pseudocode of 
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the HM2F. The inputs of HM2F are the noisy images ( )g  and the maximum kernel size for the 

median filter ( )k . Figure 8.1 (b) shows the process of the HM2F for the maximum kernel size of  

5k =  (maximum iteration, 3i = ). For 5k = , the median filter is applied twice to the noisy image 

with kernel sizes of  [3 3]  and [5 5] . For the first iteration, a median filter of kernel size [3 3]  

is applied to the original noise image ( )g  to provide the denoised h  image. The average of this 

result and the original image results is the new image ĝ . For the second iteration, a new denoised 

h  image, obtained by applying the median filter with kernel [5 5]  to the noisy image, is averaged 

with the previously computed image. Figure 8.1(b) shows the operation of the median filter in two 

different regions, marked by the red-dashed boxes. Black values represent the original noisy data, 

and red values represent the new values after applying the HM2F. A zero-padding operation is 

required to offset border problems for each median filter. The HM2F can also be applied to RGB 

speckle-distorted images after splitting the color image into three-channel images, applying the 

HM2F to each channel image, and merging back these three-channel denoised images.  

Appendix A provides a comparison between the proposed HM2F and a median filter average 

(MFA) approach. The difference between the MFA and HM2F denoising images is the combination 

between the median-filtered images. 

8.3 Experimental results  

The following section is devoted to showing the versatility of the proposed HM2F in laser-based 

photography, DH, and DHM. The HM2F was applied to the RGB noisy image of a four-color cube 

in laser-based photography, the reconstructed amplitude images of a dice and horse model in DH, 
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and the reconstructed phase images of a star target and a complex biological sample in DHM. 

Figure 8.2 shows the optical configuration of the three optical systems. 

 

Fig. 8. 2. Illustration of the optical configurations. (a) Color laser-based photography, (b) DH, and 

(c) DHM systems following a Mach – Zehnder arrangement. BE, beam expander; BS, beam-

splitter; DM, dichroic mirror; L, lens; M, mirror; MO, microscope objective; O, object beam; R, 

reference beam; SF, spatial filter; TL, tube lens. 

 

8.3.1 Laser-Based RGB Photography Results 

Figure 8.3 compares the performances of the HM2F method with the known denoising methods, 

including the 3D block matching (BM3D)  [180], the nonlocal means (NLM) filter  [178,190], the 

Wiener filter  [181], and the conventional median filter (CMF)  [40]. For this comparison, Fig. 8.2 

shows the final RGB denoised image of a four-color cube utilized as a millimeter-sized object. In 

the laser-based RGB photographic system Fig. 8.2(a), the cube was located at 86 cm from a 

commercial Canon photographic camera, and directly illuminated by three lasers of wavelengths 

671 nm (red), 532 nm (green), and 473 nm (blue). More details of this laser-based photographic 

system are provided in Ref  [202]. The kernel size for both the CMF and the proposed HM2F was 

11 × 11. Note that for CMF we applied a median filter with a particular kernel size over the original 

image. To quantify and characterize the reduction in the speckle noise the speckle contrast SC  was 

measured per channel as SC /i iI=   [185], where 
i  and iI  are the standard deviation and mean 
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intensity, respectively, inside the yellow region marked in the original noisy image in Fig. 8.3(a). 

The average value of the three measured speckle contrast for each denoising technique is reported 

in the lower right corner of Fig. 8.3. These values were normalized to those of the original noisy 

image. Regarding the speckle contrast reduction provided by the other approaches, the results 

showed better performance by the HM2F and the CMF (SC = 0.51 for HM2F versus 0.50 for 

CMF). Comparing the speckle contrast values, the reduction in the speckle contrast provided by 

the proposed HM2F method [Fig. 8.3(f)] is almost the same as that provided by the CMF approach 

[Fig. 8.3(e)]. Nonetheless, for the same kernel size, the blurring effect of the conventional median-

filtered RGB image is more significant than that of the HM2F image, Figs. 8.3(e) and (f), 

respectively. A quantitative analysis of the blurring effects is provided by analyzing the first-order 

derivative of a step function (i.e., edge) for each method. The step function is defined by the mean 

profile along the vertical direction of the region marked by the green rectangle in Fig. 3(a). Because 

the first-order derivative of a step function is a Delta function [131], we have estimated the full 

width at half maximum (FWHM) of the first-order derivative of the step function. The step 

function is defined by the mean profile along the vertical direction of the region marked by the 

green rectangle in Fig. 8.3(a). Since our step function is noisy, we have fitted it using a smoothing 

spline whose parameter has been determined empirically for each method in such a way that the 

correlation coefficient between the noisy step function and the fitted one is higher than 0.99. Figure 

8.3(g) shows the first-order derivative of the edge for the BM3D, NLM, Wiener, CMF, and HM2F 

approaches. For each of these profiles, the FWHM was quantified and reported in millimeters in 

the top right corner of each image method inside Fig. 8.2. The FWHM is equal to 0.28 mm for the 

original noisy image and the denoised images obtained after applying the BM3D, NLM, Wiener, 

and HM2F approaches. This means that the BM3D, NLM, Wiener, and HM2F methods do not 
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introduce any blurring effect. By contrast, the CMF technique introduces some blurring with the 

FWHM being increased to 0.31 mm. Nonetheless, while the NLM and HM2F approaches are 

similar, the reduction of the speckle contrast is less for the BM3D (SC = 0.59 for BM3D versus 

0.51 for HM2F) and the Wiener (SC = 0.58 for Wiener versus 0.51 for HM2F) methods. In 

conclusion, for the four-color cube, the HM2F shows the highest reduction in the speckle contrast 

without adding blurry effects. 

 

Fig. 8.3. Validation of the proposed HM2F method in laser-based photography. Denoised RGB 

images of the four-color cube after applying different denoising approaches. (a) Original noisy 

image; denoised image using (b) BM3D, (c) Wiener filter, (d) NLM filter, (e) proposed HM2F, and 

(f) CMF. Panel (g) compares the response of these methods to blur by plotting the first-order 

derivate of a step function defined by the mean profile along the vertical direction of the region 

marked by the green rectangle in Panel (a). 

 

8.3.2 DH and DHM results 

The holograms for two different samples (dice and horse model) were recorded in the DH system 

Fig. 8.2(b) operating in an off-axis Mach–Zehnder interferometer architecture  [132]. The 

illumination source used in the DH system was a He – Ne laser of wavelength 632.8 nm = .  The 

holograms were recorded by a complementary metal-oxide-semiconductor (CMOS) camera (



 

142 
 

2592 2048M N =   and 4.8 mxy  =  square pixels). In this experiment, the camera was located 

at a distance 70 cmz =  from the sample, producing a speckle grain with a lateral (x-y) size of 

/ = 35 mx xyz M  =   and / = 45 my xyz N  =  . Figures 8.4(a)-(d) compare the 

reconstructed amplitude images of a dice applying different kernel sizes, which are  9 9  and 

 17 17 , using two different approaches: (i) CMF [Figs. 8.4(a) and (c)] and (ii) the proposed 

HM2F [Figs. 8.4(b) and (d)]. To quantify and characterize the reduction in the speckle noise the 

normalized speckle contrast is plotted versus the number of iterations for each kernel size (i.e., 

iteration) in Fig. 8.4(e). Because the speckle contrast is highly dependent on the object information, 

the contrast speckle was measured in 10 different square regions to provide an experimental error. 

The quantitative values shown in Fig. 8.4(e) show that the speckle contrast reduces rapidly for 

both the CMF and HM2F. Comparing the reconstructed amplitude images from the CMF and 

HM2F shows that, although the CMF reduces the speckle noise faster than the HM2F, the HM2F 

provides final denoising images with fewer blurring effects than that provided by the CMF. These 

results show that the HM2F presents a better tradeoff between reducing the speckle contrast and 

the blurring effects. A quantitative analysis of the blurring effects is provided by estimating the 

FWHM of the first-order derivative of a step function defined by the profile along the transverse 

direction marked by the green line in Fig. 8.4(a). Figure 8.4(e) also compares the increase of the 

blurring effects versus the size of the kernel for the CMF and the HM2F. This panel illustrates how 

the speckle contrast and the response to the blurring can be controlled by selecting a different 

kernel size of the median filter. These curves show the tradeoff between the speckle noise and 

resolution in both the CMF and HM2F methods. Despite this tradeoff being present in both CMF 

and HM2F methods, the HM2F method shows a smaller blurring effect than the CMF method for 
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any kernel size of the median filter, making it a more suitable method for mitigating the tradeoff 

between speckle noise and blurry effects than the CMF approach. 

 

Fig. 8.4. Denoising images obtained after applying two different approaches (CMF and HM2F) 

and two different kernel sizes. Panels (a) – (d) correspond to the denoised amplitude images using 

the CMF and HM2F approaches. Panel (e) corresponds to the quantitative comparison of the 

speckle contrast and the FWHM value of the first-order derivate of a step function defined by the 

profile along the transverse direction marked by the green line in Panel (a) versus numbers of 

iterations (i.e., kernel size) for the CMF and HM2F methods. 

 

To finalize the discussion for DH system, Fig. 8.5 compares the performances of the proposed 

method with the known denoising methods [e.g., the BM3D filter  [180], the NLM 

filter  [178,190], the Wiener filter [104], and the 2D windowed Fourier transform filter 

(WFT2F)  [193]]. To perform this comparison, two reconstructed amplitude images are used: dice 

(first row) and model horse (second row). Each reconstructed amplitude image is displayed after 

the normalization to its own maximum and minimum values. Figure 8.5 shows that the HM2F 

performs equally well in high-contrast images (i.e., dice results) and low-contrast images (i.e., 

horse results). The speckle contrast was measured inside the green region marked in the original 
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images for the two samples. The speckle contrast values, which were normalized to those of the 

original noisy image, are reported in the lower right corner. As can be seen, the value of the speckle 

contrast varies from image to image. For example, for the dice image, the BM3D approach 

provides the denoised image with the lowest speckle contrast (i.e., SC 0.17= ). The NLM and 

HM2F filters give similar values on the speckle contrast. 

 

Fig. 8.5. DH results for dice (a – f), and horse (g – l). The methods used are BM3D, NLM, WFT2F, 

Wiener, and HM2F. Panels (m) and (n) show the histograms of the dice and horse, respectively. 

The average mean and standard deviation values in 10 different zones for the dice and horse model 

are reported below each panel. 

Table 8.1 reports the FWHM values of the first derivative of the step function defined by a 

transverse green line, depicted in Fig. 8.5(f). Based on the FWHM values, the Wiener, BM3D, and 

HM2F approaches produce the denoised amplitude images with the smallest blurring effect. 

Nonetheless, although the Wiener filter has a lower reduction of the resolution, the speckle contrast 

is even higher than that of the other methods. For this sample object, the speckle contrast of the 
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denoised BM3D horse image is slightly lower than that of the denoised HM2F horse image (

SC 0.36=  for the BM3D versus SC 0.38=  for the HM2F). Nonetheless, the HM2F method 

provides a final denoised amplitude image with improved contrast, as the histogram of Fig. 8.5(n) 

shows. Figures 8.5(m) – 8.5(n) show that the original noisy image and the denoised images for the 

dice and horse model present many pixels with low gray levels. The higher the amount of low gray 

levels is, the lower the mean value I  is and, consequently, the higher the speckle contrast is 

because SC  is inversely proportional to I . Nonetheless, the presence of low gray levels also 

affects the standard deviation value, resulting in low values of  . For each image in Fig. 8.5, the 

mean and standard deviation is calculated in 10 different zones of 50 × 50 pixels for the dice model 

and 20 × 20 pixels for the horse model. The average value of these parameters is reported below 

each panel in Fig. 8.5.  

Table 8.1 also reports the signal-noise ratio (SNR) of the original and denoising images for the 

dice and horse samples. The SNR value was estimated as 10 max10log ( / ( )),bg std g  where maxg  is 

the maximum value of the amplitude image over the whole field of view and ( )bstd g  is the 

standard deviation of a region of the image in which there are no sample details. Because the SNR 

value depends on the region chosen to compute the standard deviation, 10 different areas within 

the dice and horse field of views were selected. Table 8.1 reports the average values of the SNR 

for these two DH images. 

Table 8.1. Comparison for the BM3D, NLM, WFT2F, Wiener, and HM2F methods 
 Original BM3D NLM WFT2F Wiener HM2F 

FMWHM 

(mm) 

 

0.40 

 

0.43 

 

0.46 

 

0.92  

 

0.42  

 

0.43 

Dice 

SNR (dB) 

 

9.9 

 

18 

 

14.2 

 

20.3 

 

9.3 

 

14.3 

Horse  

SNR (dB) 

 

16.6 

 

18.1 

 

16.3 

 

18.3 

 

19.2 

 

16.3 
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To evaluate the ability of the proposed method to reduce speckle contrast and mitigate the 

blurring effect in quantitative phase imaging recorded in the DHM system, an optical setup of the 

off-axis DHM system follows a Mach – Zehnder architecture has been used Fig. 8.2(c), operating 

in telecentric configuration and IP. The validation was performed using two samples, a star target 

of the commercial quantitative phase target from Benchmark Technologies and a transverse section 

of the head of a Drosophila melanogaster fly. For the star target, the illumination source was a 

diode laser of wavelength 532 nm, and the CMOS camera had 1920 1080  square pixels with a 

2.4 m pixel size. The DHM image system consisted of an infinity-corrected 40 /0.65   Olympus 

microscope objective and a TL of focal length 200 mm,  resulting in an effective lateral 

magnification equal to 44.44 .  On the other hand, the hologram of the Drosophila melanogaster 

fly was recorded using a HeNe laser of wavelength 633 nm,  and a charge-coupled device camera 

with 1024 1024  square pixels of 6.9 m  size. The imaging system was set up using an infinity-

corrected 10 /0.45  Nikon MO lens a TL of focal length 200 mm.  

The star target allows measuring the experimental resolution limit (RL) by estimating the 

minimum resolvable star pattern and quantifying how much the resolution was reduced for each 

approach. The experimental RL was defined as the diameter in which the contrast of the 

reconstructed phase star pattern was reduced by 10% from its reference value, which is the contrast 

value for the diameter equal to 150 m . The results of the star target are shown in Fig.8.6. For 

each method, the experimental RL is marked by a black-dashed circle original (i.e., noisy) 

reconstructed phase image, Figs. 8.6(b)-8.6(g) are the reconstructed phase images obtained by the 

different methods: CMF [Fig. 8.6(b)], BM3D [Fig. 8.6(c)], NLM [Fig. 8.6(d)], WFT2F [Fig. 
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8.6(e)], Wiener filter [Fig. 8.6(f)], and proposed HM2F [Fig. 8.6(g)]. For the methods that use a 

median approach [Figs. 8.6(b) – 8.6(g)], the kernel size applied was  5 5 . Whereas the BM3D 

filter approach reduces the RL by a factor of 43 , the RL in the reconstructed phase image after 

applying the HM2F is not reduced. In addition to estimating the RL, the speckle contrast SC  was 

measured as a metric to calculate the reduction in the speckle noise. The parameter SC  was 

measured inside the yellow region marked in the inset of Fig. 8.6. The lower the value of SC  is, 

the higher the reduction in the speckle noise is. The reconstructed phase image obtained by the 

NLM filter [Fig. 8.6(e)] is the most insensitive to the speckle noise (i.e., the smallest SC  value). 

However, the RL was highly diminished by 12%, reducing the ability to discriminate the finer 

details. By contrast, the HM2F provided the second smallest SC value, resulting in the best method 

that minimized the tradeoff between the reduction in the RL and the speckle noise. 

 

Fig. 8.6. Experimental results for the star target. The reconstructed phase image corresponds to (a) 

original noisy phase image, (b) denoised CMF phase image, (c) denoised BM3D phase image, (d) 

denoised NLM phase image, (e) denoised WFT2F phase image, (f) denoised Wiener phase image, 

and (g) denoised HM2F phase image. The kernel size for panels (b) and (g) is 5 × 5. 
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Finally, Fig. 8.7 shows the reconstructed phase image provided by the BM3D, the NLM filter, 

the WFT2F, the Wiener filter, and the proposed HM2F for a section of the head of a Drosophila 

melanogaster fly, a biological complex sample. For comparison purposes, the noisy reconstructed 

phase image is shown in Fig. 8.7(a). For this sample, the BM3D and WFT2F approaches do not 

provide an optimal result. Nonetheless, the performance of the NLM, Wiener, and HM2F filters 

are similar. When an intense decorrelated noise corrupts the phase values, the reconstructed phase 

image has a high number of phase jumps in Fig. 8.7(g), marked by the white and black colors. We 

quantified the phase jumps in the original noisy image and denoised phase images inside the 

marked yellow region in Fig. 8.7(a). The phase jumps were reduced from 201 pixels in the original 

noisy image [Fig. 8.7(g)] to 195 pixels in the NLM denoised image [Fig. 8.7(h)], 176 pixels in the 

Wiener denoised image [Fig. 8.7(i)], and 79 pixels in the HM2F denoised image [Fig. 8.7(j)]. There 

is a reduction of 60% in the number of phase jumps for the HM2F, which shows that the proposed 

method provides a reconstructed phase image with reduced speckle noise. 

 

Fig. 8.7. Experimental results for a transverse section of the head of a Drosophila melanogaster 

fly.  

  

8.4 Conclusion 
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In summary, the HM2F a single-shot denoising image method to reduce speckle noise, is presented 

in this chapter. The HM2F is based on the synergetic combination of two well-known approaches 

in image processing: the median and mean filters. The experimental results demonstrate that the 

HM2F reduces the speckle noise in color laser-based photography and both reconstructed 

amplitude and phase images from DH and DHM systems with a minimum addition of blurring 

effects. The performance of the HM2F approach was compared with that of the state-of-the-art 

methods in speckle denoising (e.g., BM3D, NLM, WFT2F, and Wiener). Based on our 

experimental results, the performance of the HM2F is more constant across the different types of 

images. For example, the WFT2F method does not provide satisfactory results for the dice and 

horse model [Figs. 8.7(d) and 8.6(e)]. By contrast, the NLM approach works for the dice image 

but fails for the horse model. The denoised Wiener image of the dice model presents more speckle 

noise (e.g., C > 1). Regarding the BM3D method, the denoised BM3D images for laser-based 

photography and DH present an adequate balance between the speckle reduction and the blurring 

effects. Nonetheless, this technique fails for quantitative phase imaging in DHM, reducing the RL 

by 43%. Another advantage of the HM2F is its simplicity in the required number of parameters 

and the computational processing time. While the HM2F and Wiener filter only require a single 

parameter (e.g., the kernel size) to provide a successful denoised image with reduced speckle noise, 

the WFT2F method requires the correct knowledge of the nine required parameters. Note that the 

maximum kernel size in the HM2F can be determined manually to obtain the best denoised HM2F 

image quickly and efficiently without requiring users experience or knowledge. Regarding the 

processing times, the average processing time for the images of the dice and horse model and the 

star target is 1.4 s for the HM2F, whereas the times for the Wiener filter, BM3D, NLM, and WFT2F 

methods are around 0.29, 9, 73, and 4390 times the processing times of the HM2F, respectively. 
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The processing times are reported based on a 10 Pro Windows-based AMD Ryzen 5 8192 MB 

RAM laptop computer. Based on these results, the simplicity of the technique, and the processing 

time, HM2F is proposed as an effective denoising tool for reducing the speckle noise in laser-based 

photography, DH, and DHM. To increase our method's use to the community, the HM2F method 

was implemented as a script for Python and MATLAB and is available in a public repository on 

GitHub — https://oirl.github.io/Speckle-Hybrid-median-mean/. The HM2F could be applied to 

any image distorted by speckle noise. Future work should further analyze the behavior of the 

HM2F in the Fourier Domain. Some preliminary results are shown in Appendix B. Although 

HM2F method reduces the speckle noise, it cannot retrieve the original sample’s spectrum; some 

high spatial frequencies of the original image have been lost forever and some low spatial 

frequencies have been modified. Future work should compare the performance of HM2F with 

other methods in the Fourier domain. 
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9. CONCLUSIONS 

  

In this Thesis, we have investigated and developed a series of novel computational methods for 

improving digital holographic microscopy (DHM), aiming to increase DHM systems' applicability 

by providing robust computational methods to reconstruct quantitative phase images with reduced 

processing time and user input. To sum up, we highlight the main achievements in this Thesis: 

➢ We have implemented a fast-iterative PS-DHM method based on the demodulation of the 

different components of phase-shifted holograms. The proposed blind method only uses two-

frame holograms with an arbitrary phase shift. The main advantage of the proposed method is 

the reduction in both the acquisition and computation time; the final phase image is restored 

using 33% fewer data since only two phase-shifted holograms are needed, as opposed to the 

standard three-frame PS algorithms. The only requirement of this approach is that the PS-DHM 

system must operate in a slightly off-axis regime without overlapping the spectrum of the d±1 

terms. 

➢ We have implemented and developed an automatic and fast method to compensate for the tilt 

between the reference and object waves in off-axis DHM systems operating in telecentric 

configuration. This method reconstructs the quantitative phase distribution of unstained 

biological samples with a minimum or no phase perturbation. The input parameters in this 

method are minimum: an in-focus hologram, the source’s wavelength, and the pixel size. 

Among the hallmarks of the proposed approach is the high accuracy in estimating the 

parameters of the digital reference wave. The interference angle is calculated precisely without 

compromising the computation time. The proposed method performs 40× faster than a 

previously reported automatic approach based on nested loops and 2.3× faster than the 

centroid-based algorithm. 
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➢ Whereas the previous implementation allows us to reconstruct phase images with minimum 

phase distortions at the image plane, we have upgraded such strategy for simultaneous and 

automatic reconstruction of phase images from out-of-focus holograms. The proposed method 

finds the best in-focus plane of pure phase objects by minimizing the TC sharpness function 

using the reconstructed amplitude images. This propagation distance is then used as an input 

parameter on a second minimization stage to reconstruct phase images with minimum phase 

aberrations. Our experimental results demonstrate the capability of the proposed method for 

high-quality quantitative phase imaging of biological samples. The advantages of this method 

are its reduced number of inputs and processing time, without penalizing the accuracy. 

➢ To increase the applicability of DHM technology, we have created the pyDHM library for the 

numerical processing of digital holograms registered in DH and DHM systems. The library has 

PS techniques to reconstruct the phase distribution of samples in in-line and slightly off-axis 

DH and DHM systems. We have also implemented several automatic approaches to reconstruct 

phase images in single-shot off-axis DHM systems operating in telecentric and non-telecentric 

configurations. Finally, the library enables the numerical propagation of complex wavefields 

to provide in-focus amplitude and phase images. 

➢ We have proposed a conditional generative adversarial network (cGAN) to fully reconstruct 

quantitative phase images from raw holograms without needing robust pre- or post-numerical 

procedures. Since the proposed cGAN model was trained using two customized metrics 

specifically selected based on DHM systems, the proposed cGAN model converges rapidly 

with a training time of approx. 2 h. The proposed cGAN method surpasses the conventional 

automatic reference method, convolutional autoencoders, and U-Nets, generating quantitative 

phase images with reduced noise and constant background level. 
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➢ To reduce the speckle noise with minimum penalization of the spatial resolution, we have 

proposed the HM2F, which combines the median and mean filters. The performance of the 

HM2F approach was compared with that of the state-of-the-art methods in speckle denoising 

(e.g., BM3D, NLM, WFT2F, and Wiener). Based on our experimental results, the performance 

of the HM2F is more constant across the different types of images. One advantage of the HM2F 

compared to the state-of-the-art methods is its simplicity in the required parameters and the 

computational processing time, making the HM2F an effective denoising tool for reducing the 

speckle noise in any image distorted by speckle noise. 
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Appendix A: COMPARISON OF THE SPECKLE NOISE REDUCTION IN DH VIA 

HYBRID MEDIAN-MEAN FILTER OR CONVENTIONAL MEDIAN-FILTERED 

IMAGES 

In Chapter 8, we have introduced the hybrid median-mean filter based on the spatial filtering 

of the reconstructed amplitude and/or phase images via a median filter with different kernel size 

around each pixel on the input image (i.e., the reconstructed noisy amplitude and/or phase image). 

In this HM2F approach, we have averaged two median-filtered images with two consecutive kernel 

sizes, resulting in a final image with reduced speckle contrast while the spatial resolution is kept 

up to 98% from the original value. Nonetheless, one could have averaged all the median-filtered 

images. In other words, one could have applied i times a median filter over the original noisy 

images (g), estimated the multiple median-filtered images (h), and averaged them with the same 

weight to provide the final denoising image ( ĝ ). Figure A.1 shows the pseudocode of this new 

approach, called median filter average (MFA), and the working principle for a maximum kernel 

size of k = 5. The difference between the MFA and HM2F images is the combination between the 

median-filtered images, h. 
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Fig. A.1. (a) Pseudocode of the median filter average (MFA) and its working principle for a 

maximum kernel size of k = 5. 

To compare the performance of the MFA and the HM2F, we have used the hologram for blocks 

recorded in a DH system operating in off-axis architecture. All holograms were recorded using a 

setup operating in a Mach-Zehnder interferometer architecture. More information on the recording 

system is found in Chapter 8. Figure A.2 (a)-(f) compare the reconstructed amplitude images of a 

dice applying different kernel sizes using three different approaches: i) conventional median filter 

(i.e., applying a median filter with a particular value of the kernel size over the original image, 

Figs. A.2a&b), ii) median filter average (e.g., applying i- times a median filter with different kernel 

sizes over the original image and averaging all these images with the same weight, Figs. A.2c&d) 

and, iii) the proposed hybrid median-mean filter (Figs. A.2e&f). We have quantified and 

characterized the reduction in the speckle noise by plotting normalized speckle contrast versus the 

number of iterations for each kernel size (i.e., iteration) in Fig. A.2(g). Since the speckle contrast 

is highly dependent on the object information, the contrast speckle was measured in ten different 

square regions to provide an experimental error. From the quantitative values shown in Fig. A.2(g), 

one realizes that the speckle contrast reduces rapidly for the conventional median filter and HM2F 

compared to the one provided by the MFA. Comparing the reconstructed amplitude images from 
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the conventional median-filtered images and HM2F, one realizes that although the conventional 

median filter approach reduces the speckle noise faster than any technique, the HM2F provides 

final denoising images that present fewer blurring effects than the ones provided by the 

conventional median filter. On the other hand, for the same kernel size, the blurring effect is less 

significant using the MFA, compare Fig. A.2(c) vs. A.2(e) and A.2(a), and Fig. A.2(d) vs. A.2(f) 

and A.2(b). Nevertheless, the application of the MFA requires more iterations to achieve values of 

the speckle contrast equal to the values achieved for the conventional median filter and HM2F, as 

shown in Fig. A.2(g). In other words, the reduction in the speckle contrast provided by the MFA 

is not as rapid as the one obtained in the other two techniques. From these results, one can realize 

that the HM2F presents a tradeoff between reducing the speckle contrast and the blurring effects. 

A quantitative analysis of the blurring effects is provided using the reconstructed amplitude images 

provided by the three methods (images shown in the first column of Fig. A.2) for the kernel size 

of 9×9. Because the first-order derivative of a step function (i.e., edge) is a Delta function, one can 

analyze the response of the methods by estimating the full width at half maximum (FWHM) of the 

first-order derivative of a step function. For each method, the step function is defined by the profile 

along the transverse direction marked by the green line in Fig. A.2(a). Figure A.2(h) shows the 

first-order derivative of the edge for the conventional median filter, MFA, and the HM2F. For each 

of these profiles, we have quantified the FWHM to be equal to 0.31 mm for the conventional 

median filter, and 0.29 mm for both MFA and HM2F. Because there is no difference on the 

measured FWHM, one can conclude that both methods (i.e., the MFA and HM2F) present the 

same blurring effect for a kernel size of 9×9. Nonetheless, the HM2F filter shows a higher 

reduction in the speckle contrast, making it the most suitable method for mitigating the tradeoff 

between speckle noise and blurry effects. The increase of the kernel size in the HM2F provides a 
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final image with reduced speckle noise (i.e., lower value of the speckle contrast), but with worse 

spatial resolution, as compared Fig. A.2(d) vs. A.2(f).  

 

Fig. A.2. Denoising images obtained after applying three different approaches and two different 

kernel sizes. (a)-(b) Reconstructed images using the conventional median filter; (c)-(d) 

Reconstructed images using the median-filter average (MFA); (e)-(f) Reconstructed images using 

the HM2F. Panel (g) corresponds to the quantitative comparison of the speckle contrast versus 

numbers of iterations (i.e., kernel size) for the different methods. Panel (h) compares the response 

of the three methods by estimating the first-order derivate of a step function defined by the profile 

along the transverse direction marked by the green line in Fig. A2(a). 

 

We have also compared the performance of MFA and HM2F approaches in QPI-DHM using a 

star target of the commercial QPI target from Benchmark Technologies. The results of the star 

target are shown in Fig. A.3. In each panel, the minimum resolved star pattern (i.e., experimental 

RL) is marked by a black dashed circles. Whereas Fig. A.3(a) shows the original (i.e., noisy) 

reconstructed phase image, Figs. A.3 (c-h) are the reconstructed phase images obtained by the 

conventional median filter [Fig. A.3c-d], MFA [Fig. A.3e-f], and HM2F [Fig. A.3g-h]. For all 
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methods two different kernel sizes were applied [5×5], and [11×11]. Apart from estimating the 

resolution limit, we have also measured the dispersion parameter (D) as a metric to calculate the 

speckle noise reduction. The parameter D was measured inside the yellow region marked in the 

inset of Fig. A.3. This dispersion parameter was computed as ( / ) 100= D I , where   and I  

are the standard deviation and mean intensity for each reconstructed phase image, respectively. 

The lower the value of D, the higher the reduction in the speckle noise. Both RL and D values are 

reported in Fig. A.3. The results shown in Figs. A.3(c), (e) and-(f) demonstrate that the 

conventional median filter and HM2F approach provide a dispersion parameter which is slightly 

reduced (2.09) compared to one measured in the original noisy phase image (2.18) for a kernel 

size [5×5]. For this kernel size, the D values for the median filter average technique is almost 

identical to the one measured in the original image (2.20 vs. 2.18), indicating that the speckle noise 

has not been reduced when the MFA approach is applied. Note that although the conventional 

median and the HM2F approaches provide the same dispersion factor, D = 2.09, the HM2F 

approach is the only one that does not penalize the resolution limit. In contrast, the reconstructed 

phase images obtained using a kernel size [11×11] show tradeoff between the reduction in the 

speckle (i.e., reduced D values) and the penalization in the resolution limt. For example, the 

reconstructed phase image obtained by the conventional median filter [Fig. A.3(c)] is the most 

insensitive to the speckle noise (i.e., the smallest D value), however the resolution limit has been 

highly penalized by a factor 38%, reducing the ability to discriminate the finer details. Both the 

MFA and the HM2F approaches penalize the resolution limit by almost the same degree (0.80 and 

0.79, respectively). Again, the HM2F approach provides the smallest D value, resulting in the best 

method which minimizes the tradeoff between the reduction in the resolution limit and the speckle 

noise. Finally, for comparison purposes, Fig. A.3(b) shows the reconstructed phase image using 
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the WFT2F method. We also estimated the resolution limit and the dispersion parameter to be 

equal to 0.79 and 2.80, respectively. Whereas the WFT2F method penalizes the resolution limit as 

much as the HM2F approach, the dispersion parameter is higher.  

In summary, the HM2F method shows superior performance in DH and quantitative phase 

imaging than the MFA method, providing denoising images with reduced speckle noise whereas 

the resolution limit is kept constant in both approaches.  

 

Fig. A.3. Experimental results for the star target. Panel (a) is the noisy reconstructed phase image. 

Panel (b) is the reconstructed phase images using the WFT2F method. Panels (c)-(d) reconstructed 

images using the conventional median filter; panels (e)-(f) correspond to the reconstructed images 

using the MFA. Finally, panels (g)-(h) are the reconstructed images using the HM2F. 
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Appendix B: FOURIER SPECTRUM ANALYSIS FOR THE HM2F 

This Appendix aims to analyze the behavior of the HM2F in the Fourier Domain. For this reason, 

we have simulated a star target [Fig. B.1(a)], and added speckle noise on the simulated star target 

to generate four images with different speckle noise [Figs B.1(b - e)]. the speckle noise is added 

using the Matlab built-in function imnoise. This function requires an input image (the star target) 

to add the speckle noise and the variance. The variance of the speckle noise ranges 0.1 to 0.4. The 

higher the value of the variance, the higher the amount of speckle noise. 

 

Fig. B.1. (a) Simulated star target (e.g., original/noiseless image). (b)-(e) Noisy images with 

speckle noise of different variance. (f)-(m) Denoising images after applying the HM2F for two 

different kernel size. 

 

For each noisy image, we have applied the HM2F with different kernel values from [3×3] to 

[11×11]. Two sets of these denoising images are shown in Figs B1(f - m). The goal of this 
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Appendix is to better understand how the speckle noise affects the spatial frequencies of the 

original start target and analyze if the application of the HM2F enables the retrieval of the original 

spectrum. In Fig. B2, we plotted the power spectral density for each noisy and denoising images. 

The power spectral density has been computed by averaging the absolute value of the Fourier 

transform of the image along the radial coordinate and calculated the 10log10 of that value. Figure 

B2 shows the radial power spectral density for different values of speckle noise (e.g., different 

variance). In all the panels in Fig. B2, the black line corresponds to the noiseless/original star 

target. The blue curve represents the noisy profile after applying the speckle noise using the 

MATLAB built-in function imnoise. Note that, as expected, the speckle noise affects the weighting 

of medium and high frequencies, reducing the ability to observe the fine details of the object. In 

other words, speckle noise is a high-frequency noise. The higher the variance of the speckle noise, 

the higher the amount of frequencies affected, also distorting medium frequency content. We have 

applied different HM2F from kernel size equal to 3 (purple curves) to 11 (pink curves). The curves 

shows that although HM2F method reduces the speckle noise, it cannot retrieve the original 

sample’s spectrum. The application of HM2F cannot generate several fine details; some high 

spatial frequencies of the original image have been lost forever. Also note that the HM2F has also 

modified the distribution of the low frequencies. Despite this unsuccessful result, there is still a 

need to compare the performance of other methods in the Fourier domain and/or propose a 

different denoising method.  
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Fig. B.2. Power intensity spectrum vs the number of pixels. See the text for details.   
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