
University of Memphis University of Memphis

University of Memphis Digital Commons University of Memphis Digital Commons

Electronic Theses and Dissertations

11-30-2022

Benchmarking and Developing Novel Methods for G Protein-Benchmarking and Developing Novel Methods for G Protein-

coupled Receptor Ligand Discovery coupled Receptor Ligand Discovery

Gregory Leon Szwabowski

Follow this and additional works at: https://digitalcommons.memphis.edu/etd

Recommended Citation Recommended Citation
Szwabowski, Gregory Leon, "Benchmarking and Developing Novel Methods for G Protein-coupled
Receptor Ligand Discovery" (2022). Electronic Theses and Dissertations. 3188.
https://digitalcommons.memphis.edu/etd/3188

This Dissertation is brought to you for free and open access by University of Memphis Digital Commons. It has
been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of University of
Memphis Digital Commons. For more information, please contact khggerty@memphis.edu.

https://digitalcommons.memphis.edu/
https://digitalcommons.memphis.edu/etd
https://digitalcommons.memphis.edu/etd?utm_source=digitalcommons.memphis.edu%2Fetd%2F3188&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.memphis.edu/etd/3188?utm_source=digitalcommons.memphis.edu%2Fetd%2F3188&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:khggerty@memphis.edu

BENCHMARKING AND DEVELOPING NOVEL METHODS FOR G PROTEIN-COUPLED

RECEPTOR LIGAND DISCOVERY

by

Gregory Leon Szwabowski

A Dissertation

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Major: Chemistry

The University of Memphis

December 2022

 ii

Dedication

I would first like to dedicate this dissertation to my mom, who has been a driving

force in helping me become the person I am today. Every mother should aspire to be as

caring, hard-working, and resilient as you have been throughout your life. My goal has

always been to make you and grandpa proud, and I feel that this dissertation helps cement

that.

Second, I would like to dedicate this dissertation to my partner, Taylor. For years,

you have been my rock and have pushed me to be the best version of myself. I will

forever be grateful for your constant words of affirmation and care throughout my time in

graduate school and am beyond excited to see how the next chapter of our life unfolds.

Third, I would like to dedicate this dissertation to my advisors, Dr. Abby Parrill-

Baker and Dr. Daniel Baker. The two of you have put so much faith in me over the past

four years and have led me to grow as both a scientist and a person. Because of your

words, I now believe that I am capable of doing great things. I will always be

appreciative of the guidance received and life lessons learned from the two of you.

 iii

Acknowledgments

Research reported in this publication was supported by the National Institute of

Mental Health of the National Institutes of Health under Award Number R15MH109034.

The content is solely the responsibility of the authors and does not necessarily represent

the official views of the National Institutes of Health.

MOE 2019.01 was used throughout this work and was provided as a courtesy of

the Chemical Computing Group. In addition, I would like to thank the Meiler Lab at

Vanderbilt University for their outstanding discussion and support of the Rosetta

software suite.

The University of Memphis High-Performance Computing (HPC) facilities were

used constantly throughout this work and I wish to express my gratitude toward the group

that runs it.

I would also like to give thanks to Dr. Bernie Daigle, who has been an

outstanding resource for helping me grow tremendously as a data scientist.

Lastly, I would like to thank the members of my dissertation committee for their

time and careful review of the work presented in this document.

 iv

Preface

Chapters 1, 2, 3, and 4 of this dissertation come from published works.

Chapter 1: Review of Computational Methods Utilized for Class A GPCR Ligand

Discovery. This paper was submitted to Journal of Molecular Graphics and Modelling on

October 3rd, 2022 and has been reformatted as a dissertation chapter.

Chapter 2: Benchmarking GPCR homology model template selection in combination

with de novo loop generation. This paper was submitted to Journal of Computer-Aided

Molecular Design (published July 31st, 2020; DOI: 10.1007/s10822-020-00325-x) and

has been reformatted as a dissertation chapter.

Chapter 3: Structure-based Pharmacophore Modeling 1. Automated Random

Pharmacophore Model Generation. This paper was submitted to the Journal of Molecular

Graphics and Modelling and has been reformatted as a dissertation chapter.

Chapter 4: Structure-based Pharmacophore Modeling 2. Developing a Novel Framework

for Structure-based Pharmacophore Model Generation and Selection. This paper was

submitted to the Journal of Molecular Graphics and Modelling and has been reformatted

as a dissertation chapter.

 v

Abstract

G protein-coupled receptors (GPCR) are integral membrane proteins mediating

responses from extracellular effectors that regulate a diverse set of physiological

functions. Consequently, GPCR are the targets of ~34% of current FDA-approved

drugs.3 Although it is clear that GPCR are therapeutically significant, discovery of novel

drugs for these receptors is often impeded by a lack of known ligands and/or

experimentally determined structures for potential drug targets. However, computational

techniques have provided paths to overcome these obstacles. As such, this work discusses

the development and application of novel computational methods and workflows for

GPCR ligand discovery.

Chapter 1 provides an overview of current obstacles faced in GPCR ligand

discovery and defines ligand- and structure-based computational methods of overcoming

these obstacles. Furthermore, chapter 1 outlines methods of hit list generation and

refinement and provides a GPCR ligand discovery workflow incorporating computational

techniques.

In chapter 2, a workflow for modeling GPCR structure incorporating template

selection via local sequence similarity and refinement of the structurally variable

extracellular loop 2 (ECL2) region is benchmarked. Overall, findings in chapter 2 support

the use of local template homology modeling in combination with de novo ECL2

modeling in the presence of a ligand from the template crystal structure to generate

GPCR models intended to study ligand binding interactions.

Chapter 3 details a method of generating structure-based pharmacophore models

via the random selection of functional group fragments placed with Multiple Copy

 vi

Simultaneous Search (MCSS) that is benchmarked in the context of 8 GPCR targets.

When pharmacophore model performance was assessed with enrichment factor (EF) and

goodness-of-hit (GH) scoring metrics, pharmacophore models possessing the theoretical

maximum EF value were produced in both resolved structures (8 of 8 cases) and

homology models (7 of 8 cases).

Lastly, chapter 4 details a method of structure-based pharmacophore model

generation using MCSS that is applicable to targets with no known ligands. Additionally,

a method of pharmacophore model selection via machine learning is discussed. Overall,

the work in chapter 4 led to the development of pharmacophore models exhibiting high

EF values that were able to be accurately selected with machine learning classifiers.

 vii

Table of Contents

BENCHMARKING AND DEVELOPING NOVEL METHODS FOR G PROTEIN-
COUPLED RECEPTOR LIGAND DISCOVERY ... i

Dedication ... ii
Acknowledgments.. iii
Preface.. iv
Abstract ..v
Table of Contents .. vii
List of Tables ... ix
List of Figures .. xiii
Chapter 1 Review of Computational Methods Utilized for Class A GPCR Ligand
Discovery ...1

Introduction ..1
GPCR Structure Prediction ..8
Ligand-based Approaches to GPCR Ligand Discovery17
Structure-based Approaches to GPCR Ligand Discovery29
Hit List Generation and Refinement ..38
Conclusions ..46

Chapter 2 Benchmarking GPCR homology model template selection in
combination with de novo loop generation ..49

Introduction ..49
Results and Discussion ..55
Conclusions ..73
Methodology ..76

Chapter 3 Structure-based Pharmacophore Modeling 1. Automated Random
Pharmacophore Model Generation ..84

Introduction ..84
Results and Discussion ..88
Conclusions ..109
Methodology ..111

Chapter 4 Structure-based Pharmacophore Modeling 2. Developing a Novel
Framework for Structure-based Pharmacophore Model Generation and Selection
..117

Introduction ..117
Results and Discussion ..124
Conclusions ..163
Methodology ..167

Chapter 5 Conclusions and Future Directions ...177
Conclusions ..177
Future Directions ...180

References ..182
Appendix A Chapter 3: Benchmarking GPCR homology model template selection
in combination with de novo loop generation..212

 viii

Appendix B Chapter 4: Structure-based Pharmacophore Modeling 1. Automated
Random Pharmacophore Model Generation ..221
Appendix C Chapter 5: Structure-based Pharmacophore Modeling 2. Developing
a Novel Framework for Structure-based Pharmacophore Model Generation and
Selection ...254
Appendix D Scripts ..273

 ix

List of Tables

Table 2.1. GenBank accession numbers and PDB ID numbers for GPCR used in this
study. ..56

Table 2.2. Variation among experimental structures for each receptor used as a template
and/or target in this study. ..57

Table 2.3 ECL2 loop start/end residues for each receptor’s crystal structure and lowest
RMSD homology model. ...79

Table 3.1 PDB158 ID numbers and homology modeling RMSD values for GPCR used in
this study. ...91

Table 3.2 Internal test database statistics for each target used in this study.96

Table 3.3 Aggregated feature composition for higher enrichment (HE) and lower
enrichment (LE) pharmacophore models generated in experimentally determined
structures for each receptor. ...107

Table 3.4 Aggregated feature composition higher enrichment (HE) and lower enrichment
(LE) pharmacophore models generated in homology models for each receptor.108

Table 4.1 GenBank accession numbers, PDB ID numbers, and homology model RMSD
values from experimental reference target structures for GPCR used in this study.127

Table 4.2 Best sampled enrichment values (corresponding GH value in parentheses) for
PED models with each fragment subset when searching our internal test database with all
partial match feature numbers. ...136

Table 4.3 Best sampled enrichment values (corresponding GH value in parentheses) for
PHM models with each fragment subset when searching our internal test database with all
partial match feature numbers. ...137

Table 4.4 Pharmacophore search performance for each parameter considered during
pharmacophore generation/searching for PED models. ..138

Table 4.5 Pharmacophore search performance for each parameter considered during
pharmacophore generation/searching for PHM models. ..139

Table 4.6 Attributes used in pharmacophore model classification.143

Table 4.7 Averages of all recorded classification scoring metrics (PPV, accuracy, recall,
f1-score) when classifying test set data using logistic regression classifiers trained on k =
1, 2, 3, 4, 5, or 6 clusters. ...147

 x

Table 4.8 Positive predictive values when classifying external set pharmacophore models
generated in experimentally determined structures (PED) or homology models (PHM) with
logistic regression classifiers trained on data segregated into k = 1, 2, 3, 4, 5, or 6 clusters.
..149

Table 4.9 Per receptor classification results for score-based pharmacophore models
(abbreviated as PH4s) generated in experimentally determined structures and segregated
into cluster I of k = 5 clusters when predicting quality classes with the k = 5 cluster I
classifier. ..152

Table 4.10 Per receptor classification results for score-based pharmacophore models
(abbreviated as PH4s) generated in homology models and segregated into cluster I of k =
5 clusters when predicting quality classes with the k = 5 cluster I classifier.154

Table 4.11 Per receptor classification results for score-based pharmacophore models
(abbreviated as PH4s) generated in experimentally determined structures and segregated
into cluster I of k = 4 clusters when predicting quality classes with the k = 4 cluster I
classifier. ..156

Table 4.12 Per receptor classification results for score-based pharmacophore models
(abbreviated as PH4s) generated in homology models and segregated into cluster I of k =
4 clusters when predicting quality classes with the k = 4 cluster I classifier.158

Table A1. Alpha-carbon receptor RMSD values with and without loop modeling for the
set of highest CoINPocket scored target:template receptor pairings.212

Table A2. Global receptor RMSD values relative to crystallographic reference structures
for receptor models generated by approach A1 with and without loop modeling for
receptors modeled using two templates. ..213

Table A3. Loop modeling approach A1 ECL2 loop RMSD values for each
target:template receptor pairing (10 models each in rank-order by score) compared to the
loop of the reference crystal structure as well as loop models from our previous
benchmark.35 ..214

Table A4. Loop modeling approach A1 ECL2 loop RMSD values for receptors modeled
using two templates (10 models each in rank-order by score) compared to the loop of the
reference crystal structure. ...216

Table A5. Ligand RMSD values (LRMSD) calculated in comparison to the crystallized
reference structure for three different docking methods employed in the context of
approach A1 models. ...217

Table A6. Ligand RMSD values for ligand poses docked into receptor models generated
using three different receptor modeling approaches for the set of highest CoINPocket
scored target:template receptor pairings. ...218

 xi

Table A7. Comparison of MOE induced fit docking poses and crystallographic ligand
poses for receptors modeled using two templates when docked into approach A1 models.
..220

Table B1. Names of GPCR ligands used in the internal test database.234

Table B2. Fragments used during MCSS. ...242

Table B3. Unique fragment placements for each target used in benchmarking our
pharmacophore model generation protocol. ..245

Table B4. Pharmacophore model scoring data when searching with 3 partial match
features using pharmacophores generated in experimentally determined structures.246

Table B5. Pharmacophore model scoring data when searching with 4 partial match
features using pharmacophores generated in experimentally determined structures.247

Table B6. Pharmacophore model scoring data when searching with 5 partial match
features using pharmacophores generated in experimentally determined structures.248

Table B7. Pharmacophore model scoring data when searching with 3 partial match
features using pharmacophores generated in homology models.249

Table B8. Pharmacophore model scoring data when searching with 4 partial match
features using pharmacophores generated in homology models.250

Table B9. Pharmacophore model scoring data when searching with 5 partial match
features using pharmacophores generated in homology models.251

Table B10. Average feature distances (in Å) between features/from feature to centroid for
the sets of HE and LE pharmacophore models generated in experimentally determined
structures for each receptor used in this study. ..252

Table B11. Average feature distances (in Å) between features/from feature to centroid for
the sets of HE and LE pharmacophore models generated in homology models for each
receptor used in this study..253

Table C1. Fragments used during MCSS. ...254

Table C2. Unique fragment placements for each target used in benchmarking our
pharmacophore model generation protocol. ..257

Table C3. Number of ligands, theoretical maximum enrichment factor (EF) values,
percentages at which each target’s theoretical maximum EF is represented by our EF
cutoff of 2, and search database percent actives for the 13 targets represented in our
internal test database containing 569 class A GPCR ligands ..258

Table C4. Names of GPCR ligands used in the internal test database.259

 xii

Table C5. Sampled EF and GH values for PED models with the GH fragment subset when
searching our internal test database. ..267

Table C6. Sampled EF and GH values for PHM models with the receptor EF fragment
subset when searching our internal test database. ..269

Table C7. Anchor residues used in ECL2 modeling for each target studied.271

 xiii

List of Figures

Figure 1.1 G protein-coupled receptor structure, binding site locations, helix positions
before and after activation, and activation cycle. ..3

Figure 1.2 GPCR ligand identification workflows. ...8

Figure 1.3. Workflow for constructing Class A GPCR homology models.10

Figure 1.4. Similarity search fingerprinting methods and Tanimoto coefficient
calculation. ...21

Figure 1.5. Ligand-based pharmacophore model generation. ..25

Figure 1.6. Pharmacophore models of CDK2 inhibitors developed using Catalyst by
Hecker et al.89 (left), Toba et al.90 (center), and Vadivelan et al. (right). 9128

Figure 1.7. Methods of novel ligand design in fragment-based drug discovery.30

Figure 1.8. Structure-based pharmacophore model generation using functional group
fragments..34

Figure 2.1. Homology modeling/loop modeling protocol. ..54

Figure 2.2. Names and structures of ligands docked into protein models.58

Figure 2.3. Alpha carbon receptor RMSD values for the homology models generated with
and without loop modeling for three different modeling approaches.60

Figure 2.4. Alpha carbon receptor RMSD values relative to crystallographic reference
structures for receptor models generated by approach A1 with and without loop modeling
for receptors modeled using two templates of varying local similarity score.61

Figure 2.5. Lowest RMSD P2Y12 homology model constructed from PDB 3VW7
superposed on reference crystallographic structure (PDB 4PY0).61

Figure 2.6. The lowest RMSD model of the top 10 scoring ECL2 models (cyan) and local
template homology model (salmon) was superposed onto the crystallized reference
structure (green). ..62

Figure 2.7. All atom superposition of crystal structures used in this study with segments
of TM3 and TM4 highlighted (green: FFAR1, red: all other receptors) to showcase the
unusual binding mode of FFAR1. ..64

Figure 2.8. An example of CXCR4 ligand 1 docked using three different methods with
the lowest LRMSD pose shown. ..66

 xiv

Figure 2.9. Ligand RMSD (LRMSD) values calculated in comparison to the crystallized
reference structure for three different docking methods employed in the context of
approach A1 models. ...67

Figure 2.10. Comparison of MOE induced fit docking poses and crystallographic ligand
poses for receptors modeled using two templates when docked into approach A1 receptor
models. ...70

Figure 2.11. Ligand RMSD values for ligand poses docked into receptor models
generated using three different receptor modeling approaches. ..71

Figure 2.12. Tanimoto coefficients for ligand poses docked into receptor models
generated using three different receptor modeling approaches. ..72

Figure 3.1. Fragment-based pharmacophore generation and application workflow.93

Figure 3.2. Randomly generated pharmacophore model enrichment factor scoring data
(scaled from 0 to 1 based on each target’s theoretical maximum enrichment (TME) value)
when searching with (A) 3, (B) 4, or (C) 5 partial match features using pharmacophore
models generated in target experimentally determined structures.94

Figure 3.3. Randomly generated pharmacophore model enrichment factor scoring data
(scaled from 0 to 1 based on each target’s TME value) when searching with (A) 3, (B) 4,
or (C) 5 partial match features using pharmacophore models generated in target
homology models. ..94

Figure 3.4. Randomly generated pharmacophore model goodness-of-hit scoring data
when searching with (A) 3, (B) 4, or (C) 5 partial match features using pharmacophore
models generated in target experimentally determined structures.95

Figure 3.5. Randomly generated pharmacophore model goodness-of-hit scoring data
when searching with (A) 3, (B) 4, or (C) 5 partial match features using pharmacophore
models generated in target homology models. ..95

Figure 3.6. Pharmacophore models generated within the Beta 2 experimentally
determined structure PDB158 entry 2RH1196. ...97

Figure 3.7. Enrichment factor scoring data for pharmacophore models generated in
triplicate for the best scoring A2A homology model (A) and the lowest RMSD homology
model (B) when searching with 5 partial match features. ...100

Figure 3.8. Goodness-of-hit scoring data for pharmacophore models generated in
triplicate for the best scoring A2A homology model (A) and the lowest RMSD homology
model (B) when searching with 5 partial match features. ...100

Figure 3.9. Differences in the distributions of mean (A), maximum (B), and minimum (C)
interfeature distances and mean (D), maximum (E), and minimum (F) feature to centroid

 xv

distances between the selected HE and LE pharmacophore models generated in
experimentally determined structures. ...103

Figure 3.10. Differences in the distributions of mean (A), maximum (B), and minimum
(C) interfeature distances and mean (D), maximum (E), and minimum (F) feature to
centroid distances between the selected HE and LE pharmacophore models generated in
homology models. ..104

Figure 4.1. Score-based pharmacophore generation workflow.120

Figure 4.2. Cluster-then-predict workflow used in pharmacophore model classification
illustrated using 5 clusters. ...122

Figure 4.3. Fragment subsets used in MCSS. ..129

Figure 4.4. Pharmacophore models generated in experimental reference structures of 4 of
the 13 GPCR targets using the MOE fragment subset. ..131

Figure 4.5. Workflow for selecting an optimal k value in K-means clustering.146

Figure 4.6. PCA plots for training (A) and testing (B) data after performing K-means
clustering with k = 5. ..163

Figure B1. GPCR Ligands included in the internal test database.221

Figure C1. Venn diagram denoting training set overlap between cluster I for k = 4 and
cluster I for k = 5. ...272

 1

Chapter 1

Review of Computational Methods Utilized for Class A GPCR Ligand Discovery

Introduction

G protein-coupled receptors (GPCR) are integral membrane proteins responsible

for signal transduction across cell membranes. Members of this protein superfamily are

commonly classified with the A-F system, which separates GPCR into 6 classes (A, B, C,

D, E, and F) based on amino acid sequence and functional similarities.1 Of these 6

classes, class A “rhodopsin-like” GPCR comprise the largest proportion of the GPCR

superfamily (around 80%1) and are commonly involved in varied signaling pathways,

including those regulating physiological functions such as vision and neurotransmission.2

Structurally, class A GPCR consist of 7 alpha-helical transmembrane (TM1-7) segments,

an 8th intracellular helix (H8), 3 intracellular loop regions (ICL1-3), 3 extracellular loop

regions (ECL1-3), an extracellular N-terminus, and an intracellular C-terminus (Figure

1.1A).3 Ligands activating class A GPCR typically bind at the extracellular side of the

receptor within an orthosteric site formed by the TM domains, where differences in

binding pocket size, shape, and electrostatics result in receptor-ligand selectivity.3 For

example, the binding site of the β2-adrenergic receptor (ADRB2) and other aminergic

GPCR is located deep within the 7 TM domains (Figure 1.1Bi), while the binding site of

the A2A adenosine receptor extends much closer to the extracellular site of the 7 TM

domains (Figure 1.1Bii).4 Additional variation in class A GPCR binding pocket location

and size is observed with the C-X-C chemokine receptor type 4, where the pocket is

 2

much larger and more exposed than those observed in other class A GPCR to allow for

the binding of peptide ligands (Figure 1.1Biii).4

Upon agonist binding, a conformational change resulting in the rearrangement of

intrahelical residue contacts5 is initiated within the receptor. Particularly, movement of

the intracellular ends of TM domains 5, 6, and 7 resulting from class A GPCR activation6

(Figure 1.1C) leads to the elimination of residue contacts between TM domains 3 and 6,

the formation of residue contacts between TM domains 3 and 7, and the structural

repacking of TM domains 5 and 6.5 TM3, on the other hand, often undergoes helical

rotation upon receptor activation and serves as a hub for activation state stabilization due

to its large number of state-specific contacts to other TM domains.6

The conformational change resulting from agonist binding in class A GPCR

ultimately stimulates activation of the intracellular G protein to which the receptor is

coupled to (Figure 1.1D).7 After G protein activation, guanosine diphosphate (GDP) is

replaced by guanosine triphosphate (GTP) on the Gα subunit of the heterotrimeric G

protein. Once GDP is swapped for GTP, the Gα and Gβγ subunits of the G protein

dissociate and both subunits can then modulate the activity of downstream effectors

involved in cell signaling pathways. Restoration of the basal state is assisted by regulator

of G protein signaling protein (RGS) binding, which stimulates GTPase activity.

Hydrolysis of GTP to GDP lowers receptor affinity for the ligand and returns the

complex to the basal state.

 3

Figure 1.1 G protein-coupled receptor structure, binding site locations, helix positions
before and after activation, and activation cycle.

(A) Snake plot of the β2-adrenergic receptor demonstrating class A GPCR structure.
Transmembrane segments 1-7 are colored green, helix 8 is colored magenta, ECL1-3 are
colored orange, ICL1-3 are colored cyan, N-terminus is colored yellow, C-terminus is
colored purple. (B) Structures of the β2-adrenergic receptor in complex with agonist
isoprenaline (left, colored magenta, PDBid 7DHR), the A2A adenosine receptor in
complex with agonist 6-(2,2-diphenylethylamino)-9-[(2R,3R,4S,5S)-5-(ethylcarbamoyl)-
3,4-dihydroxy-oxolan-2-yl]-N-[2-[(1-pyridin-2-ylpiperidin-4-
yl)carbamoylamino]ethyl]purine-2-carboxamide (center, colored cyan, PDBid 5WF6),
and the C-X-C chemokine receptor 4 in complex with peptide antagonist CVX15 (right,
colored orange, PDBid 3OE0). (C) Superposition of β2-adrenergic receptor inactive
state structure 7DHR (TM domains colored red) and active state structure 6PS2 (TM
domains colored green) demonstrating the movement of TM domains 5, 6, and 7 upon
receptor activation. (D) GPCR activation cycle. In step (i), the receptor is at a resting
state and the Gα and Gβγ subunits of the receptor’s G protein are associated. In step (ii),
ligand binding initiates a conformational change of the receptor that catalyzes the
exchange of GDP for GTP on the Gα subunit, causing the Gα and Gβγ subunits to
dissociate. In step (iii), the dissociated Gα and Gβγ subunits interact with downstream
effectors E1 and E2, resulting in downstream signaling. In step (iv), regulator of G
protein signaling protein (RGS) binds the Gα-GTP complex, accelerating GTPase
activity. GTP is hydrolyzed to GDP and the receptor returns to the resting state observed
in step (i).

 4

In addition to their importance in maintaining normal biological function,

dysregulation of GPCR signaling pathways often leads to the development of diseases

such as cancer and diabetes.8 As a result, GPCR have become increasingly attractive as

drug targets, with approximately one third of FDA-approved drugs targeting these

receptors.9 Two examples of the many drugs exerting their effects through GPCR include

salbutamol and exenatide, which are ADRB2 and glucagon-like peptide-1 receptor

agonists treating asthma and type 2 diabetes, respectively.8

Although GPCR-based therapeutics account for over $180 billion10 in global

annual sales, current FDA-approved drugs only target a subset of the 360 known

“druggable” non-olfactory GPCR.9 For the nearly 60% of GPCR targets yet to be

clinically leveraged,9 the ability to better understand and modulate their signaling

pathways would support the development of new therapeutics and identification of

previously undiscovered pathways relevant to disease development. Thus, the discovery

of novel ligands for understudied receptors is a valued goal. Since the mid-1990s11,

random high-throughput screening (HTS) has been a valuable tool in GPCR ligand

discovery and involves screening large compound libraries for activity against a

biological target.12 While many GPCR ligands have been identified using this approach,

random HTS workflows are often costly and time-consuming13, which is impractical for

research efforts limited by a finite amount of resources. Rather than employing the

“screen everything” philosophy historically observed in random HTS workflows, many

recent GPCR ligand discovery efforts employ virtual screening (VS) workflows to

computationally screen vast chemical libraries to identify sets of novel compounds best

complementing a biological target for use in subsequent and more targeted experimental,

 5

in vitro screens. A comprehensive VS workflow for GPCR ligand discovery is shown in

Figure 1.2. After the identification of a biological target, VS follows either a ligand- or

structure-based workflow.14 In a ligand-based virtual screening (LBVS) workflow,

information extracted from compounds known to possess biological activity for a target is

analyzed in order to identify candidate compounds for experimental screening.15 In a

structure-based virtual screening (SBVS) workflow, experimentally determined or

modelled structures of a biological target are used to select candidates for experimental

screening based on protein structure.16 Although LBVS workflows have been more

commonly employed than their structure-based counterparts,17 SBVS workflows have

become an increasingly popular route for ligand discovery as advancements in GPCR

structure determination and prediction have been made.18

While there are precedents for a well-defined computational workflow in GPCR

ligand discovery, many challenges still exist for the identification of novel drug

candidates acting upon these receptors. Many obstacles present in GPCR ligand

discovery are the result of a lack of structural information, as only 140 of the of the over

800 known human GPCR possess published, experimentally determined structures as of

September 30, 2022.19 Without a published structure to serve as a starting point, VS

workflows are forced to be ligand-based (if active ligands have been identified for the

target) or rely on the generation of models. In addition to a lack of structural information,

many roadblocks in GPCR ligand discovery stem from the fact that many GPCR lack

known endogenous ligands and are considered orphan GPCR (oGPCR).11 These oGPCR

often also often lack known synthetic ligands or experimentally determined structures,

leaving researchers with little information to guide GPCR ligand identification efforts.

 6

Although there are many factors impeding GPCR ligand discovery, computational

methods have been developed recently to address areas where information may be

lacking for targets. When attempting to identify new ligands for a target GPCR,

information deficits typically manifest in 1 of 3 ways:

1. The target possesses known ligands but no experimentally determined structure.

2. The target possesses an experimentally determined structure but few known

ligands.

3. The target lacks an experimentally determined structure as well as known ligands.

When a target possesses known active ligands, LBVS workflows incorporating

similarity searching20 and/or ligand-based pharmacophore modeling21 are typically

employed to identify compounds that are structurally/chemically similar to known active

ligands or match a three-dimensional interaction pattern of known ligands (Figure 1.2A).

For cases where a target possesses an experimentally determined structure, SBVS

workflows incorporating fragment-based drug design (FBDD)22 or structure-based

pharmacophore modeling21 can be used to identify compounds complementing a target

structure’s binding site (Figure 1.2B). For cases where a target’s structure is yet to be

experimentally determined (regardless of whether active ligands are known or not),

techniques such as homology modeling23 and conformational sampling of the structurally

variable ECL2 region24 allow for the generation of a modeled structure that, at the very

least, serves as a structural point of reference for VS workflows (Figure 1.2C). Ideally,

generation of a predicted structure serves as a starting point for SBVS as well as a

method of validating candidate compounds selected with LBVS/SBVS via ligand

docking (Figure 1.2C). LBVS and SBVS workflows typically identify prospective

ligands in conjunction with database searching, where filters generated with either

 7

workflow are used to identify compounds that complement a chosen biological target

from large external libraries such as ZINC25. If an experimentally determined or

predicted structure is available for a GPCR target, binding modes of prospective

compounds can be generated using ligand docking methods which are ranked using

scoring functions that denote the energetic feasibility of a given docked pose.26 These

predicted binding modes can then be used to provide further insight into whether a

prospective compound can plausibly bind a target and whether a compound should be

retained in the set of compounds to be experimentally screened.

Though many advances in traditional wet lab experimentation and protein

structure determination/prediction for GPCR have been made in recent years27,28, the lack

of information regarding structure and/or ligand binding for many targets necessitates the

use of computational techniques in ligand discovery workflows applied to GPCR. As

such, this work aims to provide a review of computational methods utilized in GPCR

ligand discovery. In this review, we summarize prominent computational techniques

applied to GPCR ligand discovery and discuss recent advances in methods applied to VS

workflows intended to discover novel ligands for GPCR.

 8

Figure 1.2 GPCR ligand identification workflows.

(A) Ligand identification workflow for GPCR targets that possess known ligands. In this
workflow, ligand-based virtual screening techniques such as ligand-based
pharmacophore modeling and similarity searching can be employed. (B) Ligand
identification workflow for GPCR targets that possess a known, experimentally
determined structure. In this workflow, structure-based virtual screening techniques such
as fragment-based drug design and structure-based pharmacophore modeling can be
employed. (C) Ligand identification workflow for GPCR targets lacking experimentally
determined structures and known ligands. In this workflow, homology modeling is used to
generate a model of a target GPCR that can be used with structure-based approaches to
ligand identification.

GPCR Structure Prediction

Since most GPCR targets lack an experimentally determined structure19, many

GPCR ligand discovery efforts must rely on the generation of a modeled structure to

serve as a point of reference when applying SBVS methods. In this section, the basics of

GPCR homology modeling as well as some deep learning techniques recently applied to

GPCR structure prediction are discussed. In addition, approaches are discussed for

 9

modeling the structurally diverse extracellular loop 2 (ECL2) region of GPCR, which can

facilitate ligand entry into the orthosteric binding site and directly interact with bound

ligands.29

Receptor Modeling

GPCR structural models are typically generated using homology modeling

(Figure 1.3), which is rooted in the theory that proteins with similar sequence and similar

function likely diverged from a common ancestral protein and retain structural

similarities necessary for the retention of the common function.23 In typical practice,

homology modeling predicts a target protein’s structure by fitting the target protein’s

sequence onto an aligned template structure possessing a globally similar sequence to the

target protein. The homology modeling process involves the following steps:

1. Template selection

2. Target:template alignment

3. Model generation

4. Model refinement

The first step, template selection, involves the selection of a homologous template

structure from which to model a target protein. Template selection is commonly based on

global amino acid sequence similarity between two receptors, with similarities greater

than 30% typically considered acceptable30 and similarities greater than 50% desired for

use in drug discovery applications.23 Given that template selection greatly contributes to

homology model quality, multiple studies have explored the effects of using template

structures with varied sequence identity to model GPCR targets with experimentally

determined structures. In a 2014 study31, 4 serotonin receptors were modeled using

 10

Figure 1.3. Workflow for constructing Class A GPCR homology models.

experimentally determined structures of a set of 10 class A GPCR with varying sequence

similarity (14 to 55%) as templates. When root mean square deviation (RMSD) values

were calculated comparing homology models generated for the 5-hydroxytryptamine

serotonin receptor subtype 6 (5-HT6R) and its experimentally determined structure,

values for the 5 best homology models decreased with increasing template structure

sequence similarity. Thus, homology models generated from templates of higher

sequence similarity more closely resembled the experimentally determined structure of 5-

HT6R. In a similar study, Shahaf et al. generated homology models for the 5-

hydroxytryptamine serotonin receptor subtype 7 (5-HT7R) based on the experimentally

determined structures of 18 class A GPCR with varying sequence similarity (19.1 to

 11

44.8% sequence identity within TM domains) to 5-HT7R.32 After each generated

homology model was compared to the experimentally determined structure of 5-HT7R,

correlations between sequence identity and RMSD values were found when template

structure sequence identities were above 50% or below 20%. Their findings indicated that

the use of greatly similar template structures (> 50% sequence similarity) for 5-HT7R

homology model construction led to homology models that were structurally similar to

the experimentally determined reference structure, while the use of greatly dissimilar

template structures (< 20% sequence similarity) led to homology models that were

structurally dissimilar to the reference structure. Though the use of template structures

with higher sequence similarity generally led to homology models that more closely

reflected experimentally determined structures, they both mention that little to no

correlation was observed between template structure sequence similarity and active

ligand identification when comparing binding poses of ligands docked into homology

models to experimentally determined binding poses as a means of method validation.

Since ligand docking is often used to filter which hit compounds identified with

LBVS/SBVS workflows are selected for experimental screening, ligand discovery

workflows incorporating ligand docking may wish to employ alternative metrics when

selecting a template structure for homology model generation.

As an alternative to template selection based on sequence similarity, metrics

making other similarity considerations have been developed in recent years to improve

homology model quality in terms of replicating experimentally determined structures and

their binding poses. One of such metric is Ngo et al.’s GPCR contact-informed

neighboring pocket (CoINPocket) score33, a local similarity metric developed based on

 12

distance-based contact strength fingerprints of 27 class A GPCR intended to capture

pharmacological similarities between any 2 GPCR (publication retracted due to errors

unrelated to the similarity metric or computational methods34). In contrast to purely

amino acid sequence identity-based similarity, CoINPocket scores are weighted to

emphasize sequence similarity at residue positions possessing high interaction strengths.

In a 2019 study, our group assessed the use of global sequence similarity vs. CoINPocket

scoring as metrics for homology model template selection when generating homology

models for 6 class A GPCR possessing reference crystal structures.35 While homology

models generated with template structures selected using either metric both deviated from

reference crystal structures to a similar degree, ligand docking simulations performed

with homology models whose templates were selected via CoINPocket scoring led to

binding poses often exhibiting lower RMSD values than those resulting from docking

ligands into homology models based on templates selected with global sequence

similarity. Overall, results from our group’s study indicated that the CoINPocket local

similarity metric can serve as a viable alternative to global sequence similarity for VS

workflows incorporating ligand docking into homology models.

Various web servers designed for GPCR homology modeling also incorporate

alternate methods of homology model template selection, examples include the GPCR

Online MOdeling and DOcking server (GOMoDo)36, GPCR-Sequence-Structure-Feature-

Extractor (SSFE)37, and GPCR-ModSim38. These servers use HHsearch (a profile-profile

alignment tool39) generated sequence-structure profiles, or profile alignments, against a

set of known GPCR structures to suggest template structures for user-provided GPCR

sequences. More recently, another method of GPCR template selection has been

 13

developed by Jabeen et al. allowing for template selection based on hydrophobic

correspondence and is named Biophysical approach for GPCRs Automated Template

Selection (Bio-GATS).40 When each of these 4 aforementioned template selection

methods were validated via structure comparison to experimentally determined

structures, resulting homology models were found to closely replicate experimentally

determined structures. For example, Jabeen et al. performed homology modeling of the

thromboxane A2 receptor and prostaglandin E2 receptor EP3 subtype with each of the 4

web servers, resulting in RMSD values ranging from 1.484 to 2.248 Å across both targets

when TM regions were compared between homology models and experimentally

determined structures.40 In addition to comparisons of protein structure, docked pose

assessment of ligands docked into homology models generated with GOMoDo and

GPCR-ModSim via comparison to experimentally determined binding poses also resulted

in positive outcomes. For instance, docking the ADRB2 ligand carazolol into a ADRB2

homology model generated with GOMoDo resulted in an observed ligand RMSD value

of 1.3 Å36 and docking of the 5-hydroxytryptamine receptor 1B (5-HT1B) ligand

ergotamine into a 5-HT1B homology model generated with GPCR-ModSim resulted in an

observed ligand RMSD value of 3.79 Å38,41. While global sequence similarity has been

the de facto metric for homology model template selection for quite some time, results

presented by these studies implicate that the application of alternate template selection

methods may better lend themselves to VS workflows applied to GPCR ligand discovery.

Although homology modeling is the most commonly utilized method of

predicting GPCR structure, the application of deep learning techniques as an alternative

to homology modeling has exhibited success in recent studies.42,43 While an in-depth

 14

description of deep learning is beyond the scope of this review, deep learning methods

for protein structure prediction use neural networks trained on sequences and structures

of well-characterized proteins to predict a structure for a given target sequence.44

Although there have been many examples of structure prediction methods implementing

deep learning45–47, AlphaFold43 is far and away the most renowned in recent years. Using

a neural network-based model requiring only a primary amino acid sequence as input,

Jumper et al. were able to accurately predict protein structures with atomic accuracy for a

variety of protein targets. More recently, AlphaFold predicted structures for over 360,000

proteins have been made freely available to the public with the creation of the AlphaFold

Protein Structure Database48, enabling the use of predicted structures in GPCR ligand

discovery studies for those who may be inexperienced with computational structure

prediction. In the context of GPCR ligand discovery, however, many AlphaFold

generated GPCR structures exhibit low confidence scores in non-TM regions48 (including

extracellular loop 2) which would likely require further refinement prior to effective

implementation in ligand discovery efforts. Nonetheless, the AlphaFold Protein Structure

Database provides structural starting points for GPCR ligand discovery workflows and is

a valuable resource.

Loop Modeling

When generating a GPCR structural model intended for use to study ligand

binding, correctly modeling the extracellular loop 2 (ECL2) region connecting the 4th and

5th TM segments of the receptor is an important and challenging step. In contrast,

intracellular loops of GPCR do not make direct interactions with ligands in any known

structure, and therefore do not need special attention when generating a structural model

 15

for ligand discovery applications. Compared to the other extracellular loops possessed by

GPCR, ECL2 is much longer and more diverse in terms of length, sequence composition

and secondary structure.49 ECL2 has been shown to be involved in ligand recognition in

several GPCR50,51 and plays a role in either denying (for receptors binding hydrophobic

ligands, such as free fatty acid receptor 1 (FFAR1)) or allowing (for receptors binding

water soluble ligands, such as chemokine receptors) binding pocket water accessibility.52

In addition, a highly conserved cysteine in ECL2 forms a disulfide bond with a highly

conserved cysteine in TM3 that serves to stabilize receptor structure in the form of a

conformational constraint. Given the vast structural and functional diversity of ECL2,29

careful considerations must be made for this region when generating GPCR structural

models.

ECL2 modeling is typically performed with template-based or ab initio methods.

In template-based loop modeling, loop structures are predicted using structural

information extracted from loop templates that are similar in sequence to a target

protein.53 In ab initio loop modeling, loop conformations are first extensively sampled

and then ranked using criteria such as energy.24 In contrast to template-based methods, ab

initio methods sample loop conformations without prior knowledge of known structures.

Consequently, many loop modeling studies choose to employ ab initio methods rather

than template-based methods due to the structural diversity of ECL2. Due to the

prevalence of ab initio methods in recent loop modeling studies, the remainder of this

section focuses on their implementation in GPCR ligand discovery efforts.

As previously mentioned, ab initio loop modeling involves the conformational

sampling of ECL2 and scoring of each generated conformation. During conformational

 16

sampling of ECL2, loop closure methods founded in numerical optimization techniques

or analytical solutions are employed.54 A variety of loop modeling software packages55,56

utilize inverse kinematics for loop sampling, a concept adapted from robotics that is

defined as “the process of characterizing the geometry of an open kinematic chain

composed of rigid links”.57 Monte Carlo and molecular dynamics (MD) simulations can

also be used to sample and/or refine loop conformations, though at a higher

computational cost.54 During the loop sampling process, distance-based constraints

emulating the conserved ECL2-TM3 disulfide bond observed in many GPCR can also be

implemented to reduce the conformational space.24 After conformational sampling and

loop refinement, knowledge- or physics-based scoring methods are used to rank loop

conformations.54

While there exist many methods of computational loop modeling, studies

comparing loop modeling techniques applied to GPCR are few. However, a study

published by our group in 2019 compared the performance of loop modeling techniques

bundled into the Rosetta55 and Molecular Operating Environment (MOE)56 software

suites when applied in the context of modeling GPCR.24 In this study, experimentally

determined structures of 28 class A GPCR were subjected to ab initio loop modeling of

their ECL2 regions using loop modeling algorithms present in Rosetta and/or MOE. After

the superposition of each loop-refined structure onto its experimentally determined

reference structure and subsequent calculation of Cα RMSD values, the kinematic loop

closure with fragments (KICF) algorithm within Rosetta58 was found to most frequently

sample GPCR loop conformations within 2.5 Å RMSD of those present in experimentally

determined structures.24 As a follow-up to this loop modeling study, our group performed

 17

a subsequent study incorporating Rosetta’s KICF loop modeling into a homology

modeling/ligand discovery workflow applied to 10 class A GPCR with experimentally

determined structures.59 When KICF loop modeling was performed on each target’s

homology model generated in MOE56 using template structures selected with the

CoINPocket similarity metric described by Ngo et al.33, Cα RMSD values for ECL2

residues in our best loop-refined homology models were found to be lower than Cα

RMSD values for ECL2 residues in initial homology models (where loop modeling was

not performed) in most cases when compared to experimentally determined reference

structures. Furthermore, a comparison of docked ligand RMSD values for ligands docked

into loop-refined and initial homology models showed that docking into loop-refined

GPCR models resulted in better docking performance, on average.59 Overall, the results

of both of our group’s prior loop modeling studies signify that ECL2 modeling plays a

significant role in accurately predicting GPCR structure as well as binding poses.

Ligand-based Approaches to GPCR Ligand Discovery

For the more than 200 class A GPCR with known ligands (209 as of July 18,

202219), LBVS methods can be employed in GPCR ligand discovery workflows. In short,

LBVS methods utilize information extracted from GPCR ligand complexes to identify

compounds that are structurally similar to (in the case of similarity searching) or are

thought to make the same types of interactions as (in the case of ligand-based

pharmacophore modeling) known ligands. In this section, 2 of the most utilized

techniques in LBVS workflows are discussed: similarity searching and ligand-based

pharmacophore modeling.

 18

Similarity Searching

When at least one active ligand is known for a target GPCR, similarity searching

can be used to find candidate ligands with similar structure and/or chemical properties for

use in in vitro screens. This method of candidate ligand identification is rooted in the

observation that molecules similar in structure often exhibit biological activity for the

same target.60 Similarity searches are conducted by first constructing a search query

representing an active ligand’s structure and/or chemical features that can be used to

identify molecules from a database of chemical structures that are most similar to the

active ligand. During the search process, a similarity metric such as the Tanimoto

coefficient or Euclidean distance is used to determine similarity to the search query.61

Similarity searching has become one of the most prominent methods of candidate

ligand elucidation for multiple reasons. First, similarity searching can be performed with

only a single known active ligand as a query, which lends itself well to the many GPCR

with only a handful of known active ligands. In addition, similarity search methods are

computationally inexpensive62, meaning that search queries can be used to efficiently

screen large compound databases in silico.

Similarity searches can be can be structure- or descriptor-based, wherein the

former uses structural features and the latter uses chemical properties such as molecular

weight, dipole moment, or van der Waals surface area to determine similarity.62 In

structure-based similarity searching, structures of active ligands to be used as search

queries can be represented with molecular fingerprints, which are bit string

representations of the presence or absence of certain structural features or properties

within a molecule.63 Rather than a direct structural comparison, the molecular fingerprint

 19

representing the query molecule or molecules is compared to the molecular fingerprint of

each molecule in a searchable database. Though a variety of molecular fingerprint types

exist, 3 of the most prominently used fingerprint types are discussed here: topological,

circular, and substructure-based fingerprints.61 Topological or “path-based” fingerprints

linearly capture the paths of molecular features from each atom up to a given number of

connecting bonds and assign bits based on these paths (Figure 1.4Ai).64 The most

prominent topological example is the Daylight fingerprint, which encodes molecules in

bit strings up to 2048 bits in length.61 Similar to topological fingerprints, circular

fingerprints denote the environment of each atom up to a determined radius (Figure

1.4Aii). The most prominent circular example is the Extended-Connectivity Fingerprint

(ECFP), which was designed for use in structure-activity modeling.61 In contrast to

topological and circular fingerprints, which assign no specific meanings to individual

bits64, substructure-based fingerprints assign the presence or absence of certain functional

groups or structural features within a molecule to specific bits (Figure 1.4Aiii).61 One of

the more well-known examples of this type of fingerprint is MACCS structural keys,

which encodes a molecule’s structure and properties within bit strings that are either 960

or 166 bits long depending on the MACCS variant used.65 While topological and circular

fingerprints may more comprehensively represent a given molecule’s structural features,

substructure-based fingerprints are often used in ligand discovery efforts due to their

positive performance with small molecules66 and computational efficiency resulting from

small bit string length.61

In contrast to the topological, 2D molecular comparisons provided by structure-

based similarity searching, descriptor-based similarity searching moves beyond purely

 20

structural comparisons and incorporates 3D and chemical descriptors when comparing a

set of molecules to assess their similarity. In descriptor-based similarity searching,

molecules are characterized using descriptors that denote conformational information

(e.g. distance- and angle-based descriptors), molecular shape (e.g. van der Waals volume

and surface area), and physicochemical properties (e.g. molecular weight, octanol-water

partition coefficient (logP), and ionization potential).67 As a result, structural equivalence

between molecules is often lost with descriptor-based similarity (relative to structure-

based searching) but computational expense is reduced.62 Although structure-based

similarity searching is typically sufficient for finding compounds similar to a search

query in a VS workflow, descriptor-based similarity searching allows for a comparison of

physicochemical properties between compounds, which may be ideal if compounds

selected based on structure-based similarity show no in vitro activity. Furthermore, we

would be remiss if we did not mention the importance of these 3D and physicochemical

descriptors in quantitative structure-activity relationship (QSAR) analysis, which

constructs a statistical model relating molecular activity to its chemical and physical

properties.68

 21

Figure 1.4. Similarity search fingerprinting methods and Tanimoto coefficient
calculation.

(A) Path-based (i), circular (ii), and substructure-based molecular fingerprints. In path-
based fingerprints, linear fragments from 1 to a certain length (in this case 3) are
enumerated and encoded into a bit string (i). In circular fingerprints, the environment of
an atom up to a certain radius (in this case 3) is encoded to a bit string (ii). In
substructure-based fingerprints, the presence or absence of certain functional groups is
encoded to a bit string (iii). (B) Tanimoto coefficient calculation between 2 compounds.
In this example, substructure-based fingerprints are calculated for compounds 1 and 2
and are then compared to calculate a Tanimoto coefficient. (C) Comparison of 2
compounds elucidated by Zhang et al.75 to C-C chemokine receptor type 9 (CCR9)
antagonist vircirnon via Tanimoto coefficient.

 22

Whether a search query is structure- or descriptor-based, a metric to quantify

similarity is necessary when prioritizing screening candidates from compound libraries.

The industry standard for assessing similarity between molecular fingerprints is the

Tanimoto coefficient (Figure 1.4B), which ranges from 0 (wholly dissimilar) to 1 (wholly

similar) and measures the similarity between 2 fingerprints by dividing the number of

features common to both fingerprints (represented by bits set to 1 in both) by the total

number of features (all bits set to 1 in either) possessed by both fingerprints.61 Ideally,

similarity searches incorporating the Tanimoto coefficient will set cutoff values

depending on the desired number of compounds to be returned from the search. In

addition to the Tanimoto coefficient, other metrics such as Euclidean distance, the Dice

coefficient, and cosine similarity also provide measures of similarity when comparing

fingerprints.69 Several studies70–72 comparing the performance of different similarity

metrics in the context of chemoinformatics applications have found the Tanimoto

coefficient to perform best, supporting its widespread use in similarity searching.

Due to its ease of use and low computational cost, similarity searching has been

the foundation of many GPCR ligand identification studies in recent years. For instance,

a 2014 study by Levit et al. utilized 2D similarity searches (in conjunction with other

methods) to discover 12 new Taste 2 Receptor Member 14 (TAS2R14) agonists via

virtual screens of the BitterDB and DrugBank databases for compounds similar to known

small-molecule TAS2R14 agonists.73 Similarly, a study published in 2015 by Gianella-

Borradori et al. used the cannabinoid receptor 2 (CB2R) agonist HU-308 as a template

for similarity searching to identify novel CB2R ligands.74 Even more recently, Zhang et

al.’s 2018 study identified novel C-C chemokine receptor type 9 (CCR9) antagonists via

 23

2D and 3D similarity searches using known CCR9 antagonists as templates for search

queries (Figure 1.4C).75 Although the work of Levit et al.73 and Zhang et al75

implemented further refinement of screening candidate lists beyond similarity searching,

the results shown in these studies imply that similarity searching at the very least

provides a starting point for identifying promising lead compounds in GPCR ligand

discovery.

Ligand-based Pharmacophore Modeling

The pharmacophore concept was first introduced as a “haptophore” in 1909 by

Paul R. Erlich and was defined as “a molecular framework that carries (phoros) the

essential features responsible for a drug’s (pharmacon) biological activity”.76 This

concept was further elaborated upon in a 1967 study by Lemont P. Kier, where one of the

first computed pharmacophore models was created to describe a set of chemical features

eliciting activity in muscarinic receptors.77,78 More recently, the International Union of

Pure and Applied Chemistry (IUPAC) has defined a pharmacophore as “an ensemble of

steric and electronic features that is necessary to ensure the optimal supramolecular

interactions with a specific biological target and to trigger (or block) its biological

response”.79 Pharmacophore modeling is founded in the theory that compounds

recognized by the same biological target most likely share a set of common features

interacting with complementary sites on that target.80

Much like similarity searching, pharmacophore models provide a method of

selecting compounds for experimental screening. However, in contrast to similarity

searching, pharmacophore models move beyond comparisons of structural and/or

chemical descriptors and instead denote a three-dimensional, “spatial fingerprint” of

 24

interactions that are thought to elicit activity within a biological target.21 Pharmacophore

models can be ligand- or structure-based. This section focuses on the former. The latter is

discussed below in the section detailing structure-based methods. Ligand-based

pharmacophore modeling (Figure 1.5) involves identification of a common set of

chemical features possessed by a set of known ligands for a specific target (otherwise

known as training set molecules). Though the types of interactions denoted by these

features can vary depending on the annotation scheme used, pharmacophore features

typically describe interactions such as hydrogen bond acceptors and donators,

hydrophobic interactions, aromatic interactions, and ionic interactions.81 Prior to

pharmacophore model generation, a training set of known active ligands for a target must

be selected from which to generate a pharmacophore model. While training set size can

vary based on the availability of known ligands for a target, the ligand-based

pharmacophore modeling tool HypoGen82 recommends including a minimum of 16

ligands in a training set. Alternatively, pharmacophore modeling in Catalyst’s HipHop

can be performed with as few as 2 ligands.83 In general, compounds selected for inclusion

in the training set should bind at the same active site within a target84 and represent a

large and diverse set of active ligands.85 Once a training set is finalized, generated

conformations of training set molecules can be superposed in three-dimensional space.

Using this comparison, positions where chemically similar functional groups overlap are

annotated as features within the pharmacophore model.81

 25

Figure 1.5. Ligand-based pharmacophore model generation.

In step (i), known active ligands for a target are chosen for ligand-based pharmacophore
model construction. In step (ii), structures of chosen active ligands are conformationally
sampled and optimally superposed. In step (iii), pharmacophore model features are
annotated based on structural and functional commonalities between active ligands
based on their superposition.

If a target possesses enough active ligands, a validation set of compounds not

used in training the model can be used to assess pharmacophore model quality. In

addition to active compounds, pharmacophore validation sets typically include

compounds that are known to be inactive for a target as well as decoy molecules that are

physicochemically similar to known active ligands and presumed to be inactive.81 Ideally,

a validation set should consist of active, inactive, and decoy molecules for a target that

are structurally diverse.86 When screening a validation set with a pharmacophore model,

the best case scenario would result in the identification of a list of compounds containing

all of the active compounds and no inactive or decoy compounds. However, the

 26

identification of inactive compounds can also provide opportunities for further model

refinement. To assess pharmacophore model performance when searching a validation

set, various metrics can be employed to determine how well a pharmacophore model

identifies compounds that are known to possess activity for a target. Common metrics

used to evaluate pharmacophore model performance include enrichment factor (EF) and

goodness-of-hit score (GH), which quantify how many fold better a pharmacophore

model identifies active compounds when compared to random selection and how well a

pharmacophore model prioritizes a high yield of actives and a low false-negative rate,

respectively.86 We refer the reader to Braga and Andrade’s 2013 publication86 for a more

thorough description of these and other metrics used to assess pharmacophore model

performance.

Generated pharmacophore models can be used to search external databases to

screen for novel ligand candidates. Database searches with pharmacophore models

typically consist of a multistep filtering process. The first step, pre-filtering, aims to

quickly identify molecules that cannot be fitted to the pharmacophore model in 3D via

descriptor-based similarity methods.62,87 Once pre-filtering is complete, 3D matching of

compounds that might fit the pharmacophore query is performed in the second step. This

analysis typically consists of a geometric alignment of the pharmacophore model to a

single molecular conformation. For example, programs such as MOE56 and

LigandScout88 attempt to match molecular conformations to a pharmacophore model via

RMSD minimization of features shared between the pharmacophore and molecule

conformation.87 Furthermore, programs such as MOE56 allow for a less specific search

 27

resulting in the identification of hit compounds that only partially match a set of

pharmacophore model features.

When generating ligand-based pharmacophore models, multiple factors

influencing model quality must be considered during model construction and validation.

Since biological conformations of most active molecules are unknown (exceptions being

those with experimentally characterized GPCR complexes), ligand-based pharmacophore

modeling efforts typically rely on the generation of a set of low-energy conformations of

bioactive molecules. Although many conformational sampling algorithms are produce a

set of conformations that include a bioactive conformation, it is not guaranteed that a

superposition used to generate a pharmacophore model will contain bioactive

conformations.81 In addition, careful considerations must be made when choosing a

training set of active molecules from which to generate a pharmacophore model. In

addition to considerations mentioned previously, compounds chosen for a training set

should ideally share a common set of interactions with a target. This may be more likely

to occur for a set of structurally similar molecules, as structurally diverse molecules

generally exhibit different binding modes and would thus share few commonalities when

superposed prior to feature annotation.81 Moreover, the use of different sets of active

compounds can result in pharmacophore models that differ in feature placement and

composition. For example, pharmacophore models generated for cyclin-dependent kinase

2 (CDK2) in 3 separate studies89–91 that used the same software (Catalyst92) but different

training sets resulted in three completely different pharmacophore models in terms of

feature type and location (Figure 1.6).21

 28

Figure 1.6. Pharmacophore models of CDK2 inhibitors developed using Catalyst by
Hecker et al.89 (left), Toba et al.90 (center), and Vadivelan et al. (right). 91

Reprinted from Drug Discovery Today, Volume 15, Yang, S.Y., Pharmacophore modeling
and applications in drug discovery: challenges and recent advances, 444-450, Copyright
2010, with permission from Elsevier.

Since the advent of commercially available pharmacophore modeling software,

the use of pharmacophore models in virtual screening has drastically increased,93

providing a more informed alternative than random selection when identifying

compounds for experimental screening. In the context of GPCR, pharmacophore

modeling studies have resulted in the identification of novel, active ligands in many

cases. Here, we focus on select examples of ligand-based pharmacophore modeling

applied to GPCR ligand discovery.

In a 2008 study by Wang et al.,94 8 known cannabinoid receptor 1 (CB1) ligands

were used to generate 10 pharmacophore models using Catalyst.92 In order to select a

pharmacophore model for VS, the pharmacophore model that best mapped onto the

lowest energy conformation of CB1 training set compound rimonabant (a CB1 inverse

agonist) was determined. After virtually screening an in-house compound library with

their selected pharmacophore model and filtering hit molecules based on molecular

weight and a modified version of Lipinski’s rule of five,95 5 of their 420 compounds

 29

selected for screening exhibited binding affinity values (Ki) < 1 µM. More recently, a

2021 study by Wang et al.96 used deep learning in combination with ligand-based

pharmacophore models generated with Schrödinger’s PHASE module97 using a training

set of 8 cannabinoid receptor 2 (CB2) antagonists to identify 7 novel CB2 ligands

exhibiting Ki binding affinities ≤ 0.22 µM. In addition to these successes concerning

cannabinoid receptors, VS workflows incorporating ligand-based pharmacophore

modeling have also led to the discovery of serotonin receptor antagonists98, adrenergic

receptor antagonists99, and 5-hydroxytryptamine receptor partial agonists.100

Structure-based Approaches to GPCR Ligand Discovery

In addition to ligand-based methods, SBVS can be employed in the context of GPCR

ligand discovery. In contrast to ligand-based methods, structure-based methods extract

information from experimentally determined or modeled structures to identify screening

candidates that best complement a structure’s binding site. In this section, we first review

the use of in silico fragment-based methods in GPCR ligand discovery, followed by a

discussion of structure-based pharmacophore modeling and its applications.

In silico Fragment-based Methods

Over the past few decades, in silico fragment-based drug discovery (FBDD) has

become an increasingly useful tool for discovering novel leads in ligand identification

workflows. In silico methods are analogous to experimental FBDD workflows, which use

experimental screens to identify small chemical building blocks (fragments) binding a

protein of interest that are then either elaborated upon structurally (by “growing” an

individual fragment, Figure 1.7A) or linked with a direct connection or structural scaffold

 30

(Figure 1.7B) to build novel lead compounds that can be refined with further

experimentation.101 Despite the demonstrated success of experimental FBDD in drug

discovery workflows,102,103 its use in GPCR ligand discovery is not without obstacles.

Experimental FBDD is often restricted by limitations such as time, cost, and the need for

high concentrations of crystallized proteins, the last of which is generally problematic in

the context of GPCR.22 In silico FBDD, on the other hand, forgoes the need for in vitro

screening and instead constructs novel, druglike molecules whose structures are tailored

to a protein’s binding site by computationally predicting binding energies for prospective

fragments, providing a higher throughput, cost-efficient de novo drug design approach.104

Figure 1.7. Methods of novel ligand design in fragment-based drug discovery.

The first step of in silico FBDD involves the construction of fragment libraries.

Fragments included in these libraries are often first sourced from commercially available

 31

compounds and then filtered based on molecular properties.105 Fragments used in FBDD

generally follow the “rule of three” (molecular weight ≤ 300 g/mol, number of hydrogen

bond donors ≤ 3, number of hydrogen bond acceptors ≤ 3, calculated LogP ≤ 3) and

possess polar surface areas ≤ 60 Å2.106 Ideally, fragments included in FBDD libraries

should be synthetically feasible, cover a diverse range of chemical functional groups, and

meet certain criteria for physicochemical properties.107

After fragment library construction, fragments are then placed within a target

structure’s active site. In essence, this step uses fragments as probes to map binding hot

spots within a target structure’s active site.107 Moreover, fragment placements are

energetically optimized in this step, allowing for the determination of a set of fragments

that best complement the structure’s active site. Feature placement algorithms are

commonly utilized to determine a structure’s active site. For example, MOE56 fills a

prospective active site with spheres that are then clustered to define a binding pocket.

Once an active site is identified, fragments can be energetically mapped within the

structure. Commonly used methods for active site mapping with fragments include

GRID108 and multiple copy simultaneous search (MCSS)109. GRID calculates energies

between probe atoms and a protein surface and thus highlights where interactions are

most favorable within a protein.108 MCSS randomly places fragments into an active site

and then energetically minimizes numerous copies to determine energetically optimal

positions for each fragment.109 Molecular docking (details of which are covered in a later

section) can also be used for fragment placement, though it is thought to be less reliable

in FBDD since most docking methods and scoring functions were developed for small

molecules and not fragments.105

 32

After fragment placement, a fragment or set of fragments with favorable binding

energies is chosen. Once identified, these hit fragments are used to develop novel lead

compounds. If a single fragment is chosen, its structure can be iteratively grown until a

potential lead fitting a set of desired properties is achieved.104 If multiple fragments

occupying different regions of a target structure are chosen, they can be linked to develop

a novel lead compound. If the structural regions occupied by a set of fragments are

spatially close, the fragments can be directly linked.104 Alternatively, fragments

occupying spatially distant regions are linked to a common structural scaffold to generate

hits.105 If fragments are linked to a scaffold, selection of an appropriate scaffold is key

when constructing hits with high affinity.107 For example, a linking scaffold must be

flexible enough to join fragments in different regions of a target structure107 but maintain

enough rigidity to avoid alternative ligand binding modes.104 Once selected fragments are

grown or linked into a hypothetical lead compound, the lead compound can be

synthesized and assayed against a target of interest.

The application of in silico FBDD to GPCR has led to successful ligand

identification campaigns for multiple targets. For example, a 2011 study by de Graaf et

al.110 identified a library of fragment-like compounds that were experimentally screened

for histamine receptor 1 (H1R) activity. In this work, the authors began with an initial set

of 757,728 fragment-like compounds. This initial set was filtered to select compounds

possessing a formal charge ≥ +1 to complement the charged D107 within H1R’s binding

pocket. The filtered set of 108,790 compounds was then docked into an inverse agonist-

bound H1R structure. After docking was performed, a further subset of compounds was

selected based on comparisons of protein-ligand interaction fingerprints between

 33

prospective fragment binding modes and the binding mode of the known H1R antagonist

doxepin. The resulting 354 compounds were then subjected to a Tanimoto-based

comparison to known H1R antagonists and subsequent visual inspection of docked poses,

yielding a final set of 26 commercially available compounds. Assays with this final set of

fragment-like compounds identified 19 fragments with H1R affinities ranging from 10

µM to 6 nM, resulting in a hit rate of 73%.

More recently, in silico FBDD was used by Vass et al. to identify a library of

fragment-like compounds that were then experimentally screened for histamine receptor

4 (H4R) or dopamine receptor 3 (D3R) activity.111 This work began by performing MD

simulations with a homology model of H4R and a crystal structure of D3R to generate an

ensemble of structures representing conformational states of each receptor’s binding

pocket. An in-house set of 12,905 fragment-like compounds were then docked into each

target’s structure as well as ensemble structures resulting from MD. Final sets of

compounds for biological testing were then selected for each target based on docking

score rankings, resulting in a set of 50 compounds for H4R and a set of 56 compounds for

D3R. Assays with fragment-like compounds selected for each target resulted in the

identification of 18 and 8 compounds for H4R and D3R, respectively, that exhibited

target inhibition > 20% with binding affinities ranging from 8.4 to 75.1 µM for selected

H4R compounds and 0.17 to 2.8 µM for selected D3R compounds. Altogether, these

studies110,111 indicate that in silico FBDD, at the very least, provides a method of

identifying fragment-like ligands for GPCR that can be further refined with experimental

FBDD.

 34

Structure-based Pharmacophore Modeling

In a previous section, the utility of ligand-based pharmacophore modeling in

GPCR ligand discovery was discussed. However, this type of pharmacophore modeling is

inherently less effective for or not applicable to targets possessing few or no known

ligands. As an alternative, pharmacophore models can be developed from a structural

perspective using structure-based pharmacophore modeling, which establishes

pharmacophore models by probing a target’s structure for favorable interaction sites

(Figure 1.8).21 The lone prerequisite for structure-based pharmacophore modeling is a

three-dimensional structure of a target, ideally one that is experimentally determined.

However, this strategy can also be applied in the context of structural models generated

using any of the methods described in our section detailing receptor modeling, providing

an approach for the many GPCR lacking an experimentally determined structure.

Figure 1.8. Structure-based pharmacophore model generation using functional
group fragments.

In this workflow, a structure of the target GPCR is first chosen. After identification of a
binding site inside the chosen structure, the binding site is probed using functional group
fragments. Once the binding site is probed, a subset of energetically favorable fragments
can be chosen from which to annotate pharmacophore features.

 35

Structure-based pharmacophore modeling begins with the identification of a

potential ligand binding site using binding site detection algorithms. These methods often

utilize energy-based methods that sample binding site properties based on interaction

energy calculations (e.g. solvation-based methods) or geometry-based methods (grid-

based, alpha spheres112) that define a binding site based on a protein model’s geometry.113

After a binding site is identified, pharmacophore features can be defined. Traditionally,

derivation of pharmacophore features within a protein structure is based on the types of

amino acid residues that comprise the binding pocket (i.e. whether a residue is charged,

polar or hydrophobic, or solvent-accessible), as well as the use of geometric entities or

functional group fragments to probe potential ligand-receptor interactions.113 In terms of

the latter, a structure’s binding site can be mapped using previously discussed methods

such as GRID108 or MCSS109 to determine energetically favorable sites at which to place

pharmacophore features. If active ligands are known for a target, they can be used to

improve the placement and refinement.

Though structure-based pharmacophore models can be utilized for GPCR targets

lacking known active ligands (unlike ligand-based pharmacophore modeling) or an

experimentally determined structure, limitations for this method still exist. Since potential

binding sites often contain many residues that can make favorable interactions with a

small molecule ligand, an overabundance of chemical features can be annotated within

structure-based pharmacophore models, resulting in a pharmacophore model that is

ineffective when filtering screening candidates from a compound library.21 For GPCR,

the number of features in a useful pharmacophore model ranges from 3 to 7.114 To refine

the number of features included in pharmacophore models, structure-based

 36

pharmacophore features are often pruned based on energetics, known protein-ligand

interaction information, or protein sequence analysis.113 An additional limitation of

structure-based pharmacophore modeling is that pharmacophore feature placement is

inherently less accurate when compared to ligand-based methods due to difficulties

determining optimal interaction geometries and the existence of multiple ligand binding

modes within many biological targets.113

Recently, the increased availability of high-resolution protein structures and

advancements in protein structure prediction have led to structure-based pharmacophore

methods gaining more attention, especially in the context of GPCR ligand discovery.

Herein the development and application of score-based pharmacophore modeling to

GPCR ligand discovery is discussed. In 2011, Sanders et al. detailed the development of

Snooker, a GPCR-specific structure-based pharmacophore modeling protocol

incorporating homology modeling that derives pharmacophore features from interaction

points placed at residues identified to be important for ligand-binding within GPCR TM

domains.115 In this study, Sanders et al. validated their methods by generating

pharmacophore models for 15 different GPCR and found that all 15 of their generated

models reflected interactions with residues essential for ligand binding on a target-by-

target basis.

Another structure-based pharmacophore modeling method, Pharmacophore-Map-

Pick, used pharmacophore models generated within the 39 experimentally determined

GPCR structures available at time of publication to create a library mapping

pharmacophore features to the residues they interact with (termed “key residues” in the

publication).116 After generating homology models for all GPCR, each model was

 37

subsequently searched for residues matching the position and identity of residues stored

in the feature-residue mapping library. Using pharmacophore features associated with

each identified residue, pharmacophore models were then created within each homology

model. Once created, pharmacophore models were subsequently refined based on local

feature density. When validating this method using a pharmacophore model for the beta 2

adrenoceptor (ADRB2) to predict the binding modes of 6 ADRB2 ligands, it was found

that predicted binding poses deviated very little from experimentally determined binding

poses (determined RMSD values were 1.46 Å, on average). Additionally, further

validation with VS for 15 selected GPCR targets resulted in 8 of 15 targets possessing EF

values > 10, implying that this method would perform well when attempting to identify

novel active compounds for GPCR targets.

Though we highlight these 2 specific methods of structure-based pharmacophore

modeling, a plethora of other methods have been used to identify novel active ligands for

GPCR in recent years. For instance, a new µ opioid receptor (OPRM) agonist was

identified in 2019 by Jeong et al. using structure-based pharmacophore modeling.117 In

their study, an initial hit compound was first obtained by screening an in-house database

with a structure-based pharmacophore model, followed by synthesis of hit compound

derivatives predicted as best using R-group screening. Assays with these synthesized

derivatives identified one compound as a fully active OPRM agonist with an EC50 of 179

nM. In a similar study, Poli et al. used an experimentally determined structure of OPRM

in complex with morphinan antagonist β-funaltrexamine to generate a structure-based

pharmacophore model for inverse agonist identification.118 Searching a library containing

198,000 tetrapeptides with their generated pharmacophore model led to the identification

 38

of 28,070 potential peptide ligands that were then filtered with a combination of

molecular docking and a qualitative filters, resulting in a final set of 15 tetrapeptides to be

screened. Ultimately, one of these (peptide 1) demonstrated inverse agonism of OPRM.

Hit List Generation and Refinement

Herein we have discussed multiple computational ligand- and structure-based

approaches to identify novel ligands for GPCR. Whether a ligand- or structure-based VS

workflow is employed, each method is typically utilizes database searching and hit list

refinement as a means to select a refined set of compounds for experimental screening.

Database Searching

Once a molecular fingerprint, fragment-based lead, or pharmacophore model is

generated, a database of compounds is then searched to identify candidates for in vitro

screening assays or alternative lead compounds. Compounds within virtual screening

databases are usually sourced either from in-house collections or from various chemical

vendors.16 Examples of databases containing commercially available compounds

commonly used in GPCR VS studies include ZINC,25 PubChem,119 and ChemSpider.120

A variety of filters can be applied to compounds within a database to ensure that selected

compounds meet specified criteria. These include filters for characteristics of

bioavailable drugs (such as Lipinski’s rule-of-five95), physical descriptors (such as the

number of rotatable bonds or polar surface area16), or filters to remove compounds with

functional groups that commonly interfere with biological assays (such as pan-assay

interference compounds121).

 39

If a pharmacophore model or 3D descriptors are employed for compound

identification, conformational sampling can be performed to reflect the conformational

flexibility of compounds within the database. Conformational sampling is particularly

important when using pharmacophore models, as they heavily rely on the conformational

diversity of compounds stored in the search database.122 For any given VS study, the

number of conformations required per compound will vary based on computational

resources and the structural complexity (i.e. number of rotatable bonds) of compounds

contained within the database. However, computational VS studies employing as few as

10123 or 20124 conformations per compound have resulted in positive outcomes.

Furthermore, studies by Cappel et al.125 and Sastry et al.126 demonstrated that a limited

conformational search (a maximum of 10 conformers per molecule) can result in

sufficiently high enrichment values. Conformational sampling is usually performed prior

to a database search using stochastic methods implementing MD/Monte Carlo-simulated

annealing or systematic methods that rely on the rigid rotor approximation and attempt to

enumerate all torsions of a molecule.127 Alternatively, on-the-fly conformational

sampling can also be performed128, though this process results in considerably slower

database searching.87

Hit List Refinement by Ligand Docking

GPCR ligand identification studies often employ ligand docking to refine hit lists

obtained from database searching based on likelihood of binding. Though a VS workflow

may choose to screen all compounds identified with a database search, ligand docking

serves as an additional means of resource management and compound filtration by

 40

ensuring that compounds selected for experimental screening can plausibly bind a target

of interest.

In the context of a VS workflow, ligand docking begins with the selection of a

target protein structure to dock selected compounds into. The structure chosen for

docking can either be experimentally determined or modeled, depending on whether a

protein target possesses a published experimentally determined structure. Once a

structure is selected, structure preparation of both prospective ligands and protein is

performed. In terms of ligand preparation, it is good practice to assess whether a

compound’s tautomers, stereoisomers and protomers should be enumerated to ensure that

the structure being docked is chemically sound.129 One should consider which of a

compound’s tautomers and/or protomers are likely to be populated under the intended

experimental screening conditions. Furthermore, prospective ligands with undefined

stereochemistry should have stereoisomers enumerated. In addition to ligand preparation,

protein preparation is equally important. Given that an overwhelming majority of

currently resolved human class A GPCR structures were resolved with X-ray

crystallography at resolutions >1 Å or cryogenic electron microscopy (474 of 475

structures in GPCRdb19 as of July 18, 2022) where hydrogen atoms are not present,

protonation of the target protein’s structure must be performed.129 Additionally, one must

determine whether missing residues within a structure are unlikely to be involved in

ligand binding (due to distance from the identified binding site). Alternatively, potentially

missing residues that are likely to be involved in ligand binding should be modeled into

the protein structure. Furthermore, one must decide whether active site water molecules

known to play a significant role in protein-ligand interactions130 will be included in the

 41

docking simulation. To date, active site water modeling remains a challenging aspect in

protein-ligand docking due to the computational cost it presents and difficulties in

accurately accounting for their interaction-mediating effects.131

After protein and ligand structure preparation, a binding site at which to dock the

ligand is established. While we briefly covered binding site selection in a previous

section, we refer the reader to Waszkowycz et. al129 and Pagadala et al132 for more

comprehensive reviews of various ligand docking methods and their placement

algorithms.

Compounds can be docked into a target protein active site once it is determined.

Ligand docking methods consist of two components: a search algorithm that samples

plausible, 3D conformations of small molecule ligands bound to a protein (herein referred

to as poses) and a scoring function to evaluate the sampled poses.129 In the following

sections, we describe methods of sampling ligand and protein flexibility during ligand

docking. Subsequently, we provide a brief overview of pose scoring.

Given that ligand binding events are often associated with conformational

changes in both ligand and protein, ligand docking algorithms often incorporate methods

of modeling conformational flexibility. One such approach is to generate molecular

conformations of a compound prior to active site placement. Historically, this approach

has been implemented when computing speed is a concern. This approach provides high

efficiency when a set of candidate ligands will be docked to multiple target protein

structures, thus sampling conformations once instead of multiple times. If candidate

ligands are to be docked into a single target structure, on-the-fly conformational sampling

can be performed during docking if computing speed is adequate.129 In general, on-the-fly

 42

conformational sampling commonly utilizes systematic or stochastic searches to consider

ligand flexibility.131 In a systematic search, all degrees of conformational freedom within

a molecule are explored via bond rotation. Alternatively, stochastic methods use Monte

Carlo, genetic algorithm, or Tabu Search methods to sample conformational space by

performing random changes to a ligand that are then evaluated by a probability

function.133 Alternatively, simulation methods such as MD or simulated annealing can be

used to sample a ligand’s conformational space.133 For a more thorough description of

methods sampling ligand flexibility, we refer the reader to a review by Yadava et al133

In terms of modeling protein flexibility, docking algorithms have traditionally

treated the receptor as conformationally rigid during the docking process due to the

sizeable computational cost associated with sampling the conformational space of protein

targets.26 However, multiple methods allowing for a limited degree of conformational

flexibility in protein targets during the docking process have been developed as

computing speeds have improved, including soft docking, side chain sampling, molecular

relaxation, and ensemble docking. Soft docking allows for protein flexibility by softening

interatomic van der Waals calculations during docking calculations. While soft docking

provides the least computationally expensive method of modeling protein flexibility, it

only accounts for small conformational changes.26 Protein flexibility can also be

accounted for by incorporating side chain sampling, which uses a rotamer library to

sample protein side chain conformations while maintaining a fixed backbone.134

Molecular relaxation utilizes rigid-body docking followed by protein backbone and

sidechain relaxation via Monte Carlo or MD simulations.26 When compared to other

methods of modeling protein flexibility during ligand docking, molecular relaxation is

 43

more time-consuming and demands more from a scoring function due to the inclusion of

backbone sampling.26 The last approach, ensemble docking, docks a prospective ligand

into multiple structures of the same protein target.26 In contrast to previously discussed

methods of protein conformation sampling, ensemble docking forgoes structural

perturbation and instead accounts for conformational variation through the use of

different protein structures. Due to the use of multiple structures, analysis of ensemble

docking results can be complicated. However, many ligand docking algorithms use grid-

based methods to combine structural information from multiple protein structures or

incorporate methods of pose selection when performing ensemble docking.129

While ligand docking algorithms are often able to generate poses that closely

resemble biologically observed binding modes, a method of ranking and selecting poses

generated by a ligand docking algorithms is necessary. Thus, the second component of

ligand docking component involves the evaluation of generated poses using a

mathematical scoring function. In practice, scoring functions allow for ligand binding

mode identification, binding affinity prediction, and virtual database screening.133 In a VS

context, scoring functions allow for the ranking of prospective screening compounds so

that only the compounds with the “best” poses are selected for experimental screening.

An ideal scoring function would recognize poses that resemble bioactive binding modes,

distinguish between active and inactive poses, and correctly rank compounds based on

binding affinity.129 However, a scoring function meeting all criteria would be

computationally expensive. Consequently, current scoring functions employ many

simplifications and assumptions to reduce computational complexity at the cost of

accuracy.131

 44

Classical scoring functions can be grouped into 3 categories: force field-based,

empirical, or knowledge-based. In force field-based scoring, a well-parametrized,

physics-based molecular force field expressing the energy of a system as a sum of non-

bonded terms (such as van der Waals energy, electrostatic potential, and bond

stretching/bending/torsional energies) is used to score each pose.133 Major challenges

with force field-based scoring functions include determining how to account for solvent

and entropic effects, both of which energetically contribute to ligand binding.131 While

solvation energy is often accounted for using a distance-dependent dielectric constant to

reflect the effect of water on electrostatic interactions, accounting for entropic effects

remains a challenge with force-field based scoring functions.26 Examples of force field-

based scoring functions commonly used in ligand docking include COMBINE135,

GoldScore136, and MedusaScore.137

Empirical scoring functions, on the other hand, represent “softer” energies than

their physics-based counterparts and approximate binding energies by relating

experimental ligand binding data to descriptors derived from a given protein-ligand

complex.129 Although force field- and empirical-based methods both decompose protein

ligand binding into individual terms, empirical-based scoring functions use individual

terms that are weighted by fitting the scoring function to experimental binding constants

observed in protein-ligand complexes with multivariate linear regression or partial least-

squares analysis.138 While these regression-based scoring functions are fast to compute,

they are often limited by the availability and consistency of ligand binding data compiled

from different sources.129 Examples of empirical scoring functions include GlideScore139,

Böhm’s scoring function140, and Chem-SCORE.141

 45

The last of the 3 types of classical scoring functions, knowledge-based scoring,

derives its parameters from structural information extracted from experimentally

determined protein-ligand complexes.26 In contrast to force field-based and empirical

scoring functions, knowledge-based scoring functions avoid the use of ligand binding

affinities and instead use the distribution of distances between pairs of ligand and protein

atom types to generate a potential of mean force.129 As a result, the energy of a docked

pose in complex with a protein structure is simply the sum of interaction terms for all of

its protein-ligand atom pairs in the complex.26 Since knowledge-based scoring functions

extract energy potentials from experimentally determined structures and thus do not rely

on reproducing known affinities by fitting, they are thought to be quite robust.133

However, knowledge-based scoring functions have not proven to be as successful as

force field- or regression-based scoring functions in the context of virtual screening.129

Examples of knowledge-based scoring functions include DrugScore142, SMoG143, and

Muegge’s Potential of Mean Force.144

As an alternative to classical scoring functions, machine learning scoring

functions have recently become popular as a method of calculating binding energies

during the ligand docking process. Rather than assuming a functional form to relate

binding affinities and structural features, these scoring functions train machine learning

models on protein structures in complex with either known active or inactive compounds

that are then used to distinguish potential active compounds from inactive compounds.145

In recent years, machine learning scoring functions have demonstrated the ability to

predict binding affinities with a high degree of accuracy when redocking cognate ligands

into their experimentally determined structures and have exhibited success in the realm of

 46

SBVS.146 Additionally, machine learning scoring functions have been shown to

outperform classical scoring functions such as GlideScore139 and X-Score147 when

applied in a VS context.148,149 However, target-specific machine learning scoring

functions have been subjected to scrutiny for their poor consistency when applied to

multiple biological targets150,151, resulting in additional sets of guidelines being suggested

for their implementation.146,152 Examples of machine learning scoring functions include

RF-Score153, NNScore154, and SFCscore155.

Conclusions

Over the past few decades, GPCR have become prominently studied drug targets

due to their involvement in many cell signaling pathways involved in both normal

physiology and disease development. Despite their therapeutic importance, the discovery

of novel ligands to serve as lead compounds for these targets in drug discovery efforts is

often impeded by a lack of information concerning structure and ligand binding

information. However, the development of a plethora of computational methods has

helped to overcome these obstacles. With this review, we have shown how structure

modeling, ligand- and/or structure-based approaches to candidate ligand identification,

and hit list generation and refinement through database searching and ligand docking

assist in each facet of the GPCR ligand discovery process.

Since we have discussed many approaches to GPCR ligand identification, we

wish to set forth basic workflows implementing different techniques discussed in this

review. Given that the number of known ligands and/or the availability of experimentally

determined structures can vary depending on the target, it is good practice to first

determine if a selected target GPCR possesses known ligands and/or an experimentally

 47

determined structure. If enough ligands are known for the target, then LBVS techniques

such as ligand-based pharmacophore modeling and similarity searching can be used to

can be employed to identify structural commonalities or interaction patterns that serve as

search queries for the elucidation of screening candidates via database searching (Figure

1.2A). If the target possesses an experimentally determined structure, then SBVS

techniques such as FBDD and structure-based pharmacophore modeling can be used to

probe the structure’s binding site and formulate search queries that can be used to identify

screening candidates with database searching (Figure 1.2B). If the target lacks known

ligands as well as an experimentally determined structure, homology modeling followed

by subsequent ECL2 refinement can be used to generate a modeled structure. Once a

structure is obtained for the target, structure-based methods such as FBDD and structure-

based pharmacophore modeling can be used to identify screening candidates with

database searching. Once an initial list of screening candidates is identified, the number

of compounds being considered can be refined via binding mode prediction with ligand

docking. After the selection of a finalized list of compounds that best complement the

target based on in silico experimentation, selected compounds can be experimentally

screened for activity against the target.

While the workflows laid out herein address 3 types of information deficits that

are typically encountered in computational GPCR ligand discovery, they are not meant

describe the full extent to which various techniques can be applied in computational

ligand discovery. For example, ligand discovery for a target that lacks an experimentally

determined structure but possesses known ligands is not limited to the ligand-based

 48

techniques described in Figure 2A, as homology modeling can be implemented to

generate a structure that allows for a structure-based approach to ligand discovery.

It is important to acknowledge the fact that computational methods, while useful,

do not represent a perfect solution to GPCR ligand discovery. After all, computational

methods are merely simulations of chemical processes observed in biological settings.

For any given GPCR ligand discovery workflow, in silico experiments must still be

coupled to wet lab experimentation to ensure the best outcomes. However, this does not

discredit the importance of computational methods in the GPCR ligand discovery

process. In the future, we look forward to the development of increasingly accurate

computational methods applicable to GPCR ligand discovery that build upon current

methods and incorporate novel aspects of bioinformatics, cheminformatics, and deep

learning. Nonetheless, we believe that computational methods will continue to play an

important role in GPCR ligand discovery and result in the identification of novel ligands

for many understudied GPCR targets.

 49

Chapter 2

Benchmarking GPCR homology model template selection in combination with de

novo loop generation

Introduction

G Protein Coupled Receptors (GPCR) are involved in a multitude of cellular

signaling pathways. When GPCR signaling is dysregulated, diseases such as cancer,

diabetes, and nervous system disorders can manifest.1 About 34% of FDA-approved

drugs target GPCR, reflecting their physiological roles in the regulation and development

of disease.10

Structurally, GPCR consist of 7 transmembrane (TM) helical domains, 3

extracellular and 3 intracellular loops that connect the membrane spanning domains, an

extracellular amino terminus and an intracellular carboxy terminus.3 The Ballesteros-

Weinstein numbering scheme is often used to relate structurally similar sites among

different GPCR sequences and classes.156 In this scheme, the most conserved residue

within a transmembrane helix is denoted as the TM.50 residue and other residues within

the same domain are numbered relative to this position. For example, the most conserved

residue within class A GPCR transmembrane helix 3 is an arginine, thus it is identified as

R3.50. An alanine located 5 amino acids prior to the reference arginine (i.e. nearer the

amino terminus) would be A3.45.

Of the more than 800 GPCR encoded within the human genome157, only 70 are

represented in the Protein Data Bank158 by experimentally determined, three-dimensional

 50

structures as of April 27, 2020. The lack of experimentally resolved structures for many

GPCR has led to the use of computational modeling as a GPCR structure prediction tool.

Despite this trend, GPCR modeling is not without challenges and critical decision points,

including but not limited to, template structure selection and template-target alignment.

Additional challenges in GPCR modeling include effectively sampling and selecting

conformations for the extracellular loop (ECL) and intracellular loop (ICL) regions of the

target receptor. Accurately modeling the second ECL region of GPCR models likely

impacts applications aimed at investigating ligand binding, whereas the ICL region likely

impacts applications targeting recognition of intracellular signaling partners and G

protein selection and activation. Homology modeling, frequently used to model receptors

with unresolved structure, is rooted in the theory that proteins with similar amino acid

sequences and common function possess similar structures due to common evolutionary

origins.23 A receptor with high amino acid sequence identity (and similar function) is

typically chosen as the template upon which a target receptor sequence is to be modeled.

Amino acid identities higher than 30% in these applications are generally considered

acceptable.159 However, selecting a template based solely on global sequence identity

may not emphasize GPCR regions most relevant to the purpose for which the models are

being generated.35 For example, if the goal is to study GPCR interactions with G-

proteins, prioritizing intracellular loop sequence homology would most likely produce

better models than homology models generated using templates with high ligand binding

pocket similarity. The opposite is true for ligand docking studies. Our recent study

challenged the conventional use of global sequence identities for GPCR template

selection. In that study CoINPocket scores developed by Ngo et al.33 were utilized to

 51

select templates with which to build GPCR homology models.35 The CoINPocket

comparison bases its scoring on the importance and strength of individual ligand-residue

interactions across a representative set of class A GPCR and was used to find closely

related pharmacological receptor “neighbors” as a ligand identification strategy.33 In the

previous work, models using templates selected using CoINPocket similarities were

compared to homology models constructed from templates selected using conventional

global sequence identity metrics. The resulting homology models were evaluated in terms

of their overall structural similarity and the similarity of docked poses to the reference

crystal structures.35 Homology modeling based on CoINPocket nearest neighbors resulted

in models with greater docked ligand pose accuracy than models whose templates were

selected based on global sequence similarity alone, although overall similarity of the

protein models to the crystal structure did not differ substantially.35

Of the characteristic GPCR regions, extracellular loop 2 (ECL2) is often the

longest and most variable in terms of both length and amino acid composition.29 This

length produces intrinsic flexibility. In addition, ECL2 often contributes to GPCR ligand

binding and selectivity.160 Site-directed mutagenesis within the ECL2 region can produce

drastic changes in ligand binding activity (such as in the human histamine H4 receptor

(H4R)), demonstrating the role ECL2 can play in recognizing and binding ligands.161 A

recent review published by Woolley et al. discussed the various structural impacts of

ECL2 on ligand binding.52 In certain GPCR such as rhodopsin, sphingosine-1-phosphate

receptor 1 (S1P1), and free fatty acid receptor 1 (FFAR1), the intrahelical space between

transmembrane domains is open in absence of a bound ligand. However, upon ligand

binding, ECL2 and the N-terminal domain form a “lid” that covers the binding site,

 52

forming a more stable ligand-receptor complex that results in slower ligand dissociation.

In other GPCR such as peptide-binding receptors, the β-hairpin ECL2 structure remains

open during a ligand binding event.52 A disulfide bond between conserved cysteine

residues 3.25 in transmembrane domain 3 (TM3) and 45.50 in ECL2 often contributes to

receptor stabilization, and removal of this bond using site-directed mutagenesis has

proven detrimental to GPCR ligand binding.29 The structural variability of ECL2 is

typically addressed by loop modeling, wherein loop conformations can be

computationally sampled using de novo approaches to best describe loop structure in

three dimensions.162 In another of our previous benchmark studies, ECL2 was modeled in

the context of crystallized receptor structures (using accurate loop anchor residues) as a

method of testing the structural accuracy of loops generated with a variety of loop

modeling methods.24 This study identified the kinematic loop closure with fragments

(KICF) algorithm within Rosetta58 as most frequently sampling GPCR loop

conformations within a 2.5 Å RMSD of the reference crystal structure.24 While loop

modeling within crystallized receptor structures is not generally needed unless the loop

region has unresolved atomic coordinates, the results of the benchmark in question

suggest a preferred method for loop structure prediction within the context of a homology

model.

The current benchmark study assessed a combination of previously benchmarked

modeling choices with new variables on the accuracy of docking into GPCR homology

models. The previously benchmarked local similarity-guided template selection and loop

modeling protocols are assessed in combination with the presence or absence of the

template ligand while modeling the target receptor, as well as three distinct methods of

 53

ligand docking. We speculated that inclusion of a ligand from the template receptor

during the modeling process would produce better quality receptor models and docked

ligand poses, as closely-related GPCR often share ligands and ligands within different

GPCR often contact similar residues.33 A set of 10 crystallized class A GPCR were

subjected to this analysis (Figure 2.1), with a subset of receptors being used to analyze

various docking methods in addition to the protein modeling process. The 10 GPCR

employed in this study were: angiotensin type II receptor (AT2R), chemokine receptor

type 4 (CXCR4), free fatty acid receptor 1 (FFAR1), histamine receptor 1 (H1R),

muscarinic receptor 1 (M1), muscarinic acetylcholine receptor 4 (M4R), nociceptin

opioid receptor (NOP), kappa opioid receptor (OPRK), P2Y purinoceptor 12 (P2Y12),

and protease-activated receptor 1 (PAR1). Performance of this GPCR modeling

workflow was benchmarked using root mean square deviation (RMSD) of alpha carbon

positions after superposition of each protein model on its respective reference crystal

structure to assess protein model quality and two ligand pose quality metrics: 1) RMSD

of ligand atomic positions after superposition of each docked complex on the

crystallographic complex; and 2) Tanimoto coefficients representing the proportion of

common ligand interaction sites in the modeled and crystallographic complexes.

 54

Figure 2.1. Homology modeling/loop modeling protocol.

The long-term goal of the current research is to optimize a modeling protocol to

investigate GPCR complexes for any target GPCR sequence. Potential applications of

this modeling protocol include prioritization of candidate ligands for experimental

screening and generation of hypotheses regarding receptor sites involved in ligand

binding to be tested by subsequent site-directed mutagenesis. Improved accuracy in

candidate ligand prioritization will help accelerate receptor deorphanization11 and help

improve the identification of chemical tool compounds to probe receptor function or to

serve as preclinical lead compounds in the drug discovery process. Overall, this work

demonstrates that the integration of loop modeling with homology models constructed

from locally selected template structures produces better receptor models (0.43 Å average

RMSD decrease), as well as better docked ligand poses (2.13 Å average ligand RMSD

decrease) than non-loop modeled local template homology models. In addition, this work

exhibits that inclusion of a pharmacological neighbor receptor’s ligand throughout the

receptor modeling process produces a greater proportion of high quality docked

complexes than receptors modeled without a ligand present (30% of best docked poses

exhibited RMSD ≤ 4.5Å when selected via ligand complementation).

 55

Results and Discussion

Homology Model Template Selection

A summary of target and template GPCR, the local similarity measure

(CoINPocket score), GenBank accession numbers, and PDB identification codes used in

this study can be found in Table 2.1. Local templates used for the homology modeling of

GPCR target proteins were selected from a pool of GPCR with available crystal

structures using the CoINPocket local similarity measure.33,158 GPCR from the same

subfamily as the target were excluded as templates, for example, C-C chemokine receptor

type 5 (CCR5) was not selected as a template from which to model CXCR4. Four

receptors were modeled using two different target-template pairings so models of the

same receptor with differing template structures (and therefore different local similarity

scores) could be compared.

According to the CoINPocket scores set forth by Ngo et al., any receptor

compared to itself has a GPCR-CoINPocket score of 5.47.33 This self-similarity

establishes a maximal binding pocket similarity score for target sequence/template

receptor pairs. It should be noted that a higher local similarity score does not always

translate to a high global unweighted sequence similarity and vice versa. Local similarity

scores used herein ranged from 1.23 (M4R/NOP) to 2.58 (M1/H1R), indicating that the

binding site residues were not perfectly conserved between receptor pairings but still

shared appreciable residue conservation. Unweighted global sequence identities ranged

from 7% (FFAR1/P2Y12 and P2Y12/PAR1) to 36% (M1/H1R). Percent identities at the

low end of this range would generally be considered unacceptable for the purpose of

 56

constructing homology models unless substantial further refinement (such as loop

modeling) were included in the workflow.

Table 2.1. GenBank accession numbers and PDB ID numbers for GPCR used in this
study.
aCompared to the maximal self-similarity measure of 5.47. A pairing of two receptors
with a local similarity score of 5 would indicate a near 100% ligand binding pocket
similarity, while a receptor pairing with a local similarity score of 1 or less would
indicate low ligand binding pocket similarity.

Receptor
Local
Template

Local
Similarity
Measurea

Unweighted
Global
Similarity
(%)

GenBank
Accession
Number

Target
PDB ID

Template
PDB ID

AT2R CXCR4 1.72 31.43 P50052.1 5UNH163 3OE6

AT2R DP2 2.21 33.99 P50052.1 5UNH 6D26164

CXCR4 AT2R 1.72 31.43 CAA12166.1 3OE6165 5UNH

FFAR1 P2Y12 1.42 7.09 AAI20945.1 5TZR166 4PY0

H1R OPRK 1.93 20.31 P35367.1 3RZE167 4DJH

H1R M1 2.58 35.98 P35367.1 3RZE 5CXV168

M1 H1R 2.58 35.98 CAA68560.1 5CXV 3RZE

M4R NOP 1.23 14.41 P08173.2 5DSG168 4EA3

M4R H1R 2.46 34.37 P08173.2 5DSG 3RZE

NOP M4R 1.23 14.41 NP_872588.1 4EA3169 5DSG

OPRK H1R 1.93 20.31 AAC50158.1 4DJH170 3RZE

PAR1 P2Y12 1.78 16.26 N/A 3VW7171 4PY0

P2Y12 FFAR1 1.42 16.26 Q9H244.1 4PY0172 5TZR

P2Y12 PAR1 1.78 7.09 Q9H244.1 4PY0 3VW7

 57

Protein Model Development and Analysis

Homology models developed in this study were benchmarked against

crystallographic reference structures. In order to place these comparisons in the

appropriate context, RMSD values between different PDB entries for the same receptor

were calculated (Table 2.2) to set a baseline for experimental variability. On average, the

experimental alpha carbon variation among multiple structures of the same receptor was

1.75 Å, which sets a range of expectations for models generated using our methodology.

Our expectation is that models that differ from the target crystal structure by no more

than 2 times the average experimental variation, or 3.5 Å, should be considered high

quality models.

Table 2.2. Variation among experimental structures for each receptor used as a
template and/or target in this study.
aHighest alpha carbon RMSD between any two structures for each receptor. RMSD was
calculated using an alpha carbon superposition between residues present within all PDB
entries for each receptor. Receptors with a value of “N/A” had only one crystal structure
available at the time of this research.

Receptor Entries in PDB Variation (Å)
a

AT2R 5UNH, 5UNG, 5UNF, 6DO1, 5XJM 1.78
CXCR4 3ODU, 3OE0, 3OE6, 3OE9, 4RWS 1.35
DP2 6D26, 6D27 0.49
FFAR1 4PHU, 5TZR, 5TZY 1.34
H1R 3RZE N/A
M1 5CXV, 6OIJ 2.35
M4R 5DSG N/A
NOP 4EA3, 5DHG, 5DHH 0.70
OPRK 4DJH, 6B73 3.29
P2Y12 4NTJ, 4PXZ, 4PY0 2.67
PAR1 3VW7 N/A
Average

1.75

 58

Homology models were constructed in MOE using two different model selection

settings, Generalized Born Solvation (GBVI) scoring173 and contact energy.174 The latter

produced models with binding pockets that better matched ligand locations in GPCR

crystallographic complexes in terms of location and volume based on the Alpha Shapes

methodology discussed in the methods section. This is illustrated using the M1 receptor

in Figure 2.1 (ligand structure 3 shown in Figure 2.2).

Figure 2.2. Names and structures of ligands docked into protein models.

The first line of text represents an abbreviated description of the ligand, name of the
receptor, and PDB entry code in the PDB. The subsequent lines provide the IUPAC
name of the ligand.

 59

Two approaches were used to generate homology models to be used as the

starting points for loop modeling and in ligand docking experiments. Both approaches

produced eleven homology models for each target:template GPCR pairing modeled using

the default modeling options in MOE, with the exception of selecting effective atomic

contact energy as the scoring method. Approach A included no ligand in the binding

pocket of the template receptor and was applied to all pairings in Table 2.1. Approach B

was applied only to the target:template pairing with the higher CoINPocket score for each

target receptor and retained the crystallographic ligand from the template receptor and

utilized this ligand as an ‘Environment for Induced Fit’.56

Software packages and algorithms for ECL2 loop modeling in the context of

GPCR crystal structures have been previously benchmarked, with the best performance

achieved by Rosetta’s kinematic closure with fragments (KICF) algorithm.24 In the

current study, KICF was used to sample ECL2 conformations in the context of homology

models generated by approaches A and B with no ligand present in the binding pocket,

herein referred to as loop modeling approaches A1 and B1, respectively. Additionally,

KICF was used to sample ECL2 conformations in the context of homology models

generated by approach B with ligand present during the loop modeling process (overall

process of protein model generation with ligand present through both modeling steps

considered approach B2).

For each set of loop modeling results, the ten lowest-scored models with

intersulfur (Cys 3.25-Cys 45.50) distances ≤ 5.1 Å were selected for further examination.

Each of the ten loop modeled structures and the local template homology model was

superposed on the reference crystal structure using non-loop residues, followed by

 60

calculation of alpha-carbon receptor RMSD values for the entire structure (Figures 2.3

and 2.4 and Tables A.1 and A.2) and ECL2 region (Tables A.3 and A.4).

Figure 2.3. Alpha carbon receptor RMSD values for the homology models generated
with and without loop modeling for three different modeling approaches.

(A) Approach A1, (B) Approach B1, (C) Approach B2. The dashed line appearing in each
plot represents our receptor model quality metric of 3.5 Å.

 61

Figure 2.4. Alpha carbon receptor RMSD values relative to crystallographic
reference structures for receptor models generated by approach A1 with and
without loop modeling for receptors modeled using two templates of varying local
similarity score.

A representative superposition of a local template homology model on the

reference crystal structure is shown in Figure 2.5. Superpositions of loop modeled

structures on reference crystal structures are shown in Figure 2.6.

Figure 2.5. Lowest RMSD P2Y12 homology model constructed from PDB 3VW7
superposed on reference crystallographic structure (PDB 4PY0).

A) View from within membrane plane of P2Y12 local template homology model
(magenta) and lowest RMSD loop modeled local template homology model (cyan)
superposed over the crystallized reference structure (orange). B) Extracellular view of
the same superposition. C) Ribbons for TM4-ECL2-TM5 segments only shown from
same viewpoint used in panel A.

 62

Figure 2.6. The lowest RMSD model of the top 10 scoring ECL2 models (cyan) and
local template homology model (salmon) was superposed onto the crystallized
reference structure (green).

Loop RMSD values can be found in Tables 2.5 and 2.6. (A) CXCR4 based on PDB
5UNH, (B) FFAR1 based on PDB 4PY0, (C) M1 based on PDB 3RZE, (D) NOP based on
PDB 5DSG, (E) OPRK based on PDB 3RZE, (F) P2Y12 based on PDB 3VW7.

Note that RMSD values for local template homology models are different from

the values discussed in the prior benchmark35, as the homology models discussed therein

 63

were chosen based on GBVI scoring rather than effective atomic contact energies. Alpha

carbon RMSD values for models generated using approach A1 based on the highest-

similarity templates ranged from 2.76 (M4R) to 6.32 Å (FFAR1) with an average of 4.34

Å (Table A1 and Figure 2.3a). Initial homology models for three target:template pairings

achieved our high quality metric of 3.5 Å, H1R (3.15 Å), M1 (2.93 Å), and M4R (2.76

Å). While these receptor RMSD values are not sub-angstrom (<1.0 Å) or near-atomic

(<2.5 Å), comparison of the generated RMSD values to structural variation within

crystallographic structures for each receptor allows for a better examination of model

quality (Table 2.2). For example, the best scoring initial homology model for P2Y12 had

an alpha carbon RMSD of 4.07 Å, which falls within 2.32 Å of the average variation

present in crystallized structures and within 1.4 Å of the observed 2.67 Å variation

between the most diverse pair of P2Y12 PDB entries, indicating that models being

generated with the methodology discussed thus far are adequate representations of the

receptors being modeled. Loop modeling led to substantial improvements in model

quality in two cases, FFAR1 and OPRK. In these cases, a loop-modeled structure was

2.27 Å and 1.24 Å lower in RMSD relative to the crystallographic reference structure.

There were no cases in which loop modeling resulted in a substantial (>0.25 Å) loss of

protein model quality.

Four receptors were modeled using two different templates (AT2R, H1R, M4R,

P2Y12, Table 2.1). Initial homology model alpha carbon RMSD values were lower for 3

of 4 receptors (H1R, M4R, P2Y12) when modeled with a more similar template (Figure

2.4, Table A2), indicating that the use of a template with a higher local similarity score

leads to better homology models. The largest difference in initial homology model

 64

quality due to template choice was for the P2Y12 receptor, for which the distribution of

alpha carbon RMSD values for loop optimized models based on the low and high

similarity templates are significantly different based on the Kolmogorov-Smirnov test at

95% confidence. The lower similarity template, FFAR1 (PDB entry 5TZR) has an

unusual ligand binding mode that involves ligand insertion between TM segments 3 and

4, with a resulting offset of TM3 relative to other known GPCR structures (Figure 2.7).

Figure 2.7. All atom superposition of crystal structures used in this study with
segments of TM3 and TM4 highlighted (green: FFAR1, red: all other receptors) to
showcase the unusual binding mode of FFAR1.

The bound conformation of ligand MK6 within FFAR1 is highlighted in green as well.

Thus, the dramatic difference in P2Y12 model quality reflected in the over 4 Å RMSD

difference is likely less a consequence of similarity differences than in the truly unusual

structure features of the FFAR1 crystal structure relative to all other currently known

GPCR structures. Loop modeling provided substantial improvements in three of four

receptors modeled based on lower similarity templates (H1R, M4R, P2Y12) without

 65

detrimental impact in other cases, indicating the value of loop modeling for its potential

to produce improved receptor models. This is further supported by the observation that

distributions of loop optimized model RMSD values between low and high similarity

templates are not significantly different for H1R or M4R based on the Kolmogorov-

Smirnov test at 95% confidence. This suggests that loop modeling can compensate in

some cases for differences in initial model quality.

The effect of including the template ligand only during homology modeling

(approach B1) or during both homology modeling and loop modeling (approach B2) was

also assessed (Figure 2.3 and Table A1) Initial homology models generated using the

‘Environment for Induced Fit’ option via approach B1 possessed similar average receptor

RMSD values to models created by approach A1 (4.24 Å vs. 4.34 Å, respectively),

indicating that inclusion of a binding pocket ligand during the homology modeling

process did not substantially impact protein model quality. Loop modeling produced

improved models in a similar number of cases by all approaches.

Ligand Docking and Analysis

Three docking methods were compared in this study: MOE induced fit, MOE

rigid receptor, and Rosetta docking. These methods were first assessed for their

performance in redocking ligands (Figure 2.2) into six reference crystal structures. In

order to compare the docked ligand poses generated by each method to the

crystallographic ligand positions, ligand RMSD (LRMSD) values were calculated using

MOE. Though LRMSD values are an output of Rosetta’s ligand docking process,

LRMSD values reported here were calculated in MOE to ensure that a consistent

superposition process was used prior to LRMSD calculation. Rosetta performed worst of

 66

the three methods when docking into crystallized receptor structures. No poses produced

possessed LRMSD values under 3 Å (Table A5), in contrast to poses with LRMSD under

2 and 3 Å in 5 of 6 cases produced by the MOE rigid and induced fit docking,

respectively, in a previous benchmark.35

These docking algorithms were further assessed by docking ligands (Figure 2.2)

into models from approach A1. Examples of poses produced by each docking method can

be found in Figure 2.8.

Figure 2.8. An example of CXCR4 ligand 1 docked using three different methods
with the lowest LRMSD pose shown.

Ligand superpositions of poses docked into CXCR4 models based on PDB 5UNH
(magenta) and crystallographic reference (PDB 3OE6, green) are shown for three
docking methods: MOE induced fit (panel A), MOE rigid receptor (panel B), and Rosetta
(panel C).

The ability of each method to sample docked poses similar to the crystal structure was

assessed using the pose with the lowest LRMSD value resulting from each method

(Figure 2.9).

 67

Figure 2.9. Ligand RMSD (LRMSD) values calculated in comparison to the
crystallized reference structure for three different docking methods employed in the
context of approach A1 models.

The dashed line appearing in each plot represents our docking performance target of 4.5
Å. (A) Lowest RMSD value found within the retained ligand poses for each method. All
methods sampled 10,000 ligand poses per receptor (1000 per model). Both MOE
Induced Fit and MOE Rigid retained 50 ligand poses per receptor (5 per model) and
Rosetta retained all ligand poses. (B) Lowest LRMSD value within the top 10 scoring
ligand poses. (C) Lowest LRMSD value within the top 10 poses based on adjusted
percent complementation score.

In addition, LRMSD averages without FFAR1 were calculated as all ligand poses for this

receptor had LRMSD above 7 Å (Table A5), which can most likely be attributed to the

unusual ligand binding mode in the crystallized reference structure (Figure 2.7). The

distribution of LRMSD values was not significantly different at the 95% confidence level

between methods based on a Kolmogorov-Smirnov test. However, guidance on docking

protocol selection can still be drawn on the basis of the proportion of results meeting a

performance target. In this case, a docking performance target LRMSD of 4.5 Å was set

as a reasonable increase of 1.5 Å higher than the majority of re-docking results for MOE

 68

induced fit. The best ligand poses sampled with MOE induced fit docking met our

performance target in 4 of 6 cases while both MOE rigid and Rosetta docking sampled

best poses ≤ 4.5 Å in only 2 of 6 cases (Figure 2.9, Plot A), indicating that MOE Induced

Fit docking sampled quality poses most often. This holds true when considering average

LRMSD values without FFAR1 as well: the average MOE induced fit best pose LRMSD

averaged 4.35 Å, lower than both MOE rigid (4.93 Å) and Rosetta (4.45 Å) docking

(Table A5). The best poses produced by MOE rigid receptor docking typically had the

highest LRMSD values (all receptors except NOP, Figure 2.9), illustrating the importance

of flexible residue side chains in sampling ligand poses representative of the

crystallographic ligand pose. This can likely be attributed to the differences between the

homology modeled structures and the crystallographic reference structures, as MOE rigid

docking performed well at re-docking ligands into crystal structures in a previous

benchmark study.35

When a crystallographic reference is not available, ligand poses must be selected

based on available information from the docked pose alone, rather than determination of

LRMSD using a reference structure. Ligand poses are typically selected in such cases

based on pose scores. In order to measure scoring performance of the docking methods,

the lowest LRMSD among the top 10 scoring ligand poses using either the scoring

function associated with the method (T10) or a complementation scoring method (T10

Comp) for each receptor was determined (Figure 2.9 panels b and c, Table A5). The

distribution of LRMSD values was not significantly different at the 95% confidence level

between pose selection methods based on a Kolmogorov-Smirnov test. However,

guidance on pose selection methods can still be drawn based on differences in average

 69

results. Average T10 Comp values for MOE induced fit, MOE rigid, and Rosetta

docking across the subset of six receptors were 5.94, 8.05, and 6.62 Å, respectively.

Average T10 values for the same methods were 6.23, 8.31, and 7.59 Å, respectively. The

T10 Comp values were lower by 0.29, 0.26, and 0.97 Å, respectively. These data support

two conclusions: 1) that pose selection using complementation scoring provided a slight

decrease in LRMSD regardless of the docking method used to generate the poses,

although the differences were not significant based on the Mann Whitney U test and 2)

selected poses from MOE induced fit docking had lower LRMSD than those selected

from the other docking methods (significant difference at the 90% confidence level

achieved only for the induced fit versus rigid comparison based on the Mann Whitney U

test).

Comparisons of docked poses for receptors shared between the current and

previous benchmark studies35 demonstrate the value of including loop modeling in the

protein modeling protocol. Induced fit poses (derived from approach B2) selected by

complementation score in the current study (Table A6) had an average LRMSD of 6.20 Å

and an average Tanimoto coefficient of 0.52 in contrast to the prior study with an average

LRMSD of 10.44 Å and an average Tanimoto coefficient of 0.31. Thus, docking results

are improved by sampling ECL2 loop conformations after homology modeling.

Ligands were docked into four sets of receptor models generated using modeling

approach A1 based on two different templates (Figure 2.10 and Table A7).

 70

Figure 2.10. Comparison of MOE induced fit docking poses and crystallographic
ligand poses for receptors modeled using two templates when docked into approach
A1 receptor models.

(A) Lowest LRMSD docked pose obtained from docking into the top 10 scoring loop
refined homology models (black) and best T10 comp LRMSD (grey) for each receptor.
(B) Calculated Tanimoto coefficients corresponding to the aforementioned docked poses.

In three out of four cases, a lower LRMSD value and higher Tanimoto coefficient was

obtained for the best pose sampled when docking into the models based on higher

similarity templates. In every case pose selection based on complementation score (as

evidenced by T10 Comp LRMSD values) selected lower RMSD poses (three of the four

also with higher Tanimoto coefficients) from docking into models based on the higher

similarity template. However, distributions of selected pose RMSD value or Tanimoto

coefficients between the high and low similarity templates were not significantly

different at the 95% confidence level based on the Kolmogorov-Smirnov test, likely due

to the comparison of only four cases.

 71

MOE induced fit docking was used to dock ligands into models based on the

highest CoINPocket scored templates generated using modeling approaches A1, B1 and

B2 (Figures 2.11 and 2.12, Table A6).

Figure 2.11. Ligand RMSD values for ligand poses docked into receptor models
generated using three different receptor modeling approaches.

The dashed line appearing in each plot represents our pose quality metric of 4 Å. (A)
Approach A1, (B) Approach B1, (C) Approach B2.

 72

Figure 2.12. Tanimoto coefficients for ligand poses docked into receptor models
generated using three different receptor modeling approaches.

The dashed line appearing in each plot represents our Tanimoto coefficient target of 0.6.
(A) Approach A1, (B) Approach B1, (C) Approach B2.

These results were assessed using two metrics, LRMSD (Figure 2.11) and Tanimoto

coefficients (Figure 2.12). The distributions of selected pose RMSD value or Tanimoto

coefficients between the methods were not significantly different at the 95% confidence

level based on the Kolmogorov-Smirnov test. However, comparison of results guided by

a target LRMSD threshold of 4.5 Å or lower for high-quality poses, coupled with a

Tanimoto coefficient of 0.6 or greater (at least 60% of ligand contact residues shared)

does provide some guidance for protocol selection. Based on these targets, approach B2

 73

coupled with complementation scoring for pose selection can be clearly identified as the

best protocol for obtaining high quality ligand poses when using homology models in

docking studies. In particular, docking into three of the targets sampled a pose that met

both of these thresholds, and the complementation scoring included a pose that met both

thresholds in all three cases. Approaches A1 and B1 yielded zero cases in which both

thresholds were met after pose selection. Overall, homology modeling and loop modeling

with a template protein ligand present produces target protein ligand poses that meet

performance goals for a greater proportion of docking targets than in the absence of the

template protein ligand. Thus, we recommend the use of receptor modeling approach B2,

wherein a template ligand is present throughout both homology modeling and loop

modeling of the target receptor.

Conclusions

The overall goal of the work described here was to assess a combination of

previously benchmarked modeling choices with new variables on the accuracy of

docking into GPCR homology models. The previously benchmarked local similarity-

guided template selection and loop modeling protocols are assessed in combination with

the presence or absence of the template ligand while modeling the target receptor as well

as three distinct methods of ligand docking.

Loop modeling led to substantial improvements (>1 Å decreases in alpha carbon

RMSD compared to the crystallographic reference structure) in protein model quality in

two cases by all three protein modeling approaches, FFAR1 and OPRK (Figure 2.3,

Table A1). There was only one case in which loop modeling caused a substantial

reduction in protein model quality (PAR1 modeled with a P2Y12 ligand as environment

 74

for induced fit). Loop modeling also provided substantial improvements in three of four

receptors modeled based on lower similarity templates without detrimental impact in

other cases (Figure 2.4), indicating the value of loop modeling for its potential to produce

improved receptor models. The refined ECL2 regions of each receptor also played a role

in producing more accurate ligand poses, as evident by the average 2.59 Å decrease in

LRMSD (from 7.72 Å to 5.13 Å) and 0.1 increase (from 0.45 to 0.55) in Tanimoto

coeffients between contact residues compared to ligand poses docked into initial

homology models (Table A6).

When docking native ligands into homology models generated using the protocols

discussed herein, ligand poses with LRMSD values within 4.5 Å of the crystallized

reference structure ligand pose were most often sampled using MOE induced fit docking

(Figure 2.9). When looking at methods of pose selection (pose scoring and ligand

complementation) across all 3 docking methods (Figure 2.9), MOE induced fit docking

poses selected via T10 or T10 Comp scoring were far better than MOE rigid receptor or

Rosetta docking. NOP docking results illustrate this point, as the best ligand pose

selected via complementation scoring from the MOE induced fit docking was 2.99 Å and

5.44 Å lower than from Rosetta and MOE rigid receptor docking, respectively (Table

A5). Though the need to further validate docked ligand models via methods such as site-

directed mutagenesis is clear, these results remain promising in terms of producing ligand

poses resembling those of crystallized ligands.

While MOE induced fit docking often produces the best ligand poses, nuances in

the other two docking methods must be considered. The Site Finder function within MOE

was used to provide user-identified docking sites for MOE induced fit and rigid receptor

 75

docking. Rosetta docking requires a user-defined XYZ coordinate binding pocket

centroid, which was defined in this work as the centroid of the site identified by the MOE

Site Finder function. Rosetta also uses ‘movers’, which change the conformation of the

ligand-receptor complex during the docking process.55 Arguments for these movers

include parameters such as ‘box_size’, a maximum translation of a ligand from its

starting point, and scoring grid width, which defines the cubical space around which the

ligand will be scored.175 Since all methods utilize user-defined parameters to guide the

process, docking results can vary depending on the values used for these parameters.

Efforts were undertaken to match parameters between methods as much as possible in

order to provide a fair comparison.

Though homology modeling receptors using the ‘Environment for Induced Fit’

option in MOE produced protein models of relatively similar quality as those produced

using the default homology modeling protocol in MOE (4.24 Å vs 4.34 Å, respectively),

complementation score pose selection on docking results from receptors modeled with a

template ligand present throughout both homology and loop modeling is the only method

that selected high quality poses for any target (LRMSD ≤ 4.5 Å and Tanimoto coefficient

≥ 0.6) (Figures 2.11 and 2.12, Table A6). suggesting the use of receptor modeling

approach B2 in future efforts.

These results provide further evidence that GPCR homology model construction

from templates selected on the basis of similarity scores weighted toward sites involved

in strong ligand binding interactions (CoINPocket scores) improves docking pose

accuracy (Figure 2.10). Among 4 receptors modeled using templates of differing local

similarity (average similarity score 1.58 versus 2.26), average LRMSD after pose

 76

selection by complementation was below 6 Å for the models constructed based on higher

similarity templates, but over 8 Å for the models constructed based on lower similarity

templates (Table A7).

A suggested workflow to generate GPCR models to be used to study ligand

interactions can be extracted based on these comparative performance results. First,

homology models should be constructed based on templates with the highest local

similarity scores and with template ligand included as the ‘Environment for Induced Fit’

in MOE. ECL2 conformations should be sampled with the template ligand present using

the KICF algorithm in Rosetta constraining formation of the C3.25-C45.50 disulfide

bond. Ligand docking into the top 10 scored resulting models using induced fit docking

in MOE followed by pose selection via ligand complementation will serve to select high

quality poses from the set of sampled poses.

Methodology

Target/Template Selection and Preparation:

Template sequences for homology modeling of targeted, previously crystallized

receptors used in this study (Table 2.1) were selected using the contact-informed

neighboring pocket (CoINPocket) scores developed by Ngo et al. to emphasize

similarities at sites that make important and strong ligand interactions in a set of 27

unique class A GPCR crystal structures.33 In addition to calculating CoINPocket scores,

Ngo et al. calculated unweighted global similarity values for each possible sequence

pairing. Global similarity values for the receptors used in this benchmark can be found in

Table 1.1. For the initial subset of receptors, a template for each target GPCR was

 77

selected that exhibited the highest CoINPocket local similarity score and possessed a

previously solved and deposited crystal structure. Each template selected was not 1) the

target GPCR or 2) a closely related GPCR that binds the same endogenous ligand. The

CoINPocket score-based models were termed “local template” models. A subset of four

target receptors were additionally modeled on the basis of a lower similarity template for

comparison.

Homology Model Construction and Analysis:

Homology modeling began with the deletion of non-GPCR sequence segments

from template and crystallographic reference structures including fusion partners such as

T4 lysozyme or thermostabilized cytochrome b562RIL from the selected template, as these

are non-native segments used to stabilize a single receptor conformation for

crystallization.176 Each target sequence was aligned to the selected template sequence

using a two-step procedure in MOE 2018.01.56 First, the sequences were aligned using

MOE’s “sequence only” method of automatic alignment. After the initial alignment, any

gaps in helical segments were manually shifted into the structurally variable intracellular

and extracellular loop regions while ensuring that conserved TM.50 residues remained

aligned.35 This structure-independent alignment was performed to account for the

variability in sequence length and composition of loop regions and to avoid distortions

within the more structurally conserved helical transmembrane domains. Homology

models were then generated using two approaches. Models created using approach A

utilized the default settings in the MOE homology modeling interface, with the exception

of scoring models based on effective atomic contact energy. The second approach

(approach B) utilized the same settings for homology model generation as approach A,

 78

with the addition of retaining the crystallographic ligand from the template structure as

the ‘Environment for Induced Fit’. Approach B was applied only to the target:template

pairing with the higher CoINPocket score for each target receptor. The resulting

homology models were then superposed onto the crystallized reference structure based on

non-loop residues prior to calculation of receptor alpha-carbon RMSD values, both for

the entire sequence and for loop segments, as metrics of structural similarity.

De Novo Extracellular Loop 2 (ECL2) Modeling:

Prior to ECL2 modeling, loop ‘anchor’ residues were selected. For each receptor,

the final helical residue of TM4 and first helical residue of TM5 of the lowest contact

energy local template homology model were used as anchor points (Table 2.3), with loop

modeling then sampling conformations of all residues between the anchor points.

Fragment libraries required by the KICF algorithm58,177 were then generated using the

Robetta server.178 To generate these fragments, a FASTA formatted sequence containing

the nine residues prior to the first loop anchor, the ECL2 sequence and the nine residues

after the second loop anchor was submitted to the server. An atomic disulfide constraint

that restricts the distance of sulfur atoms in critical cysteine residues 3.25 of TM3 and

45.50 of ECL2 to 5.1 Å (representative of the known disulfide bond in many GPCR

structures) was incorporated into the loop modeling protocol.179 This constraint is meant

to emulate the filtering of models with unrealistic disulfide distances done in the previous

benchmark, as filtering ECL2 models based on disulfide distance ≤5.1 Å often produced

models with better loop RMSD values.24 When the constraint was applied to the Rosetta

loop modeling protocol, far fewer models exhibiting disulfide distances uncharacteristic

of GPCR resulted. Examples of models with unrealistic disulfide distance include models

 79

Table 2.3 ECL2 loop start/end residues for each receptor’s crystal structure and
lowest RMSD homology model.

Structures of both the crystal structure and lowest alpha carbon RMSD homology model
for each were aligned and superposed in MOE, then renumbered from 1 starting at the
beginning of TM1. aDifference in sequence length between segment bookended by anchor
points of the homology model and ECL2 of crystal structure. For example, the segment
loop modeled for the CXCR4 homology model had one more residue than the actual
ECL2 of the crystal structure of CXCR4, etc. bRMSD of loop anchor residue positions in
the lowest RMSD loop model from the corresponding residues in the crystal structure
once superposed.

 Crystal Structure Homology Model

Receptor Local
Template

ECL2
Start
Residue

ECL2
End
Residue

Anchor
Residue 1

Anchor
Residue 2

Length
Differencea

Avg.
Anchor
Residue
RMSD
(Å)b

AT2R CXCR4 F181 P201 F181 Q206 +5 1.69

AT2R DP2 F181 P201 F181 E202 -1 3.89

CXCR4 AT2R F174 L194 F174 D193 -1 2.86

FFAR1 P2Y12 E145 P176 F142 P176 +3 6.65

H1R OPRK L163 T188 L163 V187 -1 3.15

M1 H1R V168 P186 W164 I187 +12 2.97

M4R NOP V175 P193 F170 N192 +4 2.24

M4R H1R V175 P193 I168 P193 +7 2.42

NOP M4R M188 Q208 Q192 V214 +2 9.67

OPRK H1R L196 Y219 L192 D223 -3 2.74

P2Y12 FFAR1 I161 E181 T163 I193 +10 5.70

P2Y12 PAR1 I161 E181 M160 V185 +5 4.72

PAR1 PAR1 L238 G265 K240 E264 -3 5.02

with steric clashes due to sub-angstrom disulfide distances or models with extremely

large inter-sulfur distances. This atomic constraint also reduces the loop model

 80

conformational space. ECL2 models were produced using three different approaches,

each utilizing a different combination of homology and loop modeling methods:

A1. Homology and loop modeling without a template ligand present.

B1. Homology models created using template ligand as ‘Environment for

Induced Fit’, loop modeled without template ligand present in the binding

pocket.

B2. Homology models created using template ligand as ‘Environment for

Induced Fit’, loop modeled with template ligand present in the binding

pocket.

Each approach generated a total of 250 disulfide-constrained ECL2 models for

each of the target:template pairings in this benchmark. Greater loop sampling was

achieved for loops meeting the 5.1 Å threshold than in the previous benchmark24 because

all 250 of the constructed loops met the disulfide distance filter. This number was ten-

fold higher than the number of models typically meeting the 5.1 Å disulfide distance

filter out of the 1000 generated models for each target in the prior benchmark study.24

The ECL2-TM3 disulfide bond was formed in the top 10 lowest scoring models followed

by geometry optimization of the ECL2 segment in MOE. The resulting local template

derived and ECL2 optimized models were used for subsequent ligand docking. Receptor

alpha-carbon RMSD values were calculated for ECL2 optimized models as described in

the prior section.

Ligand Docking:

Ligand docking was initially performed with a subset of 6 targets generated via

modeling approach A1 using both the MOE and Rosetta software packages. Three

 81

distinct methods were examined in this study: MOE induced fit docking, MOE rigid

receptor docking, and RosettaScripts ligand docking (herein referred to as Rosetta

docking). MOE induced fit docking places the active ligand into a user-defined binding

site inside a target receptor whose residue side chains are allowed to move freely during

the refinement stage. MOE rigid receptor docking places the active ligand into a user-

defined binding site inside a target receptor whose side chains are held static during both

the placement and refinement stage. The docking methods employed by MOE

continuously sample ligand conformations as the docking proceeds, allowing for a best fit

of the ligand within a potential binding pocket. In contrast, Rosetta docking differs from

MOE in that ligand conformations are generated prior to the docking process, rather than

actively sampling ligand conformations within the binding pocket during the docking

analysis. Ligand conformations and a user-defined binding pocket of a target receptor

with flexible residue side chains are required inputs for Rosetta docking.175

Conformations for each ligand docked using Rosetta were generated using MOE’s

Conformational Search tool, which outputs a database of energetically reasonable ligand

conformations. In addition to homology models, reference crystal structures were used as

docking targets for Rosetta in order to compare docking performance to the previous

benchmark.35 The remainder of ligand docking was performed using only MOE induced

fit docking based on the results of the docking method comparisons.

Each local template model and the top ten sampled ECL2 optimized models were

utilized as docking targets. Each protein and ligand structure was prepared at pH 7.4

using the “QuickPrep” function in MOE to 1) ensure proper protonation and charge at the

desired pH and 2) minimize the structure using the AMBER10:EHT forcefield.180 Once

 82

each receptor model was prepared, the Site Finder function in MOE was used to define a

binding pocket within the receptor model. This function organizes potential binding sites

by the volume of alpha spheres within a potential binding pocket, based on the Alpha

Shapes methodology of Edelsbrunner et al.112 Both forms of MOE ligand docking used in

this study utilized the MOE Site Finder function to define the docking site, though it is

not the sole method of binding pocket selection available within MOE. Rosetta, on the

other hand, uses XYZ coordinates to define a theoretical binding site within a receptor

that restricts ligand movement within that defined site. The XYZ coordinates of the

center of the binding site defined as the docking site for MOE docking were used to

define the binding site during Rosetta docking.

Ligands docked into each receptor can be found in Figure 2. Both MOE induced

fit and rigid receptor docking protocols generated 1000 initial ligand placement poses for

each of the top ten lowest scoring receptor models, from which the top 400 poses based

on the London dG scoring function were passed on to the refinement stage.56 Refinement

used the Generalized-Born Volume Integral/Weighted Surface area (GBVI/WSA) scoring

function.173 For each of the 10 receptor models with different ECL2 conformations, the

top 5 refined ligand poses were retained as final complexes after the refinement stage to

provide 50 poses overall for each target modeled. In order for the Rosetta ligand docking

to adequately match the sampling of MOE docking, 1,000 ligand poses were generated

for each of the top ten scoring models. All 1,000 poses were retained for each run as

Rosetta docking does not remove poses through the workflow.

Once docked, an alpha carbon superposition of each receptor-ligand complex onto

a crystallized reference structure was constructed and a heavy atom ligand RMSD

 83

(LRMSD) was calculated between the two ligand poses. Tanimoto coefficients were

calculated to compare first neighbor residues to the ligand in the residue interaction

network calculated using the RING 2.0 server between docked poses and crystallographic

reference structures.181 Two sets of poses were selected using different criteria. The first

pose set included the ten lowest scoring models based on the scoring function for each

respective docking method. The second pose set included the ten poses with the top ten

ligand complementation scores, which reflect the ratio of hydrogen bonds made by the

ligand when docked into a receptor to the number of ligand hydrogen bonding sites. This

ligand complementation score reflects the proportion of polar functional groups that are

involved in hydrogen bonding interactions. Polar functional groups within a ligand are

able to participate in a maximal number of hydrogen bonds while free in solution.

Docked ligand poses with polar functional groups not involved in hydrogen bonds are

less energetically favorable in a bound environment than in water for both entropic and

enthalpic reasons, which this score attempts to capture.

 84

Chapter 3

Structure-based Pharmacophore Modeling 1. Automated Random Pharmacophore

Model Generation

Introduction

G protein-coupled receptors (GPCR) are integral membrane proteins that

comprise the largest family of membrane receptors in the human genome.182 Regulated

by a variety of synthetic and endogenous ligands, these receptors act to relay extracellular

signals to their coupled intracellular, heterotrimeric G proteins, allowing for the

recruitment and stimulation of multiple effectors in downstream signaling pathways.2

Though critical to normal biological function, many class A GPCR possess few known

small molecule ligands, leaving the physiological roles and functions of many targets

challenging to investigate.19 Consequently, GPCR ligand discovery is an enabling step

toward understanding receptor roles and functions. For example, many GPCR exhibit

functional selectivity, a phenomenon wherein certain ligands (biased agonists) cause the

differential activation of signaling pathways for the same target.183 However, further

investigation of these alternate GPCR signaling pathways is impeded by a scarcity of

known ligands for many targets. As such, the development of new methods for GPCR

ligand discovery will lead to a better understanding of the physiological functions of

GPCR. Furthermore, new GPCR ligands may lead to therapeutic drugs, as dysregulation

of GPCR signaling can contribute to diseases including cancer, diabetes, and nervous

system disorders.1 As a result, the development of GPCR-based therapeutics is a

significant area of focus, with GPCR serving as targets for ~34% of FDA-approved

drugs.10 Although these receptors are intensely studied drug targets with immense

 85

therapeutic significance, discovery of novel GPCR ligands is not without challenges. For

example, current drugs known to act upon GPCR targets exploit only a fraction of the

known “druggable” GPCR genome184, leaving a vastly unexplored source of therapeutic

targets in the ~60% of GPCR yet to be targeted.9 Furthermore, many of these

underexplored GPCR possess ligands that are unsuitable for therapeutic use due to poor

pharmacokinetic properties or differential activation of signaling pathways.185,186

Additional challenges in GPCR ligand discovery stem from a lack of structural

information, as the vast majority of GPCR encoded by the human genome are not

represented in the Protein Data Bank.158 Only 140 of the over 800 known GPCR possess

experimentally determined structures as of October 24, 2022,19 leading many GPCR

virtual screening studies to rely on the use of computational methods as a means of

predicting receptor structures.59 Thus, there is a clear need for methods to identify novel,

druglike ligands for understudied GPCR targets regardless of whether their three-

dimensional structures have been previously determined.

When attempting to elucidate novel GPCR ligands, pharmacophore models are

often utilized to virtually screen compound databases, including some that contain

millions of compounds. In practice, pharmacophore models act as in silico filters during

the virtual screening process and greatly reduce the number of compounds

experimentally screened or passed on to the next phase of virtual screening. Many

pharmacophore models are constructed using a common set of chemical features

possessed by known ligands for a target, and thus are termed ligand-based

pharmacophores.21 Though ligand-based pharmacophore modeling has exhibited success

in prior GPCR virtual screening studies21, this method is predictably less reliable in cases

 86

where a target possesses few known ligands, or in cases where the known ligands lack

structural diversity. Alternatively, structure-based pharmacophore models are typically

established by probing possible interaction points within a three-dimensional structure of

a macromolecular target to establish a collection of features thought to be necessary for

biological activity.21 Unlike ligand-based pharmacophore models, structure-based

pharmacophore models only require a three-dimensional structure of a target and often

result in a better understanding of that target’s binding site.113 While increasing numbers

of publicly available, experimentally determined protein structures have allowed for

structurally informed approaches to pharmacophore model generation187–189, a method of

structure-based pharmacophore model generation for the majority of GPCR without

experimentally determined structures remains largely unexplored. Though other

fragment-based methods have succeeded in terms of virtual screening performance187–189,

most are applied solely in the context of experimentally determined structures. Thus, this

work focused on the development of a prospective ligand identification method that is

also applicable to modeled receptor structures.

The ligand identification workflow described herein is rooted in the concept of the

Multiple Copy Simultaneous Search (MCSS) and incorporates homology modeling in

combination with loop modeling for cases where an experimentally determined structure

is unavailable. During MCSS, many copies of varying chemical fragments are randomly

placed into a receptor’s active site and then energetically minimized in order to find

optimal positions for each fragment.109 Pharmacophore models are then generated via

feature annotation of randomly selected fragments that resulted from MCSS. Though the

concept of fragment-based pharmacophore model creation has been previously

 87

explored,187,188 this work produced a structure-based approach to pharmacophore

modeling that incorporates modeled receptor structures and thorough computational

pharmacophore model validation. While known ligands are not a prerequisite for this

method of pharmacophore generation, a small subset of active ligands is necessary to

calculate the enrichment factor (EF) and goodness-of-hit (GH) score pharmacophore

scoring metrics used to select pharmacophore models.86 Pharmacophore models that

score well with the EF and GH scoring metrics can then be used to search external

databases such as ZINC25 to identify an initial list of hit compounds. Compounds in the

hit list can either be experimentally screened, or further refined using additional virtual

screening methodologies before experimental screening.

The ultimate goal of this research was to define a method of pharmacophore

model generation applicable to an experimentally determined or modeled structure of any

GPCR target for which known ligands are scarce (or absent, in the case of orphan

GPCR). Pharmacophore models generated with this methodology can then be utilized to

search commercially available compound databases, allowing for the elucidation of

diverse sets of candidate ligands for the many GPCR targets with few known ligands.

Though the work discussed herein pertains exclusively to GPCR, this method can

realistically be applied to any biological target with few or no known ligands. Overall,

this work demonstrates that our structure-based pharmacophore model generation

protocol is capable of generating pharmacophore models possessing enrichment factor

values matching theoretical maximums for target GPCR experimentally determined

structures (8 of 8 targets) and homology models (7 of 8 targets).

 88

Results and Discussion

The fully automated method of structure-based pharmacophore model generation

developed for this work uses feature annotation of randomly selected functional group

fragments placed into either experimentally determined or modeled protein structures

using MCSS. Five thousand pharmacophore models were randomly generated for each

target structure, thus requiring a small set of known ligands in order to select

pharmacophore models that produce hit lists from database searching enriched with

actives.

Database Creation/Target Selection

To calculate scoring metrics for generated pharmacophore models, creation of an

internal test database containing known active and inactive GPCR ligands was necessary.

Thus, 569 ligands acting at a set of 30 GPCR with at least 8 reported agonist and 8

reported antagonist small molecule ligands listed in IUPHAR/BPS Guide to

Pharmacology190 were included in our internal test database123 (Figure B1, Table B1).

The 569 selected GPCR ligands were subjected to stochastic conformational searches

using the Molecular Operating Environment (MOE) software, which generated a range

of 1 to 1,317 conformations per molecule and 1 to 10 conformations per molecular

stereochemical configuration via the random rotation of all bonds and random inversion

of unconstrained tetrahedral centers followed by an all-atom energy minimization.56

Eight of these 30 GPCR with experimentally determined structures deposited in the

Protein Data Bank158 were chosen as pharmacophore generation protocol benchmarking

targets (Table 3.1). These 8 receptor targets were: 5-hydroxytryptamine receptor 2B

(5HT2B), adenosine receptor 2A (A2A), beta-2 adrenergic receptor (Beta 2), histamine

 89

receptor 1 (H1), muscarinic acetylcholine receptor 1 (M1), δ-opioid receptor (OPRD), κ-

opioid receptor (OPRK), and μ-opioid receptor (OPRM).

Homology/Loop Modeling

Target homology models were constructed using our previously benchmarked

GPCR modeling workflow which retains the crystallized template ligand throughout the

homology modeling and extracellular loop 2 (ECL2) modeling processes.24,35,59 Template

structures for each target receptor were selected from a pool of available experimentally

determined GPCR structures (excluding the target receptor structures) using the

CoINPocket local similarity measure (publication retracted due to errors unrelated to the

similarity metric or computational methods).33,34 A summary of target and template

GPCR, local similarity measure (CoINPocket score), GenBank accession numbers, and

PDB identification codes used in this study can be found in Table 3.1. For each target, the

homology model with the lowest effective atomic contact energy was selected for

subsequent ECL2 modeling using Rosetta58 in order to sample conformations of the

structurally variable ECL2 region.29 After filtering loop modeling results to exclude

models exhibiting Cys 3.25-Cys 45.50 (S-S) distances >5.1 Å59 (unrealistic given

conservation of a disulfide bond between these residues), each target’s best scoring loop

refined homology model was then superposed onto a reference experimentally

determined structure using an alpha-carbon atom set, followed by calculation of alpha-

carbon receptor RMSD values for the overall structure as well as the ECL2 region (Table

3.1). Alpha-carbon RMSD values for target homology models used to benchmark

pharmacophore generation ranged from 3.66 Å (M1) to 5.99 Å (OPRK), which is

comparable to the range of alpha-carbon RMSD values found in our prior homology

 90

modeling benchmark.59 ECL2 RMSD values ranged from 6.96 Å (OPRD) to 14.87 Å

(OPRK), indicating a degree of structural variability between the selected models and

experimentally determined reference structure that may affect randomly generated

pharmacophore performance.

 91

Table 3.1 PDB158 ID numbers and homology modeling RMSD values for GPCR used in this study.
a Compared to the maximal self-similarity measure of 5.47. A pairing of two receptors with a local similarity score of 5 would indicate
a near 100% ligand binding pocket similarity, while a receptor pairing with a local similarity score of 1 or less would indicate low
ligand binding pocket similarity
bSequence similarity calculated using a global transmembrane domain alignment by Ngo et al.33

Receptor

GenBank191
Accession
Number Template

Local
Similarity
Measure33,a

Unweighted
Global
Similarity
(%)33,b

Target
PDB
ID

Template
PDB ID

Alpha
Carbon
RMSD
(Å)

ECL2
RMSD
(Å)

5HT2B P41595.1 5HT2C 4.19 69.39 4NC3192 6BQH193 3.85 7.41

A2A P29274.2 A1A 4.49 64.20 5NM4194 5UEN195 4.14 11.37

Beta 2 P07550.3 D2 2.80 46.67 2RH1196 6LUQ 4.67 12.40

H1 P35367.1 M1 2.58 35.98 3RZE167 5CXV 3.73 8.82

M1 P11229.2 H1R 2.58 35.98 5CXV168 3RZE 3.66 10.03

OPRD P41143.4 OPRM 4.36 77.79 4N6H197 5C1M 4.55 6.96

OPRK P41145.2 OPRM 4.41 72.61 4DJH198 5C1M199 5.99 14.87

OPRM P35372.2 OPRK 4.41 72.61 5C1M 4DJH 4.88 13.02

 92

Multiple Copy Simultaneous Search (MCSS)

MCSS was performed on each target’s chosen experimentally determined

structure and best scoring loop refined homology model using the fragment database

included with MOE.56 This database contains 39 fragments representing a diverse set of

functional groups and pharmacophore annotation points (Table B2). MCSS began with

100 randomly placed copies of each fragment at sites selected by the “Site Finder”

feature in MOE56, which performed well when selecting potential binding sites for

docking in our previous benchmark.59 A total of 3,900 fragments were placed in each

target’s active site, with optimization of initial fragment placements and elimination of

duplicate final placements resulting in a range of 1,156 (OPRM reference structure) to

2,192 (OPRK reference structure) uniquely placed fragments depending on the target

(Table B3).

Automated Pharmacophore Model Generation

Pharmacophore model generation was automated using SVL scripting within

MOE (Figure 3.1). For each loop of the script, 5 fragments from an MCSS output

database were randomly selected for feature annotation, which allowed for the sampling

of diverse chemical features and creation of varied pharmacophore models. Atoms of the

selected fragments within 4.5 Å of binding pocket residues were annotated as

pharmacophore features using the built-in MOE pharmacophore editor, which

differentiates feature types based on the corresponding elements of atoms selected in the

system. This distance restriction focused annotations on those fragment atoms capable of

 93

interaction with the receptor. The maximum number of features in each pharmacophore

model was capped at 5 to avoid overly restrictive pharmacophore models that would lead

to sparsely populated hit lists, which are impractical when selecting candidate ligands

during the virtual screening process. In total, 5000 pharmacophore models were

generated within the reference experimentally determined structure (herein referred to as

PED models) and selected homology model (herein referred to as PHM models) for each

target.

Figure 3.1. Fragment-based pharmacophore generation and application workflow.

Internal Test Database Searching/Scoring

Pharmacophore searches were then performed against our internal test database

containing 12,057 conformations of 569 active ligands for 30 GPCR. Searches were

performed three times for each set of target pharmacophore models, with each

consecutive search requiring an increasing number of matching features necessary for a

molecule to be considered a hit. Searches were conducted with 3, 4, and 5 partial match

 94

features, the last of which required molecules to match every feature in a generated

pharmacophore model to be considered a hit. To assess pharmacophore model

performance, enrichment factor (EF) and goodness-of hit (GH) score values were

calculated (Figures 3.2 through 3.5, Tables B4 through B9). Though 5000

pharmacophore models were generated within each target’s experimentally determined

Figure 3.2. Randomly generated pharmacophore model enrichment factor scoring
data (scaled from 0 to 1 based on each target’s theoretical maximum enrichment
(TME) value) when searching with (A) 3, (B) 4, or (C) 5 partial match features using
pharmacophore models generated in target experimentally determined structures.

Figure 3.3. Randomly generated pharmacophore model enrichment factor scoring
data (scaled from 0 to 1 based on each target’s TME value) when searching with (A)
3, (B) 4, or (C) 5 partial match features using pharmacophore models generated in
target homology models.

 95

Figure 3.4. Randomly generated pharmacophore model goodness-of-hit scoring data
when searching with (A) 3, (B) 4, or (C) 5 partial match features using
pharmacophore models generated in target experimentally determined structures.

Figure 3.5. Randomly generated pharmacophore model goodness-of-hit scoring data
when searching with (A) 3, (B) 4, or (C) 5 partial match features using
pharmacophore models generated in target homology models.

structure or homology model, the number of pharmacophore models included in each

target’s EF/GH scoring distributions varied since pharmacophore models producing zero

hits after a search cannot be scored with either metric. Enrichment values were

normalized to a range from 0 to 1, since each receptor’s theoretical maximum enrichment

(TME) differs depending on the proportion of active compounds within the internal test

database (Table 3.2). TME values for each receptor were calculated using 1/[A/D], where

1 is the maximum possible active:hit ratio in the hitlist, and A/D is the proportion of

 96

Table 3.2 Internal test database statistics for each target used in this study.
aNumber of compounds possessing activity (agonist, antagonist, inverse agonist, biased
agonist) for a receptor.
bPercentage of compounds in the search database (containing 569 compounds)
possessing activity for a receptor.

Receptor

Active Compounds
in Search
Databasea

Search Database
Active Percentage
(%)b

Theoretical
Maximum
Enrichment

5HT2B 86 15.1 6.62

A2A 29 5.1 19.62

Beta 2 43 7.6 13.23

H1R 51 9.0 11.16

M1 69 12.1 8.25

OPRD 39 6.9 14.59

OPRK 56 9.8 10.16

OPRM 53 9.3 10.74

actives in the database. Though calculation of a TME value provides a means of

pharmacophore model comparison, it should be noted that this metric (and enrichment

factor in general) fails to consider hit list size as it only considers the fold-change in

active proportion relative to random selection when searching a compound database with

a pharmacophore model.86 Although a pharmacophore search resulting in 1 hit compound

that possesses activity for a target will score at the TME, it is typically not desirable to

screen such small hit lists due to failures on the pathway from hit identification to

approved drug.200,201 Thus, the GH score was implemented as an additional

pharmacophore scoring metric since this metric prioritizes a high yield of actives and a

low false-negative rate.86 Examples of pharmacophore models generated for the beta 2

adrenergic receptor scored with the EF and GH metrics can be found in Figure 3.6. Upon

visual inspection, pharmacophore models for this target that demonstrated the greatest EF

 97

values (Figure 3.6A-C) or GH scores (Figure 3.6D-F) tended to possess features that did

not overlap and represented varying types of interactions. In contrast, beta 2

pharmacophore models that demonstrated the lowest non-zero EF values (Figure 3.6G-I)

tended to possess features that either greatly overlapped (Figure 3.6I) or only represented

a single type of interaction (Figure 3.6G-I).

Figure 3.6. Pharmacophore models generated within the Beta 2 experimentally
determined structure PDB158 entry 2RH1196.

Features are labeled and colored according to annotation type. (A-C) Pharmacophore
models sampling theoretical maximum enrichment (EF) values when searching with 5
partial match features, (D-F) Pharmacophore models possessing the greatest goodness-
of-hit (GH) score values when searching with 4 partial match features. (G-I)
Pharmacophore models possessing the lowest non-zero EF values when searching with 5
partial match features.

 98

Performing pharmacophore searches with 3 partial match features using PED

models resulted in the lowest proportion of receptors whose TME was sampled (6 of 8

receptors, Figure 3.2A and Table B4). Increasing the number of partial match features to

4 resulted in a slightly higher proportion of receptors whose TME was sampled (7 of 8

receptors, Figure 3.2B and Table B5), while searching with 5 partial match features

(requiring an internal test database molecule to match every pharmacophore feature)

resulted in at least one pharmacophore model for each receptor possessing an enrichment

value matching the theoretical maximum (Figure 3.2C and Table B6). A similar trend

was found when performing pharmacophore searches of varying partial match feature

number with PHM models. Pharmacophore searching with 3 partial match features again

resulted in the lowest proportion of receptors whose TME was sampled (5 of 8 receptors,

Figure 3.3A and Table B7). Increasing the number of partial match features to 4 and 5

again resulted in an increase in the proportion of receptors whose TME was sampled (7

of 8 receptors in both cases, Figure 3.3B-C and Tables B8-9). Since increasing the partial

match feature number increased the specificity of a pharmacophore search, it is logical

that requiring ligands to match every feature in a pharmacophore model resulted in the

highest proportion of receptors with TME values sampled in both experimentally

determined structures and homology models by reducing the number of false positives in

the hit list. However, differences in enrichment sampling between PED and PHM models

should be noted. Performing pharmacophore searches with 5 partial match features using

PED models resulted in pharmacophore models sampling TME values for all 8 targets

(Figure 3.2C), while searching with PHM models sampled TME values in 7 of 8 targets

(Figure 3.3C). Nonetheless, we recommend the use of 5 partial match features during the

 99

pharmacophore searches since it resulted in the highest proportion of targets with PED and

PHM models sampling TME values.

Table 3.1 shows that the A2A homology model (the lone target receptor to whose

PHM models did not sample its TME value) does not exhibit either the highest alpha

carbon or ECL2 RMSD value. Therefore, geometric similarity between the homology

model and the reference experimentally determined structure is not clearly correlated

with the ability of pharmacophore models generated against a homology model to sample

the TME.

To assess the contribution of using a random process to generate pharmacophore

models, 5000 pharmacophore models were generated for both the best scoring and lowest

RMSD A2A homology models in triplicate. Each pharmacophore model was then used to

search the internal test database using 5 partial match features and was scored with EF

and GH metrics (Figures 3.7 and 3.8). After additional pharmacophore models were

generated for the best scoring A2A homology model, it is apparent that the inability of

the first pharmacophore model generation run to sample the A2A TME value was a result

of inadequate sampling rather than model quality. While the A2A TME value was not

sampled by the first set of pharmacophore models generated in the best scoring homology

model (Figures 3.3 and 3.7A), further pharmacophore model generation in both A2A

homology models lead to pharmacophore models sampling the target’s TME value. In

addition, mean GH scores sampled by pharmacophore models generated in the best

scoring homology model (mean GH score = 0.00363) and pharmacophore models

generated in the lowest RMSD homology model (mean GH score = 0.00426) after three

pharmacophore model generation runs were similar (Figure 3.8). Thus, we recommend

 100

generating additional pharmacophore models if a target’s TME value is not initially

sampled.

Figure 3.7. Enrichment factor scoring data for pharmacophore models generated in
triplicate for the best scoring A2A homology model (A) and the lowest RMSD
homology model (B) when searching with 5 partial match features.

Figure 3.8. Goodness-of-hit scoring data for pharmacophore models generated in
triplicate for the best scoring A2A homology model (A) and the lowest RMSD
homology model (B) when searching with 5 partial match features.

 101

Though the frequency at which pharmacophore model enrichments matched TME

values increased as the partial match feature number increased, GH scores trended

downward (Figures 3.4-3.5). Pharmacophore searching requiring 3 partial match features

using PED models resulted in an average maximum GH score of 0.24 (Figure 3.4A and

Table B4), while increasing the number of partial match features to 4 and 5 resulted in

average maximum GH scores of 0.22 (Figure 3.4B and Table B5) and 0.14 (Figure 3.4C

and Table B6), respectively. When performing pharmacophore searches with 3 partial

match features using PHM models, the average maximum GH for all targets was 0.22

(Figure 3.5A and Table B7). Increasing the number of partial search features to 4 resulted

in minimally changed average maximum GH score of 0.23 (Figure 3.5B and Table B8).

However, increasing the number of partial match features to 5 resulted in the lowest

average maximum GH score of 0.14 (Figure 3.5C and Table B9), similar to the GH score

results sampled by PED models. The observed decrease in average maximum GH score as

partial match feature number increased can most likely be attributed to the increasing

specificity of the search process resulting from higher partial match feature numbers. As

the number of features required for a molecule to be considered a hit increases, hit

compound actives with a lower partial match feature number (and therefore less specific

search) may not match the additional feature, increasing the number of active compounds

labeled as false negatives and thus lowering the GH score. Pharmacophore search

specificity also plays a role in the decrease in median EF and GH values as partial match

feature number increases (Figures 3.2 through 3.5), since performing more specific

pharmacophore searches resulted in a greater proportion of randomly generated

 102

pharmacophore models that identified a lesser number of hit and active molecules within

the internal test database.

The generation of 40,000 pharmacophore models across 8 receptors allowed for a

closer look into how the spatial arrangement of pharmacophore features related to EF

scoring. To determine how pharmacophore models exhibiting high EF values differed

from those exhibiting low EF values, pharmacophore models for each receptor were split

into high enrichment (EF ≥ 2, herein termed HE pharmacophore models) or low

enrichment (EF < 2, herein termed LE pharmacophore models) subsets based on scoring

results from pharmacophore searches incorporating 5 partial match features. In this work,

an EF cutoff of 2 was chosen to separate pharmacophore model search performance into

HE and LE since this value represents 10-30% of the theoretical maximum enrichment

values of all studied targets (Table 3.2). Although this chosen EF cutoff is lower than EF

values demonstrated by well-performing pharmacophore models generated in other

pharmacophore modeling studies, our internal test database contains a higher proportion

of active compounds per target (5.1 to 15.1%, Table 3.2) than a larger, external database

such as ZINC25. Since the EF metric is entirely dependent upon the proportion of active

compounds in a search database, we found this cutoff to be appropriate in the context of

this work.

Once pharmacophore models were split into HE and LE subsets, two sets of

distances were calculated for each pharmacophore model. The first set of calculated

distances measured the mean, minimum, and maximum distances between

pharmacophore features (termed interfeature distance). The second set of calculated

distances measured the mean, minimum, and maximum distances between

 103

pharmacophore features and the binding pocket centroid (termed feature to centroid

distance), the mean position of atoms comprising the potential binding site for each

receptor. For each receptor’s subset of HE and LE PED and PHM models, averages of these

distances were calculated (Figures 3.9 and 3.10 and Tables B10 and B11, respectively).

Figure 3.9. Differences in the distributions of mean (A), maximum (B), and
minimum (C) interfeature distances and mean (D), maximum (E), and minimum (F)
feature to centroid distances between the selected HE and LE pharmacophore
models generated in experimentally determined structures.

Kolmogorov-Smirnov test p-values marked with an asterisk are considered significant at
the 95% confidence level.

 104

Figure 3.10. Differences in the distributions of mean (A), maximum (B), and
minimum (C) interfeature distances and mean (D), maximum (E), and minimum (F)
feature to centroid distances between the selected HE and LE pharmacophore
models generated in homology models.

Kolmogorov-Smirnov test p-values marked with an asterisk are considered significant at
the 95% confidence level.

For PED models, distributions of all measured distances were significantly different when

comparing HE and LE PED models based on a Kolmogorov–Smirnov test (p < 0.05 in all

cases). Averages of all measured distances were lower in HE PED models than in LE PED

models, with differences ranging from 0.24 Å (minimum feature to centroid) to 1.94 Å

(maximum interfeature) (Table B10). Differences in measured distances are especially

stark when analyzing PED models for A2A and OPRD (Table B10) where 5 of these

 105

distances (maximum, minimum and mean interfeature and maximum and mean feature to

centroid distance) differed by > 1.0 Å between HE and LE PED models, on average. For

PHM models, distributions of all measured distances were again significantly different

when comparing HE and LE PHM models based on a Kolmogorov–Smirnov test (p < 0.05

in all cases). Averages of all measured distances were again lower in HE PHM models

than in LE PHM models, with differences ranging from 0.36 Å (minimum feature to

centroid) to 2.12 Å (maximum interfeature) (Table B11). Altogether, these findings imply

that pharmacophore models (generated with the methods described herein) possessing

greater maximum and minimum interfeature/feature to centroid distances (compared to

other generated pharmacophore models) are less likely to score well in terms of

enrichment factor than pharmacophore models with more spatially condensed features.

In addition to distance calculations, feature compositions of HE and LE PED

(Table 3.3) and PHM (Table 3.4) models were determined. Of the 20 types of features

annotated in the ‘Unified’ pharmacophore annotation scheme in MOE, 8 are present in

our generated pharmacophore models including 3 single-function feature types:

hydrophobic (Hyd), hydrogen bond donor (Don), hydrogen bond acceptor (Acc), and 5

defining various feature combinations (Don/Hyd, Cat/Don, Hyd/Aro, Ani/Acc,

Don/Acc). After initial feature composition calculations, the frequency at which each

feature type appeared across all pharmacophore models in each subset was also

calculated to determine which feature types appeared more in high/low enrichment

pharmacophore models. Overall, hydrophobic features most frequently appeared in PED

and PHM models (Tables 3 and 4). However, hydrophobic features appeared more

frequently in all HE pharmacophore models than all LE pharmacophore models for those

 106

generated in either structure type (57.9% vs. 46.3% for PED models, Table 3, 50.2% vs.

42.9% for PHM models, Table 4), indicating that a pharmacophore model with a greater

proportion of hydrophobic features may be more likely to possess an EF score ≥ 2. In

contrast, cationic hydrogen bond acceptors (Cat/Don), anionic hydrogen bond donors

(Ani/Acc), and hydrogen bond acceptors and donors (Don/Acc) were less frequently

found in all HE pharmacophore models than all LE pharmacophore models for PED

models (4.1% vs. 8.5% for Cat/Don, 2.0% vs 7.9% for Ani/Acc, 4.0% vs. 5.4% for

Don/Acc, Table 3) and PHM models (6.3% vs. 9.6% for Cat/Don, 2.2% vs 6.8% for

Ani/Acc, 4.0% vs. 4.4% for Don/Acc, Table 4), implying that pharmacophore models

incorporating too many of these feature types may lead to EF values < 2.

 107

Table 3.3 Aggregated feature composition for higher enrichment (HE) and lower enrichment (LE) pharmacophore models
generated in experimentally determined structures for each receptor.
aFeature annotation types found in MOE that were present in analyzed pharmacophore models.
bPercentage of total features for all models in each pharmacophore model subset.

Model
Subset

Feature
Typea 5HT2B A2A Beta

2 H1 M1 OPRD OPRK OPRM Total Prevalence
(%)b

H
ig

h
En

ric
hm

en
t

Hyd 400 124 151 26 966 250 286 1157 3360 57.9

Don 121 16 38 11 213 55 61 127 642 11.1

Acc 176 40 105 24 411 125 73 240 1194 20.6

Don/Hyd 0 0 0 0 0 0 0 1 1 <0.1

Cat/Don 30 31 3 32 66 6 22 48 238 4.1

Hyd/Aro 4 1 2 0 7 0 4 4 22 0.4

Ani/Acc 36 0 0 7 0 11 9 54 117 2.0

Don/Acc 33 3 16 9 15 18 25 114 233 4.0

Lo
w

 E
nr

ic
hm

en
t

Hyd 359 104 148 62 825 209 258 733 2698 46.3

Don 96 17 30 19 207 42 73 166 650 11.2

Acc 200 57 75 33 268 143 97 307 1180 20.3

Don/Hyd 0 0 0 0 0 0 0 1 1 <0.1

Cat/Don 66 11 20 11 173 34 25 157 497 8.5

Hyd/Aro 9 0 3 0 5 2 1 6 26 0.4

Ani/Acc 24 20 29 0 86 20 13 269 461 7.9

Don/Acc 44 6 9 6 116 10 13 110 314 5.4

 108

Table 3.4 Aggregated feature composition higher enrichment (HE) and lower enrichment (LE) pharmacophore models
generated in homology models for each receptor.
aFeature annotation types found in MOE that were present in analyzed pharmacophore models.
bPercentage of total features for all models in each pharmacophore model subset.

Model
Subset

Feature
Typea 5HT2B A2A Beta

2 H1 M1 OPRD OPRK OPRM Total Prevalence
(%)b

H
ig

h
En

ric
hm

en
t

Hyd 233 195 562 52 669 437 380 98 2626 50.2

Don 83 38 212 10 95 71 61 25 595 11.4

Acc 153 62 302 23 422 143 148 65 1318 25.2

Don/Hyd 0 1 2 0 1 0 0 2 6 0.1

Cat/Don 80 17 50 48 66 17 46 8 332 6.3

Hyd/Aro 7 1 5 2 6 1 6 7 35 0.7

Ani/Acc 55 0 11 4 0 30 15 0 115 2.2

Don/Acc 36 1 86 1 10 35 29 10 208 4.0

Lo
w

 E
nr

ic
hm

en
t

Hyd 220 132 572 42 497 371 324 88 2246 42.9

Don 74 37 158 12 78 77 69 29 534 10.2

Acc 164 97 229 39 405 166 164 65 1329 25.4

Don/Hyd 0 0 1 0 3 0 0 0 4 0.1

Cat/Don 89 27 156 32 92 41 43 24 504 9.6

Hyd/Aro 5 2 11 0 6 2 4 1 31 0.6

Ani/Acc 46 13 42 11 129 45 63 6 355 6.8

Don/Acc 39 7 60 3 65 33 18 7 232 4.4

 109

Conclusions

The overarching goal of the work presented herein was to develop and assess a

method of structure-based pharmacophore model generation that can be applied to any

experimentally determined or modeled structure of any GPCR target. While this method

of pharmacophore generation is realistically applicable to any target structure, selection

of quality pharmacophore models without the ability to score each model using known

active ligands with the EF/GH scoring metrics remains a challenge. While we have

addressed this issue in the work described in the companion paper202, the protocol

described herein is best applied to targets with at least a small number of known ligands.

Pharmacophore models were generated in both experimentally determined

structures and homology models (generated with our benchmarked protocol24,35,59) of 8

GPCR targets using our fully-automated protocol that employed the random selection of

functional group fragments placed with MCSS followed by feature annotation of

fragment atoms capable of interacting with a receptor. Generated pharmacophore models

were then used to search our internal test database consisting of active ligands for 30

GPCR and scored with the EF and GH scoring metrics to assess virtual screening

performance. Pharmacophore searches utilized a varying number of partial match

features (3, 4, or 5), with 5 partial match features (our most specific search) resulting in

the highest proportion of targets whose generated pharmacophore models sampled TME

values when searching our internal test database with PED and PHM models (8 of 8 and 7

of 8 cases, respectively, Figures 3.2C and 3.3C). For the one case where a TME value

 110

was not initially sampled (A2A, Figure 3.3C), generating additional pharmacophore

models remedied this problem.

In addition to assessing virtual screening performance, all generated

pharmacophore models were subjected to a thorough analysis of pharmacophore model

feature distances and composition. Pharmacophore models were split into both HE and

LE subsets based on whether they met our established EF quality metric of 2. In terms of

distances, HE PED and PHM models both tended to have more spatially condensed features

(as exhibited by the decreased average feature distances when compared to LE PED and

PHM models in Tables B11 and B12). Pharmacophore model feature composition analysis

revealed that HE PED and PHM models possessed a greater proportion of hydrophobic

features, while LE PED and PHM models possessed greater proportions of cationic

hydrogen bond donors, anionic hydrogen bond acceptors, and neutral hydrogen bond

acceptors and donors (Tables 3.3 and 3.4). Though there are clear differences between the

spatial arrangement and composition of pharmacophore models possessing high and low

EF values, adequate classification of pharmacophore model quality remains a challenge.

Given the varied nature of GPCR active site volumes203, one cannot simply use averages

of measured distance values as a determinant of pharmacophore model quality since

many of our best performing pharmacophore models possessed distances greater than

these average values.

Based on the results described herein, a suggested virtual screening workflow

incorporating our method of pharmacophore model generation can be detailed.

Pharmacophore models should first be generated in either an experimentally determined

or homology modeled structure of a target of interest. Next, generated pharmacophore

 111

models should be used to perform searches of an internal test database (containing

conformations of active and decoy molecules for a target of interest) that require a

molecule to match 5 pharmacophore features to be considered a hit. Following a database

search, EF and GH scoring metrics should be calculated to assess pharmacophore model

performance as the basis to select pharmacophore models. Once selected, the best scoring

EF and GH pharmacophore models should then be used to search an external compound

database such as ZINC.25 Pharmacophore hit lists obtained via external database

searches should then be analyzed to ensure that they each possess a practical number of

compounds since overpopulated hit lists are likely indicative of poor pharmacophore

model performance. In the case where a high performing pharmacophore model results in

a hit list containing too many compounds, we recommend using the next best performing

pharmacophore model. Once an initial hit list (resulting from external database searches

with the best scoring EF and GH pharmacophore models) is obtained, experimental

screening can be performed without further refinement if the hit list is sufficiently small.

Alternatively, virtual screening methods such as docking or clustering via diverse subset

identification can be employed to refine a hit list that is reasonably sized but too large for

direct experimental screening. Compounds selected in this fashion comprise a high-

priority list of candidates for experimental screening, a step not illustrated in this work.

Methodology

Homology/Loop Modeling

Target homology modeling was performed utilizing a previously benchmarked

GPCR modeling workflow.24,35,59 First, template sequences from which to model each

 112

target were selected using the contact-informed neighboring pocket (CoINPocket) score

developed by Ngo et al. to emphasize similarities at residue positions that frequently

make strong interactions in a set of 27 unique class A GPCR experimentally determined

structures (Table 3.1).33,34 Next, the non-GPCR sequence segments from each template

and crystallographic reference structure (including fusion partners such as T4 lysozyme

or thermostabilized cytochrome b562RIL) were deleted. Each target sequence was then

obtained from GPCRdb19 and aligned to its corresponding template in MOE 2019.010256

using a two-step procedure. The first step aligned the target and template sequence using

MOE’s “sequence only” method of automatic alignment. After the initial alignment, gaps

in helical segments of each sequence were manually shifted into the structurally variable

intracellular and extracellular loop regions while ensuring that conserved TM.50 residues

remained aligned.35 Next, 11 initial homology models were generated using our

previously benchmarked GPCR modeling workflow24,35,59 which utilizes the default

settings in the MOE homology modeling interface but scores models based on effective

contact energy and retains the crystallographic ligand from the template structure as the

‘Environment for Induced Fit’. For each target, the homology model with the lowest

effective contact energy was selected for de novo extracellular loop 2 (ECL2) modeling.

ECL2 modeling began with the selection of the final helical residue of TM4 and

first helical residue of TM5 as loop ‘anchor’ residues. This work utilized Rosetta’s

“kinematic closure with fragments” (KICF)58 method of sampling ECL2 conformations,

which requires that fragment libraries be generated prior to de novo conformational

sampling. Fragment libraries were generated by submitting a FASTA formatted sequence

containing the nine residues prior to the first loop anchor, the ECL2 sequence and the

 113

nine residues after the second loop anchor to the Robetta178 server. The loop modeling

process used herein incorporated an atomic disulfide constraint that restricts the distance

of sulfur atoms in critical cysteine residues 3.25 of TM3 and 45.50 of ECL2 to 5.1 Å as a

means of filtering out models unable to form disulfide bonds. Furthermore, loop

modeling was performed with the template ligand present in the binding pocket. For each

target, a total of 250 disulfide-constrained ECL2 models were generated. The ECL2-TM3

disulfide bond was formed in the top 10 lowest scoring models followed by geometry

optimization of the ECL2 segment in MOE. Each target’s lowest scoring loop refined

homology model was then selected for multiple copy simultaneous search.

Multiple Copy Simultaneous Search (MCSS)

Structures of the GPCR used in this study (Table 3.1) were prepared using the

“QuickPrep” function in MOE after removal of ligand and water chains to ensure proper

protonation and charge at pH 7.4 and to minimize each structure using the

AMBER10:EHT forcefield.180,204 After structure preparation, the “Site Finder” function

in MOE was then used to define a binding site for each receptor. This method is based in

the alpha spheres methodology by Edelsbrunner et al. and organizes potential binding

sites by the volume of alpha spheres within a potential binding pocket.112 Once a binding

site was identified for each receptor, MCSS109 (termed “MultiFragment Search” in

MOE) was performed utilizing default settings at the residues comprising the potential

binding site using the MOE56 fragment database. MCSS randomly placed 100 copies of

each fragment in the potential binding site and each fragment was then energetically

minimized to refine initial placements. Once refined, unique fragment placements were

written to an output database.

 114

Automated Pharmacophore Model Generation

Pharmacophore model generation was performed using an automated scripting

workflow implemented in the scientific vector language (SVL) in MOE (Figure 3.1). This

process began with the randomized selection of 5 fragments from the MCSS output. Once

selected, fragment atoms within 4.5 Å of binding pocket residues were annotated as

pharmacophore features using the built-in MOE pharmacophore editor. The number of

features in each pharmacophore model was capped at 5, a reasonable approximation of

the 3 to 7 features typically found in GPCR pharmacophores.114 A total of 5000

pharmacophore models were generated for each receptor structure used in this study in

order to sample diverse combinations of pharmacophore features.

Internal Test Database Searching/Scoring

Active ligands for 30 GPCR were downloaded from IUPHAR/BPS Guide to

Pharmacology190 and compiled into an internal test database using MOE. Each entry in

the database was assigned receptor-specific activities (agonist, inverse agonist,

antagonist, biased agonist, or allosteric modulator) and labeled according to which

receptors each ligand possessed activity for. Ionization states of the major species in

solution at pH 7.4 were constructed and energetically minimized using the

AMBER10:EHT forcefield.180,204 A stochastic conformational search incorporating

inversion of unconstrained chiral centers (based on instances where the stereocenter was

not given a specific assignment in IUPHAR/BPS Guide to Pharmacology190),

unconstrained double bond rotation, and the random rotation of all bonds (in increments

biased around 30 degrees128) followed by all-atom energy minimization was then

performed to generate a set of up to 10 energetically reasonable atomic configurations per

 115

molecular stereochemical configuration for each ligand in the database. The energy

window for each search was kept at the default value of 7 kcal/mol, which discarded

minimized conformations with potential energies 7 kcal/mol greater than the potential

energy of the lowest energy minimized conformation. In addition, conformational

searches utilized a rejection limit of 100, iteration limit of 10,000, RMS gradient of 0.005

kcal/(mol•Å), and RMSD limit of 0.25 Å.

Each of the 5000 pharmacophore models generated in each receptor structure was

used to search the internal test database. Pharmacophore searches were performed three

times, each requiring a different number of feature matches for a ligand to be considered

a hit (3, 4, or 5 features). Pharmacophore search performance was evaluated with two

metrics, enrichment factor (Eq. 1, where Ha = number of active compounds selected via

pharmacophore search, Ht = number of hit compounds identified via pharmacophore

search, A = internal test database active compounds, D = number of internal test database

compounds) and goodness-of-hit score (Eq. 2).86

Enrichment Factor (EF) = Ha/Ht
A/D

 (Eq. 1)

Goodness-of-hit (GH) score = �[Ha*(3A+ Ht)]
4*Ht*A

� *[1- Ht-Ha
D-A

] (Eq. 2)

Enrichment factor (EF) measures the fold change between pharmacophore active

compound selection proportion and active compound proportion in the database. Since

EF values differ depending on the proportion of actives in the search database, they were

normalized (scaled from 0 to 1) to the theoretical maximum enrichment for each receptor.

The maximum active-to-hit ratio of any pharmacophore is 1 (1 hit:1 active, 10 hits:10

 116

actives, etc.). Therefore, the theoretical maximum enrichment factor for any receptor was

calculated as 1/[A/D]. The second metric goodness-of hit (GH) score determines how

well a pharmacophore prioritizes a high yield of actives and a low false-negative rate

when searching a compound database. GH scores range from 0 to 1, with 1 representing a

hit list containing all active compounds with no false positives.

 117

Chapter 4

Structure-based Pharmacophore Modeling 2. Developing a Novel Framework for

Structure-based Pharmacophore Model Generation and Selection

Introduction

G Protein-Coupled Receptors

G protein-coupled receptors (GPCR) are a superfamily of membrane proteins that serve

to transmit extracellular signals to intracellular effectors, typically through the binding of an

extracellular ligand. These receptors play a role in many physiological pathways (such as blood

pressure and immune response regulation) and disruption of their signaling can lead to the

manifestation of conditions such as asthma, ulcers, and hypertension.205 Consequently, GPCR

are drug targets of immense interest, with approximately 35% of FDA-approved drugs acting

upon these receptors.206 Though GPCR have proven to be therapeutically important targets,

identification of ligands for these receptors (a critical first step in drug discovery) faces a

multitude of obstacles. For example, a majority of the known “druggable” GPCR are yet to be

targeted by currently approved drugs9, implying that novel methods of exploiting the therapeutic

potential of these understudied GPCR are necessary. Furthermore, ligand discovery for GPCR is

often impeded by a lack of knowledge concerning ligand activity and receptor structure. In

regards to ligand activity, many GPCR lack known endogenous ligands (known as orphan

receptors11), hindering exploration of a receptor’s function and potential signaling pathways.

Many of these orphan receptors also lack synthetic ligands, further obscuring their biochemical

and physiological roles. Only 140 of the over 800 known GPCR in the human genome possess

experimentally resolved structures in the Protein Data Bank as of October 24, 202219,158, leading

 118

many drug discovery workflows to rely on modeled structures. Therefore, new methods of ligand

elucidation for understudied GPCR targets are necessary, regardless of whether a three-

dimensional structure of the target has been experimentally determined.

Pharmacophore Modeling

As an alternative to costly and time-consuming high-throughput random screening,

virtual screening is often employed in GPCR ligand identification workflows to select subsets of

screening candidates from large compound libraries. During the virtual screening process,

pharmacophore models (spatial arrangements of chemical features capable of making

interactions thought to be essential for receptor activity) are frequently utilized as templates to

identify prospective ligands, effectively reducing the number of compounds considered for

experimental screening. Pharmacophore models are typically constructed by extracting structural

commonalities from sets of known ligands for a target, and are thus termed ligand-based

pharmacophore models.21 While these ligand-based pharmacophore models have exhibited

success in prior studies21, many GPCR lack sufficient numbers of known ligands to make this

approach effective for ligand discovery. Alternatively, structure-based pharmacophore models

can be established by probing possible interaction points with a three-dimensional structure of a

macromolecular target to establish a collection of features thought to be necessary for biological

activity.21 Unlike ligand-based pharmacophore modeling, the only prerequisite for structure-

based pharmacophore modeling is a target’s three-dimensional structure, whether experimentally

determined or modeled. Advances in GPCR structure determination by experimental207 and

modeling208 methods has led to increases in the numbers of publicly available receptor structures

as well, further increasing the applicability of a structure-based pharmacophore modeling

workflow to GPCR ligand discovery.

 119

Although past structure-based pharmacophore modeling studies have been successful in

identifying active ligands for various targets187–189, these studies often fail to consider cases

where a target does not possess known ligands (e.g. orphan GPCR) or an experimentally

determined structure. Thus, the work discussed herein describes a method of structure-based

pharmacophore model generation that is applicable to any GPCR structure, whether

experimentally determined or modeled. Furthermore, a priori knowledge of active ligands is not

required, allowing for a truly structure-based method of pharmacophore model generation.

Pharmacophore models were generated in experimentally determined structures as well as

homology models generated with our previously benchmarked GPCR modeling workflow24,35,59,

allowing for the assessment of pharmacophore search performance starting from a wider range of

structure sources.

As described in the first paper in this two-paper series, our structure-based

pharmacophore modeling workflow (Figure 4.1) begins with output from a Multiple Copy

Simultaneous Search (MCSS), which randomly places numerous copies of varied functional

group fragments into a receptor’s active site and then energetically minimizes each

independently of the others to determine energetically optimal positions for each fragment.109

The method described here differs from that in the companion paper209 through application of a

“score-based” fragment selection method prior to pharmacophore model generation. In this

work, each iteration of pharmacophore model generation considers N+1 fragments placed with

MCSS (starting with N=0) that are first ranked using fragment-receptor interaction scoring and

are then subjected to automated fragment selection based on distance cutoffs intended to emulate

the placement and end-to-end distances of ligands that typically bind GPCR. This loop of

sequentially importing score-sorted fragments and retaining/removing fragments from

 120

consideration based on distances continues until the pharmacophore model possesses 7 features

(the upper limit of the range of features typically observed in GPCR pharmacophore models114),

at which point it is considered complete.

Figure 4.1. Score-based pharmacophore generation workflow.

Pharmacophore models were generated in experimentally determined and modeled

structures of 13 target GPCR with known active ligands. While known ligands are not a

prerequisite for score-based pharmacophore model generation, here they allowed for the

calculation of the enrichment factor (EF) and goodness-of-hit (GH) scoring metrics to determine

pharmacophore model performance. The first metric, EF, describes how many fold better a given

pharmacophore model is at selecting active compounds when compared to random selection.86

The second metric, GH, determines how well a pharmacophore model prioritizes a high yield of

actives and a low false-negative rate when searching a compound database.86 Though both

scoring metrics are useful, we mainly focus on the EF metric since it is the most relevant to our

lab’s experimental work.

 121

Pharmacophore Model Selection

When using structure-based pharmacophore models to identify screening candidates, the

selection of a single pharmacophore model or set of pharmacophore models to use as a search

query is a critical step in the virtual screening process. While many publications detailing

structure-based pharmacophore modeling protocols assess search performance in the context of

protein targets with known ligands, pharmacophore model selection for targets with no known

ligands is rarely discussed. Even if generated pharmacophore models identify active ligands for

test case receptors (where active ligands are known), how does one select a pharmacophore

model to apply to the majority of cases where a target lacks known ligands? For instance,

structure-based pharmacophore modeling tools such as AutoPH4189 and Catalyst210 demonstrate

the ability to identify active compounds for protein targets with known ligands in artificial virtual

screening workflows. However, the application of these structure-based pharmacophore

modeling methods to apo protein structures often results in an overabundance of features in

generated pharmacophore models, necessitating manual feature pruning that is likely to result in

varied virtual screening performance when applied to GPCR with no known ligands.189,211 For

structure-based pharmacophore modeling tools that do implement automated methods of

pharmacophore feature refinement (such as FLAP212), mixed results have been observed when

they are applied to GPCR.213 Thus, there is a clear need for a reliable method of selecting high-

performing pharmacophore models for use in database searches to identify active compounds for

GPCR with no known ligands.

Consequently, we explored two distinct methods of selecting score-based pharmacophore

models that are applicable to any target. We first assessed whether a specific combination of

variables explored during pharmacophore construction consistently produced high performing

 122

pharmacophore models. This first method, herein referred to as progressive variable selection,

takes advantage of the range of variables (MCSS fragment set, score type used for sorting, etc.)

considered when generating our score-based pharmacophore models. Upon determining that

progressive variable selection did not consistently lead to the identification of high-performing

pharmacophore models, we applied machine learning methods to the pharmacophore models.

Our method of pharmacophore model selection via machine learning is novel in this context and

relies on an ensemble machine learning workflow to identify pharmacophore models likely to

possess higher enrichment values when applied in a virtual screening context (Figure 4.2).

Figure 4.2. Cluster-then-predict workflow used in pharmacophore model classification
illustrated using 5 clusters.

Clusters are numbered and abbreviated using C followed by the cluster number. High
enrichment and low enrichment pharmacophore models are abbreviated as HE and LE,
respectively.

In the companion paper, thousands of unique pharmacophore models were generated via the

annotation of randomly selected functional group fragments placed with MCSS.209 These models

were used to train an ensemble method of pharmacophore model classification. This ensemble

 123

classification utilizes a “cluster-then-predict” workflow that has exhibited success in prior

studies.214,215 The first algorithm used in our cluster-then-predict workflow, K-means clustering,

is a method of unsupervised learning used to separate data into k clusters.216 Instances assigned

to each cluster possess similar attributes, allowing for the identification of groups that have not

been explicitly labeled in a dataset.216 The second algorithm in our cluster-then-predict

workflow, logistic regression, is a method of binary classification that uses a set of independent

variables (predictors) to predict a categorical dependent variable.217 In practice, logistic

regression is used to model the probability of a certain class or event existing, allowing for the

classification of observations in a dataset into 1 of 2 labeled classes.218 Consecutive

implementation of K-means clustering and logistic regression produced binary classification

models capable of accurately identifying pharmacophore models likely to possess higher

enrichment values. Since pharmacophore models generated for targets that lack known ligands

cannot be scored with the EF metric, using logistic regression to predict score-based

pharmacophore model enrichment class based on features of the pharmacophore models allowed

for the identification of useful pharmacophore models even when active ligands were not known

for a target.

Research Aims and Outcomes

Ultimately, the goal of this research is to develop a method of pharmacophore model

generation that can use an experimentally determined or modeled structure of any GPCR target

as input, regardless of whether active ligands are known or not. Score-based pharmacophore

models predicted to result in higher enrichment values with this workflow can be used to search

databases of commercially available compounds, allowing for the identification of candidate

ligands for the many orphan or understudied GPCR. While we exclusively discuss applications

 124

in the context of GPCR, this method of pharmacophore model generation can realistically be

applied to any biological target, after appropriate training or validation of the cluster-then-predict

classifiers. Overall, this work demonstrates the ability of our score-based pharmacophore

modeling and binary classification workflow to generate and accurately select pharmacophore

models predicted to result in higher enrichment values in both experimentally determined

structures (12 of 13 cases) and homology models (9 of 13 cases). Furthermore, classification of

score-based pharmacophore models generated in either structure type with our cluster-then-

predict workflow resulted in accurate classification of an average of 82% of all pharmacophore

models predicted to result in higher enrichment values, indicating that this workflow identified

high proportions of higher enrichment pharmacophore models without guidance from known

active ligands.

Results and Discussion

The work discussed herein describes a fully automated method of structure-based

pharmacophore model generation that can utilize experimentally determined or modeled protein

structures as input. For each input receptor structure, 4 distinct pharmacophore models (each

representing a fragment score type) were generated via the annotation of subsets of functional

group fragments placed with Multiple Copy Simultaneous Search (MCSS). Unlike the random

pharmacophore model generation described in the companion paper209, score-based

pharmacophore model generation relies on fragment scoring and distance cutoffs to generate

pharmacophore models (Figure 4.1). Furthermore, this method does not require ligands with

known activity at the target for pharmacophore model selection. Progressive variable selection

and a cluster-then-predict workflow (Figure 2) were assessed as means to identify high

enrichment pharmacophore models. Pharmacophore model generation and selection was tested

 125

in experimentally determined and modeled structures of 13 target GPCR (Table 4.1): 5-

hydroxytryptamine receptor 1B (5HT1B), 5-hydroxytryptamine receptor 2B (5HT2B), 5-

hydroxytryptamine receptor 2C (5HT2C), adenosine receptor 2A (A2A), alpha-2C adrenergic

receptor (A2C), beta-2 adrenergic receptor (Beta 2), histamine receptor 1 (H1), muscarinic

acetylcholine receptor 1 (M1), muscarinic acetylcholine receptor 2 (M2), muscarinic

acetylcholine receptor 4 (M4), δ-opioid receptor (OPRD), κ-opioid receptor (OPRK), and μ-

opioid receptor (OPRM). Fragment subsets used for MCSS (Figure 4.3) were determined via the

analysis of high performing pharmacophore models generated for the 8 targets (5HT2B, A2A,

Beta 2, H1, M1, OPRD, OPRK, OPRM) studied in our companion paper.209

Homology/Loop Modeling

For the 13 target GPCR used to assess the performance of our score-based

pharmacophore models, homology modeling was performed using a benchmarked workflow that

retains a template structure’s ligand throughout homology model generation and extracellular

loop 2 (ECL2) modeling.24,35,59 Template structures for each target GPCR were first selected

using Ngo et al’s CoINPocket metric of scoring localized similarity between prospective binding

pockets of 2 GPCR sequences (publication retracted due to errors unrelated to the similarity

metric or computational methods).33,34 A summary of target and template GPCR, CoINPocket

scores, GenBank accession numbers, and PDB identification codes used in this study can be

found in Table 4.1. After the generation of 10 initial homology models in MOE56, the homology

model possessing the lowest atomic contact energy was retained for ECL2 refinement in

Rosetta.58 For each target GPCR, the best scoring loop-refined homology model with the

conserved disulfide bond between Cys 3.25 and Cys 45.50 was then superposed onto a reference

structure and alpha-carbon RMSD values were calculated for all residues as well as residues in

 126

the ECL2 region (Table 4.1). Alpha-carbon RMSD values for all residues ranged from 2.54 Å

(M4) to 5.99 Å (OPRK), while alpha-carbon RMSD values for residues localized to ECL2

ranged from 6.60 Å (5HT1B) to 14.87 Å (OPRK). Both of these ranges are comparable to those

observed in our prior homology modeling benchmark, where RMSD values for the best scoring

loop conformations ranged from 2.93 Å to 6.32 Å for all residues and 4.66 Å to 15.41 Å for

ECL2 residues.59

 127

Table 4.1 GenBank accession numbers, PDB ID numbers, and homology model RMSD values from experimental reference
target structures for GPCR used in this study.
a Maximal self-similarity measure of 5.47. A pairing of two receptors with a local similarity score of 5 would indicate very similar
ligand binding pockets, while a receptor pairing with a local similarity score of 1 or less would indicate low ligand binding pocket
similarity
bSequence similarity calculated using a global transmembrane domain alignment by Ngo et al.33

Receptor Template
Local
Similarity
Measurea

Unweighted
Global
Similarity
(%)b

GenBank
Accession
Number

Target
Reference
PDB ID

Template
PDB ID

Alpha
Carbon
RMSD
(Å)

ECL2
RMSD
(Å)

5HT1B D2 3.15 47.90 P28286 5V54219 6LUQ220 3.06 6.60

5HT2B 5HT2C 4.19 69.39 P41595 4NC3192 6BQH 3.78 6.64

5HT2C 5HT2B 4.19 69.39 P28335 6BQH193 4NC3 3.89 7.90

A2A A1A 4.49 64.20 P29274 5NM4194 5UEN221 4.14 11.37

A2C α2A 4.57 80.86 P18825 6KUW222 6KUY223 3.63 11.48

Beta 2 D2 2.80 46.67 P07550 2RH1196 6LUQ 4.67 12.40

H1 M1 2.58 35.98 P35367 3RZE167 5CXV 3.51 8.51

M1 H1R 2.58 35.98 P11229 5CXV168 3RZE 3.66 10.03

M2 M4 5.00 91.65 P08172 5ZKC224 5DSG 3.17 9.76

M4 M2 5.00 91.65 P08173 5DSG168 5ZKC 2.54 7.54

OPRD OPRM 4.36 77.79 P41143 4N6H197 5C1M 4.05 6.86

OPRK OPRM 4.41 72.61 P41145 4DJH198 5C1M 5.99 14.87

OPRM OPRK 4.41 72.61 P35372 5C1M199 4DJH 4.89 13.02

 128

Multiple Copy Simultaneous Search (MCSS)

MCSS was performed in each structure using the full set of 39 functional group

fragments present in the MOE 2019.01 fragment database (Table C1).56 MCSS began with the

randomized placement of 100 copies of each fragment at residues selected with the MOE Site

Finder function, which determines potential binding sites based upon the alpha spheres

methodology detailed by Edelsbrunner et al.112 A total of 3,900 functional group fragments were

placed in each target’s binding pocket and then optimized to energetically preferred locations

without interacting with other placed fragments. Unique fragment placements after optimization

were retained. MCSS with our 13 selected GPCR targets resulted in ranges of 1,156 (OPRM) to

2,192 (OPRK) and 1,376 (OPRD) to 2,111 (A2C) uniquely placed fragments in experimentally

determined structures and homology models, respectively (Table C2).

After MCSS was performed with the MOE 2019.01 fragment database56, 4 additional

subsets of placed fragments were utilized. Fragments included in each subset (Figure 4.3) were

selected based on how frequently their placements resulted in pharmacophore feature annotation

for each receptor’s top 10 (T10) enrichment factor (EF) or goodness-of-hit (GH) scored

pharmacophore models from the companion

 129

Figure 4.3. Fragment subsets used in MCSS.

Fragments included in each subset were those whose placements most frequently resulted in
feature annotation when considering each receptor’s top 10 (T10) enrichment factor (EF) or
goodness-of-hit (GH) scored pharmacophore models from the companion paper209 in aggregate
(80 pharmacophore models for each score type across 8 receptors) or individually (10
pharmacophore models for each score type per receptor). A) Fragments most frequently
resulting in feature annotation (>10 placements) when considering all T10 EF companion paper
pharmacophore models for the 8 targets. B) Fragments most frequently resulting in feature
annotation (>10 placements) when considering all T10 GH companion paper pharmacophore
models for the 8 targets. C) Fragments most frequently resulting in feature annotation when
considering each receptor’s T10 EF companion paper pharmacophore models. D) Fragments
most frequently resulting in feature annotation when considering each receptor’s T10 GH
companion paper pharmacophore models.

paper209 in aggregate (80 pharmacophore models for each score type across 8 receptors, subsets

herein referred to as the EF subset and GH subset, respectively, Figure 4.3A-B) or individually

(10 pharmacophore models for each score type per receptor, subsets herein referred to as the

receptor EF subset and receptor GH subset, respectively, Figure 4.3C-D). Fragments with ≤ 10

 130

placements resulting in feature annotation were not considered when selecting EF and GH subset

fragments in order to maintain reasonably sized subsets.

Score-based Pharmacophore Model Generation

Pharmacophore model generation was performed in MOE using a fully automated

software vector language (SVL) scripting workflow (Figure 4.1). Pharmacophore models were

generated in experimentally determined and modeled structures of each of the 13 target GPCR

using the five MCSS fragment sets (complete, EF, GH, Receptor EF, Receptor GH) to assess

impact of input fragment sets on pharmacophore model performance. Prior to pharmacophore

model generation, each structure was imported into MOE. The fragments placed in that structure

with MCSS were then ascendingly sorted by two criteria, fragment-receptor interaction score and

then water accessible surface area of hydrophobic atoms. Separate pharmacophore models were

produced after sorting by each of 4 types of fragment-receptor interaction scores: dE (fragment

interaction energy), dU (fragment interaction potential), dE(class) (fragment interaction energy

per fragment class), and dU(class) (fragment interaction potential per fragment class).56 In total,

20 pharmacophore models were generated by the use of four fragment-receptor interaction score

types and 5 fragment sets placed by MCSS in each experimentally determined and modeled

target GPCR structure.

The use of 4 different score types during the pharmacophore generation process resulted

in varied feature placements and types within each generated pharmacophore model. For

example, pharmacophore models with features annotated using the top dE/dU scoring fragments

tended to possess more geometrically clustered features when compared to pharmacophore

models generated with class-based (dE(class) or dU(class)) fragment scoring (Figure 4.4).

 131

Figure 4.4. Pharmacophore models generated in experimental reference structures of 4 of
the 13 GPCR targets using the MOE fragment subset.

Hydrophobic features are denoted by green spheres, hydrogen bond acceptor features are
denoted by blue spheres, hydrogen bond donor features are denoted by magenta spheres,
aromatic features are denoted by orange spheres, and features that are both hydrogen bond
acceptors and donors are denoted with purple spheres.

Since prospective ligands were only going to be required to match a subset of pharmacophore

features rather than every pharmacophore feature during the search process, we found it

acceptable for generated pharmacophore models to retain spatially clustered features. The

 132

secondary sort by water accessible surface area of all hydrophobic atoms prioritized well-scoring

fragments making specific H-bond donor/acceptor interactions. Furthermore, this sorting also

discouraged the inclusion of an excess of hydrophobic fragments, which (if annotated) would

result in an overabundance of non-specific, non-directional hydrophobic interactions.225 Figure

4.4 illustrates that in all except 1 case, generated pharmacophore models contain polar feature

types as well as hydrophobic features.

For each iteration of the pharmacophore model generation script, N+1 fragments (starting

with N=0) were imported into the system. The number of fragments brought into the system

increased by 1 with each unsuccessful attempt at pharmacophore model generation (i.e. a

pharmacophore model possessing < 7 features), which prioritized the use of few, well-scoring

fragments during the feature annotation process. Once a new fragment was introduced to the

system, a series of distance criteria were employed to ensure that geometric centroids of

fragments selected for feature annotation would not be exceedingly far apart from one another (>

15 Å from fragment centroid to fragment centroid) or the binding pocket centroid (> 10 Å from

fragment centroid to the geometric center of binding pocket residues identified with MOE’s Site

Finder tool) in an attempt to emulate the end-to-end size and binding pocket placement observed

with typical GPCR ligands. In addition, the script required the distance between any two

fragment centroids (if present in the system after the first iteration of the script) to be greater than

0.5 Å to ensure that no two pharmacophore features would be placed at the same coordinates to

avoid redundancy. If a fragment present in the system failed to satisfy any of the distance

criteria, it was not considered for feature annotation. Next, fragment atoms within 4.5 Å (the

default radius defining nearby residues in MOE56) of the binding pocket residues selected with

the Site Funder function were annotated as pharmacophore features using MOE’s built-in

 133

pharmacophore query editor. This pharmacophore generation workflow repeated until the

pharmacophore model possessed 7 features. While the number of features in pharmacophore

models generated with this methodology is on the upper end of the 3 to 7 features typically

observed in GPCR pharmacophore models114, requiring 7 features allowed for diverse, less

specific combinations of pharmacophore features when performing partial pharmacophore

searches.

Internal Test Database Searching/Scoring

In order to select an EF threshold value separating higher enrichment (HE) and lower

enrichment (LE) pharmacophore model database searches, the range of maximal EF values for

each receptor when searching for hits in our internal test database was determined using the

formula 1/[A/D], where 1 is the maximum possible hit:active ratio in the hitlist and A/D is the

proportion of target receptor actives in the internal test database (Table C3). Maximum possible

EF values ranged from 6.6 (5HT2B and 5HT2C) to 19.6 (A2A). Based on maximal EF values for

each target, an EF cutoff of 2 was chosen to separate pharmacophore model database search

performance into HE (EF ≥ 2) and LE (EF < 2) categories for this work since this value

represents 10-30% of the theoretical maximum enrichment values of all studied targets (Table

C3). While our chosen cutoff is lower than EF values exhibited by well-performing

pharmacophore models developed in other studies113, the range of EF values resulting from

pharmacophore searches is entirely dependent on the proportion of active compounds for each

target within the compound database and thus direct comparisons of EF values when searching

different databases are not meaningful. Given that our internal database contains 5-15% active

compounds for any of the 13 studied targets (Table C3), we found an EF cutoff of 2 to be

appropriate for this study.

 134

Although the generation of 20 pharmacophore models per input structure provides

multiple avenues for ligand identification, the use of this many pharmacophore models in a

virtual screening context may lead to hit lists that are too large, even if molecular docking or

chemical descriptors are used as secondary hit list filters. Furthermore, a set of 20

pharmacophore models may only include a handful of high performing pharmacophore models,

leading to hit list dilution resulting from searches with low performing pharmacophore models.

Thus, further guidance is necessary if a single pharmacophore model or group of pharmacophore

models is to be selected for use in ligand identification. In addition to providing a method of

separating pharmacophore models into HE and LE classes, imposing an EF cutoff of 2 allowed

for the determination of which combinations of fragment subset, fragment-receptor interaction

score type, and partial match feature number (progressive variable selection) most frequently

resulted in internal test database searches exhibiting EF values that reflect active identification at

least twice as effective as random compound selection (HE).

Pharmacophore models were then used to search an internal test database containing

conformations of 569 active ligands for 30 GPCR (Table C4).123 Since requiring database ligands

to match all of the features present in each pharmacophore model (7 features) was likely to result

in sparsely populated hit lists, searches allowing for partial matches of a prospective ligand to 3-

7 features of a pharmacophore model (herein referred to as partial match feature searches) were

employed during the database search process. This allowed for the determination of an ideal

number of features to match as part of the progressive variable selection process.

Database search performance for each pharmacophore model and partial match feature

search was assessed with the EF and GH scoring metrics. Tables 4.2 and 4.3 illustrate best-

sampled enrichment values for pharmacophore models generated in experimental structures (PED

 135

models) and modeled structures (PHM models), respectively. Tables 4.4 and 4.5 illustrate

pharmacophore search performance as a function of progressive variable selection for PED and

PHM models, respectively. PED models generated using the GH fragment subset (Figure 4.3B)

resulted in HE PED models for 12 of 13 targets, the most of any fragment subset (Table 4.2). In

addition, searching the internal test database with PED models generated with the GH fragment

subset most frequently resulted in HE database searches (21 of 260 searches across all partial

match feature numbers, Table 4.4). Thus, the GH fragment subset appears to be optimal for

pharmacophore generation in the context of published reference structures. None of the fragment

sets used to annotate pharmacophore features possessed a best performing pharmacophore model

with an EF value < 1, indicating that the best pharmacophore model generated with each

fragment set was capable of identifying active ligands at a rate at least modestly higher than

random compound selection. PHM models generated with both the receptor EF and receptor GH

fragment subsets (Figure 4.3C-D) most frequently resulted in HE PHM models (9 of 13 targets,

Table 4.3). When overall search performance is examined for each subset, however, use of the

receptor EF subset to generate PHM models more frequently resulted in HE database searches

when compared to the receptor GH subset (16 of 260 searches vs. 13 of 260 searches,

respectively, across all partial match feature numbers, Table 4.5). Thus, use of the receptor EF

set appears to be optimal when generating pharmacophore models in the context of homology

models.

 136

Table 4.2 Best sampled enrichment values (corresponding GH value in parentheses) for
PED models with each fragment subset when searching our internal test database with all
partial match feature numbers.

Fragment Subset

Receptor Default EF GH Rec. EF Rec. GH

5HT1B 4.38 (0.38) 2.92 (0.25) 8.75 (0.75) 4.38 (0.38) 8.75 (0.75)

5HT2B 6.62 (0.75) 2.21 (0.25) 2.21 (0.25) 3.31 (0.38) 2.21 (0.25)

5HT2C 1.04 (0.04) 3.31 (0.38) 2.21 (0.25) 1.14 (0.15) 1.10 (0.13)

A2A 1.64 (0.07) 1.78 (0.08) 6.54 (0.26) 1.31 (0.06) 9.81 (0.38)

A2C 4.45 (0.21) 3.74 (0.18) 3.56 (0.18) 5.08 (0.24) 3.56 (0.18)

Beta 2 10.59 (0.62) 4.55 (0.35) 10.59 (0.62) 2.92 (0.27) 1.52 (0.13)

H1 1.01 (0.00) 1.01 (0.07) 2.79 (0.19) 1.62 (0.15) 3.28 (0.27)

M1 2.75 (0.25) 4.95 (0.46) 4.95 (0.46) 3.30 (0.31) 8.25 (0.75)

M2 4.03 (0.29) 10.74 (0.75) 10.74 (0.76) 2.15 (0.15) 5.37 (0.38)

M4 4.99 (0.38) 4.99 (0.38) 4.99 (0.38) 2.50 (0.19) 9.98 (0.75)

OPRD 1.22 (0.08) 9.73 (0.51) 5.84 (0.31) 1.25 (0.10) 1.95 (0.13)

OPRK 10.16 (0.75) 2.54 (0.20) 10.16 (0.75) 2.54 (0.19) 1.44 (0.14)

OPRM 1.03 (0.01) 1.54 (0.16) 1.79 (0.14) 1.23 (0.12) 1.31 (0.12)

EF ≥2 8 10 12 8 8

EF <1 0 0 0 0 0

 137

Table 4.3 Best sampled enrichment values (corresponding GH value in parentheses) for
PHM models with each fragment subset when searching our internal test database with all
partial match feature numbers.

Fragment Subset

Receptor Default EF GH Rec. EF Rec. GH

5HT1B 1.60 (0.19) 2.92 (0.25) 4.38 (0.38) 2.92 (0.25) 4.38 (0.38)

5HT2B 2.48 (0.29) 3.31 (0.38) 2.48 (0.29) 2.21 (0.25) 2.21 (0.25)

5HT2C 1.65 (0.19) 1.75 (0.21) 3.31 (0.38) 1.01 (0.12) 1.47 (0.18)

A2A 5.61 (0.29) 4.91 (0.22) 2.80 (0.12) 6.36 (0.33) 4.20 (0.18)

A2C 5.56 (0.30) 4.35 (0.26) 1.90 (0.14) 2.60 (0.18) 2.63 (0.14)

Beta 2 1.12 (0.11) 2.61 (0.20) 1.21 (0.07) 2.53 (0.18) 1.72 (0.16)

H1 1.86 (0.13) 1.00 (0.00) 1.00 (0.00) 5.58 (0.38) 4.46 (0.31)

M1 2.75 (0.26) 1.38 (0.16) 2.75 (0.26) 1.83 (0.17) 8.25 (0.75)

M2 8.05 (0.58) 10.74 (0.76) 10.74 (0.75) 10.74 (0.75) 10.74 (0.75)

M4 2.00 (0.15) 2.00 (0.15) 2.00 (0.15) 1.43 (0.11) 2.10 (0.17)

OPRD 1.33 (0.11) 1.84 (0.16) 2.47 (0.21) 2.92 (0.16) 1.34 (0.12)

OPRK 10.16 (0.75) 5.08 (0.38) 10.16 (0.75) 5.08 (0.38) 10.16 (0.75)

OPRM 1.36 (0.12) 1.36 (0.12) 1.36 (0.12) 1.06 (0.02) 1.13 (0.06)

EF ≥2 6 7 8 9 9

EF <1 0 0 0 0 0

 138

Table 4.4 Pharmacophore search performance for each parameter considered during
pharmacophore generation/searching for PED models.
aA total of 260 pharmacophore searches were performed using pharmacophore models
generated with each fragment subset.
bA total of 65 pharmacophore searches were performed using pharmacophore models generated
with the GH fragment set after sorting a fragment database by a score type.
cA total of 13 pharmacophore searches were performed at each partial match feature number
using pharmacophore models generated with the GH fragment set sorted by dU(class) scoring.

All Pharmacophore Models
Fragment Seta EF ≥ 2 EF < 1
MOE 16 199
EF 20 195
GH 21 185
Receptor EF 14 213
Receptor GH 16 192

GH Set Pharmacophore Models
Score Typeb EF ≥ 2 EF < 1
dE(class) 5 17
dE 5 19
dU(class) 6 25
dU 5 20

GH Set dU(class) Pharmacophore Models
Match Featuresc EF ≥ 2 EF < 1
3 0 5
4 0 6
5 1 10
6 5 4
7 0 0

 139

Table 4.5 Pharmacophore search performance for each parameter considered during
pharmacophore generation/searching for PHM models.
aA total of 260 pharmacophore searches were performed using pharmacophore models
generated with each fragment subset.
bA total of 65 pharmacophore searches were performed using pharmacophore models generated
with the receptor EF fragment set after sorting a fragment database by a score type.
cA total of 13 pharmacophore searches were performed at each partial match feature number
using pharmacophore models generated with the receptor EF fragment set sorted by dU scoring.

All Pharmacophore Models
Fragment Seta EF ≥ 2 EF < 1
MOE 9 182
EF 12 177
GH 12 169
Receptor EF 16 209
Receptor GH 13 195

Receptor EF Set Pharmacophore Models
Score Typeb EF ≥ 2 EF < 1
dE(class) 4 27
dE 4 21
dU(class) 2 31
dU 6 19

Receptor EF Set dU Pharmacophore Models
Match Featuresc EF ≥ 2 EF < 1
3 1 9
4 3 8
5 2 2
6 0 0
7 0 0

Selection of optimal fragment-receptor interaction scoring type was based on frequencies

at which each fragment score type resulted in HE database searches performed with PED models

generated with GH set fragments and PHM models generated with receptor EF set fragments

(Tables 4.4 and 4.5). For PED models generated using GH set fragments, sorting fragments by the

dU(class) score type most frequently resulted in HE database searches (6 of 65 cases, Table 4.4).

For PHM models generated using receptor EF set fragments, sorting by the dU score type most

frequently resulted in HE database searches (6 of 65 cases, Table 4.5). Therefore, dU(class) and

 140

dU scoring to sort fragments prior to pharmacophore generation in experimentally determined

structures and homology models, respectively, appear to be optimal.

If too few features are matched during the search process, hit lists are likely to be

overpopulated and result in EF values near 1 (i.e. search performance equivalent to randomly

selecting an active compound from a database). In contrast, attempting to match too many

pharmacophore features during the search process is likely to result in sparsely populated hit lists

that may also score poorly in terms of EF values. Thus, we determined which partial match

feature number (3, 4, 5, 6, or 7) most frequently resulted in HE database searches when searching

with pharmacophore models generated using the best performing fragment set and fragment

scoring type for each structure type (Tables 4.4 and 4.5). Searching the internal test database

with 3, 4, 5, 6, or 7 features using PED models resulted in 0, 0, 1, 5, and 0 HE database searches,

respectively (Table 4.4), implying that matching 6 of 7 features in PED models generated with GH

set fragments sorted by dU(class) scoring most frequently leads to HE database searches. When

searching with PHM models at 3, 4, 5, 6, or 7 features, 1, 3, 2, 0, and 0 searches resulted in an HE

values, respectively (Table 4.5), implying that matching 4 of 7 features in PHM models generated

with receptor EF set fragments sorted by dU scoring most frequently leads to HE database

searches.

As a whole, these results reveal multiple findings regarding which fragment scoring type

and partial match feature number should be used when generating score-based pharmacophore

models and using them to search a compound database. First, it is evident that attempting to

match all 7 features in generated pharmacophore models is too specific, as 0 cases resulted in HE

database searches (Tables 4.4 and 4.5). Second, while using the combinations of dU(class)

fragment scoring/6 partial match features for PED models and dU fragment scoring/4 partial

 141

match features for PHM models most frequently led to HE internal test database searches based on

our progressive variable selection, it is evident that selection of a single score-based

pharmacophore model to use in virtual screening will not consistently result in HE database

searches. For example, only 5 of 65 searches using PED models generated with dU(class) sorted

GH set fragments (Table 4.4) and 6 of 65 searches using PHM models generated with dU sorted

receptor EF set fragments (Table 4.5) could be considered HE database searches. This low

proportion of HE database searches suggests that inconsistent performance will result from using

a single fragment set to construct pharmacophore models. This holds the same for our partial

match feature search number analysis as well, as the best performing partial match feature

numbers for database searches with PED models generated with dU(class) sorted GH set

fragments or PHM models generated with dU sorted receptor EF set fragments also resulted in HE

database searches in less than 50% of observed cases (5 of 13 searches matching 6 features for

GH set PED models, 3 of 13 searches matching 4 features for receptor EF set PHM models, Tables

4.4 and 4.5). Altogether, the low proportions of high-performing pharmacophore models chosen

with the optimal scoring type and partial match feature number warranted an alternative method

for pharmacophore model selection.

Pharmacophore Model Classification

Though it was evident that our score-based pharmacophore models were able to identify

active ligands for our 13 studied targets, selecting which pharmacophore model(s) to use for

targets where active ligands are unknown remained a challenge. While trends mentioned in the

prior section can be used to select a pharmacophore model, using progressive variable selection

to generate and select pharmacophore models did not guarantee good performance in virtual

screening. Thus, we aimed to develop a method of pharmacophore model classification that

 142

could predict whether a pharmacophore model is likely to result in HE or LE database searches

based on information extracted from each pharmacophore model. This mechanism of

pharmacophore model selection utilizes a hybrid approach to classification: any pharmacophore

model being classified is first segregated into 1 of k clusters based on its attributes via K-means

clustering and is then fed into 1 of k logistic regression classifiers trained for an individual

cluster (Figure 4.2). Throughout this work, our goal was to identify a single high-performing

classifier (rather than multiple classifiers) that would allow for reliable HE/LE class prediction of

pharmacophore models generated for targets with no known ligands.

The initial dataset used to develop the K-means clustering and logistic regression

classifiers consisted of 150,000 pharmacophore models generated in experimentally determined

structures using our random method of pharmacophore model generation as described in the first

paper in this two-paper series.209 The number of pharmacophore models in the initial dataset was

reduced from 150,000 to 116,219 after dropping pharmacophore models with only one feature.

For each of the remaining pharmacophore models in the initial dataset, a set of 14 attributes were

extracted describing the spatial arrangement of features, number of features, number of hits when

searching our internal test database, feature type homogeneity, mean fragment interaction score,

and proportions at which various pharmacophore feature types were present (Table 4.6). In

addition, the target class (representing whether a pharmacophore model resulted in HE or LE

database searches) for each pharmacophore model in the initial dataset was labeled based on its

respective EF value for the purpose of monitoring classification performance.

 143

Table 4.6 Attributes used in pharmacophore model classification.

Descriptor Meaning
max_feat Maximum feature-to-feature distance in a pharmacophore model
avg_feat Mean feature-to-feature distance in a pharmacophore model
min_centr Minimum feature-to-centroid distance in a pharmacophore model
max_centr Maximum feature-to-centroid distance in a pharmacophore model

avg_centr Mean feature-to-centroid distance in a pharmacophore model
features Number of features present in a pharmacophore model
all_same Describes whether all features present in a pharmacophore model are

(1) or are not all of the same annotation type (0)

s_score Mean interaction score between fragments used to annotate a
pharmacophore model’s features and the receptor it was generated in

hyd_prop Number of hydrophobic features present in a pharmacophore model
divided by the total number of pharmacophore model features

don_prop Number of hydrogen bond donor features present in a
pharmacophore model divided by the total number of
pharmacophore model features

catdon_prop Number of cationic hydrogen bond donor features present in a
pharmacophore model divided by the total number of
pharmacophore model features

hydaro_prop Number of hydrophobic aromatic features present in a
pharmacophore model divided by the total number of
pharmacophore model features

aniacc_prop Number of anionic hydrogen bond acceptor features present in a
pharmacophore model divided by the total number of
pharmacophore model features

hits Number of hits obtained when a pharmacophore model is used to
search our internal test database

Prior to splitting the initial dataset into training and testing sets, we chose to address the

class imbalance present in the data (112,598 LE pharmacophore models vs. 3,621 HE

pharmacophore models) that was likely present due to the stochastic nature of the method used to

select functional group fragments during the generation of random pharmacophore models in the

 144

initial dataset.209 This class imbalance was remedied by randomly undersampling a subset of LE

pharmacophore models matched in number to the HE pharmacophore models present in the

initial dataset. Although any method of pharmacophore model generation is more likely to

generate a larger number of poorly performing pharmacophore models, we chose to undersample

the number of LE pharmacophore models due to their excess present in the dataset that was

likely to bias classifiers toward the identification of LE pharmacophore models. After

undersampling the initial dataset, it was split into training and testing datasets using a

randomized 75%/25% train/test split.

In addition to using randomly generated pharmacophore model data to test and train our

cluster-then predict workflow, 2 external datasets were created that described the attributes and

actual performance classes of the 260 score-based pharmacophore models generated for each

structure type (experimental or modeled structure) used in this study. These datasets were

employed to externally validate our cluster-then-predict workflow.

K-means clustering was then performed on the training data to segregate pharmacophore

models into k distinct clusters, where k = 1, 2, 3, 4, 5, or 6. Use of k = 1 essentially skipped

clustering prior to the development of a logistic regression classifier and served as a means of

comparison between a standard logistic regression workflow and our cluster-then-predict

workflow. After fitting a K-means classifier to split the training dataset into 1-6 clusters, the

testing dataset as well as the 2 external datasets were assigned to the appropriate training dataset

cluster. Separate logistic regression classifiers were then trained using each cluster’s training

data (1 classifier was developed for k = 1, 2 classifiers were developed for k = 2, etc.). In total,

21 separate logistic regression classifiers were developed in this study. Each logistic regression

classifier was then used to predict quality classes (HE/LE) for pharmacophore models in the

 145

testing (randomly generated pharmacophore models209) and external (score-based

pharmacophore models) datasets.

Selection of an optimal k value is a common dilemma when using K-means clustering.226

While the number of cluster centroids defined during K-means is typically chosen using

techniques such as the elbow or silhouette methods227, macro-averaging of binary classification

metrics also provides a method of developing a multilabel metric used for selecting an optimal k

value.228 Thus, we chose to select the optimal number of clusters based on the average of 4

scoring metrics obtained after classifying testing set data using logistic regression classifiers

developed for each of k clusters (Figure 4.5). For this analysis, the positive predictive value

(PPV), accuracy, recall, and f1-score metrics were used. Each of these metrics provides some

insight into a classifier’s ability to correctly predict quality classes for generated pharmacophore

models. The first metric, PPV, defines the proportion of true positive predictions compared to all

instances predicted as positives.229 We focused heavily on the PPV metric in this work, since a

PPV of 1 would represent the “gold standard” case where all pharmacophore models predicted as

HE are actual HE pharmacophore models. In contrast, a PPV of 0 would represent a poorly

performing classifier where all pharmacophore models predicted to be in the HE class would be

false positives. The second metric, accuracy, describes the ratio of correctly predicted

observations to the total number of observations.230 The third metric, recall, can be defined as the

ratio of correctly predicted positive observations to the number of actual positive observations.230

Lastly, the f1-score metric is a weighted average of PPV and recall that takes both false positives

and false negatives into account.230 When these 4 metrics were averaged together, values closer

to 1 indicated better classification performance.

 146

Figure 4.5. Workflow for selecting an optimal k value in K-means clustering.

Clusters are numbered and abbreviated using C followed by the cluster number. High
enrichment and low enrichment pharmacophore models are abbreviated as HE and LE,
respectively.

With the following analysis, we aimed to assess the classification performance of each

cluster-specific logistic regression classifier, select an optimal k value, identify a best-performing

logistic regression classifier to use for score-based pharmacophore models, and validate our use

of a cluster-then-predict workflow. Table 4.7 describes averages of all recorded classification

scoring metrics (PPV, accuracy, recall, and f1-score) when classifying test set data using k = 1, 2,

3, 4, 5, or 6 logistic regression classifiers. Scoring metric averages ≥ 0.80 were observed for 12

of the 21 logistic regression classifiers when classifying test set data, indicating that identifying

high proportions of well-performing pharmacophore models is possible with logistic regression.

 147

Table 4.7 Averages of all recorded classification scoring metrics (PPV, accuracy, recall, f1-
score) when classifying test set data using logistic regression classifiers trained on k = 1, 2,
3, 4, 5, or 6 clusters.

The three classifiers exhibiting the highest scoring metric averages are highlighted in bold.
Cluster
Classifier k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
I 0.850 0.855 0.648 0.893 0.895 0.883
II 0.343 0.845 0.565 0.113 0.683
III 0.648 0.853 0.865 0.858
IV 0.520 0.895 0.860
V 0.238 0.888
VI 0.113

To identify the optimal number of clusters for pharmacophore model segregation, we

looked for the k value possessing the cluster-specific logistic regression classifier exhibiting the

highest average of the 4 classification scoring metrics after test set data classification. Two

cluster-specific logistic regression classifiers met this criterion: cluster classifier I for k = 5

(scoring metric average = 0.895, Table 4.7) and cluster classifier IV for k = 5 (scoring metric

average = 0.895, Table 4.7). Each of these classifiers outperformed the singular classifier

(scoring metric average = 0.850 for k = 1, Table 4.7), validating our choice of a cluster-then-

predict workflow rather than a singular logistic regression classifier.

Although splitting training set data into k = 5 clusters resulted in 2 cluster-specific

classifiers exhibiting the highest scoring metric average, each k value used for clustering resulted

in at least 1 cluster-specific classifier exhibiting a scoring metric average ≥ 0.80 (Table 4.7).

Given this similarity in scoring metric averages between the best performing classifiers (cluster

classifiers I and IV for k = 5, scoring metric average = 0.895, Table 4.7) and other well-

performing classifiers (e.g. cluster classifier I for k = 4, scoring metric average = 0.893, Table

4.7) when classifying training data, we wished to further validate our selection of k = 5 as the

optimal number of clusters by performing external set classification with all cluster-specific

 148

classifiers. For each value of k studied (k = 1, 2, 3, 4, 5 or 6), each of the 260 score-based

pharmacophore models generated in each structure type was first segregated into one of k

clusters and then classified with the logistic regression classifier corresponding to its cluster. For

example, pharmacophore models segregated into the 2nd of k = 6 clusters were subsequently

classified with the logistic regression classifier developed for the 2nd cluster at k = 6. For PED

models and PHM models whose quality class was predicted, a PPV was calculated to identify the

logistic regression classifier that resulted in the highest proportion of true positive HE

pharmacophore models across all pharmacophore models predicted to be in the HE class (Table

4.8).

 149

Table 4.8 Positive predictive values when classifying external set pharmacophore models generated in experimentally
determined structures (PED) or homology models (PHM) with logistic regression classifiers trained on data segregated into k = 1,
2, 3, 4, 5, or 6 clusters.
aNA values indicate instances where no external data was labeled in a cluster.
 PPV
 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
Cluster
Classifier PED PHM x̅ PED PHM x̅ PED PHM x̅ PED PHM x̅ PED PHM x̅ PED PHM x̅

I 0.40 0.26 0.33 NAa NA NA NA NA NA 0.82 0.78 0.80 0.88 0.76 0.82 NA NA NA

II 0.23 0.13 0.18 0.38 0.19 0.29 NA NA NA NA NA NA NA NA NA

III NA NA NA 0.19 0.11 0.15 NA NA NA 0.14 0.05 0.10

IV NA NA NA 0.17 0.08 0.13 NA NA NA

V NA NA NA NA NA NA

VI NA NA NA

 150

When classifying external set pharmacophore models with logistic regression classifiers

individually trained on data separated into 1, 2, 3, or 6 clusters, predictive power was poor (PPV

≤ 0.40, Table 4.8). Thus, using these k values during K-means clustering resulted in logistic

regression classifiers that predicted higher proportions of false positive HE pharmacophore

models. In addition, the poor performance of the singular classifier (average PPV = 0.33, Table

4.8) further validates the use of our cluster-then-predict approach to classification. PPV were

much higher when classifying score-based pharmacophore models with logistic regression

models trained on k = 4 or k = 5 clusters of pharmacophore model data (Table 4.8). For k = 4,

PPV of 0.82 and 0.78 were observed for PED and PHM models classified with cluster classifier I,

respectively, indicating that this classifier would most likely aid in identifying HE

pharmacophore models. For k = 5, PPV of 0.88 and 0.76 were observed for PED and PHM models

classified with cluster classifier I, respectively, while PPV of 0.17 and 0.08 were observed for

PED and PHM models classified with cluster classifier IV, respectively. We can thus conclude that

both the k = 4 and k = 5 cluster classifier I models generalize beyond the testing set produced

using random pharmacophore model generation, as their observed PPV (when averaged between

PED and PHM models) indicate that 80% and 82% of score-based pharmacophore models

generated in either structure type predicted to be HE pharmacophore models truly exhibited EF

values ≥ 2 (Table 4.8). In contrast, the poor performance of the k = 5 cluster classifier IV when

classifying external dataset pharmacophore models (PPV = 0.13 when averaged between PED and

PHM models, Table 4.8) indicates that it is not suited for accurately classifying score-based

pharmacophore models.

Next, we investigated clustering and classification on a target-by-target basis for PED and

PHM models clustered and then classified with the two cluster-specific classifiers that performed

 151

best (on average) when classifying external set pharmacophore models: k = 5 cluster classifier I

(Tables 4.9 and 4.10) and k = 4 cluster classifier I (Tables 4.11 and 4.12). Interestingly, a large

overlap existed between training set samples assigned to cluster I for k = 4 vs. cluster I for k = 5,

which supports the consistency of cluster I classification performance for either k value (Figure

C1). For each selected classifier, we first determined the number of score-based pharmacophore

models labeled into each classifier’s cluster for each target receptor (PH4s in Cluster, Tables 4.9-

12). The number of true positive HE pharmacophore models labeled into cluster I was then

determined for each target (Higher Enrichment PH4s in Cluster, Tables 4.9-12), allowing for the

calculation of a percentage describing the ratio of predicted HE pharmacophore models in a

classifier’s cluster to the number of actual HE pharmacophore models in a classifier’s cluster

(Higher Enrichment %, Tables 4.9-12). For additional evaluation of the selected classifiers, the

number of predicted HE pharmacophore models (Predicted Higher Enrichment PH4s, Tables

4.9-12) and PPV metric (PPV, Tables 4.9-12) were calculated on a per target basis. Lastly, lists

of unique internal test database compounds identified with a target’s pharmacophore models

predicted to be in the HE class were determined (Unique Hits, Tables 4.9-12) and used to

calculate a combined EF value representing how many fold better than random HE-classified

pharmacophore models identify active compounds for each target (Combined EF, Tables 4.9-12).

 152

Table 4.9 Per receptor classification results for score-based pharmacophore models (abbreviated as PH4s) generated in
experimentally determined structures and segregated into cluster I of k = 5 clusters when predicting quality classes with the k
= 5 cluster I classifier.
aPharmacophore models per receptor classified into cluster 1 possessing an EF value ≥ 2.
bPercentage of pharmacophore models in Cluster I possessing an EF value ≥ 2.
cNumber of pharmacophore models predicted as higher enrichment with SGD logistic regression.
dTotal number of hits for pharmacophore models predicted as higher enrichment. The number of hits for each pharmacophore model
is derived from the best EF search across all partial match features.
eCalculated EF value for all unique hits.
fNA values indicate instances where scoring metrics are inapplicable due to a lack of higher enrichment pharmacophore models.
gNo higher enrichment pharmacophore models were generated for OPRM.

Cluster I Classifier (External Set PPV = 0.88)

Receptor
PH4s
in
Cluster

Higher
Enrichment
PH4s
in Clustera

Higher
Enrichment
%b

Predicted
Higher
Enrichment
PH4sc

PPV Hitsd Unique
Hits

Combined
EFe

5HT1B 5 5 100 0 NAf NA NA NA

5HT2B 10 8 80 8 1.00 21 5 1.32

5HT2C 5 2 40 0 NA NA NA NA

A2A 4 2 50 2 1.00 5 4 9.81

A2C 8 8 100 6 1.00 37 10 1.78

Beta 2 5 2 40 2 1.00 10 5 10.59

H1 1 1 100 0 NA NA NA NA

M1 7 6 85.7 4 1.00 15 6 4.12

M2 10 9 90 10 0.90 49 16 2.68

 153

Table 4.9 (continued). Per receptor classification results for score-based pharmacophore models (abbreviated as PH4s)
generated in experimentally determined structures and segregated into cluster I of k = 5 clusters when predicting quality
classes with the k = 5 cluster I classifier.
aPharmacophore models per receptor classified into cluster 1 possessing an EF value ≥ 2.
bPercentage of pharmacophore models in Cluster I possessing an EF value ≥ 2.
cNumber of pharmacophore models predicted as higher enrichment with SGD logistic regression.
dTotal number of hits for pharmacophore models predicted as higher enrichment. The number of hits for each pharmacophore model
is derived from the best EF search across all partial match features.
eCalculated EF value for all unique hits.
fNA values indicate instances where scoring metrics are inapplicable due to a lack of higher enrichment pharmacophore models.
gNo higher enrichment pharmacophore models were generated for OPRM.

Receptor
PH4s
in
Cluster

Higher
Enrichment
PH4s
in Clustera

Higher
Enrichment
%b

Predicted
Higher
Enrichment
PH4sc

PPV Hitsd Unique
Hits

Combined
EFe

M4 9 6 66.7 9 0.67 47 18 1.66

OPRD 5 1 20 2 0.50 13 12 2.43

OPRK 4 3 75 0 NA NA NA NA

OPRMg 2 0 0 0 NA NA NA NA

Average 5.8 4.1 65.2 3.3 0.88 24.6 9.5 4.30

 154

Table 4.10 Per receptor classification results for score-based pharmacophore models (abbreviated as PH4s) generated in
homology models and segregated into cluster I of k = 5 clusters when predicting quality classes with the k = 5 cluster I
classifier.
aPharmacophore models per receptor classified into cluster 1 possessing an EF value ≥ 2.
bPercentage of pharmacophore models in Cluster I possessing an EF value ≥ 2.
cNumber of pharmacophore models predicted as higher enrichment with SGD logistic regression.
dTotal number of hits for pharmacophore models predicted as higher enrichment. The number of hits for each pharmacophore model
is derived from the best EF search across all partial match features.
eCalculated EF value for all unique hits.
fNA values indicate instances where scoring metrics are inapplicable due to a lack of higher enrichment pharmacophore models.
gNo higher enrichment pharmacophore models were generated for OPRM.

Cluster I Classifier (External Set PPV = 0.76)

Receptor
PH4s
in
Cluster

Higher
Enrichment
PH4s
in Clustera

Higher
Enrichment
%b

Predicted
Higher
Enrichment
PH4sc

PPV Hitsd Unique
Hits

Combined
EFe

5HT1B 6 5 83.3 0 NAf NA NA NA

5HT2B 6 5 83.3 2 1.00 5 3 2.21

5HT2C 2 1 50 2 0.50 6 6 2.21

A2A 1 1 100 1 1.00 5 5 3.92

A2C 1 1 100 1 1.00 7 7 2.54

Beta 2 2 0 0 0 NA NA NA NA

H1 2 2 100 2 1.00 7 7 4.78

M1 4 3 75 3 0.67 18 9 1.83

M2 11 11 100 6 1.00 16 11 5.86

 155

Table 4.10 (continued). Per receptor classification results for score-based pharmacophore models (abbreviated as PH4s)
generated in homology models and segregated into cluster I of k = 5 clusters when predicting quality classes with the k = 5
cluster I classifier.
aPharmacophore models per receptor classified into cluster 1 possessing an EF value ≥ 2.
bPercentage of pharmacophore models in Cluster I possessing an EF value ≥ 2.
cNumber of pharmacophore models predicted as higher enrichment with SGD logistic regression.
dTotal number of hits for pharmacophore models predicted as higher enrichment. The number of hits for each pharmacophore model
is derived from the best EF search across all partial match features.
eCalculated EF value for all unique hits.
fNA values indicate instances where scoring metrics are inapplicable due to a lack of higher enrichment pharmacophore models.
gNo higher enrichment pharmacophore models were generated for OPRM.

Receptor
PH4s
in
Cluster

Higher
Enrichment
PH4s
in Clustera

Higher
Enrichment
%b

Predicted
Higher
Enrichment
PH4sc

PPV Hitsd Unique
Hits

Combined
EFe

M4 4 0 0 3 0.00 15 5 2.00

OPRD 1 1 100 1 1.00 10 10 2.92

OPRK 5 5 100 0 NA NA NA NA

OPRMg 0 0 NA 0 NA NA NA NA

Average 3.5 2.7 74.3 1.6 0.80 9.9 7 3.14

 156

Table 4.11 Per receptor classification results for score-based pharmacophore models (abbreviated as PH4s) generated in
experimentally determined structures and segregated into cluster I of k = 4 clusters when predicting quality classes with the k
= 4 cluster I classifier.
aPharmacophore models per receptor classified into cluster 1 possessing an EF value ≥ 2.
bPercentage of pharmacophore models in Cluster I possessing an EF value ≥ 2.
cNumber of pharmacophore models predicted as higher enrichment with SGD logistic regression.
dTotal number of hits for pharmacophore models predicted as higher enrichment. The number of hits for each pharmacophore model
is derived from the best EF search across all partial match features.
eCalculated EF value for all unique hits.
fNA values indicate instances where scoring metrics are inapplicable due to a lack of higher enrichment pharmacophore models.
gNo higher enrichment pharmacophore models were generated for OPRM.

Cluster I Classifier (External Set PPV = 0.82)

Receptor
PH4s
in
Cluster

Higher
Enrichment
PH4s
in Clustera

Higher
Enrichment
%b

Predicted
Higher
Enrichment
PH4sc

PPV Hitsd Unique
Hits

Combined
EFe

5HT1B 5 5 100 3 1.00 7 3 2.92

5HT2B 10 8 80 9 0.89 35 19 0.70

5HT2C 3 2 66.7 0 NA NA NA NA

A2A 3 2 66.7 2 1.00 5 4 9.81

A2C 8 8 100 1 1.00 5 5 3.56

Beta 2 3 0 0 2 0.00 28 14 0.00

H1 1 1 100 0 NA NA NA NA

 157

Table 4.11 (continued). Per receptor classification results for score-based pharmacophore models (abbreviated as PH4s)
generated in experimentally determined structures and segregated into cluster I of k = 4 clusters when predicting quality
classes with the k = 4 cluster I classifier.
aPharmacophore models per receptor classified into cluster 1 possessing an EF value ≥ 2.
bPercentage of pharmacophore models in Cluster I possessing an EF value ≥ 2.
cNumber of pharmacophore models predicted as higher enrichment with SGD logistic regression.
dTotal number of hits for pharmacophore models predicted as higher enrichment. The number of hits for each pharmacophore model
is derived from the best EF search across all partial match features.
eCalculated EF value for all unique hits.
fNA values indicate instances where scoring metrics are inapplicable due to a lack of higher enrichment pharmacophore models.
gNo higher enrichment pharmacophore models were generated for OPRM.

Receptor
PH4s
in
Cluster

Higher
Enrichment
PH4s
in Clustera

Higher
Enrichment
%b

Predicted
Higher
Enrichment
PH4sc

PPV Hitsd Unique
Hits

Combined
EFe

M1 6 6 100 4 1.00 15 6 4.12

M2 9 9 100 7 1.00 44 13 3.30

M4 8 5 62.5 8 0.63 43 18 1.66

OPRD 5 1 20 2 0.50 13 12 2.43

OPRK 3 2 66.7 0 NA NA NA NA

OPRMg 1 0 0 0 NA NA NA NA

Average 5.0 3.8 66.4 2.9 0.78 21.7 10.4 3.17

 158

Table 4.12 Per receptor classification results for score-based pharmacophore models (abbreviated as PH4s) generated in
homology models and segregated into cluster I of k = 4 clusters when predicting quality classes with the k = 4 cluster I
classifier.
aPharmacophore models per receptor classified into cluster 1 possessing an EF value ≥ 2.
bPercentage of pharmacophore models in Cluster I possessing an EF value ≥ 2.
cNumber of pharmacophore models predicted as higher enrichment with SGD logistic regression.
dTotal number of hits for pharmacophore models predicted as higher enrichment. The number of hits for each pharmacophore model
is derived from the best EF search across all partial match features.
eCalculated EF value for all unique hits.
fNA values indicate instances where scoring metrics are inapplicable due to a lack of higher enrichment pharmacophore models.
gNo higher enrichment pharmacophore models were generated for OPRM.

Cluster I Model (External Set PPV = 0.78)

Receptor
PH4s
in
Cluster

Higher
Enrichment
PH4s
in Clustera

Higher
Enrichment
%b

Predicted
Higher
Enrichment
PH4sc

PPV Hitsd Unique
Hits

Combined
EFe

5HT1B 6 5 83.3 0 NA NA NA NA

5HT2B 6 5 83.3 1 1.00 2 2 3.31

5HT2C 2 1 50 1 0.00 4 4 1.65

A2A 1 1 100 0 NA NA NA NA

A2C 0 0 NA 0 NA NA NA NA

Beta 2 0 0 NA 0 NA NA NA NA

H1 2 1 50 0 NA NA NA NA

 159

Table 4.12 (continued). Per receptor classification results for score-based pharmacophore models (abbreviated as PH4s)
generated in homology models and segregated into cluster I of k = 4 clusters when predicting quality classes with the k = 4
cluster I classifier.
aPharmacophore models per receptor classified into cluster 1 possessing an EF value ≥ 2.
bPercentage of pharmacophore models in Cluster I possessing an EF value ≥ 2.
cNumber of pharmacophore models predicted as higher enrichment with SGD logistic regression.
dTotal number of hits for pharmacophore models predicted as higher enrichment. The number of hits for each pharmacophore model
is derived from the best EF search across all partial match features.
eCalculated EF value for all unique hits.
fNA values indicate instances where scoring metrics are inapplicable due to a lack of higher enrichment pharmacophore models.
gNo higher enrichment pharmacophore models were generated for OPRM.

Receptor
PH4s
in
Cluster

Higher
Enrichment
PH4s
in Clustera

Higher
Enrichment
%b

Predicted
Higher
Enrichment
PH4sc

PPV Hitsd Unique
Hits

Combined
EFe

M1 4 3 75 3 0.67 19 9 1.83

M2 8 8 100 3 1.00 35 9 7.16

M4 4 0 0 0 NA NA NA NA

OPRD 1 1 100 1 1.00 10 10 2.92

OPRK 5 5 100 0 NA NA NA NA

OPRMg 0 0 NA 0 NA NA NA NA

Average 3.0 2.3 74.2 0.7 0.73 14 6.8 3.37

 160

From this analysis, we were able to make several conclusions regarding clustering

performance as well as select a single classifier for use in ligand identification efforts. When

pharmacophore models were segregated into k = 4 or 5 clusters, a large majority of targets with

non-zero cluster I sizes possessed at least 1 HE pharmacophore model (12 of 13 targets with PED

models in cluster I for k = 5 (Table 4.9), 10 of 12 targets with PHM models in cluster I for k = 5

(Table 4.10), 11 of 13 targets with PED models in cluster I for k = 4 (Table 4.11), 9 of 10 targets

with PHM models in cluster I for k = 4 (Table 4.12)). Additionally, the average percentage of HE

pharmacophore models segregated into cluster I ranged from 65.2% (PED models in cluster I for k

= 5, Table 4.9) to 74.3% (PHM models in cluster I for k = 5, Table 4.10) across all targets.

Altogether, these results suggest that K-means clustering alone adequately separates HE

pharmacophore models from LE pharmacophore models in the external dataset. The observed

average percentages of HE pharmacophore models in cluster I for either k value (4 or 5) also

provide further insight into clustering PED and PHM models. Interestingly, average percentages of

HE PHM models for targets with pharmacophore models segregated into cluster I (74.3% for k = 5

(Table 4.10), 74.2% for k = 4 (Table 4.12)) were higher than those observed for HE PED models

for targets with pharmacophore models segregated into cluster I (65.2% for k = 5 (Table 4.9),

66.4% for k = 4 (Table 4.11)), implying that PHM models segregated into cluster I of k = 4 or 5

clusters are more likely to be HE pharmacophore models than PED models segregated into cluster

I. Lastly, average percentages of HE PHM models for targets with pharmacophore models

segregated into cluster I were similar between either k value, suggesting that using k = 4 or 5

leads to similar proportions of HE pharmacophore models in cluster I.

When PED models were classified with either classifier, a greater average PPV was

observed for the k = 5 cluster classifier I (0.88 vs. 0.78, Tables 4.9 and 4.11, respectively),

 161

indicating that classification with the k = 5 cluster classifier I identified higher proportions of

true positive HE PED models and better avoided false positive predictions (LE pharmacophore

models classified as HE) than the k = 4 cluster classifier I. False negatives were present during

classification of both PED and PHM models, though we consider this inconsequential to classifier

performance since our workflow aimed to identify high proportions of true positive HE

pharmacophore models (reflected by the PPV metric) in the sets of pharmacophore models

classified into the HE class. In addition to calculating PPV on a target-by target basis, a

combined EF value (representing the EF value calculated using each target’s set of unique hits

identified with pharmacophore models predicted to be in the HE class) was also calculated. On

average, a greater combined EF value was observed for the k = 5 cluster classifier I model (4.30,

Table 4.9) than the k = 4 cluster classifier I model (3.17, Table 4.11), implying that hits identified

with pharmacophore models selected by the k = 5 cluster classifier I model are more likely to be

active than those identified with pharmacophore models selected by the k = 4 cluster classifier I

model.

When PHM models were classified with either classifier, a greater average PPV was again

observed for the k = 5 cluster classifier I (0.80 vs. 0.73, Tables 4.10 and 4.12, respectively),

indicating that classification with the k = 5 cluster classifier I identified higher proportions of

true positive HE PHM models than the k = 4 cluster classifier I. Accurately identifying high

proportions of true positive HE pharmacophore models during classification is especially

important for PHM models, which are representative of often-encountered cases where a GPCR

target possesses no experimentally determined structure. Furthermore, classification with the k =

5 cluster classifier I resulted in a larger proportion of our 13 studied GPCR targets possessing

predicted HE pharmacophore models (9 of 13 targets, Table 4.10) than the k = 4 cluster classifier

 162

I (5 of 13 targets, Table 4.12), indicating that the k = 5 cluster classifier I was able to accurately

predict HE pharmacophore models for a wider range of targets. On average, combined EF values

differed very little between the k = 5 cluster classifier I and the k = 4 cluster classifier I (3.14 vs.

3.37, Tables 4.10 and 4.12, respectively), suggesting that both classifiers identify active

compounds at similar folds above random compound selection when using PHM models as

database search queries and should lead to greater proportions of identified active compounds

when employed in a virtual screening context. Though both classifiers were similar when

classification of PHM models was measured with the combined EF metric, we selected the k = 5

cluster classifier I as performing best overall due to its higher observed proportions of true

positive HE PED and PHM models, as well as the wider range of targets possessing accurately

predicted HE PHM models.

After selection of a best-performing classifier, we sought to confirm that the labeled

clusters created for the testing and training datasets contained pharmacophore models with

similar attributes. Visualization of the 14-dimensional training and testing datasets required a

method of dimensionality reduction and we thus performed principal component analysis (PCA)

on each dataset. In practice, PCA is a method of dimensionality reduction for large datasets that

is used to identify a subset of attributes that account for a large portion of the variance in the

original attributes.231 In this work, the implementation of PCA for our training and testing

datasets allowed for cluster visualization in 2 dimensions (Figure 6). When each dataset is

projected into a two-dimensional space, pharmacophore models in each cluster were linearly

separable to some extent. Thus, it is evident that K-means clustering with k = 5 was able to

adequately segregate pharmacophore models with similar attributes into separate clusters.

 163

Figure 4.6. PCA plots for training (A) and testing (B) data after performing K-means
clustering with k = 5.

Conclusions

This work had two primary goals. The first goal was to develop a method of

pharmacophore model generation that would be applicable to any published or predicted

structure of a GPCR target, regardless of whether active ligands are known for that target. The

 164

second goal was to develop a method of selecting HE pharmacophore models from among

those generated.

Across all variable combinations, pharmacophore models resulting in HE database

searches were produced for most targets using both experimentally determined structures and

homology models (Tables 4.2 and 4.3). However, this required 100 database searches per

target receptor structure (20 pharmacophore models each used to search with 5 different partial

feature matches), many of which did not exhibit acceptable EF values. Selection of a

pharmacophore model to use for ligand identification via EF values is impossible in cases

where a target possesses no known ligands. Consequently, we assessed 2 methods of

pharmacophore model selection for targets with no known active ligands. The first method

utilized the progressive selection of variables (fragment subset, fragment-receptor interaction

score type, and partial match feature number) that most frequently resulted in pharmacophore

model database searches possessing an EF value ≥ 2. Progressive selection of variables for PED

database searches identified the GH fragment set, the dU(class) scoring, and 6 of 7 partial

match features as optimal, yet only resulted in HE database searches in 5 of 13 cases (Tables

4.4 and C5). Progressive selection of variables for PHM database searches identified the

receptor EF fragment set, the dU scoring, and 4 of 7 partial match features as optimal, yet only

resulted in HE database searches in 3 of 13 cases (Tables 4.4 and C6).

Due to inconsistent performance of pharmacophore models selected based on

progressive variable selection, we aimed to develop an alternate method of pharmacophore

model selection using a cluster-then-predict workflow (Figure 4.2) that could predict whether

searches with any pharmacophore model would lead to higher or lower enrichment values

based on pharmacophore model attributes. After classification of testing set random

 165

pharmacophore models generated as described in the companion paper209, we identified the

cluster-specific logistic regression classifiers possessing the 3 greatest observed scoring metric

averages: cluster classifier I for k = 4 (scoring metric average = 0.893, Table 4.7), cluster

classifier I for k = 5 (scoring metric average = 0.895, Table 4.7), and cluster classifier IV for k

= 5 (scoring metric average = 0.895, Table 4.7). Although these results implied that

segregating testing set pharmacophore models into k = 4 or 5 clusters resulted in more accurate

HE/LE classification relative to other k values, further analysis was performed with external

dataset pharmacophore models produced as described in this paper to identify a singular, best

performing classifier that could be utilized in future ligand identification efforts. Thus, the 260

score-based pharmacophore models were segregated into one of k clusters and then classified

with the appropriate logistic regression classifier (Table 4.8). Of the 3 cluster-specific

classifiers exhibiting the greatest scoring metric averages after testing set pharmacophore

model classification, the cluster I classifier for k = 5 was best performing as it identified the

highest proportions of true positive HE pharmacophore models when PPV for PED and PHM

model classification were averaged (average PPV = 0.82, Table 4.8). Classification of PED and

PHM models with the k = 4 cluster classifier I resulted in a similar average PPV (0.80, Table

4.8), leading to our target-by-target comparison of the k = 4 cluster classifier I and k = 5 cluster

classifier I. On a target-by-target basis, the k = 5 cluster classifier I exhibited a greater

observed PPV, on average, when classifying PED models (0.88 for the k = 5 cluster classifier I

vs 0.78 for the k = 4 cluster classifier I, Tables 4.9 and 4.11, respectively) and PHM models

(0.80 for the k = 5 cluster classifier I vs 0.73 for the k = 4 cluster classifier I, Tables 4.10 and

4.12, respectively). Furthermore, the k = 5 cluster classifier I exhibited a greater observed

combined EF, on average, when classifying PED models (4.30 for the k = 5 cluster classifier I

 166

vs 3.14 for the k = 4 cluster classifier I, Tables 4.9 and 4.11, respectively). Use of the k = 5

cluster classifier I in external set classification also resulted in a greater number of targets with

accurately predicted HE PHM models (9 of 13 cases for the k = 5 cluster classifier I vs. 5 of 13

cases for the k = 4 cluster classifier I, Tables 4.10 and 4.12, respectively). Ultimately, our

overall as well as target-by-target analyses of classifier performance led us to select the cluster

I classifier for k = 5 for use in selecting pharmacophore models likely to identify higher

proportions of active ligands in future ligand identification studies. This classifier largely

avoided false positive predictions when classifying score-based pharmacophore models

generated in either type (only 1 case where predicted HE PED or PHM models were wholly false

positives, M4 in Table 4.10), which we consider a best-case scenario. Additionally, it is worth

highlighting that although the M4 PHM models predicted to be in the HE class were wholly

false positives, pooling their hit lists still resulted in a combined EF value that met our

threshold for combined HE performance (Table 4.10).

Given that we have developed a classifier that is capable of accurately predicting

whether searches with any score-based pharmacophore model will lead to higher or lower

enrichment values, a suggested virtual screening workflow incorporating our method of

pharmacophore model classification can be detailed. First, a set of 20 score-based

pharmacophore models (4 per fragment score type across 5 fragment sets) should be generated

for a target. Next, generated pharmacophore models should be segregated into k = 5 clusters

using the K-means clustering model trained and tested with our initial dataset. Once

segregated, HE/LE classes can then be predicted for pharmacophore models projected to

belong to the first of k = 5 clusters using the k = 5 cluster classifier I (our best performing

classifier).

 167

Overall, the methods set forth in this work provide a novel framework for the

generation and selection of pharmacophore models for targets lacking known ligands. Though

previous works have detailed the generation of structure-based pharmacophore models,

pharmacophore models generated with our score-based method are able to identify active

ligands at rates higher than random selection, regardless of whether a target possesses an

experimental structure. In addition, this work addresses the often-overlooked topic of selecting

a pharmacophore model for use in virtual screening studies when a target possesses no known

active ligands. Using our cluster-then-predict workflow, we have now provided a method of

reliably selecting pharmacophore models that are likely to identify active compounds at rates

higher than random selection. With the rising prevalence of publicly available experimentally

determined158 or modeled43 protein structures, we are optimistic that this workflow will lead to

the identification of active ligands for targets thought to be difficult to study.

Methodology

Homology/Loop Modeling

Homology models for 13 GPCR targets were generated using a previously benchmarked

GPCR modeling workflow.24,35,59 First, template structures for each target were selected using

the contact-informed neighboring pocket (CoINPocket) score developed by Ngo et al. to

emphasize similarities at residue positions that frequently make strong ligand interactions in a set

of 27 unique class A GPCR crystal structures.33,34 Next, non-GPCR sequence segments were

deleted from each selected template structure. Each target’s sequence was then downloaded from

GPCRdb19 and aligned to the selected template structure sequence in MOE 2019.0102.56 Target-

template alignment consisted of two steps, the first of which aligned the two sequences using

 168

MOE’s “sequence only” method of automatic alignment. Next, gaps in helical segments of each

sequence were manually shifted into the structurally variable intracellular and extracellular loop

regions while ensuring that conserved TM.50 residues remained aligned.35 A total of 10 initial

homology models were generated for each target using our benchmarked GPCR modeling

workflow, which utilizes the default homology modeling settings in MOE but scores models

based on effective contact energy and retains the ligand from the template structure as the

‘Environment for Induced Fit’.24,35,59 For each target, the homology model with the lowest

effective contact energy was selected for de novo extracellular loop 2 (ECL2) modeling.

ECL2 modeling began with the selection of the final helical residue of TM4 and first

helical residue of TM5 as loop ‘anchor’ residues (Table S7). This work utilized Rosetta’s

kinematic closure with fragments (KICF)58 method of sampling ECL2 conformations, which

requires the generation of fragment libraries prior to de novo conformation sampling. Fragment

libraries were generated by submitting a FASTA formatted sequence containing the nine residues

prior to the first loop anchor, the ECL2 sequence and the nine residues after the second loop

anchor to the Robetta178 server. The loop modeling process used herein incorporated an atomic

disulfide constraint that restricts the distance between sulfur atoms in critical cysteine residues

3.25 of TM3 and 45.50 of ECL2 to 5.1 Å (to enable formation of the disulfide bond present in

many GPCR structures) as a means of filtering out models with unrealistic disulfide distances.

Furthermore, loop modeling was performed with the template ligand present in the binding

pocket. For each target, a total of 250 disulfide constrained ECL2 models were generated. The

ECL2-TM3 disulfide bond was formed in the top 10 lowest-scoring models followed by

geometry optimization of the ECL2 segment in MOE. Each target’s lowest-scoring loop-refined

homology model was then selected for multiple copy simultaneous search.

 169

Multiple Copy Simultaneous Search (MCSS)

MCSS was performed on the experimentally determined structure and homology model

of each target using the MOE56 fragment database containing 39 fragments representing a

diverse collection of functional groups (Table C1). Prior to performing MCSS, MOE allows

users to adjust the belly distance parameter that controls the extent at which receptor atoms are

allowed to move. For example, a belly distance value of 5 Å allows movement to receptor atoms

within 5 Å of any fragment atom. In experimentally determined structures, belly distance was

kept at the default value of 0 Å. In homology models, however, belly distance was set to 10 Å to

allow for structural flexibility that would offset any discrepancies between the predicted model

and the reference experimental structure. Fragments were placed at residue atoms selected by the

MOE Site Finder tool, which allows a user to elucidate a probable binding site within each

crystal structure. This method of binding site elucidation is based in the alpha spheres

methodology by Edelsbrunner et al. and organizes potential binding sites by the volume of alpha

spheres within a potential binding pocket.112 For each receptor crystal structure, 100 copies of

each fragment were randomly placed in the selected binding site. After initial fragment

placement, fragment positions were then refined via energetic minimization and written to an

output database. The entire MCSS output database was used as the default fragment subset.

Subsets of the MCSS output database containing fragments that were most frequently used to

annotate features in the 80 pharmacophore models (8 receptors, 10 per receptor) possessing the

highest EF or GH scores in the first paper in this two-paper series were termed the “EF” and

“GH” subsets, respectively. Fragment subsets used most frequently to annotate features in each

receptor’s 10 best EF or GH score pharmacophore models in our prior pharmacophore modeling

study were titled the “receptor EF” and “receptor GH” subsets, respectively.

 170

Score-based Pharmacophore Model Generation

Pharmacophore generation was performed using an automated SVL scripting workflow.

At the beginning of this process, each MCSS fragment subset was first sorted by 1 of 4 fragment-

receptor interaction energies calculated in MOE.56 Next, fragments were sorted in ascending

order by water accessible surface area of all hydrophobic atoms in an attempt to discourage the

overinclusion of non-specific, non-directional hydrophobic interactions.225 For each energy score

type, N+1 fragments were loaded into the system (starting at N = 0 and increasing by 1 for each

iteration of the script) and dummy atoms were created at the mean positions of the atoms

comprising each fragment. From there, each fragment dummy atom was then subjected to

distance cutoffs that ensured annotated pharmacophore features would not be too clustered nor

too far apart. Fragments retained for feature annotation were allowed to be no closer than 0.5 Å

and no farther than 15 Å from all other fragments. In addition, fragments were allowed to be no

farther than 10 Å from the binding pocket centroid, the mean position of atoms comprising

residues identified as a potential binding site for each receptor with MOE’s Site Finder tool.56

Fragments that satisfied this set of distances were then selected for feature annotation.

Once selected, fragment atoms within 4.5 Å of any atom in a binding pocket residue were

annotated as pharmacophore features using the built-in MOE pharmacophore editor. A total of

20 pharmacophore models (4 per fragment subset each representing a fragment score type, 5

fragment subsets) were generated for each receptor structure used in this study.

Internal Test Database Searching/Scoring

A total of 569 ligands possessing activity at any of 30 GPCR were downloaded from

IUPHAR/BPS Guide to Pharmacology190 and organized into an internal test database.123 Each

database entry included activities (inactive, agonist, inverse agonist, antagonist, biased agonist,

 171

or allosteric modulator) at each of 30 GPCR. Next, each ligand was protonated to the major form

expected at pH 7.4 and energetically minimized using the AMBER10:EHT forcefield.180 A

stochastic conformational search incorporating inversion of unconstrained chiral centers (based

on instances where the stereocenter was not given a specific assignment in IUPHAR/BPS Guide

to Pharmacology190), unconstrained double bond rotation, and the random rotation of all bonds

(in increments biased around 30 degrees128) followed by all-atom energy minimization was then

performed to generate a set of up to 10 energetically-reasonable atomic configurations per

stereochemical configuration of each ligand in the database. The energy window for each search

was kept at the default value of 7 kcal/mol, which discarded minimized conformations with

potential energies 7 kcal/mol greater than the potential energy of the lowest energy minimized

conformation. In addition, conformational searches utilized a rejection limit of 100, iteration

limit of 10,000, RMS gradient of 0.005 kcal/(mol•Å), and RMSD limit of 0.25 Å.

Prior to searching the internal test database with pharmacophore models, we first

determined the number of active ligands present in our internal test database for each of the 13

class A GPCR used in this work (Table C4). A theoretical maximum EF value for each target

was then calculated using 1/[A/D], where 1 is the maximum possible hit:active ratio in the hitlist

and [A/D] is the proportion of a target’s actives in the database (A) divided by the total number

of compounds contained in the database (D). These theoretical maximum EF values were used to

select an EF value cutoff of 2 that separated all generated pharmacophore models into higher

enrichment (EF ≥ 2) or lower enrichment (EF < 2) classes.

Each pharmacophore model was then used to search the internal test database 5 times,

with each consecutive search using an increasing number of features (beginning at 3 and ending

at 7) required for a prospective ligand to be considered a match to the pharmacophore model.

 172

Pharmacophore search performance was evaluated with two metrics. The first metric was EF

(Eq. 3, where Ha = number of active compounds selected via pharmacophore search, Ht = number

of hit compounds identified via pharmacophore search, A = internal test database active

compounds, D = number of internal test database compounds), which measures the fold

difference between pharmacophore active compound selection proportion and active compound

proportion in the database. The second pharmacophore scoring metric was GH score (Eq. 4),

which determines how well a pharmacophore prioritizes a high yield of actives and a low false-

negative rate when searching a compound database.86 GH scores range from 0 to 1, with 1

representing a hit list containing the full set of active compounds with no false positives.

Enrichment Factor (EF) = Ha/Ht
A/D

 (Eq. 3)

Goodness-of-hit (GH) score = �[Ha*(3A+ Ht)]
4*Ht*A

� *[1- Ht-Ha
D-A

] (Eq. 4)

Pharmacophore Model Classification

In this work, classification of generated pharmacophore models was performed utilizing a

cluster-then-predict workflow written in Python 3.9.7 (freely available at

https://github.com/gszwabowski/ph4_classification/tree/master/score_based/SGD). The

clustering and prediction portions of this workflow utilized the K-means clustering and

SGDClassifier algorithms, respectively, that are both contained in the Scikit-learn version 0.24.2

machine learning library.232

Data Preprocessing

The initial dataset was generated from 150,000 pharmacophore models generated as

described in the first paper of this two-part series.209 Attributes of each pharmacophore model

https://github.com/gszwabowski/ph4_classification/tree/master/score_based/SGD

 173

used in clustering were the number of internal test database search hits, maximum, minimum,

and mean feature-to-feature distances, maximum, minimum, and mean feature to binding pocket

centroid distances, individual feature proportions per feature type (for hydrophobic, hydrogen

bond donor, hydrogen bond acceptor, cationic hydrogen bond donor, hydrophobic aromatic, and

anionic hydrogen bond acceptor features), and the mean interaction score of all fragments used

to annotate pharmacophore features (in kcal/mol). The dataset was then refined via the removal

of pharmacophore models containing only 1 feature. Each pharmacophore model in the dataset

was assigned a target class of 1 (HE pharmacophore model) or 0 (LE pharmacophore model)

based on whether the model possessed an EF value ≥ 2 or < 2, respectively. Since a far greater

number of LE pharmacophore models existed in the dataset (112,598 LE vs. 3,621 HE), the

number of LE pharmacophore models in the dataset was randomly undersampled to match the

number of HE pharmacophore models prior to being used in the cluster-then-predict workflow.

Assigned HE/LE classes were not utilized as attributes during clustering. The initial dataset was

then split into training and testing datasets using a randomized 75%/25% train-test split.

In addition to generation of training/testing datasets from randomly generated

pharmacophore models, score-based pharmacophore model data was also collected in order to

externally validate our cluster-then-predict workflow. Separate external datasets using the same

features as the training set examples were created for PED and PHM models.

Prior to clustering and classification, the training, testing, and external testing datasets

were standardized with Scikit-learn’s StandardScaler function, which shifted the distribution of

all input variables to have a mean of 0 and a standard deviation of 1.

 174

K-Means Clustering Analysis

Separation of pharmacophore model data into clusters was performed using the KMeans

classification algorithm (sklearn.cluster.KMeans) contained in the Scikit-learn machine learning

library.232 This clustering method is explained as follows:

1. Create initial group centroids using k random points from the dataset.

2. For each data point, calculate distances from the point to each group centroid and

assign the data point to the closest group.

3. Recalculate cluster centroids based on all data points assigned to each cluster.

4. Repeat steps 2 and 3 until cluster centroids do not change.

For k = 1, 2, 3, 4, 5, and 6, a K-means clustering model was fit to the training set data to

identify k separate clusters of pharmacophore models (labeled I, II, III, IV, V, and VI, depending

on the k value used) using default settings, save for the user-defined number of clusters and

“random_state” parameter (the latter of which was set to 1 to ensure reproducibility). Next, the

clustering model fit to the training data was used to predict cluster labels for the testing set data

as well as the external score-based pharmacophore model data. Clusters were then visualized

using principal component analysis in Scikit-learn (sklearn.decomposition.PCA) to ensure that

clustering was able to adequately separate pharmacophore models based on attributes.

Logistic Regression with SGDClassifier

Classification of pharmacophore models was performed via logistic regression with

stochastic gradient descent (SGD) using the SGDClassifier classification algorithm

(sklearn.linear_model.SGDClassifier) contained in the Scikit-learn machine learning library.

Mathematically, logistic regression uses the sigmoid function (Eq. 5):

p = ef(x)

1+e-f(x) (Eq. 5)

 175

where p is the probability being forecasted and f(x) is a linear function of the predictor

variables, x and their associated weights, b (Eq. 6):

f(x) = (∑ bixi
n
i=1) + b (Eq. 6)

Eq. 3 can be transformed to the logit function, which relates the linear measurements

represented by f(x) into probabilities (p) between 0 and 1 (Eq. 7):

logit(p) = ln � p
1-p
�= f(x) (Eq. 7)

The probability cutoff for any observation is typically set at 0.5, meaning that

observations with predicted probabilities ≥ 0.5 are classified in the “positive” class, while

observations with predicted probabilities < 0.5 are classified in the “negative” class.233 In this

work, the probability cutoff was set to the default value of 0.5.

The training and testing sets were then split by k value and cluster label. For each subset

of training data, a classifier incorporating logistic regression via SGD was trained (hereby

referred to as cluster 1/2/3/…/6 classifier I/II/III/…/k). In total, 21 separate logistic regression

classifiers were developed in this study.

Testing set pharmacophore models were then classified with the appropriate classifier.

The classification performance of each cluster’s classifier was then measured using the positive

predictive value (PPV) (Eq. 8), accuracy (Eq. 9), recall (Eq. 10), and f1-score (Eq. 11) metrics.

 176

Given a sample confusion matrix that would result after binary classification, these metrics are

explained as follows:

 PPV = TP
(TP+FP)

 (Eq. 8)

Accuracy = TP+TN
(TP+FP+FN+TN)

 (Eq. 9)

Recall = TP
(TP+FN)

 (Eq. 10)

 f1-score = 2 * (Recall * PPV)
(Recall+PPV)

 (Eq. 11)

PED and PHM models were also classified with the appropriate classifier. For example, any

score-based pharmacophore model projected into cluster I of k = 4 clusters would have its quality

class predicted using the logistic regression classifier trained using training set pharmacophore

models segregated into the same cluster. In this portion of our analysis, PPV were individually

calculated for PED and PHM models. Additionally, an average PPV was calculated for each

classifier.

 Predicted Class

 Positive Negative

A
ct

ua
l C

la
ss

 Positive
True Positive

(TP)

False Negative

(FN)

Negative
False Positive

(FP)

True Negative

(TN)

 177

Chapter 5

Conclusions and Future Directions

Conclusions

The work discussed in chapter 2 of this dissertation led to the finalization of a

comprehensive protocol for modeling class A GPCR. This study built upon the work of

Castleman et al.35 and Wink et al.24 and sought to determine if local similarity-based

homology model template selection in combination with de novo conformational

sampling of ECL2 would result in predictive models and docked ligand poses that better

represented biologically relevant receptor structures. Receptor modeling results suggested

that local similarity-based homology models followed by loop modeling produced more

accurate and predictive receptor models than models produced without loop modeling,

with decreases in average receptor and ligand RMSD of 0.43 Å and 2.91 Å, respectively.

Furthermore, the work discussed in chapter 2 assessed how the presence or absence of a

template structure ligand at various steps of the receptor modeling workflow would affect

homology model and docked ligand pose quality. Although the inclusion of a template

ligand during the modeling process did not result in markedly more accurate homology

models, target receptor models produced with a template ligand present throughout the

modeling process most often produced target ligand poses with RMSD values ≤ 4.5 Å

after selection based on pose scoring than target receptor models produced in the absence

of template ligands. Overall, the findings produced by the work presented in chapter 2

support the use of local template homology modeling followed by de novo ECL2

 178

modeling in the presence of a ligand from the template crystal structure to generate

GPCR models intended to study ligand binding interactions.

The work discussed in chapter 3 resulted in the development of a structure-based

pharmacophore modeling method that aimed to elucidate novel ligands for GPCR with

few known ligands. This method is rooted in the concept of MCSS, where many copies

of chemical fragments are randomly placed into a receptor’s active site and then

energetically minimized in order to find optimal positions. This method was titled

“random” pharmacophore generation, as functional group fragments placed with MCSS

were randomly selected from which to annotate features within a prospective

pharmacophore model. Pharmacophore models were generated in experimentally

determined and modeled structures of 8 class A GPCR targets and subsequently used to

search an internal test database containing conformations of known active compounds for

30 class A GPCR. When pharmacophore models were scored with the EF metric, it was

determined that searches requiring a prospective ligand to match all 5 features most

frequently resulted in the highest proportion of targets whose generated pharmacophore

models sampled TME values in both experimentally determined and modeled structures

(8 of 8 and 7 of 8 cases, respectively). Ultimately, this work demonstrated that randomly

generated pharmacophore models could aid in ligand identification efforts for GPCR with

few known ligands.

Lastly, research efforts presented in chapter 4 led to the development of an

additional structure-based pharmacophore modeling protocol that sought to identify novel

ligands for any GPCR target, regardless of whether active ligands were known. Much

like the method of pharmacophore model generation discussed in chapter 3, the

 179

pharmacophore modeling method presented in chapter 4 used functional group fragments

placed with MCSS to annotate pharmacophore model features. In contrast to the method

of random pharmacophore generation detailed in chapter 3, however, the work discussed

in chapter 4 used interaction scores and distance cutoffs to select fragments to use for

pharmacophore model feature annotation (rather than randomized fragment selection),

resulting in the “score-based” nomenclature of the method. To assess the applicability of

this method to GPCR ligand identification, score-based pharmacophore models were first

generated in experimentally determined and modeled structures of 13 class A GPCR

using 5 different functional group fragment subsets. Generated pharmacophore models

were then used to search the same internal test database utilized in chapter 3’s work at a

sequentially increasing number of partial match features (beginning at 3 and ending at 7)

and were scored using the EF and GH metrics to assess virtual screening performance

and determine which fragment subset most frequently resulted in high EF values.

Searches performed with pharmacophore models generated in experimentally determined

structures using the GH fragment subset most frequently resulted in EF values ≥ 2 (12 of

13 cases), while those performed with pharmacophore models generated in modeled

structures using the receptor EF or receptor GH fragment subset most frequently resulted

in EF values ≥ 2 (9 of 13 cases for each fragment subset). Altogether, the high EF values

observed after searching the internal test database demonstrated that score-based

pharmacophore models could assist in GPCR ligand identification efforts. Although

generated pharmacophore models performed well when searching the internal test

database, a method of selecting pharmacophore models for use in ligand identification

concerning targets with no known ligands was necessary since pharmacophore models

 180

generated for such targets cannot be scored with the EF metric. Thus, a method of

pharmacophore model selection incorporating a “cluster-then-predict” workflow was

developed that first clustered and then classified pharmacophore models into higher

enrichment and lower enrichment classes based on their attributes. As a result,

pharmacophore models predicted to belong to the higher enrichment class using the best

performing cluster-then-predict logistic regression classifier resulted in positive

predictive values (PPV) of 0.88 and 0.76 for pharmacophore models generated in

experimentally determined and modeled structures, respectively. Ultimately, the work

showcased in chapter 4 led to a method of developing and selecting pharmacophore

models likely to lead to higher EF values that can be applied to GPCR targets with no

known ligands.

Future Directions

Although the work discussed in this dissertation is complete, protocols developed

in each chapter are yet to be applied to the many GPCR targets that lack known ligands.

Ideally, a student continuing my research efforts would first pick an orphan GPCR target

with few or no known ligands and generate a model for the target using the benchmarked

modeling protocol discussed in chapter 2. The student could then employ the

pharmacophore modeling methods discussed in chapter 3 (if few ligands are known for

the target) or chapter 4 (if no ligands are known for the target) to develop pharmacophore

models within the modeled target structure. Predicted higher enrichment pharmacophore

models could then be identified with the classifier developed in chapter 4, leading to a set

of pharmacophore models that could be used to identify compounds to screen for activity

against the chosen target.

 181

In addition, the classifier developed in chapter 4 that was used to select high

enrichment score-based pharmacophore models could be more extensively tested with

randomly generated pharmacophore models developed using the protocols discussed in

chapter 3. Although this classifier was trained and tested with randomly generated

pharmacophore models, it was not used to classify any external sets of randomly

generated pharmacophore models. Thus, classification of an additional set of randomly

generated pharmacophore models using the classifier developed for score-based

pharmacophore models in chapter 4 would help to further determine the utility of the

classifier with randomly generated pharmacophore models.

 182

References

(1) Hu, G.-M.; Mai, T.-L.; Chen, C.-M. Visualizing the GPCR Network:

Classification and Evolution. Sci. Rep. 2017, 7 (1), 15495; 15495–15495.

https://doi.org/10.1038/s41598-017-15707-9.

(2) Rosenbaum, D. M.; Rasmussen, S. G. F.; Kobilka, B. K. The Structure and

Function of G-Protein-Coupled Receptors. Nature 2009, 459 (7245), 356.

(3) Gacasan, S. B.; Baker, D. L.; Parrill, A. L. G Protein-Coupled Receptors: The

Evolution of Structural Insight. AIMS Biophys. 2017, 4 (3), 491–527.

https://doi.org/10.3934/biophy.2017.3.491.

(4) Katritch, V.; Cherezov, V.; Stevens, R. C. Diversity and Modularity of G Protein-

Coupled Receptor Structures. Trends Pharmacol. Sci. 2012, 33 (1), 17–27.

(5) Zhou, Q.; Yang, D.; Wu, M.; Guo, Y.; Guo, W.; Zhong, L.; Cai, X.; Dai, A.; Jang,

W.; Shakhnovich, E. I. Common Activation Mechanism of Class A GPCRs. Elife

2019, 8, e50279.

(6) Hauser, A. S.; Kooistra, A. J.; Munk, C.; Heydenreich, F. M.; Veprintsev, D. B.;

Bouvier, M.; Babu, M. M.; Gloriam, D. E. GPCR Activation Mechanisms across

Classes and Macro/Microscales. Nat. Struct. Mol. Biol. 2021, 28 (11), 879–888.

(7) Hilger, D.; Masureel, M.; Kobilka, B. K. Structure and Dynamics of GPCR

Signaling Complexes. Nat. Struct. Mol. Biol. 2018, 25 (1), 4–12.

https://doi.org/10.1038/s41594-017-0011-7.

(8) Sloop, K. W.; Emmerson, P. J.; Statnick, M. A.; Willard, F. S. The Current State

of GPCR‐based Drug Discovery to Treat Metabolic Disease. Br. J. Pharmacol.

 183

2018, 175 (21), 4060–4071.

(9) Hauser, A. S.; Attwood, M. M.; Rask-Andersen, M.; Schiöth, H. B.; Gloriam, D.

E. Trends in GPCR Drug Discovery: New Agents, Targets and Indications. Nat.

Rev. Drug Discov. 2017, 16 (12), 829.

(10) Hauser, A. S.; Chavali, S.; Masuho, I.; Jahn, L. J.; Martemyanov, K. A.; Gloriam,

D. E.; Babu, M. M. Pharmacogenomics of GPCR Drug Targets. Cell 2018, 172 (1–

2), 41-54.e19. https://doi.org/10.1016/j.cell.2017.11.033.

(11) Chung, S.; Funakoshi, T.; Civelli, O. Orphan GPCR Research. Br. J. Pharmacol.

2008, 153 (S1), S339–S346.

(12) Mayr, L. M.; Bojanic, D. Novel Trends in High-Throughput Screening. Curr.

Opin. Pharmacol. 2009, 9 (5), 580–588.

(13) Jenkins, J. L.; Kao, R. Y. T.; Shapiro, R. Virtual Screening to Enrich Hit Lists

from High‐throughput Screening: A Case Study on Small‐molecule Inhibitors of

Angiogenin. Proteins Struct. Funct. Bioinforma. 2003, 50 (1), 81–93.

(14) Katsila, T.; Spyroulias, G. A.; Patrinos, G. P.; Matsoukas, M.-T. Computational

Approaches in Target Identification and Drug Discovery. Comput. Struct.

Biotechnol. J. 2016, 14, 177–184.

(15) Ripphausen, P.; Nisius, B.; Bajorath, J. State-of-the-Art in Ligand-Based Virtual

Screening. Drug Discov. Today 2011, 16 (9–10), 372–376.

(16) Lyne, P. D. Structure-Based Virtual Screening: An Overview. Drug Discov. Today

2002, 7 (20), 1047–1055.

(17) Lionta, E.; Spyrou, G.; K Vassilatis, D.; Cournia, Z. Structure-Based Virtual

Screening for Drug Discovery: Principles, Applications and Recent Advances.

 184

Curr. Top. Med. Chem. 2014, 14 (16), 1923–1938.

(18) Ballante, F.; Kooistra, A. J.; Kampen, S.; de Graaf, C.; Carlsson, J. Structure-

Based Virtual Screening for Ligands of G Protein–Coupled Receptors: What Can

Molecular Docking Do for You? Pharmacol. Rev. 2021, 73 (4), 527–565.

(19) Kooistra, A. J.; Mordalski, S.; Pándy-Szekeres, G.; Esguerra, M.; Mamyrbekov,

A.; Munk, C.; Keserű, G. M.; Gloriam, D. E. GPCRdb in 2021: Integrating GPCR

Sequence, Structure and Function. Nucleic Acids Res. 2021, 49 (D1), D335–D343.

(20) Yan, X.; Liao, C.; Liu, Z.; T Hagler, A.; Gu, Q.; Xu, J. Chemical Structure

Similarity Search for Ligand-Based Virtual Screening: Methods and

Computational Resources. Curr. Drug Targets 2016, 17 (14), 1580–1585.

(21) Yang, S.-Y. Pharmacophore Modeling and Applications in Drug Discovery:

Challenges and Recent Advances. Drug Discov. Today 2010, 15 (11–12), 444–

450.

(22) Bian, Y.; Xie, X.-Q. S. Computational Fragment-Based Drug Design: Current

Trends, Strategies, and Applications. AAPS J. 2018, 20 (3), 1–11.

(23) Cavasotto, C. N.; Phatak, S. S. Homology Modeling in Drug Discovery: Current

Trends and Applications. Drug Discov. Today 2009, 14 (13–14), 676–683.

(24) Wink, L. H.; Baker, D. L.; Cole, J. A.; Parrill-Baker, A. L. A Benchmark Study of

Loop Modeling Methods Applied to G Protein-Coupled Receptors. J. Comput.

Aided Mol. Des. 2019, 33 (6), 573–595.

(25) Irwin, J. J.; Shoichet, B. K. ZINC− a Free Database of Commercially Available

Compounds for Virtual Screening. J Chem Inf Model 2005, 45 (1), 177–182.

(26) Huang, S.-Y.; Zou, X. Advances and Challenges in Protein-Ligand Docking. Int. J.

 185

Mol. Sci. 2010, 11 (8), 3016–3034.

(27) Krishna Deepak, R. N. V; Verma, R. K.; Hartono, Y. D.; Yew, W. S.; Fan, H.

Recent Advances in Structure, Function, and Pharmacology of Class A Lipid

GPCRs: Opportunities and Challenges for Drug Discovery. Pharmaceuticals 2021,

15 (1), 12.

(28) Yasi, E. A.; Kruyer, N. S.; Peralta-Yahya, P. Advances in G Protein-Coupled

Receptor High-Throughput Screening. Curr. Opin. Biotechnol. 2020, 64, 210–217.

(29) Wheatley, M.; Wootten, D.; Conner, M. T.; Simms, J.; Kendrick, R.; Logan, R. T.;

Poyner, D. R.; Barwell, J. Lifting the Lid on GPCRs: The Role of Extracellular

Loops. Br. J. Pharmacol. 2012, 165 (6), 1688–1703.

https://doi.org/10.1111/j.1476-5381.2011.01629.x.

(30) Baker, D.; Sali, A. Protein Structure Prediction and Structural Genomics. Science

(80-.). 2001, 294 (5540), 93–96.

(31) Rataj, K.; Witek, J.; Mordalski, S.; Kosciolek, T.; Bojarski, A. J. Impact of

Template Choice on Homology Model Efficiency in Virtual Screening. J. Chem.

Inf. Model. 2014, 54 (6), 1661–1668.

(32) Shahaf, N.; Pappalardo, M.; Basile, L.; Guccione, S.; Rayan, A. How to Choose

the Suitable Template for Homology Modelling of GPCRs: 5‐HT7 Receptor as a

Test Case. Mol. Inform. 2016, 35 (8–9), 414–423.

(33) Ngo, T.; Ilatovskiy, A. V; Stewart, A. G.; Coleman, J. L. J.; McRobb, F. M.; Riek,

R. P.; Graham, R. M.; Abagyan, R.; Kufareva, I.; Smith, N. J. Orphan Receptor

Ligand Discovery by Pickpocketing Pharmacological Neighbors. Nat. Chem. Biol.

2017, 13 (2), 235–242. https://doi.org/10.1038/nchembio.2266.

 186

(34) Ngo, T.; Ilatovskiy, A. V; Stewart, A. G.; Coleman, J. L. J.; McRobb, F. M.; Riek,

R. P.; Graham, R. M.; Abagyan, R.; Kufareva, I.; Smith, N. J. Retraction Note:

Orphan Receptor Ligand Discovery by Pickpocketing Pharmacological Neighbors.

Nat. Chem. Biol. 2021, 1.

(35) Castleman, P. N.; Sears, C. K.; Cole, J. A.; Baker, D. L.; Parrill, A. L. GPCR

Homology Model Template Selection Benchmarking: Global versus Local

Similarity Measures. J. Mol. Graph. Model. 2019, 86, 235–246.

https://doi.org/10.1016/j.jmgm.2018.10.016.

(36) Sandal, M.; Duy, T. P.; Cona, M.; Zung, H.; Carloni, P.; Musiani, F.; Giorgetti, A.

GOMoDo: A GPCRs Online Modeling and Docking Webserver. PLoS One 2013,

8 (9), e74092.

(37) Worth, C. L.; Kreuchwig, F.; Tiemann, J. K. S.; Kreuchwig, A.; Ritschel, M.;

Kleinau, G.; Hildebrand, P. W.; Krause, G. GPCR-SSFE 2.0—a Fragment-Based

Molecular Modeling Web Tool for Class A G-Protein Coupled Receptors. Nucleic

Acids Res. 2017, 45 (W1), W408–W415.

(38) Esguerra, M.; Siretskiy, A.; Bello, X.; Sallander, J.; Gutiérrez-de-Terán, H. GPCR-

ModSim: A Comprehensive Web Based Solution for Modeling G-Protein Coupled

Receptors. Nucleic Acids Res. 2016, 44 (W1), W455–W462.

(39) Mariani, V.; Kiefer, F.; Schmidt, T.; Haas, J.; Schwede, T. Assessment of

Template Based Protein Structure Predictions in CASP9. Proteins: Struct., Funct.,

Bioinf. 2011, 79 (S10), 37–58.

(40) Jabeen, A.; Vijayram, R.; Ranganathan, S. BIO-GATS: A Tool for Automated

GPCR Template Selection Through a Biophysical Approach for Homology

 187

Modeling . Frontiers in Molecular Biosciences . 2021, p 168.

(41) Kufareva, I.; Katritch, V.; Stevens, R. C.; Abagyan, R. Advances in GPCR

Modeling Evaluated by the GPCR Dock 2013 Assessment: Meeting New

Challenges. Structure 2014, 22 (8), 1120–1139.

(42) Pearce, R.; Zhang, Y. Deep Learning Techniques Have Significantly Impacted

Protein Structure Prediction and Protein Design. Curr. Opin. Struct. Biol. 2021, 68,

194–207.

(43) Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.;

Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; Bridgland, A.; Meyer,

C.; Kohl, S. A. A.; Ballard, A. J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.;

Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.;

Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; Silver, D.;

Vinyals, O.; Senior, A. W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D. Highly

Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596 (7873),

583–589. https://doi.org/10.1038/s41586-021-03819-2.

(44) Torrisi, M.; Pollastri, G.; Le, Q. Deep Learning Methods in Protein Structure

Prediction. Comput. Struct. Biotechnol. J. 2020, 18, 1301–1310.

(45) Zheng, W.; Li, Y.; Zhang, C.; Pearce, R.; Mortuza, S. M.; Zhang, Y. Deep‐

learning Contact‐map Guided Protein Structure Prediction in CASP13. Proteins

Struct. Funct. Bioinforma. 2019, 87 (12), 1149–1164.

(46) Wang, S.; Sun, S.; Li, Z.; Zhang, R.; Xu, J. Accurate de Novo Prediction of

Protein Contact Map by Ultra-Deep Learning Model. PLoS Comput. Biol. 2017, 13

(1), e1005324.

 188

(47) Senior, A. W.; Evans, R.; Jumper, J.; Kirkpatrick, J.; Sifre, L.; Green, T.; Qin, C.;

Žídek, A.; Nelson, A. W. R.; Bridgland, A. Improved Protein Structure Prediction

Using Potentials from Deep Learning. Nature 2020, 577 (7792), 706–710.

(48) Varadi, M.; Anyango, S.; Deshpande, M.; Nair, S.; Natassia, C.; Yordanova, G.;

Yuan, D.; Stroe, O.; Wood, G.; Laydon, A. AlphaFold Protein Structure Database:

Massively Expanding the Structural Coverage of Protein-Sequence Space with

High-Accuracy Models. Nucleic Acids Res. 2022, 50 (D1), D439–D444.

(49) Venkatakrishnan, A. J.; Deupi, X.; Lebon, G.; Tate, C. G.; Schertler, G. F.; Babu,

M. M. Molecular Signatures of G-Protein-Coupled Receptors. Nature 2013, 494

(7436), 185–194.

(50) De Filippo, E.; Hinz, S.; Pellizzari, V.; Deganutti, G.; El-Tayeb, A.; Navarro, G.;

Franco, R.; Moro, S.; Schiedel, A. C.; Müller, C. E. A2A and A2B Adenosine

Receptors: The Extracellular Loop 2 Determines High (A2A) or Low Affinity

(A2B) for Adenosine. Biochem. Pharmacol. 2020, 172, 113718.

(51) Seibt, B. F.; Schiedel, A. C.; Thimm, D.; Hinz, S.; Sherbiny, F. F.; Müller, C. E.

The Second Extracellular Loop of GPCRs Determines Subtype-Selectivity and

Controls Efficacy as Evidenced by Loop Exchange Study at A2 Adenosine

Receptors. Biochem. Pharmacol. 2013, 85 (9), 1317–1329.

(52) Woolley, M. J.; Conner, A. C. Understanding the Common Themes and Diverse

Roles of the Second Extracellular Loop (ECL2) of the GPCR Super-Family. Mol.

Cell. Endocrinol. 2017, 449, 3–11.

(53) Won, J.; Lee, G. R.; Park, H.; Seok, C. GalaxyGPCRloop: Template-Based and Ab

Initio Structure Sampling of the Extracellular Loops of G-Protein-Coupled

 189

Receptors. J. Chem. Inf. Model. 2018, 58 (6), 1234–1243.

(54) Barozet, A.; Chacón, P.; Cortés, J. Current Approaches to Flexible Loop

Modeling. Curr. Res. Struct. Biol. 2021, 3, 187–191.

(55) Fleishman, S. J.; Leaver-Fay, A.; Corn, J. E.; Strauch, E.-M.; Khare, S. D.; Koga,

N.; Ashworth, J.; Murphy, P.; Richter, F.; Lemmon, G. RosettaScripts: A Scripting

Language Interface to the Rosetta Macromolecular Modeling Suite. PLoS One

2011, 6 (6), e20161.

(56) Molecular Operating Environment (MOE), 2019.01. Chemical Computing Group

ULC: 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7,

2019.

(57) Kolodny, R.; Guibas, L.; Levitt, M.; Koehl, P. Inverse Kinematics in Biology: The

Protein Loop Closure Problem. Int. J. Rob. Res. 2005, 24 (2–3), 151–163.

(58) Pache, R. A. KIC with Fragments. July 2014.

(59) Szwabowski, G. L.; Castleman, P. N.; Sears, C. K.; Wink, L. H.; Cole, J. A.;

Baker, D. L.; Parrill, A. L. Benchmarking GPCR Homology Model Template

Selection in Combination with de Novo Loop Generation. J. Comput. Aided. Mol.

Des. 2020, 1–18.

(60) Lavecchia, A. Machine-Learning Approaches in Drug Discovery: Methods and

Applications. Drug Discov. Today 2015, 20 (3), 318–331.

(61) Cereto-Massagué, A.; Ojeda, M. J.; Valls, C.; Mulero, M.; Garcia-Vallvé, S.;

Pujadas, G. Molecular Fingerprint Similarity Search in Virtual Screening. Methods

2015, 71, 58–63.

(62) Sheridan, R. P.; Kearsley, S. K. Why Do We Need so Many Chemical Similarity

 190

Search Methods? Drug Discov. Today 2002, 7 (17), 903–911.

(63) Stumpfe, D.; Bajorath, J. Similarity Searching. Wiley Interdiscip. Rev. Comput.

Mol. Sci. 2011, 1 (2), 260–282.

(64) Muegge, I.; Mukherjee, P. An Overview of Molecular Fingerprint Similarity

Search in Virtual Screening. Expert Opin. Drug Discov. 2016, 11 (2), 137–148.

(65) Keys, M. S. Accelrys: San Diego. CA, USA 2011.

(66) Capecchi, A.; Probst, D.; Reymond, J.-L. One Molecular Fingerprint to Rule Them

All: Drugs, Biomolecules, and the Metabolome. J. Cheminform. 2020, 12 (1), 1–

15.

(67) Nikolova, N.; Jaworska, J. Approaches to Measure Chemical Similarity–a Review.

QSAR Comb. Sci. 2003, 22 (9‐10), 1006–1026.

(68) Dudek, A. Z.; Arodz, T.; Gálvez, J. Computational Methods in Developing

Quantitative Structure-Activity Relationships (QSAR): A Review. Comb. Chem.

High Throughput Screen. 2006, 9 (3), 213–228.

(69) Bajusz, D.; Rácz, A.; Héberger, K. Why Is Tanimoto Index an Appropriate Choice

for Fingerprint-Based Similarity Calculations? J. Cheminform. 2015, 7 (1), 1–13.

(70) Todeschini, R.; Consonni, V.; Xiang, H.; Holliday, J.; Buscema, M.; Willett, P.

Similarity Coefficients for Binary Chemoinformatics Data: Overview and

Extended Comparison Using Simulated and Real Data Sets. J. Chem. Inf. Model.

2012, 52 (11), 2884–2901.

(71) Holliday, J. D.; Hu, C. Y.; Willett, P. Grouping of Coefficients for the Calculation

of Inter-Molecular Similarity and Dissimilarity Using 2D Fragment Bit-Strings.

Comb. Chem. High Throughput Screen. 2002, 5 (2), 155–166.

 191

(72) Chen, X.; Reynolds, C. H. Performance of Similarity Measures in 2D Fragment-

Based Similarity Searching: Comparison of Structural Descriptors and Similarity

Coefficients. J. Chem. Inf. Comput. Sci. 2002, 42 (6), 1407–1414.

(73) Levit, A.; Nowak, S.; Peters, M.; Wiener, A.; Meyerhof, W.; Behrens, M.; Niv, M.

Y. The Bitter Pill: Clinical Drugs That Activate the Human Bitter Taste Receptor

TAS2R14. FASEB J. 2014, 28 (3), 1181–1197.

(74) Gianella-Borradori, M.; Christou, I.; Bataille, C. J. R.; Cross, R. L.; Wynne, G. M.;

Greaves, D. R.; Russell, A. J. Ligand-Based Virtual Screening Identifies a Family

of Selective Cannabinoid Receptor 2 Agonists. Bioorg. Med. Chem. 2015, 23 (1),

241–263.

(75) Zhang, X.; Cross, J. B.; Romero, J.; Heifetz, A.; Humphries, E.; Hall, K.; Wu, Y.;

Stucka, S.; Zhang, J.; Chandonnet, H. In-Silico Guided Discovery of Novel CCR9

Antagonists. J. Comput. Aided. Mol. Des. 2018, 32 (4), 573–582.

(76) Ehrlich, P. Über Den Jetzigen Stand Der Chemotherapie. Berichte der Dtsch.

Chem. Gesellschaft 1909, 42 (1), 17–47.

(77) KIER, L. B. Molecular Orbital Calculation of Preferred Conformations of

Acetylcholine, Muscarine, and Muscarone. Mol. Pharmacol. 1967, 3 (5), 487–494.

(78) Güner, O. F.; Bowen, J. P. Setting the Record Straight: The Origin of the

Pharmacophore Concept. J. Chem. Inf. Model. 2014, 54 (5), 1269–1283.

(79) Wermuth, C.-G.; Ganellin, C. R.; Lindberg, P.; Mitscher, L. A. Glossary of Terms

Used in Medicinal Chemistry (IUPAC Recommendations 1998). Pure Appl. Chem.

Pure Appl. 1998, 70 (5), 1129–1143.

(80) Gund, P. Evolution of the Pharmacophore Concept in Pharmaceutical Research. In

 192

Pharmacophore Perception, Development, and Use in Drug Design; Güner, O. F.,

Ed.; Internat’l University Line, 2000; pp 5–11.

(81) Schaller, D.; Šribar, D.; Noonan, T.; Deng, L.; Nguyen, T. N.; Pach, S.; Machalz,

D.; Bermudez, M.; Wolber, G. Next Generation 3D Pharmacophore Modeling.

Wiley Interdiscip. Rev. Comput. Mol. Sci. 2020, e1468.

(82) Li, H.; Sutter, J.; Hoffmann, R. HypoGen: An Automated System for Generating

3D Predictive Pharmacophore Models. In Pharmacophore Perception,

Development, and Use in Drug Design; Güner, O. F., Ed.; Internat’l University

Line, 2000; pp 173–188.

(83) Clement, O. O.; Mehl, A. T. HipHop: Pharmacophores Based on Multiple

Common Feature Alignments. In Pharmacophore Perception, Development, and

Use in Drug Design; Güner, O. F., Ed.; Internat’l University Line, 2000; pp 71–83.

(84) Guner, O. F.; Bowen, J. P. Pharmacophore Modeling for ADME. Curr. Top. Med.

Chem. 2013, 13 (11), 1327–1342.

(85) Seidel, T.; Bryant, S. D.; Ibis, G.; Poli, G.; Langer, T. 3D Pharmacophore

Modeling Techniques in Computer-Aided Molecular Design Using LigandScout.

Tutorials Chemoinform 2017, 281, 279–309.

(86) Braga, R. C.; Andrade, C. H. Assessing the Performance of 3D Pharmacophore

Models in Virtual Screening: How Good Are They? Curr. Top. Med. Chem. 2013,

13 (9), 1127–1138.

(87) Seidel, T.; Ibis, G.; Bendix, F.; Wolber, G. Strategies for 3D Pharmacophore-

Based Virtual Screening. Drug Discov. Today Technol. 2010, 7 (4), e221–e228.

(88) Wolber, G.; Langer, T. LigandScout: 3-D Pharmacophores Derived from Protein-

 193

Bound Ligands and Their Use as Virtual Screening Filters. J. Chem. Inf. Model.

2005, 45 (1), 160–169.

(89) Hecker, E. A.; Duraiswami, C.; Andrea, T. A.; Diller, D. J. Use of Catalyst

Pharmacophore Models for Screening of Large Combinatorial Libraries. J. Chem.

Inf. Comput. Sci. 2002, 42 (5), 1204–1211.

(90) Toba, S.; Srinivasan, J.; Maynard, A. J.; Sutter, J. Using Pharmacophore Models to

Gain Insight into Structural Binding and Virtual Screening: An Application Study

with CDK2 and Human DHFR. J. Chem. Inf. Model. 2006, 46 (2), 728–735.

(91) Vadivelan, S.; Sinha, B. N.; Irudayam, S. J.; Jagarlapudi, S. A. R. P. Virtual

Screening Studies to Design Potent CDK2-Cyclin A Inhibitors. J. Chem. Inf.

Model. 2007, 47 (4), 1526–1535.

(92) Bunin, B. A.; Siesel, B.; Morales, G. A.; Bajorath, J. Practice and Products.

Chemoinformatics Theory, Pract. Prod. 2007, 51–269.

(93) Langer, T.; Hoffmann, R. D. Pharmacophore Modelling: Applications in Drug

Discovery. Expert Opin. Drug Discov. 2006, 1 (3), 261–267.

(94) Wang, H.; Duffy, R. A.; Boykow, G. C.; Chackalamannil, S.; Madison, V. S.

Identification of Novel Cannabinoid CB1 Receptor Antagonists by Using Virtual

Screening with a Pharmacophore Model. J. Med. Chem. 2008, 51 (8), 2439–2446.

(95) Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and

Computational Approaches to Estimate Solubility and Permeability in Drug

Discovery and Development Settings. Adv. Drug Deliv. Rev. 1997, 23 (1–3), 3–25.

(96) Wang, M.; Hou, S.; Liu, Y.; Li, D.; Lin, J. Identification of Novel Antagonists

Targeting Cannabinoid Receptor 2 Using a Multi-Step Virtual Screening Strategy.

 194

Molecules 2021, 26 (21), 6679.

(97) Dixon, S. L.; Smondyrev, A. M.; Knoll, E. H.; Rao, S. N.; Shaw, D. E.; Friesner,

R. A. PHASE: A New Engine for Pharmacophore Perception, 3D QSAR Model

Development, and 3D Database Screening: 1. Methodology and Preliminary

Results. J. Comput. Aided. Mol. Des. 2006, 20 (10), 647–671.

(98) López-Rodrı́guez, M. L.; Porras, E.; Benhamú, B.; Ramos, J. A.; Morcillo, M. J.;

Lavandera, J. L. First Pharmacophoric Hypothesis for 5-HT7 Antagonism. Bioorg.

Med. Chem. Lett. 2000, 10 (10), 1097–1100.

(99) Barbaro, R.; Betti, L.; Botta, M.; Corelli, F.; Giannaccini, G.; Maccari, L.; Manetti,

F.; Strappaghetti, G.; Corsano, S. Synthesis, Biological Evaluation, and

Pharmacophore Generation of New Pyridazinone Derivatives with Affinity toward

Α1-and Α2-Adrenoceptors. J. Med. Chem. 2001, 44 (13), 2118–2132.

(100) Guner, O.; Clement, O.; Kurogi, Y. Pharmacophore Modeling and Three

Dimensional Database Searching for Drug Design Using Catalyst: Recent

Advances. Curr. Med. Chem. 2004, 11 (22), 2991–3005.

(101) Erlanson, D. A. Introduction to Fragment-Based Drug Discovery. Top. Curr.

Chem. 2012, 317, 1–32.

(102) Congreve, M.; Chessari, G.; Tisi, D.; Woodhead, A. J. Recent Developments in

Fragment-Based Drug Discovery. J. Med. Chem. 2008, 51 (13), 3661–3680.

(103) Murray, C. W.; Verdonk, M. L.; Rees, D. C. Experiences in Fragment-Based Drug

Discovery. Trends Pharmacol. Sci. 2012, 33 (5), 224–232.

(104) Loving, K.; Alberts, I.; Sherman, W. Computational Approaches for Fragment-

Based and de Novo Design. Curr. Top. Med. Chem. 2010, 10 (1), 14–32.

 195

(105) Kumar, A.; Voet, A.; Zhang, K. Y. J. Fragment Based Drug Design: From

Experimental to Computational Approaches. Curr. Med. Chem. 2012, 19 (30),

5128–5147.

(106) Zoete, V.; Grosdidier, A.; Michielin, O. Docking, Virtual High Throughput

Screening and in Silico Fragment‐based Drug Design. J. Cell. Mol. Med. 2009, 13

(2), 238–248.

(107) Sheng, C.; Zhang, W. Fragment Informatics and Computational Fragment‐based

Drug Design: An Overview and Update. Med. Res. Rev. 2013, 33 (3), 554–598.

(108) Goodford, P. J. A Computational Procedure for Determining Energetically

Favorable Binding Sites on Biologically Important Macromolecules. J. Med.

Chem. 1985, 28 (7), 849–857.

(109) Miranker, A.; Karplus, M. Functionality Maps of Binding Sites: A Multiple Copy

Simultaneous Search Method. Proteins Struct. Funct. Bioinforma. 1991, 11 (1),

29–34.

(110) De Graaf, C.; Kooistra, A. J.; Vischer, H. F.; Katritch, V.; Kuijer, M.; Shiroishi,

M.; Iwata, S.; Shimamura, T.; Stevens, R. C.; De Esch, I. J. P. Crystal Structure-

Based Virtual Screening for Fragment-like Ligands of the Human Histamine H1

Receptor. J. Med. Chem. 2011, 54 (23), 8195–8206.

(111) Vass, M.; Schmidt, É.; Horti, F.; Keserű, G. M. Virtual Fragment Screening on

GPCRs: A Case Study on Dopamine D3 and Histamine H4 Receptors. Eur. J.

Med. Chem. 2014, 77, 38–46.

(112) Edelsbrunner, H.; Facello, M.; Fu, P.; Liang, J. Measuring Proteins and Voids in

Proteins; 1995; Vol. 5, pp 256–264 vol.5.

 196

https://doi.org/10.1109/HICSS.1995.375331.

(113) Sanders, M. P. A.; McGuire, R.; Roumen, L.; de Esch, I. J. P.; de Vlieg, J.; Klomp,

J. P. G.; de Graaf, C. From the Protein’s Perspective: The Benefits and Challenges

of Protein Structure-Based Pharmacophore Modeling. Medchemcomm 2012, 3 (1),

28–38.

(114) Klabunde, T.; Giegerich, C.; Evers, A. Sequence-Derived Three-Dimensional

Pharmacophore Models for G-Protein-Coupled Receptors and Their Application in

Virtual Screening. J. Med. Chem. 2009, 52 (9), 2923–2932.

(115) Sanders, M. P. A.; Verhoeven, S.; de Graaf, C.; Roumen, L.; Vroling, B.; Nabuurs,

S. B.; de Vlieg, J.; Klomp, J. P. G. Snooker: A Structure-Based Pharmacophore

Generation Tool Applied to Class A GPCRs. J. Chem. Inf. Model. 2011, 51 (9),

2277–2292.

(116) Dai, S.; Li, G.; Gao, Y.; Huang, J. Pharmacophore‐Map‐Pick: A Method to

Generate Pharmacophore Models for All Human GPCRs. Mol. Inform. 2016, 35

(2), 81–91.

(117) Jeong, P.; Kim, S.; Li, Q.; Oh, S.; Son, S.; Chen, G.; Tan, H.; Kim, S.; Park, J.;

Park, K. D. Discovery of Novel Biased Opioid Receptor Ligands through

Structure‐Based Pharmacophore Virtual Screening and Experiment.

ChemMedChem 2019, 14 (20), 1783–1794.

(118) Poli, G.; Dimmito, M. P.; Mollica, A.; Zengin, G.; Benyhe, S.; Zador, F.;

Stefanucci, A. Discovery of Novel Μ-Opioid Receptor Inverse Agonist from a

Combinatorial Library of Tetrapeptides through Structure-Based Virtual

Screening. Molecules 2019, 24 (21), 3872.

 197

(119) Li, Q.; Cheng, T.; Wang, Y.; Bryant, S. H. PubChem as a Public Resource for

Drug Discovery. Drug Discov. Today 2010, 15 (23–24), 1052–1057.

(120) Pence, H. E.; Williams, A. ChemSpider: An Online Chemical Information

Resource. ACS Publications 2010.

(121) Baell, J. B.; Holloway, G. A. New Substructure Filters for Removal of Pan Assay

Interference Compounds (PAINS) from Screening Libraries and for Their

Exclusion in Bioassays. J. Med. Chem. 2010, 53 (7), 2719–2740.

(122) Schwab, C. H. Conformations and 3D Pharmacophore Searching. Drug Discov.

Today Technol. 2010, 7 (4), e245–e253.

(123) Castleman, P.; Szwabowski, G.; Bowman, D.; Cole, J.; Parrill, A. L.; Baker, D. L.

Ligand-Based G Protein Coupled Receptor Pharmacophore Modeling: Assessing

the Role of Ligand Function in Model Development. J. Mol. Graph. Model. 2022,

111, 108107.

(124) Griewel, A.; Kayser, O.; Schlosser, J.; Rarey, M. Conformational Sampling for

Large-Scale Virtual Screening: Accuracy versus Ensemble Size. J. Chem. Inf.

Model. 2009, 49 (10), 2303–2311.

(125) Cappel, D.; Dixon, S. L.; Sherman, W.; Duan, J. Exploring Conformational Search

Protocols for Ligand-Based Virtual Screening and 3-D QSAR Modeling. J.

Comput. Aided. Mol. Des. 2015, 29 (2), 165–182.

(126) Sastry, G. M.; Dixon, S. L.; Sherman, W. Rapid Shape-Based Ligand Alignment

and Virtual Screening Method Based on Atom/Feature-Pair Similarities and

Volume Overlap Scoring. J. Chem. Inf. Model. 2011, 51 (10), 2455–2466.

(127) Hawkins, P. C. D. Conformation Generation: The State of the Art. J. Chem. Inf.

 198

Model. 2017, 57 (8), 1747–1756.

(128) Chen, I.-J.; Foloppe, N. Conformational Sampling of Druglike Molecules with

MOE and Catalyst: Implications for Pharmacophore Modeling and Virtual

Screening. https://doi.org/10.1021/ci800130k.

(129) Waszkowycz, B.; Clark, D. E.; Gancia, E. Outstanding Challenges in Protein–

Ligand Docking and Structure‐based Virtual Screening. Wiley Interdiscip. Rev.

Comput. Mol. Sci. 2011, 1 (2), 229–259.

(130) Rarey, M.; Kramer, B.; Lengauer, T. The Particle Concept: Placing Discrete Water

Molecules during Protein‐ligand Docking Predictions. Proteins Struct. Funct.

Bioinforma. 1999, 34 (1), 17–28.

(131) Sousa, S. F.; Fernandes, P. A.; Ramos, M. J. Protein–Ligand Docking: Current

Status and Future Challenges. Proteins Struct. Funct. Bioinforma. 2006, 65 (1),

15–26.

(132) Pagadala, N. S.; Syed, K.; Tuszynski, J. Software for Molecular Docking: A

Review. Biophys. Rev. 2017, 9 (2), 91–102.

(133) Yadava, U. Search Algorithms and Scoring Methods in Protein-Ligand Docking.

Endocrinol Int J 2018, 6 (6), 359–367.

(134) Wang, C.; Schueler‐Furman, O.; Baker, D. Improved Side‐chain Modeling for

Protein–Protein Docking. Protein Sci. 2005, 14 (5), 1328–1339.

(135) Ortiz, A. R.; Pisabarro, M. T.; Gago, F.; Wade, R. C. Prediction of Drug Binding

Affinities by Comparative Binding Energy Analysis. J. Med. Chem. 1995, 38 (14),

2681–2691.

(136) Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R. Development and

 199

Validation of a Genetic Algorithm for Flexible Docking. J. Mol. Biol. 1997, 267

(3), 727–748.

(137) Yin, S.; Biedermannova, L.; Vondrasek, J.; Dokholyan, N. V. MedusaScore: An

Accurate Force Field-Based Scoring Function for Virtual Drug Screening. J.

Chem. Inf. Model. 2008, 48 (8), 1656–1662.

(138) Liu, J.; Wang, R. Classification of Current Scoring Functions. J. Chem. Inf. Model.

2015, 55 (3), 475–482.

(139) Friesner, R. A.; Banks, J. L.; Murphy, R. B.; Halgren, T. A.; Klicic, J. J.; Mainz,

D. T.; Repasky, M. P.; Knoll, E. H.; Shelley, M.; Perry, J. K. Glide: A New

Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of

Docking Accuracy. J. Med. Chem. 2004, 47 (7), 1739–1749.

(140) Böhm, H.-J. Prediction of Binding Constants of Protein Ligands: A Fast Method

for the Prioritization of Hits Obtained from de Novo Design or 3D Database

Search Programs. J. Comput. Aided. Mol. Des. 1998, 12 (4), 309.

(141) Eldridge, M. D.; Murray, C. W.; Auton, T. R.; Paolini, G. V; Mee, R. P. Empirical

Scoring Functions: I. The Development of a Fast Empirical Scoring Function to

Estimate the Binding Affinity of Ligands in Receptor Complexes. J. Comput.

Aided. Mol. Des. 1997, 11 (5), 425–445.

(142) Gohlke, H.; Hendlich, M.; Klebe, G. Knowledge-Based Scoring Function to

Predict Protein-Ligand Interactions. J. Mol. Biol. 2000, 295 (2), 337–356.

(143) DeWitte, R. S.; Shakhnovich, E. I. SMoG: De Novo Design Method Based on

Simple, Fast, and Accurate Free Energy Estimates. 1. Methodology and

Supporting Evidence. J. Am. Chem. Soc. 1996, 118 (47), 11733–11744.

 200

(144) Muegge, I.; Martin, Y. C. A General and Fast Scoring Function for Protein−

Ligand Interactions: A Simplified Potential Approach. J. Med. Chem. 1999, 42 (5),

791–804.

(145) Wójcikowski, M.; Ballester, P. J.; Siedlecki, P. Performance of Machine-Learning

Scoring Functions in Structure-Based Virtual Screening. Sci. Rep. 2017, 7 (1), 1–

10.

(146) Li, H.; Sze, K.; Lu, G.; Ballester, P. J. Machine‐learning Scoring Functions for

Structure‐based Virtual Screening. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2021,

11 (1), e1478.

(147) Wang, R.; Lai, L.; Wang, S. Further Development and Validation of Empirical

Scoring Functions for Structure-Based Binding Affinity Prediction. J. Comput.

Aided. Mol. Des. 2002, 16 (1), 11–26.

(148) Li, L.; Wang, B.; Meroueh, S. O. Support Vector Regression Scoring of Receptor–

Ligand Complexes for Rank-Ordering and Virtual Screening of Chemical

Libraries. J. Chem. Inf. Model. 2011, 51 (9), 2132–2138.

(149) Ding, B.; Wang, J.; Li, N.; Wang, W. Characterization of Small Molecule Binding.

I. Accurate Identification of Strong Inhibitors in Virtual Screening. J. Chem. Inf.

Model. 2013, 53 (1), 114–122.

(150) Shen, C.; Hu, Y.; Wang, Z.; Zhang, X.; Pang, J.; Wang, G.; Zhong, H.; Xu, L.;

Cao, D.; Hou, T. Beware of the Generic Machine Learning-Based Scoring

Functions in Structure-Based Virtual Screening. Brief. Bioinform. 2021, 22 (3),

bbaa070.

(151) Shen, C.; Weng, G.; Zhang, X.; Leung, E. L.-H.; Yao, X.; Pang, J.; Chai, X.; Li,

 201

D.; Wang, E.; Cao, D. Accuracy or Novelty: What Can We Gain from Target-

Specific Machine-Learning-Based Scoring Functions in Virtual Screening? Brief.

Bioinform. 2021, 22 (5), bbaa410.

(152) Gabel, J.; Desaphy, J.; Rognan, D. Beware of Machine Learning-Based Scoring

Functions On the Danger of Developing Black Boxes. J. Chem. Inf. Model.

2014, 54 (10), 2807–2815.

(153) Ballester, P. J.; Mitchell, J. B. O. A Machine Learning Approach to Predicting

Protein–Ligand Binding Affinity with Applications to Molecular Docking.

Bioinformatics 2010, 26 (9), 1169–1175.

(154) Durrant, J. D.; McCammon, J. A. NNScore 2.0: A Neural-Network Receptor–

Ligand Scoring Function. J. Chem. Inf. Model. 2011, 51 (11), 2897–2903.

(155) Sotriffer, C. A.; Sanschagrin, P.; Matter, H.; Klebe, G. SFCscore: Scoring

Functions for Affinity Prediction of Protein–Ligand Complexes. Proteins Struct.

Funct. Bioinforma. 2008, 73 (2), 395–419.

(156) Ballesteros, J. A.; Weinstein, H. Integrated Methods for the Construction of Three-

Dimensional Models and Computational Probing of Structure-Function Relations

in G Protein-Coupled Receptors; Methods in neurosciences; Elsevier, 1995; Vol.

25, pp 366–428.

(157) Fredriksson, R.; Lagerström, M. C.; Lundin, L.-G.; Schiöth, H. B. The G-Protein-

Coupled Receptors in the Human Genome Form Five Main Families. Phylogenetic

Analysis, Paralogon Groups, and Fingerprints. Mol. Pharmacol. 2003, 63 (6),

1256–1272.

(158) Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.;

 202

Shindyalov, I. N.; Bourne, P. E. The Protein Data Bank. Nucleic Acids Res. 2000,

28 (1), 235–242. https://doi.org/10.1093/nar/28.1.235.

(159) Xiang, Z. Advances in Homology Protein Structure Modeling. Curr. Protein Pept.

Sci. 2006, 7 (3), 217–227.

(160) Nygaard, R.; Zou, Y.; Dror, R. O.; Mildorf, T. J.; Arlow, D. H.; Manglik, A.; Pan,

A. C.; Liu, C. W.; Fung, J. J.; Bokoch, M. P. The Dynamic Process of Β2-

Adrenergic Receptor Activation. Cell 2013, 152 (3), 532–542.

(161) Wifling, D.; Bernhardt, G.; Dove, S.; Buschauer, A. The Extracellular Loop 2

(ECL2) of the Human Histamine H4 Receptor Substantially Contributes to Ligand

Binding and Constitutive Activity. PLoS One 2015, 10 (1), e0117185.

(162) Yarnitzky, T.; Levit, A.; Niv, M. Y. Homology Modeling of G-Protein-Coupled

Receptors with X-Ray Structures on the Rise. Curr Opin Drug Discov Devel 2010,

13 (3), 317–325.

(163) Zhang, H.; Han, G. W.; Batyuk, A.; Ishchenko, A.; White, K. L.; Patel, N.;

Sadybekov, A.; Zamlynny, B.; Rudd, M. T.; Hollenstein, K. Structural Basis for

Selectivity and Diversity in Angiotensin II Receptors. Nature 2017, 544 (7650),

327.

(164) Wang, L.; Yao, D.; Deepak, R. N. V. K.; Liu, H.; Xiao, Q.; Fan, H.; Gong, W.;

Wei, Z.; Zhang, C. Structures of the Human PGD2 Receptor CRTH2 Reveal Novel

Mechanisms for Ligand Recognition. Mol. Cell 2018, 72 (1), 48-59. e4.

(165) Wu, B.; Chien, E. Y. T.; Mol, C. D.; Fenalti, G.; Liu, W.; Katritch, V.; Abagyan,

R.; Brooun, A.; Wells, P.; Bi, F. C.; Hamel, D. J.; Kuhn, P.; Handel, T. M.;

Cherezov, V.; Stevens, R. C. Structures of the CXCR4 Chemokine GPCR with

 203

Small-Molecule and Cyclic Peptide Antagonists. Science 2010, 330 (6007), 1066–

1071. https://doi.org/10.1126/science.1194396.

(166) Lu, J.; Byrne, N.; Wang, J.; Bricogne, G.; Brown, F. K.; Chobanian, H. R.;

Colletti, S. L.; Salvo, J. Di; Thomas-Fowlkes, B.; Guo, Y. Structural Basis for the

Cooperative Allosteric Activation of the Free Fatty Acid Receptor GPR40. Nat.

Struct. Mol. Biol. 2017, 24 (7), 570.

(167) Shimamura, T.; Shiroishi, M.; Weyand, S.; Tsujimoto, H.; Winter, G.; Katritch,

V.; Abagyan, R.; Cherezov, V.; Liu, W.; Han, G. W. Structure of the Human

Histamine H 1 Receptor Complex with Doxepin. Nature 2011, 475 (7354), 65–70.

(168) Thal, D. M.; Sun, B.; Feng, D.; Nawaratne, V.; Leach, K.; Felder, C. C.; Bures, M.

G.; Evans, D. A.; Weis, W. I.; Bachhawat, P. Crystal Structures of the M1 and M4

Muscarinic Acetylcholine Receptors. Nature 2016, 531 (7594), 335–340.

(169) Thompson, A. A.; Liu, W.; Chun, E.; Katritch, V.; Wu, H.; Vardy, E.; Huang, X.-

P.; Trapella, C.; Guerrini, R.; Calo, G. Structure of the Nociceptin/Orphanin FQ

Receptor in Complex with a Peptide Mimetic. Nature 2012, 485 (7398), 395.

(170) Wu, H.; Wacker, D.; Mileni, M.; Katritch, V.; Han, G. W.; Vardy, E.; Liu, W.;

Thompson, A. A.; Huang, X.-P.; Carroll, F. I. Structure of the Human κ-Opioid

Receptor in Complex with JDTic. Nature 2012, 485 (7398), 327.

(171) Zhang, C.; Srinivasan, Y.; Arlow, D. H.; Fung, J. J.; Palmer, D.; Zheng, Y.; Green,

H. F.; Pandey, A.; Dror, R. O.; Shaw, D. E. High-Resolution Crystal Structure of

Human Protease-Activated Receptor 1. Nature 2012, 492 (7429), 387.

(172) Zhang, J.; Zhang, K.; Gao, Z.-G.; Paoletta, S.; Zhang, D.; Han, G. W.; Li, T.; Ma,

L.; Zhang, W.; Müller, C. E. Agonist-Bound Structure of the Human P2Y 12

 204

Receptor. Nature 2014, 509 (7498), 119.

(173) Wojciechowski, M.; Lesyng, B. Generalized Born Model: Analysis, Refinement,

and Applications to Proteins. J. Phys. Chem. B 2004, 108 (47), 18368–18376.

(174) Zhang, C.; Vasmatzis, G.; Cornette, J. L.; DeLisi, C. Determination of Atomic

Desolvation Energies from the Structures of Crystallized Proteins. J. Mol. Biol.

1997, 267 (3), 707–726.

(175) Lemmon, G.; Meiler, J. Rosetta Ligand Docking with Flexible XML Protocols;

Computational Drug Discovery and Design; Springer, 2012; pp 143–155.

(176) Heydenreich, F. M.; Vuckovic, Z.; Matkovic, M.; Veprintsev, D. B. Stabilization

of G Protein-Coupled Receptors by Point Mutations. Front Pharmacol 2015, 6, 82.

(177) Stein, A.; Kortemme, T. Improvements to Robotics-Inspired Conformational

Sampling in Rosetta. PLoS One 2013, 8 (5), e63090.

(178) Kim, D. E.; Chivian, D.; Baker, D. Protein Structure Prediction and Analysis

Using the Robetta Server. Nucleic Acids Res. 2004, 32 (suppl_2), W526–W531.

(179) Liu, Y.; Smith, C.; Lewis, S. Constraint File. August 2015.

(180) Case, D. A.; Darden, T. A.; Cheatham, T. E.; Simmerling, C. L.; Wang, J.; Duke,

R. E.; Luo, R.; Crowley, M.; Walker, R. C.; Zhang, W. Amber 10.; University of

California, 2008.

(181) Piovesan, D.; Minervini, G.; Tosatto, S. C. E. The RING 2.0 Web Server for High

Quality Residue Interaction Networks. Nucleic Acids Res. 2016, 44 (W1), W367–

W374.

(182) Hanson, M. A.; Stevens, R. C. Discovery of New GPCR Biology: One Receptor

Structure at a Time. Structure 2009, 17 (1), 8–14.

 205

(183) Wacker, D.; Stevens, R. C.; Roth, B. L. How Ligands Illuminate GPCR Molecular

Pharmacology. Cell. Cell Press July 27, 2017, pp 414–427.

https://doi.org/10.1016/j.cell.2017.07.009.

(184) Laschet, C.; Dupuis, N.; Hanson, J. The G Protein-Coupled Receptors

Deorphanization Landscape. Biochem. Pharmacol. 2018, 153, 62–74.

(185) Davenport, A. P.; Scully, C. C. G.; de Graaf, C.; Brown, A. J. H.; Maguire, J. J.

Advances in Therapeutic Peptides Targeting G Protein-Coupled Receptors. Nat.

Rev. Drug Discov. 2020, 1–25.

(186) Sum, C. S.; Murphy, B. J.; Li, Z.; Wang, T.; Zhang, L.; Cvijic, M. E.

Pharmacological Characterization of GPCR Agonists, Antagonists, Allosteric

Modulators and Biased Ligands from HTS Hits to Lead Optimization; Assay

Guidance Manual [Internet]; Eli Lilly & Company and the National Center for

Advancing Translational Sciences, 2019.

(187) Joseph‐McCarthy, D.; Alvarez, J. C. Automated Generation of MCSS‐derived

Pharmacophoric DOCK Site Points for Searching Multiconformation Databases.

Proteins Struct. Funct. Bioinforma. 2003, 51 (2), 189–202.

(188) Fidom, K.; Isberg, V.; Hauser, A. S.; Mordalski, S.; Lehto, T.; Bojarski, A. J.;

Gloriam, D. E. A New Crystal Structure Fragment-Based Pharmacophore Method

for G Protein-Coupled Receptors. Methods 2015, 71, 104–112.

(189) Jiang, S.; Feher, M.; Williams, C.; Cole, B.; Shaw, D. E. AutoPH4: An Automated

Method for Generating Pharmacophore Models from Protein Binding Pockets. J.

Chem. Inf. Model. 2020, 60 (9), 4326–4338.

(190) Armstrong, J. F.; Faccenda, E.; Harding, S. D.; Pawson, A. J.; Southan, C.;

 206

Sharman, J. L.; Campo, B.; Cavanagh, D. R.; Alexander, S. P. H.; Davenport, A.

P. The IUPHAR/BPS Guide to PHARMACOLOGY in 2020: Extending

Immunopharmacology Content and Introducing the IUPHAR/MMV Guide to

MALARIA PHARMACOLOGY. Nucleic Acids Res. 2020, 48 (D1), D1006–

D1021.

(191) Benson, D. A.; Clark, K.; Karsch-Mizrachi, I.; Lipman, D. J.; Ostell, J.; Sayers, E.

W. GenBank. Nucleic Acids Res. 2015, 43 (Database issue), D30.

(192) Liu, W.; Wacker, D.; Gati, C.; Han, G. W.; James, D.; Wang, D.; Nelson, G.;

Weierstall, U.; Katritch, V.; Barty, A. Serial Femtosecond Crystallography of G

Protein–Coupled Receptors. Science (80-.). 2013, 342 (6165), 1521–1524.

(193) Peng, Y.; McCorvy, J. D.; Harpsøe, K.; Lansu, K.; Yuan, S.; Popov, P.; Qu, L.; Pu,

M.; Che, T.; Nikolajsen, L. F. 5-HT2C Receptor Structures Reveal the Structural

Basis of GPCR Polypharmacology. Cell 2018, 172 (4), 719-730. e14.

(194) Weinert, T.; Olieric, N.; Cheng, R.; Brünle, S.; James, D.; Ozerov, D.; Gashi, D.;

Vera, L.; Marsh, M.; Jaeger, K. Serial Millisecond Crystallography for Routine

Room-Temperature Structure Determination at Synchrotrons. Nat. Commun. 2017,

8 (1), 1–11.

(195) Glukhova, A.; Thal, D. M.; Nguyen, A. T.; Vecchio, E. A.; Jörg, M.; Scammells,

P. J.; May, L. T.; Sexton, P. M.; Christopoulos, A. Structure of the Adenosine A1

Receptor Reveals the Basis for Subtype Selectivity. Cell 2017, 168 (5), 867-877.

e13.

(196) Cherezov, V.; Rosenbaum, D. M.; Hanson, M. A.; Rasmussen, S. G. F.; Thian, F.

S.; Kobilka, T. S.; Choi, H.-J.; Kuhn, P.; Weis, W. I.; Kobilka, B. K. High-

 207

Resolution Crystal Structure of an Engineered Human Β2-Adrenergic G Protein–

Coupled Receptor. Science (80-.). 2007, 318 (5854), 1258–1265.

(197) Fenalti, G.; Giguere, P. M.; Katritch, V.; Huang, X.-P.; Thompson, A. A.;

Cherezov, V.; Roth, B. L.; Stevens, R. C. Molecular Control of δ-Opioid Receptor

Signalling. Nature 2014, 506 (7487), 191–196.

(198) Wu, H.; Wacker, D.; Mileni, M.; Katritch, V.; Han, G. W.; Vardy, E.; Liu, W.;

Thompson, A. A.; Huang, X.-P.; Carroll, F. I. Structure of the Human κ-Opioid

Receptor in Complex with JDTic. Nature 2012, 485 (7398), 327–332.

(199) Huang, W.; Manglik, A.; Venkatakrishnan, A. J.; Laeremans, T.; Feinberg, E. N.;

Sanborn, A. L.; Kato, H. E.; Livingston, K. E.; Thorsen, T. S.; Kling, R. C.

Structural Insights into Μ-Opioid Receptor Activation. Nature 2015, 524 (7565),

315–321.

(200) Zhu, T.; Cao, S.; Su, P.-C.; Patel, R.; Shah, D.; Chokshi, H. B.; Szukala, R.;

Johnson, M. E.; Hevener, K. E. Hit Identification and Optimization in Virtual

Screening: Practical Recommendations Based on a Critical Literature Analysis:

Miniperspective. J. Med. Chem. 2013, 56 (17), 6560–6572.

(201) Lipkin, M. J.; Stevens, A. P.; Livingstone, D. J.; Harris, C. J. How Large Does a

Compound Screening Collection Need to Be? Comb. Chem. High Throughput

Screen. 2008, 11 (6), 482–493.

(202) Szwabowski, G. L.; Daigle, B. J.; Baker, D. L.; Parrill, A. L. Structure-Based

Pharmacophore Modeling 2. Developing a Novel Framework for Structure-Based

Pharmacophore Model Generation and Selection. J. Mol. Graph. Model. 2022.

(203) Mason, J. S.; Bortolato, A.; Congreve, M.; Marshall, F. H. New Insights from

 208

Structural Biology into the Druggability of G Protein-Coupled Receptors. Trends

Pharmacol. Sci. 2012, 33 (5), 249–260.

https://doi.org/10.1016/J.TIPS.2012.02.005.

(204) Gerber, P. R.; Müller, K. MAB, a Generally Applicable Molecular Force Field for

Structure Modelling in Medicinal Chemistry. J. Comput. Aided. Mol. Des. 1995, 9

(3), 251–268.

(205) Klabunde, T.; Evers, A. GPCR Antitarget Modeling: Pharmacophore Models for

Biogenic Amine Binding GPCRs to Avoid GPCR‐mediated Side Effects.

ChemBioChem 2005, 6 (5), 876–889.

(206) Sriram, K.; Insel, P. A. G Protein-Coupled Receptors as Targets for Approved

Drugs: How Many Targets and How Many Drugs? Mol. Pharmacol. 2018, 93 (4),

251–258.

(207) García-Nafría, J.; Tate, C. G. Structure Determination of GPCRs: Cryo-EM

Compared with X-Ray Crystallography. Biochem. Soc. Trans. 2021, 49 (5), 2345–

2355.

(208) Kuhlman, B.; Bradley, P. Advances in Protein Structure Prediction and Design.

Nat. Rev. Mol. Cell Biol. 2019, 20 (11), 681–697.

(209) Szwabowski, G. L.; Cole, J. A.; Parrill, A. L.; Baker, D. L. Structure-Based

Pharmacophore Modeling 1. Automated Random Pharmacophore Model

Generation. J. Mol. Graph. Model. 2022.

(210) Discovery Studio. Accelrys, Inc.: San Diego, CA, USA.

(211) Gaurav, A.; Gautam, V.; Pereira, S.; Alvarez-Leite, J.; Vetri, F.; Choudhury, M.;

Pelligrino, D.; Sundivakkam, P.; Radhakrishnan, K.; Krieger, A. Structure-Based

 209

Three-Dimensional Pharmacophores as an Alternative to Traditional

Methodologies. J. Receptor. Ligand Channel Res. 2014, 7, 27–38.

(212) Baroni, M.; Cruciani, G.; Sciabola, S.; Perruccio, F.; Mason, J. S. A Common

Reference Framework for Analyzing/Comparing Proteins and Ligands.

Fingerprints for Ligands and Proteins (FLAP): Theory and Application. J. Chem.

Inf. Model. 2007, 47 (2), 279–294.

(213) Sirci, F.; Goracci, L.; Rodríguez, D.; van Muijlwijk-Koezen, J.; Gutiérrez-de-

Terán, H.; Mannhold, R. Ligand-, Structure-and Pharmacophore-Based Molecular

Fingerprints: A Case Study on Adenosine A1, A2A, A2B, and A3 Receptor

Antagonists. J. Comput. Aided. Mol. Des. 2012, 26 (11), 1247–1266.

(214) Soni, R.; Mathai, K. J. An Innovative ‘Cluster-Then-Predict’Approach for

Improved Sentiment Prediction. In Advanced Computing and Communication

Technologies; Springer, 2016; pp 131–140.

(215) Trivedi, S.; Pardos, Z. A.; Heffernan, N. T. The Utility of Clustering in Prediction

Tasks. arXiv Prepr. arXiv1509.06163 2015.

(216) Dubey, A.; Choubey, A. A Systematic Review on K-Means Clustering

Techniques. Int J Sci Res Eng Technol (IJSRET, ISSN 2278–0882) 2017, 6 (6).

(217) Harrell, F. E. Binary Logistic Regression BT - Regression Modeling Strategies:

With Applications to Linear Models, Logistic and Ordinal Regression, and

Survival Analysis; Harrell Frank E., J., Ed.; Springer International Publishing:

Cham, 2015; pp 219–274. https://doi.org/10.1007/978-3-319-19425-7_10.

(218) Jurafsky, D.; Martin, J. H. Logistic Regression. In Speech and Language

Processing; Prentice Hall, 2021.

 210

(219) Yin, W.; Zhou, X. E.; Yang, D.; de Waal, P. W.; Wang, M.; Dai, A.; Cai, X.;

Huang, C.-Y.; Liu, P.; Wang, X. Crystal Structure of the Human 5-HT1B

Serotonin Receptor Bound to an Inverse Agonist. Cell Discov. 2018, 4 (1), 1–13.

(220) Fan, L.; Tan, L.; Chen, Z.; Qi, J.; Nie, F.; Luo, Z.; Cheng, J.; Wang, S. Haloperidol

Bound D 2 Dopamine Receptor Structure Inspired the Discovery of Subtype

Selective Ligands. Nat. Commun. 2020, 11 (1), 1–11.

(221) Glukhova, A.; Thal, D. M.; Nguyen, A. T.; Vecchio, E. A.; Jörg, M.; Scammells,

P. J.; May, L. T.; Sexton, P. M.; Christopoulos, A. Structure of the Adenosine A1

Receptor Reveals the Basis for Subtype Selectivity. Cell 2017, 168 (5), 867-

877.e13. https://doi.org/10.1016/J.CELL.2017.01.042.

(222) Chen, X. Y.; Wu, D.; Wu, L. J.; Han, G. W.; Guo, Y.; Zhong, G. S. Crystal

Structure of Human Alpha2C Adrenergic G Protein-Coupled Receptor. Released

Protein Data Bank 2019.

(223) Qu, L.; Zhou, Q. T.; Wu, D.; Zhao, S. W. Crystal Structures of the Alpha2A

Adrenergic Receptor in Complex with an Antagonist RSC. Released Protein Data

Bank 2019.

(224) Suno, R.; Lee, S.; Maeda, S.; Yasuda, S.; Yamashita, K.; Hirata, K.; Horita, S.;

Tawaramoto, M. S.; Tsujimoto, H.; Murata, T.; Kinoshita, M.; Yamamoto, M.;

Kobilka, B. K.; Vaidehi, N.; Iwata, S.; Kobayashi, T. Structural Insights into the

Subtype-Selective Antagonist Binding to the M2 Muscarinic Receptor. Nat. Chem.

Biol. 2018, 14 (12), 1150–1158. https://doi.org/10.1038/S41589-018-0152-Y.

(225) Cole, J. C.; Taylor, R.; Verdonk, M. L. Directional Preferences of Intermolecular

Contacts to Hydrophobic Groups. Int. Union Crystallogr. Acta Crystallogr. Sect. D

 211

Acta Cryst 1998, 54, 1183–1193.

(226) Pham, D. T.; Dimov, S. S.; Nguyen, C. D. Selection of K in K-Means Clustering.

Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2005, 219 (1), 103–119.

(227) Kodinariya, T. M.; Makwana, P. R. Review on Determining Number of Cluster in

K-Means Clustering. Int. J. 2013, 1 (6), 90–95.

(228) Koyejo, O. O.; Natarajan, N.; Ravikumar, P. K.; Dhillon, I. S. Consistent

Multilabel Classification. Adv. Neural Inf. Process. Syst. 2015, 28.

(229) Parikh, R.; Mathai, A.; Parikh, S.; Sekhar, G. C.; Thomas, R. Understanding and

Using Sensitivity, Specificity and Predictive Values. Indian J. Ophthalmol. 2008,

56 (1), 45.

(230) Hossin, M.; Sulaiman, M. N. A Review on Evaluation Metrics for Data

Classification Evaluations. Int. J. data Min. Knowl. Manag. Process 2015, 5 (2), 1.

(231) Abdi, H.; Williams, L. J. Principal Component Analysis. Wiley Interdiscip. Rev.

Comput. Stat. 2010, 2 (4), 433–459.

(232) Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.;

Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; Vanderplas, J.; Passos, A.;

Cournapeau, D.; Brucher, M.; Perrot, M.; Duchesnay, É. Scikit-Learn: Machine

Learning in Python. J. Mach. Learn. Res. 2011, 12 (85), 2825–2830.

(233) Peng, C.-Y. J.; Lee, K. L.; Ingersoll, G. M. An Introduction to Logistic Regression

Analysis and Reporting. J. Educ. Res. 2002, 96 (1), 3–14.

 212

Appendix A

Chapter 3: Benchmarking GPCR homology model template selection in

combination with de novo loop generation

Table A1. Alpha-carbon receptor RMSD values with and without loop modeling for
the set of highest CoINPocket scored target:template receptor pairings.
aNo template ligand present in either the homology or loop modeling processes.
bTemplate ligand present when homology modeled, absent when loop modeled. cTemplate
ligand present during both homology and loop modeling. dRange of values for the models
with the top ten scored loops except in averages which use lowest RMSD among top ten
scored loop models

 Approach A1a Approach B1b Approach B2c

Receptor

Alpha-Carbon
RMSD (Å)
Without / with loop
modelingd

Alpha-Carbon
RMSD (Å)
Without/with loop
modeling

Alpha-Carbon
RMSD (Å)
With loop
modeling

AT2R based on DP2
(6D26)

5.49 / 5.46-6.70 5.53 / 5.62-6.67 5.53-6.32

CXCR4 based on
AT2R (5UNH)

4.33 / 4.28-4.69 4.59 / 4.66-5.04 4.55-5.51

FFAR1 based on
P2Y12 (4PY0)

6.32 / 5.08-6.46 5.89 / 4.80-6.30 4.64-5.55

H1R based on M1
(5CXV)

3.15 / 3.13-4.01 3.14 / 3.16-3.74 3.17-3.91

M1 based on H1R
(3RZE)

2.93 / 2.57-3.91 2.96 / 2.57-3.68 2.88-3.66

M4R based on H1R
(3RZE)

2.76 / 2.99-3.50 2.94 / 2.65-3.71 2.75-3.43

NOP based on M4R
(5DSG)

4.30 / 3.86-4.52 4.33 / 4.08-4.66 4.12-4.39

OPRK based on H1R
(3RZE)

6.19 / 3.92-5.29 5.34 / 3.82-5.73 4.17-6.22

P2Y12 based on
PAR1 (3VW7)

4.07 / 3.88-4.96 3.74 / 3.52-4.47 3.67-4.46

PAR1 based on
P2Y12 (4PY0)

3.89 / 3.92-6.12 3.93 / 4.04-5.28 5.93-6.24

Overall average 4.34 / 3.91 4.24 / 3.89 4.14

 213

Table A2. Global receptor RMSD values relative to crystallographic reference
structures for receptor models generated by approach A1 with and without loop
modeling for receptors modeled using two templates.

Receptor
Local
Similarity

Alpha Carbon
RMSD (Å)
Without / with loop
modelinga

AT2R based on CXCR4 (3OE6) 1.72 4.44 / 4.58-5.53

AT2R based on DP2 (6D26) 2.21 5.49 / 5.46-6.70

H1R based on OPRK (4DJH) 1.93 4.03 / 3.10-4.30

H1R based on M1 (5CXV) 2.58 3.15 / 3.13-4.01

M4R based on NOP (4EA3) 1.23 4.37 / 2.99-3.88

M4R based on H1R (3RZE) 2.46 2.76 / 2.99-3.50

P2Y12 based on FFAR1 (5TZR) 1.42 8.79 / 8.15-10.08

P2Y12 based on PAR1 (3VW7) 1.78 4.07 / 3.88-4.96

Average - lower similarity subset 1.58 5.41/4.71

Average – higher similarity subset 2.26 3.87/3.87

 214

Table A3. Loop modeling approach A1 ECL2 loop RMSD values for each target:template receptor pairing (10 models each in
rank-order by score) compared to the loop of the reference crystal structure as well as loop models from our previous
benchmark.35
aModels are sorted from best (1) to worst scoring (10). bHomology model based on higher similarity scoring template. cBest disulfide
bonded receptor model among top 10 scoring models from loop modeling benchmark study.24 dLowest contact energy model generated
from a local template using structure-independent alignment. eEntries with “N/A” values were not analyzed in the loop modeling
benchmark study.24

Receptora AT2Rb

(Å)
CXCR4
(Å)

FFAR1
(Å)

H1Rb

(Å)
M1
(Å)

M4Rb

(Å)
NOP
(Å)

OPRK
(Å)

P2Y12b

(Å)
PAR1
(Å)

1 4.66 7.39 15.41 7.87 8.38 7.37 9.98 7.30 6.36 10.62

2 5.84 8.46 10.35 9.19 10.86 7.29 11.85 9.74 9.68 12.07

3 4.69 9.34 15.48 8.20 8.45 6.29 10.16 11.59 11.67 11.65

4 13.33 7.59 11.27 7.57 10.88 7.30 8.83 12.28 10.07 15.14

5 7.48 6.25 14.36 8.74 9.20 8.51 10.16 12.43 8.81 11.84

6 10.78 8.78 11.27 11.49 8.72 6.99 11.01 8.70 5.42 9.22

7 7.80 9.48 12.07 7.98 7.83 6.69 10.87 9.67 11.91 6.94

8 14.59 6.08 12.71 9.44 9.50 7.64 8.20 12.27 11.08 14.76

9 14.24 9.19 13.43 13.07 5.08 6.62 11.20 12.28 10.94 17.22

10 8.72 9.13 14.67 5.49 9.79 7.23 10.24 12.27 9.69 11.17

Average 9.21 8.17 13.10 8.90 8.86 7.19 10.25 10.85 9.56 12.06

Best 4.66 6.08 10.35 5.49 5.08 6.29 8.20 7.30 5.42 6.94

 215

Table A3 (continued). Loop modeling approach A1 ECL2 loop RMSD values for each target:template receptor pairing (10
models each in rank-order by score) compared to the loop of the reference crystal structure as well as loop models from our
previous benchmark.35
aModels are sorted from best (1) to worst scoring (10). bHomology model based on higher similarity scoring template. cBest disulfide
bonded receptor model among top 10 scoring models from loop modeling benchmark study.24 dLowest contact energy model generated
from a local template using structure-independent alignment. eEntries with “N/A” values were not analyzed in the loop modeling
benchmark study.24

Receptora AT2Rb

(Å)
CXCR4
(Å)

FFAR1
(Å)

H1Rb

(Å)
M1
(Å)

M4Rb

(Å)
NOP
(Å)

OPRK
(Å)

P2Y12b

(Å)
PAR1
(Å)

Loop
Modeled into
Crystal
Structurec

0.79 0.40 7.28 N/Ae N/Ae N/Ae N/Ae N/Ae 2.91 3.48

Initial
Modeld 5.11 6.57 14.97 5.89 7.22 5.34 10.72 16.18 6.70 6.77

 216

Table A4. Loop modeling approach A1 ECL2 loop RMSD values for receptors
modeled using two templates (10 models each in rank-order by score) compared to
the loop of the reference crystal structure.
aModels are sorted from best (1) to worst scoring (10). b Homology model based on lower
similarity scoring template. cHomology model based on higher similarity scoring
template. d Lowest contact energy model generated from a local template using structure-
independent alignment.

Receptora AT2Rb
(Å)

AT2Rc
(Å)

H1Rb
(Å)

H1Rc
(Å)

M4Rb
(Å)

M4Rc
(Å)

P2Y12b
(Å)

P2Y12c

(Å)

1 5.82 4.66 6.56 7.87 6.44 7.37 15.66 6.36

2 8.87 5.84 10.80 9.19 7.29 7.29 15.97 9.68

3 9.82 4.69 10.38 8.20 6.71 6.29 11.92 11.67

4 10.04 13.33 5.85 7.57 9.93 7.30 11.76 10.07

5 7.52 7.48 6.71 8.74 8.19 8.51 8.95 8.81

6 10.10 10.78 6.92 11.49 5.28 6.99 13.09 5.42

7 5.91 7.80 9.37 7.98 5.81 6.69 16.36 11.91

8 5.85 14.59 10.93 9.44 7.90 7.64 12.61 11.08

9 5.44 14.24 9.24 13.07 6.31 6.62 13.90 10.94

10 8.37 8.72 9.68 5.49 7.04 7.23 17.53 9.69

Average 7.77 9.21 8.64 8.90 7.09 7.19 13.78 9.56

Best 5.44 4.66 5.85 5.49 5.28 6.29 8.95 5.42

Initial
Modeld 4.44 5.11 5.89 11.60 12.37 5.34 15.47 6.70

 217

Table A5. Ligand RMSD values (LRMSD) calculated in comparison to the crystallized reference structure for three different
docking methods employed in the context of approach A1 models.
 aLowest RMSD value found within the retained ligand poses for each method. All methods sampled 10,000 ligand poses per receptor
(1000 per model). Both MOE Induced Fit and MOE Rigid retained 50 ligand poses per receptor (5 per model) and Rosetta retained
all ligand poses. bT10 values are the best LRMSD values in the top 10 scoring ligand poses. cT10 Comp values are the best LRMSD
values in the top 10 poses based on adjusted percent complementation score. dLowest RMSD value within ligands docked into
reference crystal structures using Rosetta.

 MOE Induced Fit MOE Rigid Rosetta
Receptor
(Docked
Ligand)

PDB
ID

Best
(Å)

a

T10
(Å)

b

T10
Comp (Å)

c

Best
(Å)

a

T10
(Å)

b

T10
Comp (Å)

c
 Best (Å)

a

T10
(Å)

b

T10
Comp (Å)

c

Best
(crystal)d

CXCR4 (1) 3OE6 4.29 4.29 4.29 4.77 5.77 5.86 3.95 6.88 4.25 3.76
FFAR1 (2) 5TZR 8.58 8.58 9.42 9.01 13.93 11.83 7.02 13.45 9.42 6.64
M1 (3) 5CXV 2.45 5.14 5.48 4.50 5.86 5.86 3.26 3.96 4.30 3.14
NOP (4) 4EA3 3.66 3.66 3.66 5.01 9.64 9.50 5.70 7.18 7.11 6.16
OPRK (5) 4JDH 4.01 5.19 5.56 4.18 6.15 5.80 4.18 6.54 6.96 4.65
P2Y12 (6) 4PY0 4.24 8.53 5.06 4.74 7.40 9.29 4.35 6.83 6.77 3.19
Average 4.54 5.90 5.58 5.37 8.13 8.02 4.74 7.47 6.47 4.59
Average
(no FFAR1)

 3.73 5.36 4.81 4.64 6.96 7.26 4.29 6.29 5.88 4.18

 218

Table A6. Ligand RMSD values for ligand poses docked into receptor models generated using three different receptor
modeling approaches for the set of highest CoINPocket scored target:template receptor pairings.
aTanimoto coefficient indicates the similarity between first-neighbors to the ligand in the residue interaction network calculated using
the RING 2.0 server. bNo template ligand present in either the homology or loop modeling processes. cTemplate ligand present when
homology modeled, absent when loop modeled. dTemplate ligand present during both homology and loop modeling. eMetrics measured
for lowest RMSD induced fit docked pose in the initial homology model without loop modeling. fMetrics measured for lowest RMSD
induced fit docked pose across top ten scored loop modeled structures. gMetrics measured for lowest RMSD induced fit docked pose
among top ten scored poses (using noted scoring method) across top ten scored loop modeled structures.

Receptor

 RMSD Values (Å)/ Tanimoto Coefficienta
Approach A1b Approach B1c Approach B2d

Initial
Modele Bestf

T10
(Dock
Score)g

T10
(Comp
Score)g Bestf

T10
(Dock
Score)g

T10
(Comp
Score)g Bestf

T10
(Dock
Score)g

T10
(Comp
Score)g

AT2R 5.23 /
0.46

5.65 /
0.48

5.65 /
0.48

5.65 /
0.48

5.56 /
0.42

5.56 /
0.42

5.56 /
0.42

5.14 /
0.47

6.65 /
0.46

6.65 /
0.46

CXCR4 6.69 /
0.34

4.29 /
0.49

4.29 /
0.49

4.29 /
0.49

8.11 /
0.27

9.56 /
0.20

8.11 /
0.27

4.81 /
0.47

11.06 /
0.09

7.59 /
0.26

FFAR1 15.38 /
0.32

8.58 /
0.59

8.58 /
0.59

9.42 /
0.43

11.97 /
0.29

12.39 /
0.49

12.39 /
0.49

11.94 /
0.43

11.94 /
0.43

13.39 /
0.43

H1R 4.48 /
0.63

4.79 /
0.56

4.79 /
0.56

4.83 /
0.64

2.81 /
0.42

2.81 /
0.42

2.81 /
0.42

4.09 /
0.38

4.50 /
0.43

4.68
0.39

M1 12.91 /
0.58

2.45 /
0.70

5.14 /
0.58

5.49 /
0.56

4.87 /
0.69

4.87 /
0.69

5.15 /
0.59

2.28 /
0.71

2.28 /
0.71

2.28 /
0.71

M4R 4.85 /
0.58

4.74 /
0.60

5.40 /
0.54

5.37 /
0.60

5.01 /
0.59

5.08 /
0.57

5.08 /
0.57

1.83 /
0.77

2.12 /
0.62

1.83 /
0.77

NOP 3.92 /
0.50

3.66 /
0.57

3.66 /
0.57

3.66 /
0.57

3.72 /
0.53

3.98 /
0.51

3.78 /
0.57

3.26 /
0.64

5.64 /
0.51

3.26 /
0.64

 219

Table A6 (continued). Ligand RMSD values for ligand poses docked into receptor models generated using three different
receptor modeling approaches for the set of highest CoINPocket scored target:template receptor pairings.
aTanimoto coefficient indicates the similarity between first-neighbors to the ligand in the residue interaction network calculated using
the RING 2.0 server. bNo template ligand present in either the homology or loop modeling processes. cTemplate ligand present when
homology modeled, absent when loop modeled. dTemplate ligand present during both homology and loop modeling. eMetrics measured
for lowest RMSD induced fit docked pose in the initial homology model without loop modeling. fMetrics measured for lowest RMSD
induced fit docked pose across top ten scored loop modeled structures. gMetrics measured for lowest RMSD induced fit docked pose
among top ten scored poses (using noted scoring method) across top ten scored loop modeled structures.

 RMSD Values (Å)/ Tanimoto Coefficienta

 Approach A1b Approach B1c Approach B2d

Receptor
Initial
Modele Bestf

T10
(Dock
Score)g

T10
(Comp
Score)g Bestf

T10
(Dock
Score)g

T10
(Comp
Score)g Bestf

T10
(Dock
Score)g

T10
(Comp
Score)g

OPRK 6.49 /
0.45

4.01 /
0.56

5.19 /
0.47

5.57 /
0.51

4.52 /
0.52

4.98 /
0.54

4.68 /
0.54

4.00 /
0.48

5.00 /
0.45

5.19 /
0.48

P2Y12 7.69 /
0.27

4.24 /
0.59

8.53 /
0.30

5.06 /
0.39

4.93 /
0.21

4.93 /
0.21

4.93 /
0.21

5.72 /
0.46

6.96 /
0.46

6.33
0.57

PAR1 9.05 /
0.39

5.15 /
0.49

6.44 /
0.45

5.15 /
0.49

6.38 /
0.36

6.38 /
0.36

6.38 /
0.36

6.63 /
0.33

8.71 /
0.37

10.08 /
0.39

Overall
Average

7.67 /
0.45

4.76 /
0.56

5.77 /
0.50

5.45 /
0.52

5.79 /
0.43

6.05 /
0.44

5.89 /
0.44

4.97 /
0.51

6.49 /
0.45

6.13 /
0.51

Average
without
FFAR1

6.13 /
0.47

4.33 /
0.56

5.45 /
0.49

5.00 /
0.53

5.10 /
0.45

5.35 /
0.44

5.16 /
0.44

4.20 /
0.52

5.88 /
0.46

5.32 /
0.52

 220

Table A7. Comparison of MOE induced fit docking poses and crystallographic ligand poses for receptors modeled using two
templates when docked into approach A1 models.
aTanimoto coefficient indicates the similarity between first-neighbors to the ligand in the residue interaction network calculated using
the RING 2.0 server. bMetrics measured for lowest RMSD induced fit docked pose in the initial homology model without loop
modeling. cMetrics measured for lowest RMSD induced fit docked pose across top ten scored loop modeled structures. dMetrics
measured for lowest RMSD induced fit docked pose among top ten scored poses (using noted scoring method) across top ten scored
loop modeled structures.

Receptor (Ligand) LRMSD Values (Å)/ Tanimoto Coefficienta

Local
Similarity

Initial Modelb Bestc T10d
(Dock Score)

T10d

(Comp Score)

AT2R based on CXCR4 (7) 1.72 5.02 / 0.50 5.10 / 0.49 6.69 / 0.60 6.69 / 0.60
AT2R based on DP2 (7) 2.21 5.23 / 0.46 5.65 / 0.48 5.65 / 0.48 5.65 / 0.48
H1R based on OPRK (8) 1.93 6.43 / 0.36 9.44 / 0.33 11.01 / 0.25 10.82 / 0.30
H1R based on M1 (8) 2.21 4.48 / 0.63 4.79 / 0.56 4.79 / 0.56 4.83 / 0.64
M4R based on NOP (3) 1.23 11.15 / 0.33 5.70 / 0.59 9.02 / 0.43 6.88 / 0.40
M4R based on H1R (3) 2.46 4.85 / 0.58 4.74 / 0.60 5.40 / 0.54 5.37 / 0.60
P2Y12 based on FFAR1 (6) 1.42 11.89 / 0.19 4.87 / 0.38 7.40 / 0.31 7.61 / 0.29
P2Y12 based on PAR1 (6) 1.78 7.69 / 0.27 4.24 / 0.59 8.53 / 0.30 5.06 / 0.39
Low similarity template average 1.58 8.62 / 0.35 6.59 / 0.42 8.61 / 0.40 8.10 / 0.40
High similarity template average 2.26 5.56 / 0.49 5.20 / 0.53 5.69 / 0.51 5.37 / 0.55

 221

Appendix B

Chapter 4: Structure-based Pharmacophore Modeling 1. Automated Random

Pharmacophore Model Generation

Figure B1. GPCR Ligands included in the internal test database.

 222

Figure B1 (continued). GPCR Ligands included in the internal test database.

 223

Figure B1 (continued). GPCR Ligands included in the internal test database.

 224

Figure B1 (continued). GPCR Ligands included in the internal test database.

 225

Figure B1 (continued). GPCR Ligands included in the internal test database.

 226

Figure B1 (continued). GPCR Ligands included in the internal test database.

 227

Figure B1 (continued). GPCR Ligands included in the internal test database.

 228

Figure B1 (continued). GPCR Ligands included in the internal test database.

 229

Figure B1 (continued). GPCR Ligands included in the internal test database.

 230

Figure B1 (continued). GPCR Ligands included in the internal test database.

 231

Figure B1 (continued). GPCR Ligands included in the internal test database.

 232

Figure B1 (continued). GPCR Ligands included in the internal test database.

 233

Figure B1 (continued). GPCR Ligands included in the internal test database.

 234

Table B8. Names of GPCR ligands used in the internal test database.
Targets that each ligand has activity for are numbered with denoted with superscripts.
Superscript numbering uses the following scheme:
¹5HT1A, ²5HT1B, ³5HT1D, ⁴5HT1E, ⁵5HT1F, ⁶5HT2A, ⁷5HT2B, ⁸5HT2C, ⁹5HT4, ¹⁰5HT6,
¹¹5HT7, ¹²A1A, ¹³A1D, ¹⁴A2A, ¹⁵A2B, ¹⁶A2C, ¹⁷Beta 1, ¹⁸Beta 2, ¹⁹Beta 3, ²⁰H1, ²¹H2, ²²H3,
²³M1, ²⁴M2, ²⁵M3, ²⁶M4, ²⁷M5, ²⁸OPRD, ²⁹OPRK, ³⁰OPRM
Ligand
Number

Ligand Name Ligand
Number

Ligand Name

1 (+)-DOI⁶ ⁷ ⁸ 41 ML381²³ ²⁴ ²⁵ ²⁶ ²⁷
2 VU0255035²³ ²⁴ ²⁵ ²⁶ ²⁷ 42 silahexocyclium²³ ²⁴ ²⁵ ²⁶ ²⁷
3 VUF 8430 43 agomelatine⁶ ⁷ ⁸
4 A-349821²⁰ ²² 44 SCH221510²⁸ ²⁹ ³⁰
5 oleamide¹¹ 45 McN-A-343²³ ²⁵ ²⁶ ²⁷
6 furtrethonium²³ ²⁴ ²⁵ ²⁶ 46 LY593093²³
7 BQCA²³ 47 2-methylhistamine23

8 RS-30199¹ 48 procaterol¹⁸
9 RS-127445⁶ ⁷ ⁸ 49 vortioxetine¹ ² ⁶ ¹⁰ ¹¹
10 LY334362⁸ 50 GSK 1521498³⁰
11 solabegron¹⁷ ¹⁸ ¹⁹ 51 PF-06767832²³
12 7-methoxy-1-naphthylpiperazine¹ ² ³ 52 GR 218 231¹
13 tiotropium²³ ²⁴ ²⁵ 53 WIN 62 577²³ ²⁵ ²⁶
14 2-pyridlethylamine²⁰ 54 (-)-YM796²³
15 all-trans-4-oxo-retinoic-acid¹⁶ 55 doxepin²⁰
16 tropicamide²⁵ 56 2-bromo-LSD¹⁰ ¹¹
17 BW723C86⁶ ⁷ ⁸ 57 normorphine²⁸ ²⁹ ³⁰
18 ephedrine¹⁸ 58 iperoxo²⁴
19 guanfacine¹⁴ ¹⁵ ¹⁶ 59 [125I]HEAT¹² ¹³
20 epinastine²⁰ 60 SB 204070⁹
21 nadolol¹⁷ ¹⁸ ¹⁹ 61 PZM21³⁰
22 fluparoxan¹ 62 alniditan² ³
23 alcuronium²³ ²⁵ ²⁶ 63 cyamemazine¹ ⁶ ⁸ ¹¹
24 norfluoxetine ⁶ ⁷ 64 loratadine²⁰
25 NS-49¹² ¹³ 65 phenylephrine¹²
26 probe 2.1 [PMID: 24187130]²⁹ 66 ethylketocyclazocine²⁸ ²⁹ ³⁰
27 lofexidine¹⁴ ¹⁵ ¹⁶ 67 (-)-methadone²⁸ ²⁹ ³⁰
28 LY063518⁶ 68 etonitazene²⁸ ²⁹ ³⁰
29 probe 1.1 [PMID: 24187130]²⁹ 69 VU0119498²³ ²⁵ ²⁷
30 sabcomeline²³ ²⁵ ²⁶ ²⁷ 70 lithocholycholine²³ ²⁴ ²⁵ ²⁶ ²⁷
31 oxotremorine²³ ²⁴ ²⁵ ²⁶ 71 xylazine¹⁴ ¹⁵ ¹⁶
32 (+)-cis-H2-PAT²⁰ 72 pipamperone¹ ² ³ ⁶ ²⁰
33 frovatriptan¹ ² ³ 73 H4 antagonist 48
34 5-methylurapidil¹² ¹³ 74 pentythio-TZTP²³ ²⁴ ²⁵ ²⁶
35 dicyclomine²³ ²⁴ ²⁵ 75 K-252a²³
36 (+)-norfenfluramine⁷ 76 Ro 60-0175⁶ ⁷
37 SB 204741⁷ ⁸ 77 EMD-386088¹⁰
38 tapentadol³⁰ 78 4-DAMP²³ ²⁴ ²⁵ ²⁶ ²⁷
39 salvinorin A²⁹ 79 JB 98064²²
40 burimamide²² 80 TIPP-psi²⁸

 235

Table B1 (continued). Names of GPCR ligands used in the internal test database.
Targets that each ligand has activity for are numbered with denoted with superscripts.
Superscript numbering uses the following scheme:
¹5HT1A, ²5HT1B, ³5HT1D, ⁴5HT1E, ⁵5HT1F, ⁶5HT2A, ⁷5HT2B, ⁸5HT2C, ⁹5HT4, ¹⁰5HT6,
¹¹5HT7, ¹²A1A, ¹³A1D, ¹⁴A2A, ¹⁵A2B, ¹⁶A2C, ¹⁷Beta 1, ¹⁸Beta 2, ¹⁹Beta 3, ²⁰H1, ²¹H2, ²²H3,
²³M1, ²⁴M2, ²⁵M3, ²⁶M4, ²⁷M5, ²⁸OPRD, ²⁹OPRK, ³⁰OPRM
Ligand
Number

Ligand Name Ligand
Number

Ligand Name

81 sumatriptan¹ ² ³ ⁴ ⁵ ¹⁰ ¹¹ 121 BF-1⁶ ⁷
82 AE9C90CB²³ ²⁴ ²⁵ ²⁶ ²⁷ 122 quinpirole¹ ⁶ ⁷ ⁸
83 tifluadom²⁹ 123 tegaserod⁷ ⁹
84 sarpogrelate⁶ ⁷ ⁸ 124 solifenacin²³ ²⁴ ²⁵ ²⁶ ²⁷
85 A61603¹² 125 Cy3B-telenzepine²³ ²⁴
86 (R)-flurocarazolol¹ ² 126 A-304121²²
87 phenoxybenzamine¹⁵ 127 himbacine²³ ²⁴ ²⁵ ²⁶ ²⁷
88 LK 204-545¹⁷ ¹⁸ 128 zolmitriptan¹ ² ³ ⁴ ⁵
89 S(+)-niguldipine¹² ¹³ 129 AR-M1000390²⁸ ²⁹ ²⁸ ³⁰
90 NNC 11-1585²³ ²⁴ ²⁵ ²⁶ ²⁷ 130 (+)-cyclazosin¹² ¹³
91 YM348⁸ 131 pimavanserin⁶
92 duloxetine⁶ ⁸ ¹⁰ 132 GR 125487⁹
93 LY53857⁶ ⁷ 133 RS-17053¹² ¹³
94 trazodone⁶ ⁷ ⁸ 134 ML169²³
95 acetylcholine²³ ²⁴ ²⁵ ²⁶ ²⁷ 135 WAY-208466¹⁰
96 L-748337¹⁹ 136 Rec 15/3079¹
97 BRL 44408¹⁴ ¹⁵ ¹⁶ 137 conessine²⁰ ²²
98 tripelennamine²⁰ 138 SB 221284⁶ ⁷ ⁸
99 arecaidine propargyl ester²³ ²⁴ ²⁵ ²⁶ 139 ipratropium²³ ²⁴ ²⁵ ²⁶ ²⁷
100 CL316243¹⁹ 140 (R)-UH 301¹
101 bethanechol²³ ²⁴ ²⁵ ²⁶ 141 phentolamine¹² ¹³ ¹⁴ ¹⁵ ¹⁶
102 N-1-isopropyl-5-MeOT⁶ 142 AZD6088²³
103 cebranopadol²⁸ ²⁹ ³⁰ 143 ocaperidone¹ ² ³
104 guanylpirenzepine²³ 144 asenapine¹ ² ³ ⁴ ⁶ ²⁰
105 labetalol¹³ ¹⁷ ¹⁸ 145 piribedil¹ ⁷ ¹² ¹⁴ ¹⁶
106 CP94253² 146 tolvaptan
107 hexahydrodifenidol²³ ²⁴ ²⁵ ²⁶ ²⁷ 147 ST-1006²⁰ ²²
108 RX821002¹⁴ ¹⁵ ¹⁶ 148 amibegron¹⁹
109 WAY-163909⁸ 149 SB 216641¹ ² ³ ⁶ ⁷ ⁸
110 robalzotan¹ 150 CGP 12177¹⁷ ¹⁹
111 alpha-methylnoradrenaline¹³ 151 aclidinium²³ ²⁴ ²⁵
112 H05⁶ 152 5-BODMT⁴ ⁵
113 raclopride¹ 153 ML375²⁷
114 mirabegron¹⁷ ¹⁸ ¹⁹ 154 SB 277011-A³ ⁷
115 sufentanil³⁰ 155 brimonidine¹⁴ ¹⁵ ¹⁶
116 naloxone benzoylhydrazone²⁹ ³⁰ 156 ICI 169369¹⁰
117 BIMU 8⁹ 157 SB269970¹¹
118 5-fluorotryptamine⁴ 158 GR-55562² ²
119 ORG-37684⁶ ⁷ ⁸ 159 BRL-54443⁴ ⁵
120 JNJ-39758979²⁰ ²² 160 ergotamine³ ⁴ ⁵ ⁶ ⁷ ⁸ ¹⁰ ⁶

 236

Table B1 (continued). Names of GPCR ligands used in the internal test database.
Targets that each ligand has activity for are numbered with denoted with superscripts.
Superscript numbering uses the following scheme:
¹5HT1A, ²5HT1B, ³5HT1D, ⁴5HT1E, ⁵5HT1F, ⁶5HT2A, ⁷5HT2B, ⁸5HT2C, ⁹5HT4, ¹⁰5HT6,
¹¹5HT7, ¹²A1A, ¹³A1D, ¹⁴A2A, ¹⁵A2B, ¹⁶A2C, ¹⁷Beta 1, ¹⁸Beta 2, ¹⁹Beta 3, ²⁰H1, ²¹H2, ²²H3,
²³M1, ²⁴M2, ²⁵M3, ²⁶M4, ²⁷M5, ²⁸OPRD, ²⁹OPRK, ³⁰OPRM
Ligand
Number

Ligand Name Ligand
Number

Ligand Name

161 terbutaline¹⁸ 201 (+)-WAY 100135² ³
162 VUF14862²² 202 ziprasidone¹ ² ³ ⁴ ⁶ ⁸ ¹¹ ²⁰
163 oxotremorine-M²³ ²⁴ ²⁵ ²⁶ 203 LY320954⁶
164 lumateperone⁶ 204 AZD7268²⁸
165 tolterodine²³ ²⁴ ²⁵ ²⁶ ²⁷ 205 LY2119620²⁶
166 salmeterol¹⁸ 206 VER-3323⁶ ⁷ ⁸
167 dimaprit²² 207 zotepine¹ ² ³ ⁴ ⁶ ⁸ ¹⁰ ¹¹ ¹⁵ ²⁰
168 renzapride⁹ 208 yohimbine¹ ² ³ ⁴ ⁵ ⁷ ¹¹ ¹⁴ ¹⁵ ¹⁶
169 Go 7874²³ ²⁵ ²⁶ 209 pizotifen¹
170 GR 89696²⁹ 210 terguride ¹ ² ³ ⁶ ⁷ ⁸ ¹² ¹⁴ ¹⁵ ¹⁶
171 L-772 405¹ ² ³ 211 S-14506¹
172 mesoridazine¹ ⁶ ⁸ 212 [125I]ICYP¹⁸ ¹⁹
173 oxybutynin²³ ²⁴ ²⁵ ²⁶ ²⁷ 213 scopolamine²³ ²⁴ ²⁵ ²⁶
174 PF-03654746²² 214 tolazoline¹⁴ ¹⁵ ¹⁶
175 practolol¹⁷ 215 WB 4101¹² ¹³ ¹⁴ ¹⁵ ¹⁶
176 2-(2-thiazolyl)ethanamine²⁰ 216 mianserin⁶ ⁷ ⁸ ¹⁰ ¹¹ ¹² ¹³
177 volinanserin⁶ ⁷ ⁸ 217 L-694 247¹ ² ³
178 timolol¹⁸ 218 AZD3778²⁰
179 2-methyl-5-HT² ³ ⁴ ⁵ ¹⁰ ⁷ 219 LY 165 163¹ ¹⁰
180 U69593²⁹ 220 tropisetron⁹
181 abediterol¹⁷ ¹⁸ ¹⁹ 221 lergotrile¹⁰
182 cerlapirdine¹⁰ 222 ketanserin¹ ³ ⁶ ⁷ ⁸ ¹¹ ¹² ¹³ ²
183 INCB-38579²⁰ 223 idalopiridine⁸ ¹⁰
184 AC-42²³ 224 diphenhydramine²⁰
185 propantheline²⁴ ²⁵ ²⁶ 225 azelastine²⁰
186 lasmiditan⁵ 226 repinotan¹
187 loperamide³⁰ 227 milameline²³ ²⁵ ²⁶ ²⁷
188 GSK334429²² 228 tripolidine²⁰
189 SB 242084⁶ ⁷ ⁸ 229 NLX-101¹
190 EGIS-7625⁶ ⁷ ⁸ 230 guanabenz¹⁴ ¹⁵ ¹⁶
191 iloperidone¹ ¹⁰ ¹¹ 231 AL-37350A⁶ ⁷ ⁸
192 lysergol² ³ ⁴ 232 vinburnine²³ ²⁵ ²⁶
193 oxymetazoline² ³ ⁸ ¹² ¹³ ¹⁴ ¹⁵ ¹⁶ 233 (+)-chloropheniramine²⁰
194 cevimeline²³ ²⁴ ²⁵ ²⁶ 234 JDTic²⁹
195 SB236057² 235 olodaterol¹⁸
196 ADL5859²⁸ ²⁹ ³⁰ 236 methoctramine²³ ²⁴ ²⁵ ²⁶ ²⁷
197 clemastine²⁰ 237 ritanserin¹ ² ³ ⁶ ⁷ ⁸ ¹⁰ ¹¹ ¹² ¹³
198 (+)-aceclidine²³ ²⁴ ²⁵ ²⁶ ²⁷ 238 interpirdine¹⁰
199 dobutamine¹⁷ 239 tramadol²⁸ ²⁹ ³⁰
200 (-)-pentazocine²⁸ ²⁹ ³⁰ 240 2-MPP¹¹

 237

Table B1 (continued). Names of GPCR ligands used in the internal test database.
Targets that each ligand has activity for are numbered with denoted with superscripts.
Superscript numbering uses the following scheme:
¹5HT1A, ²5HT1B, ³5HT1D, ⁴5HT1E, ⁵5HT1F, ⁶5HT2A, ⁷5HT2B, ⁸5HT2C, ⁹5HT4, ¹⁰5HT6,
¹¹5HT7, ¹²A1A, ¹³A1D, ¹⁴A2A, ¹⁵A2B, ¹⁶A2C, ¹⁷Beta 1, ¹⁸Beta 2, ¹⁹Beta 3, ²⁰H1, ²¹H2, ²²H3,
²³M1, ²⁴M2, ²⁵M3, ²⁶M4, ²⁷M5, ²⁸OPRD, ²⁹OPRK, ³⁰OPRM
Ligand
Number

Ligand Name Ligand
Number

Ligand Name

241 betaxolol¹⁷ ¹⁸ 281 tripitramine²³ ²⁴ ²⁵ ²⁶ ²⁷
242 spiroxatrine¹ ⁷ ¹² ¹³ ¹⁴ ¹⁵ ¹⁶ 282 butorphanol²⁹ ³⁰
243 lorcaserin⁶ ⁷ ⁸ 283 MPDT¹ ³ ⁶ ¹⁰ ¹¹
244 HS665²⁹ ³⁰ 284 tamsulosin¹² ¹³
245 THRX160209²⁴ 285 TD-8954⁹
246 apomorphine¹ ⁶ ⁷ ⁸ ¹⁴ ¹⁵ ¹⁶ 286 SB 203186⁹
247 arformoterol¹⁷ ¹⁸ 287 VU0238429²⁷
248 mesulergine⁶ ⁷ ⁸ ¹⁰ ¹¹ 288 melatonin⁷
249 MK-0249²⁰ ²² 289 BMY-14802¹
250 capeserod¹ ² ³ ⁶ ⁷ ⁸ ⁹ ¹⁰ ¹¹ 290 ML380²⁷
251 fenoterol¹⁸ 291 SB 649915¹ ² ³
252 BMY-7378¹ ¹² ¹³ 292 MP1104²⁹
253 LY215840⁶ 293 LP-44¹ ⁶ ¹¹
254 p-F-HHSiD²³ ²⁴ ²⁵ ²⁶ ²⁷ 294 RU 24969¹ ² ³ ⁶ ⁷ ⁸ ¹⁰
255 imipramine²⁴ 295 dipropyl-5CT² ³ ⁵ ¹¹
256 (+)-butaclamol¹ ⁶ ¹¹ 296 SKF 105854¹³
257 CP 93129¹ 297 pethidine²⁸ ²⁹ ³⁰
258 (-)-noradrenaline¹² ¹³ ¹⁴ ¹⁵ ¹⁶ ¹⁷ ¹⁸ ¹⁹ 298 quipazine⁶ ⁷ ⁸
259 piboserod⁷ ⁹ 299 Ro 04-6790¹⁰
260 CGS-12066² ³ ⁶ ⁷ ⁸ ¹⁰ 300 flesinoxan¹
261 5-(nonyloxy)-tryptamine² 301 alvimopan²⁸ ²⁹ ³⁰
262 ICI 118551¹⁸ ¹⁹ 302 S 16924¹ ⁶ ⁷ ⁸ ¹⁰
263 ABT-239²⁰ ²² 303 filbanserin¹ ⁶
264 LY2456302²⁸ ²⁹ ³⁰ 304 bupranolol¹⁷ ¹⁸ ¹⁹
265 dexetimide²⁴ 305 fentanyl²⁸ ²⁹ ³⁰
266 molindone⁶ ²⁰ 306 T-0509¹⁷
267 JNJ 7777120²² 307 ethopropazine²³
268 xamoterol¹⁷ 308 pitolisant²⁰ ²²
269 5'-guanidinonaltrindole²⁹ 309 silodosin¹² ¹³
270 metergoline² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ¹⁰ ¹¹ 310 dosulepin²⁰ ²³ ²⁴ ²⁵ ²⁷ ²⁶
271 5-CT¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ¹⁰ ¹¹ 311 SR59230A¹⁷ ¹⁸ ¹⁹
272 L-741 626⁶ ⁷ 312 U50488²⁹
273 glycopyrrolate²³ ²⁴ ²⁵ ²⁶ ²⁷ 313 BNTX²⁸ ²⁹ ³⁰
274 umeclidinium²³ ²⁴ ²⁵ ²⁶ ²⁷ 314 AC-260584²³
275 BMS 181 101² 315 esmolol¹⁷
276 LY344864¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ¹¹ 316 blonaserin⁶
277 eletriptan¹ ² ³ ⁴ ⁵ 317 SR16835²⁹ ³⁰
278 velusetrag⁹ 318 DAU 6285⁹
279 zinterol¹⁸ 319 dabuzalgron¹²
280 A-119637¹² ¹³ 320 carvedilol¹⁷ ¹⁸

 238

Table B1 (continued). Names of GPCR ligands used in the internal test database.
Targets that each ligand has activity for are numbered with denoted with superscripts.
Superscript numbering uses the following scheme:
¹5HT1A, ²5HT1B, ³5HT1D, ⁴5HT1E, ⁵5HT1F, ⁶5HT2A, ⁷5HT2B, ⁸5HT2C, ⁹5HT4, ¹⁰5HT6,
¹¹5HT7, ¹²A1A, ¹³A1D, ¹⁴A2A, ¹⁵A2B, ¹⁶A2C, ¹⁷Beta 1, ¹⁸Beta 2, ¹⁹Beta 3, ²⁰H1, ²¹H2, ²²H3,
²³M1, ²⁴M2, ²⁵M3, ²⁶M4, ²⁷M5, ²⁸OPRD, ²⁹OPRK, ³⁰OPRM
Ligand
Number

Ligand Name Ligand
Number

Ligand Name

321 indacaterol¹⁸ 361 SB 272183¹ ² ³
322 U92016A¹ 362 vincamine²³ ²⁵ ²⁶
323 xanomeline¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ¹⁰ ¹¹ ²³ ²⁴ ²⁵ ²⁶ ²⁷ 363 Lysergic Acid³
324 GR 125 743¹ 364 ZPL-3893787²²
325 (-)-tertatolol¹ 365 methylnaltrexone²⁸ ²⁹ ³⁰
326 vilazadone¹ ⁹ ²⁰ 366 clidinium²⁵
327 dapiprazole¹³ 367 morphine²⁸ ²⁹ ³⁰
328 fexofenadine²⁰ 368 haloperidol¹ ³ ⁶ ⁷ ¹¹ ²⁰
329 rizatriptan¹ ² ³ ⁴ ⁵ 369 WAY-100635¹
330 relenopride⁶ ⁷ ⁹ 370 (-)-propranolol¹ ¹⁷
331 RS-102221⁶ ⁷ ⁸ 371 atropine²³ ²⁴ ²⁵ ²⁶ ²⁷
332 levorphanol³⁰ 372 apraclonidine¹⁴ ¹⁵
333 ML 10375⁹ 373 AC-90179⁶ ⁸
334 darifenacin²³ ²⁴ ²⁵ ²⁶ ²⁷ 374 BRL-15572¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ¹⁰
335 alprenolol¹⁸ 375 DR-4004¹¹
336 UFP-512²⁸ ²⁹ ³⁰ 376 methacholine²³
337 nafadotride¹ 377 beta-FNA²⁸ ²⁹ ³⁰
338 BRL 37344¹⁹ 378 propafenone¹⁷ ¹⁸
339 alpha-methyl-5-HT³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ¹⁰ 379 amitriptyline⁶ ¹⁰ ¹¹ ²⁰ ²³ ²⁴ ²⁵ ²⁶ ²⁷
340 UH-AH-37²³ ²⁴ ²⁵ ²⁶ ²⁷ 380 SB656104¹¹
341 SB 271046¹⁰ 381 pirenperone¹¹
342 S-15535¹ 382 compound 3a [PMID: 18606542]²²
343 N-1-isopropyltryptamine⁶ 383 SB 224289² ³ ⁶ ⁷ ⁸
344 UCL-2138²² 384 fluspirilene¹ ³ ⁴ ⁶ ²⁰
345 cabergoline¹ ² ³ ⁶ ⁸ ¹² ¹⁴ ¹⁵ ¹⁶ 385 SB 206553⁶ ⁷ ⁸
346 FG-5893¹ 386 5-MeOT² ³ ⁴ ⁵ ⁶ ⁸ ⁹ ¹⁰ ¹¹
347 aripiprazole¹ ² ³ ⁶ ⁸ ¹⁰ ¹¹ ²⁰ 387 desloratadine²⁰
348 chlorpromazine¹ ⁶ ⁸ ¹⁰ ¹⁰ ¹¹ ¹⁴ ¹⁵ ¹⁶ ²⁰ 388 naratriptan¹ ² ³ ⁴ ⁵
349 methoxamine¹² ¹³ 389 roxindole¹ ² ³ ⁶ ⁷ ⁸ ¹² ¹⁵ ¹⁶
350 dimethyltryptamine³ ¹⁰ 390 (-)-bremazocine²⁸ ²⁹ ³⁰
351 Org 12962⁶ ⁷ ⁸ 391 lurasidone⁶ ¹¹ ¹⁴ ¹⁶
352 PF-04995274⁹ 392 m-chlorophenylpiperazine³ ⁴ ⁶ ⁷ ⁸ ¹⁰

¹¹
353 methysergide³ ⁴ ⁵ ⁶ ⁷ ⁸ ¹⁰ ¹¹ 393 acebutolol¹⁷
354 S-14671¹ 394 sotalol¹⁷ ¹⁸
355 pergolide¹ ² ³ ⁶ ⁷ ⁸ ¹⁰ ¹¹ ¹⁴ ¹⁵ ¹⁶ 395 9-OH-risperidone¹ ² ³ ⁴ ⁶ ²⁰
356 nefazodone⁶ 396 carbachol²³ ²⁴ ²⁵ ²⁶ ²⁷
357 mosapride⁹ 397 SB 228357⁶ ⁷ ⁸
358 SB 215505⁶ ⁷ ⁸ 398 prucalopride⁹
359 SB 258719¹¹ 399 ipsapirone¹
360 JP1302¹⁶ 400 amesergide⁶ ⁷

 239

Table B1 (continued). Names of GPCR ligands used in the internal test database.
Targets that each ligand has activity for are numbered with denoted with superscripts.
Superscript numbering uses the following scheme:
¹5HT1A, ²5HT1B, ³5HT1D, ⁴5HT1E, ⁵5HT1F, ⁶5HT2A, ⁷5HT2B, ⁸5HT2C, ⁹5HT4, ¹⁰5HT6,
¹¹5HT7, ¹²A1A, ¹³A1D, ¹⁴A2A, ¹⁵A2B, ¹⁶A2C, ¹⁷Beta 1, ¹⁸Beta 2, ¹⁹Beta 3, ²⁰H1, ²¹H2, ²²H3,
²³M1, ²⁴M2, ²⁵M3, ²⁶M4, ²⁷M5, ²⁸OPRD, ²⁹OPRK, ³⁰OPRM
Ligand
Number

Ligand Name Ligand
Number

Ligand Name

401 hexocyclium²³ ²⁴ ²⁵ ²⁶ ²⁷ 441 prenalterol¹⁷
402 upidosin¹² ¹³ 442 GR 127935¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ¹⁰
403 pindolol¹ ⁶ ⁷ ¹⁷ ¹⁸ 443 spiramide⁶ ⁷ ⁸
404 levallorphan³⁰ 444 (+)-adrenaline¹² ¹³ ¹⁵ ¹⁶ ¹⁷ ¹⁹
405 RS 67333⁹ 445 biperiden²³ ²⁴ ²⁵ ²⁶ ²⁷
406 promethazine²⁰ 446 SDZ SER-082⁶ ⁷ ⁸
407 Ro-70-0004¹² ¹³ 447 (-)-cyclazocine²⁸ ²⁹ ³⁰
408 ARC-239¹⁴ ¹⁵ ¹⁶ 448 donitriptan¹ ² ³ ⁴ ⁵ ⁶ ¹⁰
409 hydrocodone²⁹ ³⁰ 449 compund 3b [PMID;28943244]⁶
410 benzatropine²³ 450 arecoline²³ ²⁴ ²⁵ ²⁶
411 KT 5823²³ 451 RS 100235⁹
412 rho-MPPI¹ 452 buspirone¹ ¹¹
413 pyrilamine²⁰ 453 N-methyl scopolamine²³ ²⁵
414 quadazocine²⁸ ²⁹ ³⁰ 454 RS 39604⁹
415 isoprenaline¹⁷ ¹⁸ ¹⁹ 455 L755507¹⁹
416 levosalbutamol¹⁸ 456 5-hydroxytryptamine¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ¹⁰

¹¹
417 LP-211¹ ¹¹ 457 AT-076²⁸ ²⁹ ³⁰
418 S33084² ³ ⁶ ⁷ ⁸ 458 SB357134¹⁰
419 bufotenine³ ⁶ ¹⁰ 459 (-)-Ro 363¹⁷
420 fluoxetine⁷ ⁶ ¹⁰ 460 glemanserin⁶ ⁷ ⁸
421 KT 5720²³ ²⁶ 461 vilanterol¹⁸
422 thioridazine¹ ⁶ ⁸ ¹⁰ ¹¹ ²⁰ 462 lisuride¹ ² ³ ⁶ ⁷ ⁸ ¹⁰ ¹¹ ¹² ¹⁴ ¹⁵ ¹⁶
423 A-317920²⁰ ²² 463 ketoifen²⁰
424 sergolexole⁶ ⁶ 464 levobunolol¹⁷ ¹⁸ ¹⁹
425 cisapride⁹ 465 BIMU 1⁹
426 CP-122288² ³ 466 SB258585¹⁰
427 cyproheptadine¹⁰ ¹¹ ¹² ¹³ ²⁰ 467 NAN 190¹ ⁵ ¹² ¹³
428 metoprolol¹⁷ ¹⁸ 468 SNAP5089¹²
429 5-benzyloxytryptamine¹⁰ 469 hexahydrosiladifenidol²³ ²⁴ ²⁵ ²⁶ ²⁷
430 GR 113808⁹ 470 UFP-505²⁸ ³⁰
431 L742791¹⁹ 471 dihydroergocryptine⁷ ¹¹
432 tryptamine² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ¹⁰ ¹¹ 472 buprenorphine²⁹ ³⁰
433 terfenadine²⁰ 473 atenolol¹⁷ ¹⁸
434 nalorphine²⁸ ²⁹ ³⁰ 474 8-OH-DPAT¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ¹¹
435 LY334370¹ ⁵ 475 bromocriptine¹ ² ³ ⁶ ⁷ ⁸ ¹⁰ ¹¹ ¹⁴ ¹⁵ ¹⁶
436 LY293284¹ 476 sertindole¹ ² ³ ⁴ ⁵ ⁶ ⁸ ²⁰
437 OPC 4392¹⁰ ¹¹ 477 ethyketazocine²⁹
438 DOM⁶ 478 dihydromorphine²⁸ ²⁹ ³⁰
439 indoramin¹² ¹³ 479 Lysergide¹ ⁶ ⁷ ⁸ ¹⁰
440 naltrindole²⁸ ²⁹ ³⁰ 480 nalbuphine²⁸ ²⁹ ³⁰

 240

Table B1 (continued). Names of GPCR ligands used in the internal test database.
Targets that each ligand has activity for are numbered with denoted with superscripts.
Superscript numbering uses the following scheme:
¹5HT1A, ²5HT1B, ³5HT1D, ⁴5HT1E, ⁵5HT1F, ⁶5HT2A, ⁷5HT2B, ⁸5HT2C, ⁹5HT4, ¹⁰5HT6,
¹¹5HT7, ¹²A1A, ¹³A1D, ¹⁴A2A, ¹⁵A2B, ¹⁶A2C, ¹⁷Beta 1, ¹⁸Beta 2, ¹⁹Beta 3, ²⁰H1, ²¹H2, ²²H3,
²³M1, ²⁴M2, ²⁵M3, ²⁶M4, ²⁷M5, ²⁸OPRD, ²⁹OPRK, ³⁰OPRM
Ligand
Number

Ligand Name Ligand
Number

Ligand Name

481 orciprenaline¹⁸ 521 SB 207710⁹ ¹¹
482 zacopride⁹ 522 dihydroergotamine² ³ ⁴ ⁵ ¹⁰ ¹¹
483 risperidone¹ ² ³ ⁴ ⁵ ⁶ ⁸ ¹⁰ ¹¹ ¹² ¹³ ²⁰ 523 alpha-ergocryptine¹⁰
484 1-naphthylpiperazine¹ ² ³ ⁴ ⁵ ⁷ ¹⁰ ¹¹ 524 clonidine¹⁴ ¹⁵ ¹⁶
485 mirtazapine⁶ ⁸ ¹⁴ ¹⁵ ¹⁶ 525 alimemazine²⁰
486 JNJ-5207852²² 526 carazolol¹⁸ ¹⁹
487 MK-212⁶ ⁷ ⁸ 527 LY314228⁶
488 A-123189¹² ¹³ 528 LY108742⁶
489 nalfurafine²⁹ 529 hydromorphone²⁸ ²⁹ ³⁰
490 VUF14738²² 530 WIN 51 708²³ ²⁵ ²⁶
491 TFMPP² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ¹⁰ ¹¹ 531 ML 10302⁹
492 L748328¹⁹ 532 naltriben²⁸ ²⁹ ³⁰
493 SB 243213⁶ ⁷ ⁸ 533 methylergonovine⁴ ⁵ ⁶ ⁷ ⁸
494 5-MeO-DMT⁴ ⁵ ⁸ ¹⁰ ¹¹ 534 nor-binaltorphimine²⁸ ²⁹ ³⁰
495 naloxone²⁸ ²⁹ ³⁰ 535 perospirone⁶
496 ergometrine⁴ ⁶ 536 RS-100329¹² ¹³
497 spiperone¹ ³ ⁶ ⁷ ⁸ ¹⁰ ¹¹ ¹² ¹³ 537 levetimide²⁴
498 nalmefene²⁸ ²⁹ ³⁰ 538 DOI⁴ ⁵ ⁶ ⁷ ⁸
499 brolamfetamine⁶ ⁷ ⁸ 539 (+)-LSD⁶ ⁷ ⁸ ¹¹
500 tiospirone¹ ⁸ ¹⁰ ¹¹ 540 rauwolscine² ³ ⁴ ⁷ ¹⁴ ¹⁵ ¹⁶
501 compound 3 [PMID: 23134120]²⁹ ³⁰ 541 dihydroergocristine¹⁰
502 NIP¹⁷ ¹⁸ 542 [125I]BE-2254¹² ¹³
503 pimozide¹ ⁶ ¹¹ ¹⁰ ²⁰ 543 SB399885¹⁰
504 NIHP¹⁷ 544 (+)-trans-H2-PAT²⁰
505 trihexyphenidyl²³ 545 (-)-aceclidine²³ ²⁴ ²⁵ ²⁶ ²⁷
506 AQ-RA 741²³ ²⁴ ²⁵ ²⁶ ²⁷ 546 (-)-adrenaline¹² ¹³ ¹⁴ ¹⁵ ¹⁶ ¹⁷ ¹⁸
507 naltrexone²⁸ ²⁹ ³⁰ 547 (-)-chlorpheniramine²⁰
508 NNC 11-1314²³ ²⁴ ²⁵ ²⁶ ²⁷ 548 (-)-norfenfluramine⁷
509 H87/07¹⁷ 549 (-)-trans-H2-PAT²⁰ ²²
510 cicloprolol¹⁷ ¹⁸ 550 (R)-DOI⁶ ⁷ ⁸
511 N-benzyl brucine²³ ²⁵ ²⁶ ²⁷ 551 (S)-UH 301¹
512 LP-12¹ ⁶ ¹¹ 552 (S)-flurocarazolol¹ ²
513 LY86057⁶ ⁷ 553 NNC 11-1607²³ ²⁴ ²⁵ ²⁶ ²⁷
514 codeine³⁰ 554 WAY-100135¹
515 enadoline²⁹ 555 chlorpheniramine²⁰
516 methylfurmethide²³ ²⁴ ²⁵ ²⁶ 556 denopamine¹⁷
517 tandospirone¹ 557 diprenorphine²⁸ ²⁹ ³⁰
518 DM-1451¹⁰ ¹¹ 558 formoterol¹⁸
519 ADL5747²⁸ ²⁹ ³⁰ 559 levobetaxolol¹⁷ ¹⁸
520 BU08028²⁸ ²⁹ ³⁰ 560 methadone³⁰

 241

Table B1 (continued). Names of GPCR ligands used in the internal test database.
Targets that each ligand has activity for are numbered with denoted with superscripts.
Superscript numbering uses the following scheme:
¹5HT1A, ²5HT1B, ³5HT1D, ⁴5HT1E, ⁵5HT1F, ⁶5HT2A, ⁷5HT2B, ⁸5HT2C, ⁹5HT4, ¹⁰5HT6,
¹¹5HT7, ¹²A1A, ¹³A1D, ¹⁴A2A, ¹⁵A2B, ¹⁶A2C, ¹⁷Beta 1, ¹⁸Beta 2, ¹⁹Beta 3, ²⁰H1, ²¹H2, ²²H3,
²³M1, ²⁴M2, ²⁵M3, ²⁶M4, ²⁷M5, ²⁸OPRD, ²⁹OPRK, ³⁰OPRM
Ligand
Number

Ligand Name

561 noradrenaline¹⁷ ¹⁸
562 norfenfluramine⁷
563 propranolol¹⁸ ¹⁹
564 salbutamol¹⁸
565 tertatolol¹⁹
566 AS-19¹¹
567 JNJ-18038683¹¹
568 benzoquinazolinone 12²³
569 E55888¹¹

 242

Table B2. Fragments used during MCSS.
aFragment features annotatable in MOE are marked by colored circles, with each color
representing a different feature type. Hydrophobic features are denoted by a green circle,
hydrogen bond acceptor features are denoted by a blue circle, hydrogen bond donor
features are denoted by a magenta circle, aromatic features are denoted by an orange
circle, and features that are both hydrogen bond acceptors and donors are denoted with
a purple circle.

Name Structurea Abbreviation Annotatable Features
1,2-dimethylpyrrolidine

MPR Acc, Hyd

2-butene

BTE Hyd

2-butyne

BTY Hyd

3-methylindole

MIN Aro, Don, Hyd

5-methylimidazole

IMC Acc, Aro, Don, Hyd

N-methylformamide

NMF Acc, Don, Hyd

acetaldehyde

ALD Acc, Hyd

acetamide

ACM Acc, Don, Hyd

acetate ion

COO Acc, Hyd

acetonitrile

CCN Acc, Hyd

benzene

BEN Aro, Hyd

butane

BTA Hyd

cyclohexane

CHX Hyd

dimethylether

COC Acc, Hyd

dimethylsulfone

DSP Acc, Hyd

ethane

ETH Hyd

N

H
N

NH
N

O
H
N

O

O

NH2

O

O
-

N

O

S
O

O

 243

Table B2 (continued). Fragments used during MCSS.
aFragment features annotatable in MOE are marked by colored circles, with each color
representing a different feature type. Hydrophobic features are denoted by a green circle,
hydrogen bond acceptor features are denoted by a blue circle, hydrogen bond donor
features are denoted by a magenta circle, aromatic features are denoted by an orange
circle, and features that are both hydrogen bond acceptors and donors are denoted with
a purple circle.

Name Structurea Abbreviation Annotatable Features
ethanol

EOH Acc/Don, Hyd

ethylthiol

CCS Hyd

isobutane

BTI Hyd

methane

CH4 Hyd

methanol

COH Acc/Don, Hyd

methylamidinium

CNN Cat/Don, Hyd

methylammonium

MAM Cat/Don, Hyd

methylchloride

MCL Hyd

methylguanidinium

GDN Cat/Don, Hyd

methylsulfonamide

MSM Acc, Cat/Don, Hyd

methylsulfonate

MST Acc, Hyd

methyltetrazolium

MTR Ani/Acc, Aro, Hyd

methylthiol

CSH Acc/Don, Hyd

n,n-dimethylacetamide

C3M Acc, Hyd

n-methylacetamide

CMC Acc, Don, Hyd

OH

SH

CH4

OH

N+H2

NH2

H3+N

Cl

N+
H

NH2

NH2

S
O

O
NH2

S
O

O
O

-

NN

N
N

SH

O

N

O

N
H

 244

Table B2 (continued). Fragments used during MCSS.
aFragment features annotatable in MOE are marked by colored circles, with each color
representing a different feature type. Hydrophobic features are denoted by a green circle,
hydrogen bond acceptor features are denoted by a blue circle, hydrogen bond donor
features are denoted by a magenta circle, aromatic features are denoted by an orange
circle, and features that are both hydrogen bond acceptors and donors are denoted with
a purple circle.

Name Structurea Abbreviation Annotatable Features
phenol

PHE Acc, Aro, Don, Hyd

piperidinium

PPP Cat/Don, Hyd

propane

PRA Hyd

propyne

PRY Hyd

thiazole

THZ Acc, Aro, Hyd

trifluoromethane

CF3 Hyd

trimethylammonium

TMN Cat/Don, Hyd

water WAT

OH

N+H2

S

N

F F

F

N+H

 H2O

 245

Table B3. Unique fragment placements for each target used in benchmarking our
pharmacophore model generation protocol.

 Unique Fragment Placements

Target

Experimentally
Determined
Structures Homology Models

5HT2B 1,825 1,651
A2A 1,466 2,110
Beta 2 2,006 1,647
H1 1,735 1,661
M1 1,723 1,558
OPRD 1,836 1,376
OPRK 2,192 1,699
OPRM 1,156 1,679

 246

Table B4. Pharmacophore model scoring data when searching with 3 partial match
features using pharmacophores generated in experimentally determined structures.
aTheoretical maximum enrichment value calculated using 1/[A/D].
bGoodness of hit score for the enrichment value shown.
cEnrichment value for the goodness of hit score shown.

 Enrichment Factor (EF) Goodness of Hit (GH)

Receptor
(Max EFa) Min. Q1 Q2 Q3 Max.

(GHb) Min. Q1 Q2 Q3 Max.
(EFc)

5HT2B
(6.62) 0.00 0.77 0.91 0.99 6.62

(0.01) 0.00 0.01 0.03 0.06 0.12
(1.22)

A2A
(19.62) 0.00 0.19 0.73 0.90 11.77

(0.07) 0.00 0.00 0.02 0.04 0.20
(7.71)

Beta 2
(13.23) 0.00 0.46 1.03 1.32 13.23

(0.02) 0.00 0.01 0.04 0.08 0.44
(4.89)

H1R
(11.16) 0.00 0.46 0.80 0.98 3.72

(0.01) 0.00 0.01 0.02 0.04 0.13
(1.55)

M1
(8.25) 0.00 0.69 0.90 1.00 8.25

(0.04) 0.00 0.01 0.03 0.05 0.13
(3.88)

OPRD
(14.59) 0.00 1.03 1.18 1.69 14.59

(0.08) 0.00 0.02 0.05 0.09 0.30
(4.19)

OPRK
(10.16) 0.00 1.02 1.11 1.35 10.16

(0.04) 0.00 0.02 0.05 0.08 0.27
(3.24)

OPRM
(10.74) 0.00 1.01 1.04 1.16 10.74

(0.04) 0.00 0.01 0.02 0.06 0.29
(3.37)

Averages 0.00 0.70 0.96 1.17 9.89
(0.04) 0.00 0.01 0.03 0.03 0.24

(3.76)

 247

Table B5. Pharmacophore model scoring data when searching with 4 partial match
features using pharmacophores generated in experimentally determined structures.
aTheoretical maximum enrichment value calculated using 1/[A/D].
bGoodness of hit score for the enrichment value shown.
cEnrichment value for the goodness of hit score shown.

 Enrichment Factor (EF) Goodness of Hit (GH)

Receptor
(Max EFa) Min. Q1 Q2 Q3 Max.

(GHb) Min. Q1 Q2 Q3 Max.
(EFc)

5HT2B
(6.62) 0.00 0.42 0.75 0.95 6.62

(0.03) 0.00 0.00 0.02 0.05 0.12
(1.20)

A2A
(19.62) 0.00 0.00 0.00 0.75 12.61

(0.23) 0.00 0.00 0.00 0.03 0.23
(12.61)

Beta 2
(13.23) 0.00 0.00 0.00 1.26 13.23

(0.02) 0.00 0.00 0.00 0.04 0.32
(4.36)

H1R
(11.16) 0.00 0.00 0.33 0.79 11.16

(0.02) 0.00 0.00 0.01 0.02 0.12
(1.56)

M1
(8.25) 0.00 0.35 0.87 1.37 8.25

(0.06) 0.00 0.00 0.02 0.04 0.16
(2.21)

OPRD
(14.59) 0.00 0.00 1.04 1.62 14.59

(0.05) 0.00 0.00 0.02 0.05 0.22
(4.96)

OPRK
(10.16) 0.00 0.00 1.02 1.53 10.16

(0.07) 0.00 0.00 0.01 0.05 0.27
(4.12)

OPRM
(10.74) 0.00 0.84 1.10 1.40 10.74

(0.04) 0.00 0.01 0.06 0.08 0.31
(3.61)

Averages 0.00 0.20 0.64 1.21 10.92
(0.07) 0.00 0.00 0.02 0.05 0.22

(4.33)

 248

Table B6. Pharmacophore model scoring data when searching with 5 partial match
features using pharmacophores generated in experimentally determined structures.
aTheoretical maximum enrichment value calculated using 1/[A/D].
bGoodness of hit score for the enrichment value shown.
cEnrichment value for the goodness of hit score shown.

 Enrichment Factor (EF) Goodness of Hit (GH)

Receptor
(Max EFa) Min. Q1 Q2 Q3 Max.

(GHb) Min. Q1 Q2 Q3 Max.
(EFc)

5HT2B
(6.62) 0.00 0.00 0.58 1.32 6.62

(0.01) 0.00 0.00 0.00 0.01 0.06
(1.38)

A2A
(19.62) 0.00 0.00 0.00 0.00 19.62

(0.03) 0.00 0.00 0.00 0.00 0.07
(1.33)

Beta 2
(13.23) 0.00 0.00 0.00 0.00 13.23

(0.05) 0.00 0.00 0.00 0.00 0.18
(2.15)

H1R
(11.16) 0.00 0.00 0.00 0.00 11.16

(0.02) 0.00 0.00 0.00 0.00 0.14
(1.87)

M1
(8.25) 0.00 0.00 1.37 3.30 8.25

(0.06) 0.00 0.00 0.01 0.02 0.09
(1.06)

OPRD
(14.59) 0.00 0.00 0.00 1.04 14.59

(0.05) 0.00 0.00 0.00 0.01 0.10
(1.29)

OPRK
(10.16) 0.00 0.00 0.00 0.73 10.16

(0.02) 0.00 0.00 0.00 0.01 0.21
(3.87)

OPRM
(10.74) 0.00 0.00 0.61 1.64 10.74

(0.06) 0.00 0.00 0.01 0.03 0.30
(3.76)

Averages 0.00 0.00 0.32 1.00 11.80
(0.04) 0.00 0.00 0.00 0.01 0.14

(2.09)

 249

Table B7. Pharmacophore model scoring data when searching with 3 partial match
features using pharmacophores generated in homology models.
aTheoretical maximum enrichment value calculated using 1/[A/D].
bGoodness of hit score for the enrichment value shown.
cEnrichment value for the goodness of hit score shown.

 Enrichment Factor (EF) Goodness of Hit (GH)

Receptor
(Max EFa) Min. Q1 Q2 Q3 Max.

(GHb) Min. Q1 Q2 Q3 Max.
(EFc)

5HT2B
(6.62) 0.00 0.70 0.89 0.99 6.62

(0.01) 0.00 0.01 0.04 0.06 0.12
(1.21)

A2A
(19.62) 0.00 0.55 0.78 0.93 8.41

(0.17) 0.00 0.01 0.02 0.04 0.20
(7.71)

Beta 2
(13.23) 0.00 0.97 1.07 1.28 9.92

(0.06) 0.00 0.01 0.03 0.08 0.43
(4.52)

H1R
(11.16) 0.00 0.40 0.71 0.93 5.58

(0.01) 0.00 0.01 0.02 0.03 0.11
(1.27)

M1
(8.25) 0.00 0.68 0.90 1.02 8.25

(0.07) 0.00 0.01 0.04 0.05 0.14
(1.57)

OPRD
(14.59) 0.00 1.01 1.10 1.41 14.59

(0.08) 0.00 0.01 0.04 0.07 0.26
(3.46)

OPRK
(10.16) 0.00 1.03 1.12 1.35 10.16

(0.04) 0.00 0.02 0.05 0.09 0.25
(6.89)

OPRM
(10.74) 0.00 0.90 1.06 1.24 10.74

(0.04) 0.00 0.02 0.05 0.08 0.25
(3.03)

Averages 0.00 0.78 0.95 1.14 9.28
(0.06) 0.00 0.01 0.04 0.06 0.22

(3.71)

aTheoretical maximum enrichment value calculated using 1/[A/D].
bGoodness of hit score for the enrichment value shown.
cEnrichment value for the goodness of hit score shown.

 250

Table B8. Pharmacophore model scoring data when searching with 4 partial match
features using pharmacophores generated in homology models.
aTheoretical maximum enrichment value calculated using 1/[A/D].
bGoodness of hit score for the enrichment value shown.
cEnrichment value for the goodness of hit score shown.

 Enrichment Factor (EF) Goodness of Hit (GH)

Receptor
(Max EFa) Min. Q1 Q2 Q3 Max.

(GHb) Min. Q1 Q2 Q3 Max.
(EFc)

5HT2B
(6.62) 0.00 0.07 0.72 0.95 6.62

(0.01) 0.00 0.00 0.01 0.04 0.11
(1.17)

A2A
(19.62) 0.00 0.00 0.50 0.78 9.81

(0.04) 0.00 0.00 0.01 0.03 0.18
(7.54)

Beta 2
(13.23) 0.00 0.00 0.85 1.56 13.23

(0.07) 0.00 0.00 0.01 0.09 0.52
(6.99)

H1R
(11.16) 0.00 0.00 0.35 0.74 11.16

(0.02) 0.00 0.00 0.01 0.02 0.12
(1.34)

M1
(8.25) 0.00 0.00 0.88 1.65 8.25

(0.06) 0.00 0.00 0.02 0.04 0.17
(2.43)

OPRD
(14.59) 0.00 0.00 0.99 1.43 14.59

(0.05) 0.00 0.00 0.02 0.06 0.30
(4.49)

OPRK
(10.16) 0.00 0.53 1.13 1.61 10.16

(0.04) 0.00 0.01 0.02 0.07 0.20
(3.34)

OPRM
(10.74) 0.00 0.00 0.68 1.19 10.74

(0.02) 0.00 0.00 0.01 0.04 0.23
(2.53)

Averages 0.00 0.08 0.76 1.24 10.57
(0.04) 0.00 0.00 0.01 0.05 0.23

(3.73)

 251

Table B9. Pharmacophore model scoring data when searching with 5 partial match
features using pharmacophores generated in homology models.
aTheoretical maximum enrichment value calculated using 1/[A/D].
bGoodness of hit score for the enrichment value shown.
cEnrichment value for the goodness of hit score shown.

 Enrichment Factor (EF) Goodness of Hit (GH)

Receptor
(Max EFa) Min. Q1 Q2 Q3 Max.

(GHb) Min. Q1 Q2 Q3 Max.
(EFc)

5HT2B
(6.62) 0.00 0.00 0.00 1.32 6.62

(0.01) 0.00 0.00 0.00 0.01 0.11
(1.19)

A2A
(19.62) 0.00 0.00 0.00 0.33 10.90

(0.11) 0.00 0.00 0.00 0.01 0.11
(10.90)

Beta 2
(13.23) 0.00 0.00 0.00 1.20 13.23

(0.07) 0.00 0.00 0.00 0.01 0.31
(5.70)

H1R
(11.16) 0.00 0.00 0.00 0.00 11.16

(0.02) 0.00 0.00 0.00 0.00 0.07
(0.93)

M1
(8.25) 0.00 0.00 0.93 3.30 8.25

(0.03) 0.00 0.00 0.01 0.01 0.08
(2.83)

OPRD
(14.59) 0.00 0.00 0.00 1.22 14.59

(0.03) 0.00 0.00 0.00 0.02 0.19
(3.39)

OPRK
(10.16) 0.00 0.00 0.00 1.02 10.16

(0.04) 0.00 0.00 0.00 0.01 0.12
(3.31)

OPRM
(10.74) 0.00 0.00 0.00 0.00 10.74

(0.04) 0.00 0.00 0.00 0.00 0.16
(2.68)

Averages 0.00 0.00 0.12 1.05 10.71
(0.04) 0.00 0.00 0.00 0.01 0.14

(3.87)

 252

Table B10. Average feature distances (in Å) between features/from feature to centroid for the sets of HE and LE
pharmacophore models generated in experimentally determined structures for each receptor used in this study.

 253

Table B11. Average feature distances (in Å) between features/from feature to centroid for the sets of HE and LE
pharmacophore models generated in homology models for each receptor used in this study.

 254

Appendix C

Chapter 5: Structure-based Pharmacophore Modeling 2. Developing a Novel

Framework for Structure-based Pharmacophore Model Generation and Selection

Table C1. Fragments used during MCSS.
aFragment features annotatable in MOE are marked by colored circles, with each color
representing a different feature type. Hydrophobic features are denoted by a green circle,
hydrogen bond acceptor features are denoted by a blue circle, hydrogen bond donor
features are denoted by a magenta circle, aromatic features are denoted by an orange
circle, and features that are both hydrogen bond acceptors and donors are denoted with
a purple circle.

Name Structurea Abbreviation Annotatable Features
1,2-dimethylpyrrolidine

MPR Acc, Hyd

2-butene

BTE Hyd

2-butyne

BTY Hyd

3-methylindole

MIN Aro, Don, Hyd

5-methylimidazole

IMC Acc, Aro, Don, Hyd

N-methylformamide

NMF Acc, Don, Hyd

acetaldehyde

ALD Acc, Hyd

acetamide

ACM Acc, Don, Hyd

acetate ion

COO Acc, Hyd

acetonitrile

CCN Acc, Hyd

benzene

BEN Aro, Hyd

N

H
N

NH
N

O
H
N

O

O

NH2

O

O
-

N

 255

Table C1 (continued). Fragments used during MCSS.
aFragment features annotatable in MOE are marked by colored circles, with each color
representing a different feature type. Hydrophobic features are denoted by a green circle,
hydrogen bond acceptor features are denoted by a blue circle, hydrogen bond donor
features are denoted by a magenta circle, aromatic features are denoted by an orange
circle, and features that are both hydrogen bond acceptors and donors are denoted with
a purple circle.

Name Structurea Abbreviation Annotatable Features
butane

BTA Hyd

cyclohexane

CHX Hyd

dimethylether

COC Acc, Hyd

dimethylsulfone

DSP Acc, Hyd

ethane

ETH Hyd

ethanol

EOH Acc/Don, Hyd

ethylthiol

CCS Hyd

isobutane

BTI Hyd

methane

CH4 Hyd

methanol

COH Acc/Don, Hyd

methylamidinium

CNN Cat/Don, Hyd

methylammonium

MAM Cat/Don, Hyd

methylchloride

MCL Hyd

methylguanidinium

GDN Cat/Don, Hyd

methylsulfonamide

MSM Acc, Cat/Don, Hyd

OH

SH

CH4

OH

N+H2

NH2

H3+N

Cl

N+
H

NH2

NH2

S
O

O
NH2

O

S
O

O

 256

Table C1 (continued). Fragments used during MCSS.
aFragment features annotatable in MOE are marked by colored circles, with each color
representing a different feature type. Hydrophobic features are denoted by a green circle,
hydrogen bond acceptor features are denoted by a blue circle, hydrogen bond donor
features are denoted by a magenta circle, aromatic features are denoted by an orange
circle, and features that are both hydrogen bond acceptors and donors are denoted with
a purple circle.

Name Structurea Abbreviation Annotatable Features
methylsulfonate

MST Acc, Hyd

methyltetrazolium

MTR Ani/Acc, Aro, Hyd

methylthiol

CSH Acc/Don, Hyd

n,n-dimethylacetamide

C3M Acc, Hyd

n-methylacetamide

CMC Acc, Don, Hyd

phenol

PHE Acc, Aro, Don, Hyd

piperidinium

PPP Cat/Don, Hyd

propane

PRA Hyd

propyne

PRY Hyd

thiazole

THZ Acc, Aro, Hyd

trifluoromethane

CF3 Hyd

trimethylammonium

TMN Cat/Don, Hyd

water WAT

OH

N+H2

S

N

F F

F

N+H

 H2O

S
O

O
O

-

NN

N
N

SH

O

N

O

N
H

 257

Table C2. Unique fragment placements for each target used in benchmarking our
pharmacophore model generation protocol.

Target Unique Fragment
Placements in Experimental
Structures

Unique Fragment
Placements in Homology
Models

5HT1B 1,929 1,651
5HT2B 1,825 1,761
5HT2C 1,770 1,954
A2A 1,466 2,110
A2C 1,443 2,111
Beta 2 2,006 1,647
H1 1,735 1,661
M1 1,723 1,558
M2 2,123 1,954
M4 1,847 1,900
OPRD 1,836 1,376
OPRK 2,192 1,699
OPRM 1,156 1,679

 258

Table C3. Number of ligands, theoretical maximum enrichment factor (EF) values,
percentages at which each target’s theoretical maximum EF is represented by our EF
cutoff of 2, and search database percent actives for the 13 targets represented in our
internal test database containing 569 class A GPCR ligands
aTheoretical maximum enrichment values were calculated using 1/[A/D], where 1 is the
maximum possible hit:active (A) ratio in the hitlist, and A/D is the proportion of actives of
all compounds in the database (D).
bPercentage of each target’s theoretical maximum enrichment value represented by our
chosen EF value cutoff of 2.
cPercentage of compounds in the search database possessing activity for a receptor.

Receptor

Number of
Active
Ligands

Theoretical
Maximum
Enrichmenta

EF Cutoff
Percentage (%)b

Search Database
Percent Actives (%)c

5HT1B 65 8.8 22.7 11.4
5HT2B 86 6.6 30.3 15.1
5HT2C 86 6.6 30.3 15.1
A2A 29 19.6 10.2 5.1
A2C 32 17.8 11.2 5.6
Beta 2 43 13.2 15.2 7.6
H1 51 11.2 17.9 9.0
M1 69 8.3 24.1 12.1
M2 53 10.7 18.7 9.3
M4 57 10.0 20.0 10.0
OPRD 39 14.6 13.7 6.9
OPRK 56 10.2 19.6 9.8
OPRM 53 10.7 18.7 9.3

 259

Table C4. Names of GPCR ligands used in the internal test database.
Targets that each ligand has activity for are numbered with denoted with superscripts.
Superscript numbering uses the following scheme:
¹5HT1A, ²5HT1B, ³5HT1D, ⁴5HT1E, ⁵5HT1F, ⁶5HT2A, ⁷5HT2B, ⁸5HT2C, ⁹5HT4, ¹⁰5HT6,
¹¹5HT7, ¹²A1A, ¹³A1D, ¹⁴A2A, ¹⁵A2B, ¹⁶A2C, ¹⁷Beta 1, ¹⁸Beta 2, ¹⁹Beta 3, ²⁰H1, ²¹H2, ²²H3,
²³M1, ²⁴M2, ²⁵M3, ²⁶M4, ²⁷M5, ²⁸OPRD, ²⁹OPRK, ³⁰OPRM
Ligand
Number

Ligand Name Ligand
Number

Ligand Name

1 (+)-DOI⁶ ⁷ ⁸ 41 ML381²³ ²⁴ ²⁵ ²⁶ ²⁷
2 VU0255035²³ ²⁴ ²⁵ ²⁶ ²⁷ 42 silahexocyclium²³ ²⁴ ²⁵ ²⁶ ²⁷
3 VUF 8430 43 agomelatine⁶ ⁷ ⁸
4 A-349821²⁰ ²² 44 SCH221510²⁸ ²⁹ ³⁰
5 oleamide¹¹ 45 McN-A-343²³ ²⁵ ²⁶ ²⁷
6 furtrethonium²³ ²⁴ ²⁵ ²⁶ 46 LY593093²³
7 BQCA²³ 47 2-methylhistamine23

8 RS-30199¹ 48 procaterol¹⁸
9 RS-127445⁶ ⁷ ⁸ 49 vortioxetine¹ ² ⁶ ¹⁰ ¹¹
10 LY334362⁸ 50 GSK 1521498³⁰
11 solabegron¹⁷ ¹⁸ ¹⁹ 51 PF-06767832²³
12 7-methoxy-1-naphthylpiperazine¹ ² ³ 52 GR 218 231¹
13 tiotropium²³ ²⁴ ²⁵ 53 WIN 62 577²³ ²⁵ ²⁶
14 2-pyridlethylamine²⁰ 54 (-)-YM796²³
15 all-trans-4-oxo-retinoic-acid¹⁶ 55 doxepin²⁰
16 tropicamide²⁵ 56 2-bromo-LSD¹⁰ ¹¹
17 BW723C86⁶ ⁷ ⁸ 57 normorphine²⁸ ²⁹ ³⁰
18 ephedrine¹⁸ 58 iperoxo²⁴
19 guanfacine¹⁴ ¹⁵ ¹⁶ 59 [125I]HEAT¹² ¹³
20 epinastine²⁰ 60 SB 204070⁹
21 nadolol¹⁷ ¹⁸ ¹⁹ 61 PZM21³⁰
22 fluparoxan¹ 62 alniditan² ³
23 alcuronium²³ ²⁵ ²⁶ 63 cyamemazine¹ ⁶ ⁸ ¹¹
24 norfluoxetine ⁶ ⁷ 64 loratadine²⁰
25 NS-49¹² ¹³ 65 phenylephrine¹²
26 probe 2.1 [PMID: 24187130]²⁹ 66 ethylketocyclazocine²⁸ ²⁹ ³⁰
27 lofexidine¹⁴ ¹⁵ ¹⁶ 67 (-)-methadone²⁸ ²⁹ ³⁰
28 LY063518⁶ 68 etonitazene²⁸ ²⁹ ³⁰
29 probe 1.1 [PMID: 24187130]²⁹ 69 VU0119498²³ ²⁵ ²⁷
30 sabcomeline²³ ²⁵ ²⁶ ²⁷ 70 lithocholycholine²³ ²⁴ ²⁵ ²⁶ ²⁷
31 oxotremorine²³ ²⁴ ²⁵ ²⁶ 71 xylazine¹⁴ ¹⁵ ¹⁶
32 (+)-cis-H2-PAT²⁰ 72 pipamperone¹ ² ³ ⁶ ²⁰
33 frovatriptan¹ ² ³ 73 H4 antagonist 48
34 5-methylurapidil¹² ¹³ 74 pentythio-TZTP²³ ²⁴ ²⁵ ²⁶
35 dicyclomine²³ ²⁴ ²⁵ 75 K-252a²³
36 (+)-norfenfluramine⁷ 76 Ro 60-0175⁶ ⁷
37 SB 204741⁷ ⁸ 77 EMD-386088¹⁰
38 tapentadol³⁰ 78 4-DAMP²³ ²⁴ ²⁵ ²⁶ ²⁷
39 salvinorin A²⁹ 79 JB 98064²²
40 burimamide²² 80 TIPP-psi²⁸

 260

Table C4 (continued). Names of GPCR ligands used in the internal test database.
Targets that each ligand has activity for are numbered with denoted with superscripts.
Superscript numbering uses the following scheme:
¹5HT1A, ²5HT1B, ³5HT1D, ⁴5HT1E, ⁵5HT1F, ⁶5HT2A, ⁷5HT2B, ⁸5HT2C, ⁹5HT4, ¹⁰5HT6,
¹¹5HT7, ¹²A1A, ¹³A1D, ¹⁴A2A, ¹⁵A2B, ¹⁶A2C, ¹⁷Beta 1, ¹⁸Beta 2, ¹⁹Beta 3, ²⁰H1, ²¹H2, ²²H3,
²³M1, ²⁴M2, ²⁵M3, ²⁶M4, ²⁷M5, ²⁸OPRD, ²⁹OPRK, ³⁰OPRM
Ligand
Number

Ligand Name Ligand
Number

Ligand Name

81 sumatriptan¹ ² ³ ⁴ ⁵ ¹⁰ ¹¹ 121 BF-1⁶ ⁷
82 AE9C90CB²³ ²⁴ ²⁵ ²⁶ ²⁷ 122 quinpirole¹ ⁶ ⁷ ⁸
83 tifluadom²⁹ 123 tegaserod⁷ ⁹
84 sarpogrelate⁶ ⁷ ⁸ 124 solifenacin²³ ²⁴ ²⁵ ²⁶ ²⁷
85 A61603¹² 125 Cy3B-telenzepine²³ ²⁴
86 (R)-flurocarazolol¹ ² 126 A-304121²²
87 phenoxybenzamine¹⁵ 127 himbacine²³ ²⁴ ²⁵ ²⁶ ²⁷
88 LK 204-545¹⁷ ¹⁸ 128 zolmitriptan¹ ² ³ ⁴ ⁵
89 S(+)-niguldipine¹² ¹³ 129 AR-M1000390²⁸ ²⁹ ²⁸ ³⁰
90 NNC 11-1585²³ ²⁴ ²⁵ ²⁶ ²⁷ 130 (+)-cyclazosin¹² ¹³
91 YM348⁸ 131 pimavanserin⁶
92 duloxetine⁶ ⁸ ¹⁰ 132 GR 125487⁹
93 LY53857⁶ ⁷ 133 RS-17053¹² ¹³
94 trazodone⁶ ⁷ ⁸ 134 ML169²³
95 acetylcholine²³ ²⁴ ²⁵ ²⁶ ²⁷ 135 WAY-208466¹⁰
96 L-748337¹⁹ 136 Rec 15/3079¹
97 BRL 44408¹⁴ ¹⁵ ¹⁶ 137 conessine²⁰ ²²
98 tripelennamine²⁰ 138 SB 221284⁶ ⁷ ⁸
99 arecaidine propargyl ester²³ ²⁴ ²⁵ ²⁶ 139 ipratropium²³ ²⁴ ²⁵ ²⁶ ²⁷
100 CL316243¹⁹ 140 (R)-UH 301¹
101 bethanechol²³ ²⁴ ²⁵ ²⁶ 141 phentolamine¹² ¹³ ¹⁴ ¹⁵ ¹⁶
102 N-1-isopropyl-5-MeOT⁶ 142 AZD6088²³
103 cebranopadol²⁸ ²⁹ ³⁰ 143 ocaperidone¹ ² ³
104 guanylpirenzepine²³ 144 asenapine¹ ² ³ ⁴ ⁶ ²⁰
105 labetalol¹³ ¹⁷ ¹⁸ 145 piribedil¹ ⁷ ¹² ¹⁴ ¹⁶
106 CP94253² 146 tolvaptan
107 hexahydrodifenidol²³ ²⁴ ²⁵ ²⁶ ²⁷ 147 ST-1006²⁰ ²²
108 RX821002¹⁴ ¹⁵ ¹⁶ 148 amibegron¹⁹
109 WAY-163909⁸ 149 SB 216641¹ ² ³ ⁶ ⁷ ⁸
110 robalzotan¹ 150 CGP 12177¹⁷ ¹⁹
111 alpha-methylnoradrenaline¹³ 151 aclidinium²³ ²⁴ ²⁵
112 H05⁶ 152 5-BODMT⁴ ⁵
113 raclopride¹ 153 ML375²⁷
114 mirabegron¹⁷ ¹⁸ ¹⁹ 154 SB 277011-A³ ⁷
115 sufentanil³⁰ 155 brimonidine¹⁴ ¹⁵ ¹⁶
116 naloxone benzoylhydrazone²⁹ ³⁰ 156 ICI 169369¹⁰
117 BIMU 8⁹ 157 SB269970¹¹
118 5-fluorotryptamine⁴ 158 GR-55562² ²
119 ORG-37684⁶ ⁷ ⁸ 159 BRL-54443⁴ ⁵
120 JNJ-39758979²⁰ ²² 160 ergotamine³ ⁴ ⁵ ⁶ ⁷ ⁸ ¹⁰ ⁶

 261

Table C4 (continued). Names of GPCR ligands used in the internal test database.
Targets that each ligand has activity for are numbered with denoted with superscripts.
Superscript numbering uses the following scheme:
¹5HT1A, ²5HT1B, ³5HT1D, ⁴5HT1E, ⁵5HT1F, ⁶5HT2A, ⁷5HT2B, ⁸5HT2C, ⁹5HT4, ¹⁰5HT6,
¹¹5HT7, ¹²A1A, ¹³A1D, ¹⁴A2A, ¹⁵A2B, ¹⁶A2C, ¹⁷Beta 1, ¹⁸Beta 2, ¹⁹Beta 3, ²⁰H1, ²¹H2, ²²H3,
²³M1, ²⁴M2, ²⁵M3, ²⁶M4, ²⁷M5, ²⁸OPRD, ²⁹OPRK, ³⁰OPRM
Ligand
Number

Ligand Name Ligand
Number

Ligand Name

161 terbutaline¹⁸ 201 (+)-WAY 100135² ³
162 VUF14862²² 202 ziprasidone¹ ² ³ ⁴ ⁶ ⁸ ¹¹ ²⁰
163 oxotremorine-M²³ ²⁴ ²⁵ ²⁶ 203 LY320954⁶
164 lumateperone⁶ 204 AZD7268²⁸
165 tolterodine²³ ²⁴ ²⁵ ²⁶ ²⁷ 205 LY2119620²⁶
166 salmeterol¹⁸ 206 VER-3323⁶ ⁷ ⁸
167 dimaprit²² 207 zotepine¹ ² ³ ⁴ ⁶ ⁸ ¹⁰ ¹¹ ¹⁵ ²⁰
168 renzapride⁹ 208 yohimbine¹ ² ³ ⁴ ⁵ ⁷ ¹¹ ¹⁴ ¹⁵ ¹⁶
169 Go 7874²³ ²⁵ ²⁶ 209 pizotifen¹
170 GR 89696²⁹ 210 terguride ¹ ² ³ ⁶ ⁷ ⁸ ¹² ¹⁴ ¹⁵ ¹⁶
171 L-772 405¹ ² ³ 211 S-14506¹
172 mesoridazine¹ ⁶ ⁸ 212 [125I]ICYP¹⁸ ¹⁹
173 oxybutynin²³ ²⁴ ²⁵ ²⁶ ²⁷ 213 scopolamine²³ ²⁴ ²⁵ ²⁶
174 PF-03654746²² 214 tolazoline¹⁴ ¹⁵ ¹⁶
175 practolol¹⁷ 215 WB 4101¹² ¹³ ¹⁴ ¹⁵ ¹⁶
176 2-(2-thiazolyl)ethanamine²⁰ 216 mianserin⁶ ⁷ ⁸ ¹⁰ ¹¹ ¹² ¹³
177 volinanserin⁶ ⁷ ⁸ 217 L-694 247¹ ² ³
178 timolol¹⁸ 218 AZD3778²⁰
179 2-methyl-5-HT² ³ ⁴ ⁵ ¹⁰ ⁷ 219 LY 165 163¹ ¹⁰
180 U69593²⁹ 220 tropisetron⁹
181 abediterol¹⁷ ¹⁸ ¹⁹ 221 lergotrile¹⁰
182 cerlapirdine¹⁰ 222 ketanserin¹ ³ ⁶ ⁷ ⁸ ¹¹ ¹² ¹³ ²
183 INCB-38579²⁰ 223 idalopiridine⁸ ¹⁰
184 AC-42²³ 224 diphenhydramine²⁰
185 propantheline²⁴ ²⁵ ²⁶ 225 azelastine²⁰
186 lasmiditan⁵ 226 repinotan¹
187 loperamide³⁰ 227 milameline²³ ²⁵ ²⁶ ²⁷
188 GSK334429²² 228 tripolidine²⁰
189 SB 242084⁶ ⁷ ⁸ 229 NLX-101¹
190 EGIS-7625⁶ ⁷ ⁸ 230 guanabenz¹⁴ ¹⁵ ¹⁶
191 iloperidone¹ ¹⁰ ¹¹ 231 AL-37350A⁶ ⁷ ⁸
192 lysergol² ³ ⁴ 232 vinburnine²³ ²⁵ ²⁶
193 oxymetazoline² ³ ⁸ ¹² ¹³ ¹⁴ ¹⁵ ¹⁶ 233 (+)-chloropheniramine²⁰
194 cevimeline²³ ²⁴ ²⁵ ²⁶ 234 JDTic²⁹
195 SB236057² 235 olodaterol¹⁸
196 ADL5859²⁸ ²⁹ ³⁰ 236 methoctramine²³ ²⁴ ²⁵ ²⁶ ²⁷
197 clemastine²⁰ 237 ritanserin¹ ² ³ ⁶ ⁷ ⁸ ¹⁰ ¹¹ ¹² ¹³
198 (+)-aceclidine²³ ²⁴ ²⁵ ²⁶ ²⁷ 238 interpirdine¹⁰
199 dobutamine¹⁷ 239 tramadol²⁸ ²⁹ ³⁰
200 (-)-pentazocine²⁸ ²⁹ ³⁰ 240 2-MPP¹¹

 262

Table C4 (continued). Names of GPCR ligands used in the internal test database.
Targets that each ligand has activity for are numbered with denoted with superscripts.
Superscript numbering uses the following scheme:
¹5HT1A, ²5HT1B, ³5HT1D, ⁴5HT1E, ⁵5HT1F, ⁶5HT2A, ⁷5HT2B, ⁸5HT2C, ⁹5HT4, ¹⁰5HT6,
¹¹5HT7, ¹²A1A, ¹³A1D, ¹⁴A2A, ¹⁵A2B, ¹⁶A2C, ¹⁷Beta 1, ¹⁸Beta 2, ¹⁹Beta 3, ²⁰H1, ²¹H2, ²²H3,
²³M1, ²⁴M2, ²⁵M3, ²⁶M4, ²⁷M5, ²⁸OPRD, ²⁹OPRK, ³⁰OPRM
Ligand
Number

Ligand Name Ligand
Number

Ligand Name

241 betaxolol¹⁷ ¹⁸ 281 tripitramine²³ ²⁴ ²⁵ ²⁶ ²⁷
242 spiroxatrine¹ ⁷ ¹² ¹³ ¹⁴ ¹⁵ ¹⁶ 282 butorphanol²⁹ ³⁰
243 lorcaserin⁶ ⁷ ⁸ 283 MPDT¹ ³ ⁶ ¹⁰ ¹¹
244 HS665²⁹ ³⁰ 284 tamsulosin¹² ¹³
245 THRX160209²⁴ 285 TD-8954⁹
246 apomorphine¹ ⁶ ⁷ ⁸ ¹⁴ ¹⁵ ¹⁶ 286 SB 203186⁹
247 arformoterol¹⁷ ¹⁸ 287 VU0238429²⁷
248 mesulergine⁶ ⁷ ⁸ ¹⁰ ¹¹ 288 melatonin⁷
249 MK-0249²⁰ ²² 289 BMY-14802¹
250 capeserod¹ ² ³ ⁶ ⁷ ⁸ ⁹ ¹⁰ ¹¹ 290 ML380²⁷
251 fenoterol¹⁸ 291 SB 649915¹ ² ³
252 BMY-7378¹ ¹² ¹³ 292 MP1104²⁹
253 LY215840⁶ 293 LP-44¹ ⁶ ¹¹
254 p-F-HHSiD²³ ²⁴ ²⁵ ²⁶ ²⁷ 294 RU 24969¹ ² ³ ⁶ ⁷ ⁸ ¹⁰
255 imipramine²⁴ 295 dipropyl-5CT² ³ ⁵ ¹¹
256 (+)-butaclamol¹ ⁶ ¹¹ 296 SKF 105854¹³
257 CP 93129¹ 297 pethidine²⁸ ²⁹ ³⁰
258 (-)-noradrenaline¹² ¹³ ¹⁴ ¹⁵ ¹⁶ ¹⁷ ¹⁸ ¹⁹ 298 quipazine⁶ ⁷ ⁸
259 piboserod⁷ ⁹ 299 Ro 04-6790¹⁰
260 CGS-12066² ³ ⁶ ⁷ ⁸ ¹⁰ 300 flesinoxan¹
261 5-(nonyloxy)-tryptamine² 301 alvimopan²⁸ ²⁹ ³⁰
262 ICI 118551¹⁸ ¹⁹ 302 S 16924¹ ⁶ ⁷ ⁸ ¹⁰
263 ABT-239²⁰ ²² 303 filbanserin¹ ⁶
264 LY2456302²⁸ ²⁹ ³⁰ 304 bupranolol¹⁷ ¹⁸ ¹⁹
265 dexetimide²⁴ 305 fentanyl²⁸ ²⁹ ³⁰
266 molindone⁶ ²⁰ 306 T-0509¹⁷
267 JNJ 7777120²² 307 ethopropazine²³
268 xamoterol¹⁷ 308 pitolisant²⁰ ²²
269 5'-guanidinonaltrindole²⁹ 309 silodosin¹² ¹³
270 metergoline² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ¹⁰ ¹¹ 310 dosulepin²⁰ ²³ ²⁴ ²⁵ ²⁷ ²⁶
271 5-CT¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ¹⁰ ¹¹ 311 SR59230A¹⁷ ¹⁸ ¹⁹
272 L-741 626⁶ ⁷ 312 U50488²⁹
273 glycopyrrolate²³ ²⁴ ²⁵ ²⁶ ²⁷ 313 BNTX²⁸ ²⁹ ³⁰
274 umeclidinium²³ ²⁴ ²⁵ ²⁶ ²⁷ 314 AC-260584²³
275 BMS 181 101² 315 esmolol¹⁷
276 LY344864¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ¹¹ 316 blonaserin⁶
277 eletriptan¹ ² ³ ⁴ ⁵ 317 SR16835²⁹ ³⁰
278 velusetrag⁹ 318 DAU 6285⁹
279 zinterol¹⁸ 319 dabuzalgron¹²
280 A-119637¹² ¹³ 320 carvedilol¹⁷ ¹⁸

 263

Table C4 (continued). Names of GPCR ligands used in the internal test database.
Targets that each ligand has activity for are numbered with denoted with superscripts.
Superscript numbering uses the following scheme:
¹5HT1A, ²5HT1B, ³5HT1D, ⁴5HT1E, ⁵5HT1F, ⁶5HT2A, ⁷5HT2B, ⁸5HT2C, ⁹5HT4, ¹⁰5HT6,
¹¹5HT7, ¹²A1A, ¹³A1D, ¹⁴A2A, ¹⁵A2B, ¹⁶A2C, ¹⁷Beta 1, ¹⁸Beta 2, ¹⁹Beta 3, ²⁰H1, ²¹H2, ²²H3,
²³M1, ²⁴M2, ²⁵M3, ²⁶M4, ²⁷M5, ²⁸OPRD, ²⁹OPRK, ³⁰OPRM
Ligand
Number

Ligand Name Ligand
Number

Ligand Name

321 indacaterol¹⁸ 361 SB 272183¹ ² ³
322 U92016A¹ 362 vincamine²³ ²⁵ ²⁶
323 xanomeline¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ¹⁰ ¹¹ ²³ ²⁴ ²⁵ ²⁶ ²⁷ 363 Lysergic Acid³
324 GR 125 743¹ 364 ZPL-3893787²²
325 (-)-tertatolol¹ 365 methylnaltrexone²⁸ ²⁹ ³⁰
326 vilazadone¹ ⁹ ²⁰ 366 clidinium²⁵
327 dapiprazole¹³ 367 morphine²⁸ ²⁹ ³⁰
328 fexofenadine²⁰ 368 haloperidol¹ ³ ⁶ ⁷ ¹¹ ²⁰
329 rizatriptan¹ ² ³ ⁴ ⁵ 369 WAY-100635¹
330 relenopride⁶ ⁷ ⁹ 370 (-)-propranolol¹ ¹⁷
331 RS-102221⁶ ⁷ ⁸ 371 atropine²³ ²⁴ ²⁵ ²⁶ ²⁷
332 levorphanol³⁰ 372 apraclonidine¹⁴ ¹⁵
333 ML 10375⁹ 373 AC-90179⁶ ⁸
334 darifenacin²³ ²⁴ ²⁵ ²⁶ ²⁷ 374 BRL-15572¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ¹⁰
335 alprenolol¹⁸ 375 DR-4004¹¹
336 UFP-512²⁸ ²⁹ ³⁰ 376 methacholine²³
337 nafadotride¹ 377 beta-FNA²⁸ ²⁹ ³⁰
338 BRL 37344¹⁹ 378 propafenone¹⁷ ¹⁸
339 alpha-methyl-5-HT³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ¹⁰ 379 amitriptyline⁶ ¹⁰ ¹¹ ²⁰ ²³ ²⁴ ²⁵ ²⁶ ²⁷
340 UH-AH-37²³ ²⁴ ²⁵ ²⁶ ²⁷ 380 SB656104¹¹
341 SB 271046¹⁰ 381 pirenperone¹¹
342 S-15535¹ 382 compound 3a [PMID: 18606542]²²
343 N-1-isopropyltryptamine⁶ 383 SB 224289² ³ ⁶ ⁷ ⁸
344 UCL-2138²² 384 fluspirilene¹ ³ ⁴ ⁶ ²⁰
345 cabergoline¹ ² ³ ⁶ ⁸ ¹² ¹⁴ ¹⁵ ¹⁶ 385 SB 206553⁶ ⁷ ⁸
346 FG-5893¹ 386 5-MeOT² ³ ⁴ ⁵ ⁶ ⁸ ⁹ ¹⁰ ¹¹
347 aripiprazole¹ ² ³ ⁶ ⁸ ¹⁰ ¹¹ ²⁰ 387 desloratadine²⁰
348 chlorpromazine¹ ⁶ ⁸ ¹⁰ ¹⁰ ¹¹ ¹⁴ ¹⁵ ¹⁶ ²⁰ 388 naratriptan¹ ² ³ ⁴ ⁵
349 methoxamine¹² ¹³ 389 roxindole¹ ² ³ ⁶ ⁷ ⁸ ¹² ¹⁵ ¹⁶
350 dimethyltryptamine³ ¹⁰ 390 (-)-bremazocine²⁸ ²⁹ ³⁰
351 Org 12962⁶ ⁷ ⁸ 391 lurasidone⁶ ¹¹ ¹⁴ ¹⁶
352 PF-04995274⁹ 392 m-chlorophenylpiperazine³ ⁴ ⁶ ⁷ ⁸ ¹⁰

¹¹
353 methysergide³ ⁴ ⁵ ⁶ ⁷ ⁸ ¹⁰ ¹¹ 393 acebutolol¹⁷
354 S-14671¹ 394 sotalol¹⁷ ¹⁸
355 pergolide¹ ² ³ ⁶ ⁷ ⁸ ¹⁰ ¹¹ ¹⁴ ¹⁵ ¹⁶ 395 9-OH-risperidone¹ ² ³ ⁴ ⁶ ²⁰
356 nefazodone⁶ 396 carbachol²³ ²⁴ ²⁵ ²⁶ ²⁷
357 mosapride⁹ 397 SB 228357⁶ ⁷ ⁸
358 SB 215505⁶ ⁷ ⁸ 398 prucalopride⁹
359 SB 258719¹¹ 399 ipsapirone¹
360 JP1302¹⁶ 400 amesergide⁶ ⁷

 264

Table C4 (continued). Names of GPCR ligands used in the internal test database.
Targets that each ligand has activity for are numbered with denoted with superscripts.
Superscript numbering uses the following scheme:
¹5HT1A, ²5HT1B, ³5HT1D, ⁴5HT1E, ⁵5HT1F, ⁶5HT2A, ⁷5HT2B, ⁸5HT2C, ⁹5HT4, ¹⁰5HT6,
¹¹5HT7, ¹²A1A, ¹³A1D, ¹⁴A2A, ¹⁵A2B, ¹⁶A2C, ¹⁷Beta 1, ¹⁸Beta 2, ¹⁹Beta 3, ²⁰H1, ²¹H2, ²²H3,
²³M1, ²⁴M2, ²⁵M3, ²⁶M4, ²⁷M5, ²⁸OPRD, ²⁹OPRK, ³⁰OPRM
Ligand
Number

Ligand Name Ligand
Number

Ligand Name

401 hexocyclium²³ ²⁴ ²⁵ ²⁶ ²⁷ 441 prenalterol¹⁷
402 upidosin¹² ¹³ 442 GR 127935¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ¹⁰
403 pindolol¹ ⁶ ⁷ ¹⁷ ¹⁸ 443 spiramide⁶ ⁷ ⁸
404 levallorphan³⁰ 444 (+)-adrenaline¹² ¹³ ¹⁵ ¹⁶ ¹⁷ ¹⁹
405 RS 67333⁹ 445 biperiden²³ ²⁴ ²⁵ ²⁶ ²⁷
406 promethazine²⁰ 446 SDZ SER-082⁶ ⁷ ⁸
407 Ro-70-0004¹² ¹³ 447 (-)-cyclazocine²⁸ ²⁹ ³⁰
408 ARC-239¹⁴ ¹⁵ ¹⁶ 448 donitriptan¹ ² ³ ⁴ ⁵ ⁶ ¹⁰
409 hydrocodone²⁹ ³⁰ 449 compund 3b [PMID;28943244]⁶
410 benzatropine²³ 450 arecoline²³ ²⁴ ²⁵ ²⁶
411 KT 5823²³ 451 RS 100235⁹
412 rho-MPPI¹ 452 buspirone¹ ¹¹
413 pyrilamine²⁰ 453 N-methyl scopolamine²³ ²⁵
414 quadazocine²⁸ ²⁹ ³⁰ 454 RS 39604⁹
415 isoprenaline¹⁷ ¹⁸ ¹⁹ 455 L755507¹⁹
416 levosalbutamol¹⁸ 456 5-hydroxytryptamine¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ¹⁰

¹¹
417 LP-211¹ ¹¹ 457 AT-076²⁸ ²⁹ ³⁰
418 S33084² ³ ⁶ ⁷ ⁸ 458 SB357134¹⁰
419 bufotenine³ ⁶ ¹⁰ 459 (-)-Ro 363¹⁷
420 fluoxetine⁷ ⁶ ¹⁰ 460 glemanserin⁶ ⁷ ⁸
421 KT 5720²³ ²⁶ 461 vilanterol¹⁸
422 thioridazine¹ ⁶ ⁸ ¹⁰ ¹¹ ²⁰ 462 lisuride¹ ² ³ ⁶ ⁷ ⁸ ¹⁰ ¹¹ ¹² ¹⁴ ¹⁵ ¹⁶
423 A-317920²⁰ ²² 463 ketoifen²⁰
424 sergolexole⁶ ⁶ 464 levobunolol¹⁷ ¹⁸ ¹⁹
425 cisapride⁹ 465 BIMU 1⁹
426 CP-122288² ³ 466 SB258585¹⁰
427 cyproheptadine¹⁰ ¹¹ ¹² ¹³ ²⁰ 467 NAN 190¹ ⁵ ¹² ¹³
428 metoprolol¹⁷ ¹⁸ 468 SNAP5089¹²
429 5-benzyloxytryptamine¹⁰ 469 hexahydrosiladifenidol²³ ²⁴ ²⁵ ²⁶ ²⁷
430 GR 113808⁹ 470 UFP-505²⁸ ³⁰
431 L742791¹⁹ 471 dihydroergocryptine⁷ ¹¹
432 tryptamine² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ¹⁰ ¹¹ 472 buprenorphine²⁹ ³⁰
433 terfenadine²⁰ 473 atenolol¹⁷ ¹⁸
434 nalorphine²⁸ ²⁹ ³⁰ 474 8-OH-DPAT¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ¹¹
435 LY334370¹ ⁵ 475 bromocriptine¹ ² ³ ⁶ ⁷ ⁸ ¹⁰ ¹¹ ¹⁴ ¹⁵ ¹⁶
436 LY293284¹ 476 sertindole¹ ² ³ ⁴ ⁵ ⁶ ⁸ ²⁰
437 OPC 4392¹⁰ ¹¹ 477 ethyketazocine²⁹
438 DOM⁶ 478 dihydromorphine²⁸ ²⁹ ³⁰
439 indoramin¹² ¹³ 479 Lysergide¹ ⁶ ⁷ ⁸ ¹⁰
440 naltrindole²⁸ ²⁹ ³⁰ 480 nalbuphine²⁸ ²⁹ ³⁰

 265

Table C4 (continued). Names of GPCR ligands used in the internal test database.
Targets that each ligand has activity for are numbered with denoted with superscripts.
Superscript numbering uses the following scheme:
¹5HT1A, ²5HT1B, ³5HT1D, ⁴5HT1E, ⁵5HT1F, ⁶5HT2A, ⁷5HT2B, ⁸5HT2C, ⁹5HT4, ¹⁰5HT6,
¹¹5HT7, ¹²A1A, ¹³A1D, ¹⁴A2A, ¹⁵A2B, ¹⁶A2C, ¹⁷Beta 1, ¹⁸Beta 2, ¹⁹Beta 3, ²⁰H1, ²¹H2, ²²H3,
²³M1, ²⁴M2, ²⁵M3, ²⁶M4, ²⁷M5, ²⁸OPRD, ²⁹OPRK, ³⁰OPRM
Ligand
Number

Ligand Name Ligand
Number

Ligand Name

481 orciprenaline¹⁸ 521 SB 207710⁹ ¹¹
482 zacopride⁹ 522 dihydroergotamine² ³ ⁴ ⁵ ¹⁰ ¹¹
483 risperidone¹ ² ³ ⁴ ⁵ ⁶ ⁸ ¹⁰ ¹¹ ¹² ¹³ ²⁰ 523 alpha-ergocryptine¹⁰
484 1-naphthylpiperazine¹ ² ³ ⁴ ⁵ ⁷ ¹⁰ ¹¹ 524 clonidine¹⁴ ¹⁵ ¹⁶
485 mirtazapine⁶ ⁸ ¹⁴ ¹⁵ ¹⁶ 525 alimemazine²⁰
486 JNJ-5207852²² 526 carazolol¹⁸ ¹⁹
487 MK-212⁶ ⁷ ⁸ 527 LY314228⁶
488 A-123189¹² ¹³ 528 LY108742⁶
489 nalfurafine²⁹ 529 hydromorphone²⁸ ²⁹ ³⁰
490 VUF14738²² 530 WIN 51 708²³ ²⁵ ²⁶
491 TFMPP² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ¹⁰ ¹¹ 531 ML 10302⁹
492 L748328¹⁹ 532 naltriben²⁸ ²⁹ ³⁰
493 SB 243213⁶ ⁷ ⁸ 533 methylergonovine⁴ ⁵ ⁶ ⁷ ⁸
494 5-MeO-DMT⁴ ⁵ ⁸ ¹⁰ ¹¹ 534 nor-binaltorphimine²⁸ ²⁹ ³⁰
495 naloxone²⁸ ²⁹ ³⁰ 535 perospirone⁶
496 ergometrine⁴ ⁶ 536 RS-100329¹² ¹³
497 spiperone¹ ³ ⁶ ⁷ ⁸ ¹⁰ ¹¹ ¹² ¹³ 537 levetimide²⁴
498 nalmefene²⁸ ²⁹ ³⁰ 538 DOI⁴ ⁵ ⁶ ⁷ ⁸
499 brolamfetamine⁶ ⁷ ⁸ 539 (+)-LSD⁶ ⁷ ⁸ ¹¹
500 tiospirone¹ ⁸ ¹⁰ ¹¹ 540 rauwolscine² ³ ⁴ ⁷ ¹⁴ ¹⁵ ¹⁶
501 compound 3 [PMID: 23134120]²⁹ ³⁰ 541 dihydroergocristine¹⁰
502 NIP¹⁷ ¹⁸ 542 [125I]BE-2254¹² ¹³
503 pimozide¹ ⁶ ¹¹ ¹⁰ ²⁰ 543 SB399885¹⁰
504 NIHP¹⁷ 544 (+)-trans-H2-PAT²⁰
505 trihexyphenidyl²³ 545 (-)-aceclidine²³ ²⁴ ²⁵ ²⁶ ²⁷
506 AQ-RA 741²³ ²⁴ ²⁵ ²⁶ ²⁷ 546 (-)-adrenaline¹² ¹³ ¹⁴ ¹⁵ ¹⁶ ¹⁷ ¹⁸
507 naltrexone²⁸ ²⁹ ³⁰ 547 (-)-chlorpheniramine²⁰
508 NNC 11-1314²³ ²⁴ ²⁵ ²⁶ ²⁷ 548 (-)-norfenfluramine⁷
509 H87/07¹⁷ 549 (-)-trans-H2-PAT²⁰ ²²
510 cicloprolol¹⁷ ¹⁸ 550 (R)-DOI⁶ ⁷ ⁸
511 N-benzyl brucine²³ ²⁵ ²⁶ ²⁷ 551 (S)-UH 301¹
512 LP-12¹ ⁶ ¹¹ 552 (S)-flurocarazolol¹ ²
513 LY86057⁶ ⁷ 553 NNC 11-1607²³ ²⁴ ²⁵ ²⁶ ²⁷
514 codeine³⁰ 554 WAY-100135¹
515 enadoline²⁹ 555 chlorpheniramine²⁰
516 methylfurmethide²³ ²⁴ ²⁵ ²⁶ 556 denopamine¹⁷
517 tandospirone¹ 557 diprenorphine²⁸ ²⁹ ³⁰
518 DM-1451¹⁰ ¹¹ 558 formoterol¹⁸
519 ADL5747²⁸ ²⁹ ³⁰ 559 levobetaxolol¹⁷ ¹⁸
520 BU08028²⁸ ²⁹ ³⁰ 560 methadone³⁰

 266

Table C4 (continued). Names of GPCR ligands used in the internal test database.
Targets that each ligand has activity for are numbered with denoted with superscripts.
Superscript numbering uses the following scheme:
¹5HT1A, ²5HT1B, ³5HT1D, ⁴5HT1E, ⁵5HT1F, ⁶5HT2A, ⁷5HT2B, ⁸5HT2C, ⁹5HT4, ¹⁰5HT6,
¹¹5HT7, ¹²A1A, ¹³A1D, ¹⁴A2A, ¹⁵A2B, ¹⁶A2C, ¹⁷Beta 1, ¹⁸Beta 2, ¹⁹Beta 3, ²⁰H1, ²¹H2, ²²H3,
²³M1, ²⁴M2, ²⁵M3, ²⁶M4, ²⁷M5, ²⁸OPRD, ²⁹OPRK, ³⁰OPRM
Ligand
Number

Ligand Name

561 noradrenaline¹⁷ ¹⁸
562 norfenfluramine⁷
563 propranolol¹⁸ ¹⁹
564 salbutamol¹⁸
565 tertatolol¹⁹
566 AS-19¹¹
567 JNJ-18038683¹¹
568 benzoquinazolinone 12²³
569 E55888¹¹

 267

Table C5. Sampled EF and GH values for PED models with the GH fragment subset
when searching our internal test database.
aEntries marked as NA represent cases where a search was unable to be scored due to a
lack of retrieved hits.

 EF Value per Partial Match
Feature Number

GH Value per Partial Match
Feature Number

Receptor Score Type 3 4 5 6 7 3 4 5 6 7
5HT1B dE(class) 1.01 1.85 0.00 NAa NA 0.00 0.22 0.00 NA NA
 dE 1.10 2.02 0.00 NA NA 0.04 0.20 0.00 NA NA
 dU(class) 1.00 1.19 0.00 NA NA 0.01 0.13 0.00 NA NA
 dU 0.55 8.75 NA NA NA 0.05 0.75 NA NA NA
5HT2B dE(class) 1.01 0.95 0.91 2.21 NA 0.00 0.05 0.12 0.25 NA
 dE 0.64 0.51 NA NA NA 0.07 0.06 NA NA NA
 dU(class) 1.01 0.85 0.74 2.21 NA 0.02 0.10 0.09 0.25 NA
 dU 0.47 NA NA NA NA 0.05 NA NA NA NA
5HT2C dE(class) 1.00 0.87 0.66 NA NA 0.01 0.10 0.08 NA NA
 dE 0.99 0.80 2.21 NA NA 0.02 0.10 0.25 NA NA
 dU(class) 0.99 0.85 0.44 NA NA 0.02 0.09 0.05 NA NA
 dU 0.72 0.41 NA NA NA 0.09 0.05 NA NA NA
A2A dE(class) 0.88 0.69 1.12 0.00 NA 0.00 0.04 0.07 0.00 NA
 dE 1.00 0.93 0.62 0.00 NA 0.00 0.03 0.05 0.00 NA
 dU(class) 0.98 0.70 0.00 0.00 NA 0.00 0.04 0.00 0.00 NA
 dU 1.01 0.94 1.00 6.54 NA 0.00 0.04 0.08 0.26 NA
A2C dE(class) 1.00 0.91 0.81 0.00 NA 0.00 0.02 0.06 0.00 NA
 dE 1.33 0.00 0.00 NA NA 0.11 0.00 0.00 NA NA
 dU(class) 0.98 0.71 0.86 2.54 NA 0.00 0.03 0.07 0.11 NA
 dU 3.56 0.00 NA NA NA 0.18 0.00 NA NA NA
Beta 2 dE(class) 1.03 1.65 10.59 NA NA 0.01 0.16 0.62 NA NA
 dE 1.25 4.57 NA NA NA 0.07 0.38 NA NA NA
 dU(class) 1.01 1.10 0.00 NA NA 0.00 0.10 0.00 NA NA
 dU 0.35 0.00 NA NA NA 0.02 0.00 NA NA NA
H1 dE(class) 1.00 0.90 0.15 NA NA 0.00 0.04 0.01 NA NA
 dE 1.07 0.74 NA NA NA 0.04 0.06 NA NA NA
 dU(class) 1.01 0.69 0.00 0.00 NA 0.00 0.07 0.00 0.00 NA
 dU 1.00 1.10 2.79 NA NA 0.01 0.11 0.19 NA NA
M1 dE(class) 1.01 1.57 4.95 NA NA 0.04 0.17 0.46 NA NA
 dE 0.82 0.23 0.00 NA NA 0.01 0.03 0.00 NA NA
 dU(class) 0.99 1.03 2.06 0.00 NA 0.01 0.12 0.20 0.00 NA
 dU 0.00 0.00 NA NA NA 0.00 0.00 NA NA NA
M2 dE(class) 0.81 1.00 10.74 NA NA 0.03 0.10 0.76 NA NA
 dE 0.76 1.06 10.74 NA NA 0.01 0.10 0.75 NA NA
 dU(class) 1.01 1.05 1.24 4.29 NA 0.00 0.05 0.12 0.32 NA
 dU 0.68 0.00 NA NA NA 0.06 0.00 NA NA NA
M4 dE(class) 0.97 0.82 0.91 2.00 NA 0.00 0.04 0.09 0.16 NA
 dE 1.00 0.95 1.28 1.81 NA 0.00 0.03 0.13 0.14 NA
 dU(class) 0.97 0.96 0.88 4.99 NA 0.01 0.07 0.08 0.38 NA
 dU 0.70 0.94 0.00 NA NA 0.02 0.08 0.00 NA NA

 268

Table C5 (continued). Sampled EF and GH values for PED models with the GH
fragment subset when searching our internal test database.
aEntries marked as NA represent cases where a search was unable to be scored due to a
lack of retrieved hits.

 EF Value per Partial Match
Feature Number

GH Value per Partial Match
Feature Number

OPRD dE(class) 1.00 1.03 1.29 NA NA 0.00 0.02 0.11 NA NA
 dE 1.01 1.25 0.00 NA NA 0.00 0.10 0.00 NA NA
 dU(class) 1.00 1.03 1.12 5.84 NA 0.00 0.02 0.10 0.31 NA
 dU 0.00 NA NA NA NA 0.00 NA NA NA NA
OPRK dE(class) 1.00 1.12 2.99 NA NA 0.00 0.09 0.25 NA NA
 dE 1.17 2.90 NA NA NA 0.09 0.22 NA NA NA
 dU(class) 1.02 1.13 0.00 NA NA 0.01 0.11 0.00 NA NA
 dU 0.53 10.16 NA NA NA 0.04 0.75 NA NA NA
OPRM dE(class) 1.00 1.00 1.25 1.79 NA 0.00 0.01 0.11 0.14 NA
 dE 0.00 0.00 NA NA NA 0.00 0.00 NA NA NA
 dU(class) 1.00 1.03 0.90 0.28 NA 0.00 0.01 0.08 0.02 NA
 dU 0.00 0.00 NA NA NA 0.00 0.00 NA NA NA

 269

Table C6. Sampled EF and GH values for PHM models with the receptor EF
fragment subset when searching our internal test database.
aEntries marked as NA represent cases where a search was unable to be scored due to a
lack of retrieved hits.

 EF Value per Partial Match
Feature Number

GH Value per Partial Match
Feature Number

Receptor Score Type 3 4 5 6 7 3 4 5 6 7
5HT1B dE(class) 1.02 1.14 0.00 0.00 NAa 0.01 0.13 0.00 0.00 NA
 dE 1.08 0.45 0.00 NA NA 0.06 0.05 0.00 NA NA
 dU(class) 0.99 0.89 1.09 0.00 NA 0.04 0.09 0.10 0.00 NA
 dU 0.78 0.51 2.92 NA NA 0.08 0.05 0.25 NA NA
5HT2B dE(class) 1.03 0.69 0.66 NA NA 0.03 0.09 0.08 NA NA
 dE 0.41 0.00 NA NA NA 0.05 0.00 NA NA NA
 dU(class) 1.02 0.84 0.92 2.21 NA 0.01 0.07 0.11 0.25 NA
 dU 0.35 0.00 NA NA NA 0.04 0.00 NA NA NA
5HT2C dE(class) 0.99 0.78 0.96 0.00 NA 0.02 0.08 0.12 0.00 NA
 dE 0.44 0.00 NA NA NA 0.05 0.00 NA NA NA
 dU(class) 0.96 0.87 1.01 0.00 NA 0.01 0.09 0.12 0.00 NA
 dU 0.70 0.00 NA NA NA 0.08 0.00 NA NA NA
A2A dE(class) 1.08 1.77 3.92 NA NA 0.05 0.13 0.16 NA NA
 dE 6.36 0.00 NA NA NA 0.33 0.00 NA NA NA
 dU(class) 0.95 0.61 0.00 0.00 NA 0.02 0.05 0.00 0.00 NA
 dU 4.91 0.00 NA NA NA 0.22 0.00 NA NA NA
A2C dE(class) 1.01 0.82 0.00 0.00 NA 0.00 0.06 0.00 0.00 NA
 dE 2.60 0.00 NA NA NA 0.18 0.00 NA NA NA
 dU(class) 0.93 0.77 1.48 NA NA 0.01 0.06 0.07 NA NA
 dU 1.11 2.16 0.00 NA NA 0.03 0.14 0.00 NA NA
Beta 2 dE(class) 1.01 1.54 2.53 0.00 NA 0.01 0.15 0.18 0.00 NA
 dE 0.44 0.00 NA NA NA 0.03 0.00 NA NA NA
 dU(class) 1.00 0.45 0.95 NA NA 0.02 0.04 0.06 NA NA
 dU 0.32 0.00 NA NA NA 0.02 0.00 NA NA NA
H1 dE(class) 1.00 1.04 0.00 NA NA 0.00 0.10 0.00 NA NA
 dE 0.82 0.35 5.58 NA NA 0.03 0.03 0.38 NA NA
 dU(class) 0.98 0.73 0.59 NA NA 0.02 0.07 0.04 NA NA
 dU 0.37 0.00 NA NA NA 0.03 0.00 NA NA NA
M1 dE(class) 0.94 0.59 0.69 NA NA 0.00 0.06 0.06 NA NA
 dE 0.99 1.83 NA NA NA 0.10 0.17 NA NA NA
 dU(class) 1.00 0.98 0.73 0.00 NA 0.00 0.02 0.08 0.00 NA
 dU 0.49 0.00 NA NA NA 0.05 0.00 NA NA NA
M2 dE(class) 0.98 2.18 10.74 NA NA 0.04 0.20 0.75 NA NA
 dE 1.40 3.07 NA NA NA 0.12 0.22 NA NA NA
 dU(class) 0.94 0.84 6.13 NA NA 0.02 0.08 0.44 NA NA
 dU 1.12 2.68 NA NA NA 0.09 0.19 NA NA NA
M4 dE(class) 0.35 0.00 0.00 NA NA 0.04 0.00 0.00 NA NA
 dE 0.63 0.32 1.43 NA NA 0.04 0.03 0.11 NA NA
 dU(class) 0.40 0.33 NA NA NA 0.04 0.03 NA NA NA
 dU 0.57 0.16 0.00 NA NA 0.05 0.01 0.00 NA NA

 270

Table C6 (continued). Sampled EF and GH values for PHM models with the receptor
EF fragment subset when searching our internal test database.
aEntries marked as NA represent cases where a search was unable to be scored due to a
lack of retrieved hits.

 EF Value per Partial Match
Feature Number

GH Value per Partial Match
Feature Number

OPRD dE(class) 1.01 1.02 1.12 0.00 NA 0.00 0.03 0.09 0.00 NA
 dE 1.02 0.98 0.00 NA NA 0.01 0.08 0.00 NA NA
 dU(class) 1.01 1.09 1.14 0.00 NA 0.00 0.03 0.10 0.00 NA
 dU 1.01 1.19 2.92 NA NA 0.00 0.08 0.16 NA NA
OPRK dE(class) 0.99 1.44 0.68 0.00 NA 0.01 0.14 0.05 0.00 NA
 dE 0.64 0.00 NA NA NA 0.05 0.00 NA NA NA
 dU(class) 1.04 0.96 0.48 0.00 NA 0.02 0.07 0.04 0.00 NA
 dU 0.53 5.08 NA NA NA 0.04 0.38 NA NA NA
OPRM dE(class) 1.06 0.76 0.00 NA NA 0.02 0.08 0.00 NA NA
 dE 0.00 0.00 NA NA NA 0.00 0.00 NA NA NA
 dU(class) 1.03 0.98 1.01 NA NA 0.01 0.08 0.08 NA NA
 dU 0.00 NA NA NA NA 0.00 NA NA NA NA

 271

Table C7. Anchor residues used in ECL2 modeling for each target studied.
aAnchor residues are numbered to match the numbering scheme present on GPCRdb.19

Receptor
Anchor Residue
1a

Anchor Residue
2a

5HT1B F186 L207
5HT2B E196 G215
5HT2C V191 N213
A2A L137 N175
A2C I182 W209
Beta 2 I169 Q197
H1 G164 W189
M1 A160 P186
M2 L160 A185
M4 V174 A194
OPRD M186 S206
OPRK S192 L224
OPRM M207 T227

 272

Figure C2. Venn diagram denoting training set overlap between cluster I for k = 4
and cluster I for k = 5.

 273

Appendix D

Scripts

Scripts detailed in the following appendix have been made available at

https://github.com/gszwabowski/.

Scripts used in Chapter 2

cleanpdbs.bash

Description: This script will clean every .pdb file in a directory using Rosetta. Use the

command chmod u+x cleanpdbs.bash to obtain ownership of the file and then

use ./cleanpdbs.bash to run the script.

file <- file.endswith ".pdb"
for file in *
 do
/public/apps/rosetta/2017.29.59598/tools/protein_tools/scripts/clean_pd
b.py $file 1

done

https://github.com/gszwabowski/

 274

hm_filegen.bash

Description: This script is used to create files used for loop modeling in Rosetta. Use the

command chmod u+x hm_filegen.bash to obtain ownership of the file and then

use ./hm_filegen.bash to run the script. As this script runs, it will ask for residue

numbers and filenames. Residue numbers should be entered as integers filenames should

be suffixed with their filetype (e.g. frags.txt).

#loop parameters
read -p "$(tput setaf 5)Enter receptor name: $(tput sgr 0)" NAME
read -p "$(tput setaf 5)Enter loop start residue number: $(tput sgr 0)"
START
read -p "$(tput setaf 5)Enter loop end residue number: $(tput sgr 0)"
END
echo

hm.loops File Template
echo -e "$(tput setaf 3)Generating loops file...$(tput sgr 0)"
cat << EOF > hm.loops
rosetta loops file
columns:

"LOOP"
start_residue
end_residue
cutpoint (0: let LoopRebuild choose cutpoint randomly.)
Skip rate (default - never skip)
Extend loop. Default false

LOOP $START $END 0 0.0 1
EOF

echo -e "$(tput setaf 2)Loops file generated.\n$(tput sgr 0)"

#disulf prompt
read -p "$(tput setaf 5)Does the receptor have a 3.25-45.50 disulfide
bond (y/n)?: $(tput sgr 0)" ANSWER

disulf.cst File Template
if ["$ANSWER" != "${ANSWER#[Yy]}"] ;then
read -p "$(tput setaf 5)Enter Cys 3.25 residue number: $(tput sgr 0)"
CYS1
read -p "$(tput setaf 5)Enter Cys 45.50 residue number: $(tput sgr 0)"
CYS2
echo -e "$(tput setaf 3)Generating disulf.cst...$(tput sgr 0)"
cat <<EOF > disulf.cst
AtomPair SG $CYS1 SG $CYS2 HARMONIC 0 5.1
EOF

echo -e "$(tput setaf 2)disulf.cst generated.\n$(tput sgr 0)"

 275

fi

#kic parameters
read -p "$(tput setaf 5)Enter .pdb filename: $(tput sgr 0)" PDB
read -p "$(tput setaf 5)Enter 9 frag filename: $(tput sgr 0)" FRAG9
read -p "$(tput setaf 5)Enter 3 frag filename: $(tput sgr 0)" FRAG3
read -p "$(tput setaf 5)Enter ligand filename: $(tput sgr 0)" LIGFILE
read -p "$(tput setaf 5)Enter ligand abbreviation (3 letters): $(tput
sgr 0)" LIG

#.params generation
read -p "$(tput setaf 5)Do you have a set of ligand conformers to use
during parameter file generation (y/n)?: $(tput sgr 0)" ANSWER
if ["$ANSWER" != "${ANSWER#[Yy]}"] ;then
 read -p "$(tput setaf 5)Enter conformers .sdf filename: $(tput sgr
0)" CONFORMERS

/public/apps/rosetta/2017.29.59598/main/source/scripts/python/public/mo
lfile_to_params.py -n $LIG -p $LIG --conformers-in-one-file $CONFORMERS
else

/public/apps/rosetta/2017.29.59598/main/source/scripts/python/public/mo
lfile_to_params.py -n $LIG -p $LIG $LIGFILE
echo -e "\n\n\n$(tput setaf 2)Ligand parameters generated.\n$(tput sgr
0)"
fi

kic_with_frags.flags Template
echo -e "$(tput setaf 3)Generating kic_with_frags.flags...$(tput sgr
0)"
cat <<EOF > kic_with_frags.flags
#io flags:
-in:file:fullatom
-in:file:s $PDB
-in:file:extra_res_fa $LIG.params
-cst_fa_file disulf.cst
-cst_fa_weight 1000
-loops:loop_file hm.loops
-loops:frag_sizes 9 3 1
-loops:frag_files $FRAG9 $FRAG3 none

-loops:remodel perturb_kic_with_fragments
-loops:refine refine_kic_with_fragments

-out:nstruct 50
-out:pdb
-out:suffix _

#-run:test_cycles
#-loops:fast

#packing flags
-ex1
-ex2

-mute core.io.database
-mute protocols.looprelax.FragmentPerturber

 276

-mute core.fragments.ConstantLengthFragSet

#RosettaEnergyFunction2015
-beta_nov16 true
EOF
echo -e "$(tput setaf 2)kic_with_frags.flags generated.\n$(tput sgr 0)"

#KICfragsub.sh Template
echo -e "$(tput setaf 3)Generating KICfragsub.sh...$(tput sgr 0)"
cat <<EOF > KICfragsub.sh
#! /bin/csh
#SBATCH --ntasks=4
#SBATCH --partition=computeq
#SBATCH --job-name=loopmodel
#SBATCH --time=14400

module load gcc/8.2.0

/public/apps/rosetta/2017.29.59598/main/source/bin/loopmodel.static.lin
uxgccrelease @kic_with_frags.flags >loops.log
EOF

#update KICfragsub.sh job name
sed -i "s/#SBATCH --job-name=loopmodel/#SBATCH --job-
name=${NAME}_loopmodel/g" KICfragsub.sh

echo -e "$(tput setaf 2)KICfragsub.sh generated.\n$(tput sgr 0)"

mkdir A
mkdir B
mkdir C
mkdir D
mkdir E

cp * A > /dev/null 2>&1
cp * B > /dev/null 2>&1
cp * C > /dev/null 2>&1
cp * D > /dev/null 2>&1
cp * E > /dev/null 2>&1

sed -i "s/-out:suffix _/-out:suffix _A/g" A/kic_with_frags.flags
sed -i "s/-out:suffix _/-out:suffix _B/g" B/kic_with_frags.flags
sed -i "s/-out:suffix _/-out:suffix _C/g" C/kic_with_frags.flags
sed -i "s/-out:suffix _/-out:suffix _D/g" D/kic_with_frags.flags
sed -i "s/-out:suffix _/-out:suffix _E/g" E/kic_with_frags.flags

#jobname suffixes
for D in *; do
 if [-d "${D}"]; then
 cd $D
 newname=_loopmodel_$D
 sed -i "s/_loopmodel/$newname/g" KICfragsub.sh
 cd ..
 fi
done

echo -e "$(tput setaf 2)All job files created.$(tput sgr 0)"

 277

ligandrmsd.svl

Description: This script calculates the RMSD between two chains (ideally chains

containing ligands) based on two ligand-receptor complexes that have been aligned and

superposed based using MOE's built-in tools.

Arguments

reference_file: .pdb or .moe file containing your crystal structure

database_file: database file with docked ligand poses

database_field1: .mdb column containing your ligand poses, most likely 'mol'

database_field2: .mdb column containing you receptor poses, most likely 'receptor'

#svl
function Close;
function pro_Superpose;
function pro_Align;
global function ligandRMSD [reference_file, database_file,
database_field1, database_field2];

Close [force:1, viewreset:1, delgobj:1]; // close any open structures
local mdb_key = db_Open [database_file, 'read-write'];
local entry_key, ligand, receptor, atoms2, ligand_chain, ligand_name,
receptor_chain, receptor_name, ref_chains, mask, ref_residues,
rec_residues, ref_ligand, ligand_heavy, ref_heavy;
local entries = db_Entries mdb_key;
local atoms, mask2;
local heavy_atoms, heavy_atoms2;
// create field for Ligand RMSD
db_CreateField [mdb_key,'Ligand RMSD','float'];

// open reference file
Open reference_file;
ref_chains = Chains[];
[ref_residues] = cResidues ref_chains;
[ref_ligand] = ref_chains(2);

// loop through the database to make measurements for each ligand
for entry_key in entries loop
 [ligand] =db_ReadFields [mdb_key, entry_key,[database_field1]];
//get structure from fieldname
 [receptor] =db_ReadFields [mdb_key, entry_key, [database_field2]];
 [receptor_chain, receptor_name] =db_CreateMolecule receptor;
 [ligand_chain, ligand_name] =db_CreateMolecule ligand;
 [rec_residues] = cResidues receptor_chain;

 278

 // align & superpose chains with ligands
 pro_Align[Chains[]];
 pro_Superpose[[Chains[]], [auto_associate:1, accent_conserved: 1]];

 // mask heavy atoms and create heavy reference
 [atoms] = cAtoms ref_ligand;
 [atoms2] = cAtoms ligand_chain;
 mask = aElement atoms <> 'H' ;
 ref_heavy = atoms | mask;
 mask2 = aElement atoms2 <> 'H';
 ligand_heavy = atoms2 | mask2;

 // measure and take square root of distances
 local dist_sq = sqr (aDist[ligand_heavy, ref_heavy]);

 // find RMSD
 local RMSD = sqrt(add dist_sq/length dist_sq);

 // write ligand RMSD to the database
 db_Write [mdb_key, entry_key, tagpoke[[],'Ligand RMSD', RMSD[1]]];

 // destroy one ligand before reading in the next
 oDestroy [ligand_chain];
 oDestroy [receptor_chain];
endloop
print 'done';
endfunction

 279

pdbgen.svl

Description: This script is used prior to rosetta docking to generate .pdb files used as

input. This script extracts a receptor from a database, superposes the receptor onto a

reference structure (as to correct for coordinate differences, same coordinates help with

RMSD calculations), and then pulls up a prompt in MOE to save your structure. If I

wanted to name a structure "receptor" and have it save as a .pdb, in the prompt box I'd

save it named as "receptor.pdb" even with pdb selected as the "save as" filetype.

Arguments

reference_file: crystal structure with ligand and receptor

database_file: database containing receptor structures to use as inputs for Rosetta

docking

database_field1: database column containing receptor structures, most likely ‘S-S

bonded’ or ‘receptor’

#svl
function Close;
function pro_Superpose;
function pro_Align;
global function pdbgen [reference_file, database_file, database_field1]
Close [force:1, viewreset:1, delgobj:1]; // close any open structures
local mdb_key = db_Open [database_file, 'read-write'];
local entry_key, receptor, receptor_chain, receptor_name, ref_chains,
id, a, idfield;
local entries = db_Entries mdb_key;

// loop through the database to read each receptor
for entry_key in entries loop
 Open reference_file;
 print Chains[];
 [receptor] =db_ReadFields [mdb_key, entry_key, [database_field1]];
 [receptor_chain, receptor_name] =db_CreateMolecule receptor;

 // align & superpose chains
 pro_Align[Chains[]];
 pro_Superpose[[Chains[]], [auto_associate:1, accent_conserved: 1]];

 //delete reference file & ligand
 oDestroy (get [(Chains[]), 1]);
 oDestroy (get [(Chains[]), 1]);

 280

 //save .pdb
 print Chains[];
 WritePDB [];

 ///delete receptor
 oDestroy receptor_chain;
endloop
endfunction

 281

Scripts used in Chapter 3

batch_ph4search.svl

Description: This script is used to perform pharmacophore searches within a directory o

previously generate pharmacophore (.ph4) files on the HPC. Use a .sh file to run this

script formatted like so:

#! /bin/csh
#SBATCH --ntasks=4
#SBATCH --partition=computeq
#SBATCH --job-name=ph4_search

/public/apps/moe/moe2018/bin/moebatch -load
../../../batch_ph4search.svl \
-exec "random_ph4search ['lig_mdb', 'receptor_name',
partial_features, db_active, db_active_mols]"

Arguments

lig_mdb: name of the compound database to be searched (ex. pbd_conf_10 database)

receptor_name: name of receptor in double quotes (e.g. "M1")

partial_features: # of features to match during ph4 search (3, 4, or 5)

db_active: percentage of compounds in lig_mdb possessing activity for a receptor of

interest (this should be a whole number percentage, e.g. 15.9)

db_active_mols: # of compounds possessing activity for a target receptor

db_mols: # of unique molecules in lig_mdb

global function random_ph4search [lig_mdb, receptor_name,
partial_features, db_active_mols, db_mols]

local output = db_Open [tok_cat['ph4_search_output_', totok
partial_features,'feats.mdb'], 'create'];
db_CreateField [output, 'Enrichment', 'float'];
db_CreateField [output, 'GH', 'float'];
db_CreateField [output, 'Active_Rate', 'float'];
db_CreateField [output, 'Hits', 'int'];
db_CreateField [output, 'Actives', 'int'];
db_CreateField [output, 'filename', 'char'];

 282

local ph4_files = flist[[],'*.ph4'];
local ph4;
local e_vals = [];
local towrite;
local towrite2;
receptor_name = string [receptor_name];
for ph4 in ph4_files loop

 logfile 'log.txt';
 ph4_Search [lig_mdb, ph4,
 [
 abspos : 0,
 action : 0,
 descexpr : '',
 esel : 0,
 matchsize : partial_features, //tweak feature #
 maxconfhits : 0,
 maxmolhits : 0,
 molfield : 'mol',
 o_molfield : 'mol',
 o_mseqfield : 'mseq',
 o_rmsdxfield : 'rmsdx',
 o_rscore_colfield : 'rscore[F#]',
 o_rscore_sumfield : 'rscore',
 out_append : 0,
 out_dbfile : tok_cat [fbase ph4,'.mdb'],
 out_dbv : 0,
 out_type_molecules : 1,
 sortby : 'rmsdx',
 use_mname : 0,
 use_mseqfield : 0,
 use_o_fileIdxField : 0,
 use_o_fileNameField : 0,
 use_o_hitmapfield : 0,
 use_o_hitmapfieldC : 0,
 use_o_hitsizefield : 0,
 use_o_hitsizefieldC : 0,
 use_o_molfield : 1,
 use_o_mseqfield : 1,
 use_o_rmsdfield : 0,
 use_o_rmsdxfield : 1,
 use_o_rowfield : 0,
 use_o_rscore_colfield : 1,
 use_o_rscore_sumfield : 1,
 use_o_rscore_vecfield : 0,
 use_out_dbfile : 1,
 usepsilo : 0
]
];

 logfile 0;
 logfile[];

 //obtain hits from log file
 local hitline = last droplast droplast freadb ['log.txt', 'line',
INT_MAX];

 283

 local ws = wordsplit [hitline, " "];
 local hits = ws(3);
 hits = atoi token hits;

 //search for actives

 local function pharm_count_all [receptor_name]

 local entry_key, entry_record, values, index;
 local mdb_key = db_Open [tok_cat [fbase ph4,'.mdb'], 'read'];
 local entries = db_Entries mdb_key;
 local count = 0;
 local prior_mseq = 0;
 local i=0;
 local sum = [];

 for entry_key in entries loop // for each entry, untag and compare
prior_mseq to mseq in entry

 entry_record = db_Read [mdb_key, entry_key];
 values = last untag entry_record; // removes tags from tagged
vector, just values

 if prior_mseq <> values(2) then // if prior_mseq isn't equal to
current mseq (molecule sequence number)
 prior_mseq = values(2);
 for index in values loop // for each mseq in all mseqs
 i=i+1;
 if eqL [receptor_name, index] then // if the top level
arguments are identical AND
 if values(i-1) then
 count = count+1;
 endif
 endif
 endloop
 i=0;
 endif

 endloop

 //print_count; // print how many
 sum = cat[sum,count];
 count = 0;
 prior_mseq= 0;
 i=0;

 for entry_key in entries loop // for each entry, untag and compare
prior_mseq to mseq in entry

 entry_record = db_Read [mdb_key, entry_key];
 values = last untag entry_record; // removes tags from tagged
vector, just values

 if prior_mseq <> values(2) then // if prior_mseq isn't equal to
current mseq (molecule sequence number)

 284

 prior_mseq = values(2);
 for index in values loop // for each mseq in all mseqs
 i=i+1;
 if eqL [receptor_name, index] then // if the top level
arguments are identical AND
 if values(i-2) then
 count = count+1;
 endif
 endif
 endloop
 i=0;
 endif

 endloop

 //print_count; // print how many
 sum = cat[sum,count];
 count = 0;
 prior_mseq= 0;
 i=0;

 for entry_key in entries loop // for each entry, untag and compare
prior_mseq to mseq in entry

 entry_record = db_Read [mdb_key, entry_key];
 values = last untag entry_record; // removes tags from tagged
vector, just values

 if prior_mseq <> values(2) then // if prior_mseq isn't equal to
current mseq (molecule sequence number)
 prior_mseq = values(2);
 for index in values loop // for each mseq in all mseqs
 i=i+1;
 if eqL [receptor_name, index] then // if the top level
arguments are identical AND
 if values(i-3) then
 count = count+1;
 endif
 endif
 endloop
 i=0;
 endif

 endloop

 //print_count; // print how many
 sum = cat[sum,count];
 count = 0;
 prior_mseq= 0;
 i=0;

 for entry_key in entries loop // for each entry, untag and compare
prior_mseq to mseq in entry

 entry_record = db_Read [mdb_key, entry_key];
 values = last untag entry_record; // removes tags from tagged
vector, just values

 285

 if prior_mseq <> values(2) then // if prior_mseq isn't equal to
current mseq (molecule sequence number)
 prior_mseq = values(2);
 for index in values loop // for each mseq in all mseqs
 i=i+1;
 if eqL [receptor_name, index] then // if the top level
arguments are identical AND
 if values(i-4) then
 count = count+1;
 endif
 endif
 endloop
 i=0;
 endif

 endloop

 //print_count; // print how many
 sum = cat[sum,count];
 count = 0;
 prior_mseq= 0;
 i=0;

 for entry_key in entries loop // for each entry, untag and compare
prior_mseq to mseq in entry

 entry_record = db_Read [mdb_key, entry_key];
 values = last untag entry_record; // removes tags from tagged
vector, just values

 if prior_mseq <> values(2) then // if prior_mseq isn't equal to
current mseq (molecule sequence number)
 prior_mseq = values(2);
 for index in values loop // for each mseq in all mseqs
 i=i+1;
 if eqL [receptor_name, index] then // if the top level
arguments are identical AND
 if values(i-5) then
 count = count+1;
 endif
 endif
 endloop
 i=0;
 endif

 endloop

 //print_count; // print how many
 sum = cat[sum,count];
 count = 0;
 prior_mseq= 0;
 i=0;

////print_count; // print how many

 286

 sum = cat[sum,count];

 local actives = add sum;
 return actives;
 count = 0;
 prior_mseq= 0;
 i=0;

 endfunction

 local actives = pharm_count_all [receptor_name];
 local active_rate = (actives/hits);

 //print active_rate;
 local enrichment = active_rate/(db_active_mols/db_mols);
 local goodness =
((actives*((3*actives)+hits))/(4*hits*db_active_mols)) * (1 -(hits-
actives)/(db_mols-db_active_mols));
 //if enrichment == NaN then
 //enrichment = 0;
 //endif
 print enrichment;
 //print type enrichment;
 //print type fdata.names;
 //print type fdata.number;
 //print fdata.mol(1);
 //print length fdata.mol(1);

 db_Write [
 output, 0, [
 Enrichment: enrichment,
 GH: goodness,
 Hits: hits,
 Actives: actives,
 Active_Rate: active_rate,
 filename: swrite ['{G}', ph4]
]
];

 e_vals = cat [e_vals, enrichment];
 local enr = tok_cat [totok enrichment,'\n'];
 towrite = cat[towrite, enr];

 if enrichment < 1 or enrichment == NaN or enrichment == 0 then
 fdelete tok_cat [fbase ph4,'.mdb'];
 endif
 print cat['iteration:', fbase ph4];
endloop

//print e_vals;
print 'done creating database';

fwrite['enrichments.txt', '{}', towrite];

 287

//Open 'ph4_search_output.mdb';
//print fdata;
endfunction

 288

frag_count.svl

Description: This script is meant to count the frequency at which fragments (from the

MOE fragment database) appear in randomly generated pharmacophores.

Arguments

mdb: .mdb file containing MCSS output

global function frag_count [mdb]

local mdb_key = db_Open [mdb, 'read-write'];
local ent;
local entries = db_Entries mdb_key;
local frag_names = ["1,2-dimethylpyrrolidine", "2-butene", "2-butyne",
"3-methylindole", "5-methylimidazole", "N-methylformamide",
"acetaldehyde", "acetamide", "acetate ion", "acetonitrile", "benzene",
"butane", "cyclohexane", "dimethylether", "dimethylsulfone", "ethane",
"ethanol", "ethylthiol", "isobutane", "methane", "methanol",
"methylamidinium", "methylammonium", "methylchloride",
"methylguanidinium", "methylsulfonamide", "methylsulfonate",
"methyltetrazolium", "methylthiol", "n,n-dimethylacetamide", "n-
methylacetamide", "phenol", "piperidinium", "propane", "propyne",
"thiazole", "trifluoromethane", "trimethylammonium", "water"];
local molnum_prev = 0;
local [fn, ft] = db_Fields mdb_key;
fn = drop [fn, 7];
fn = keep [fn, 10];
local fieldname;
local frag_name;
local x;
local count = 0;
for frag_name in frag_names loop;
 for ent in entries loop
 for fieldname in fn loop
 [x] = db_ReadFields [mdb_key, ent, fieldname];
 if x === frag_name then count = count + 1;
 endif
 endloop
 endloop

print count;
count = 0;
endloop
endfunction

 289

random_ph4gen.svl

Description: This script is used to create pharmacophores based on a MultiFragment

search output. Pharmacophores are capped at 5 features. Prior to using this script, entries

representing fragments in the MultiFragment search output database must be numbered

using loopnumber.svl.

Arguments

receptor: minimized receptor resulting from a MultiFragment search, suffixed

‘minrec.moe’

database_file: MultiFragment search output, suffixed ‘_output.moe’

samp_num: number of fragments to sample per pharmacophore model

iter: number of pharmacophore models to generate

n: only used if a crash occurs during pharmacophore model generation. If a crash occurs,

n will be the last entry number in the ‘output.mdb’ file created when generating

pharmacophore models.

function Close;
function Open;
function prolig_Calculate;
function pro_Contacts;
function db_ImportASCII;
function ph4_aType;
function ph4_EditorWkeyList;
function ph4_EditorGetData;
function fwrite_PH4;
function ph4_Search;

global function random_ph4gen [receptor, database_file, samp_num, iter,
n]

if isnull flist [[], 'output.mdb'] then
 local output = db_Open ['output.mdb', 'create'];
 db_CreateField [output, 'Fragment1', 'char'];
 db_CreateField [output, 'Fragment1_mol', 'molecule'];
 db_CreateField [output, 'Fragment2', 'char'];
 db_CreateField [output, 'Fragment2_mol', 'molecule'];
 db_CreateField [output, 'Fragment3', 'char'];
 db_CreateField [output, 'Fragment3_mol', 'molecule'];
 db_CreateField [output, 'Fragment4', 'char'];

 290

 db_CreateField [output, 'Fragment4_mol', 'molecule'];
 db_CreateField [output, 'Fragment5', 'char'];
 db_CreateField [output, 'Fragment5_mol', 'molecule'];
 db_CreateField [output, 'Fragment1_num', 'int'];
 db_CreateField [output, 'Fragment2_num', 'int'];
 db_CreateField [output, 'Fragment3_num', 'int'];
 db_CreateField [output, 'Fragment4_num', 'int'];
 db_CreateField [output, 'Fragment5_num', 'int'];
 db_CreateField [output, 'filename', 'char'];
else
 output = 'output.mdb'; //just in case job crashes, don't overwrite
output
endif

local iterations = 0;
//local n=0;
local e_vals = [];
local towrite;
local towrite2;
loop
 Close [force:1, viewreset:1, delgobj:1]; // close any open
structures
 Open receptor;
 local entry_key, entry, x;
 local mdb_key = db_Open [database_file, 'read-write']; //open
database with fragments
 local entries = db_Entries database_file;
 local sample = sample [entries, samp_num];
 print sample;
 local centroids = [];
 local dummies = [];
 local i=0;
 local fragdata = [mol: [], name: [], number: []];
 local fdata = [names: [], number: [], mol: []];

 //number all fragments in database_file with an index #
 local counter = 1;
 db_EnsureField [mdb_key, 'index','int'];
 for entry_key in entries loop
 db_Write [mdb_key, entry_key, tagpoke[[],'index', counter]];
 counter = counter + 1;
 endloop
 //end fragment numbering

 for entry in sample loop // create all fragments
 local [ligand] = db_ReadFields [mdb_key, entry,'mol']; //get
structure from fieldname
 fragdata.name = cat [fragdata.name, db_ReadFields [mdb_key,
entry, 'name']];
 fragdata.number = cat [fragdata.number, db_ReadFields [mdb_key,
entry, 'index']];

 local [ligand_chain, ligand_name] =db_CreateMolecule ligand;
 fragdata.mol = cat [fragdata.mol, ligand_chain];
 local num = indexof [ligand_chain, fragdata.mol];

 fdata.number = cat [fdata.number, num];

 291

 fdata.names = cat [fdata.names, cName ligand_chain];
 fdata.mol = cat [fdata.mol, [mol_Extract oChildren
ligand_chain]];
 endloop

 local chains = Chains[];
 local [rec_atoms] = cAtoms chains(1); // get receptor atoms
 local frags = dropfirst Chains[]; // create subset of just
fragments
 local frag_chain;
 local ligkeys = cat cAtoms frags;
 local use_frags = [];
 local sel_atoms = []; // empty vector for fragment atoms that are
to be selected

 local itypes = ['Hbond', 'Metal', 'Ionic', 'Covalent', 'Arene',
'Distance'];
 local iopt = [
 emin_hb: minE[-0.1, 0.10],
 emin_hpi: minE[-0.1, 0.10],
 emin_ion: 0.10,
 distance_threshold: 4.5,
 layoutrechb: 1 // incl. rec-rec hbond in layout
];

 //from prolig2d.svl
 local iract = prolig_Calculate [itypes, ligkeys, rec_atoms, iopt];
 local [iract_2, iract_3] = [iract(2), iract(3)];
 local lrmask = indexof [iract_2, ligkeys] and indexof [iract_3,
rec_atoms];
 local rlmask = indexof [iract_3, ligkeys] and indexof [iract_2,
rec_atoms];
 local mask = andE [indexof [iract(1), ['Hbond', 'Metal', 'Ionic',
'Covalent']],lrmask or rlmask];
 local s_lim = select [iract(2), iract(3), lrmask] | mask; //
multi atom
 local s_rim = select [iract(3), iract(2), lrmask] | mask; // for
arene
 local s_score = iract(4) | mask;
 local s_frag_atoms = cat rAtoms oParent s_lim;
 local sel_atom = diff [ligkeys, s_frag_atoms];

 frags = dropfirst Chains[]; //re-assign fragments
 local atom;
 local frag_atoms = cat cAtoms frags;
 local ring_atoms =[];
 aSetSelected [s_lim,1];
 for atom in s_lim loop // for atoms with strong interactions
 if [aIn6Ring atom] == 1 then
 rSetSelected [oParent atom, 1];
 ring_atoms = cat [ring_atoms, atom];
 local centroid = oCentroid [oParent atom];
 local mol = mol_Create ['', ['', '', '', 1],
 ['*', 1, " ", 'none', 1],
 ['LP', 0, 'sp', 0, 0, [[]], 0, 'DU', 0,
centroid(1),centroid(2),centroid(3)]];
 centroids = cat[centroids, cAtoms last Chains[]];

 292

 aSetSelected [atom, 0];
 endif
 endloop

 aSetSelected [centroids,1]; //select centroids

 local atoms = SelectedAtoms[];
 local atoms_type = ph4_aType atoms;
 local info = [atoms: atoms, atype: atoms_type];
 i=1;

 //run ph4 editor
 run '$HOME/ph4_edit_2.svl';
 local wkey = ph4_EditorWkeyList [];
 WindowShow wkey;
 WindowTrigger [wkey, [create_F:1024]];
 loop
 chains = Chains[];
 local [features] = cAtoms last droplast chains;
 until notnull features
 endloop

 chains = Chains[];

 [features] = cAtoms last droplast Chains[];

 local data = ph4_EditorGetData wkey;
 local feat = [atoms: features, names: data.F.expr];

 local feat_name;
 local feat_delete = [];
 i=0;
 for feat_name in feat.names loop
 i=i+1;
 if alltrue [feat.names == 'AtomQ'] then break;
 elseif feat_name == 'AtomQ' then
 feat_delete = cat [feat_delete,feat.atoms(i)];
 endif
 endloop

 oDestroy oParent oParent ring_atoms;

 aSetSelected [Atoms[],0]; //deselect all features
 aSetSelected [feat_delete,1]; //select AtomQ features to be deleted

 local nvp = WindowValues wkey;
 local mainlist = nvp.mainlist(1);

 loop
 if length mainlist == length feat.atoms then
 nvp = WindowValues wkey;
 mainlist = nvp.mainlist(1);
 elseif length mainlist < length feat.atoms then
 WindowTrigger [wkey, [button_delete:1024]];
 break;

 293

 endif
 endloop

 loop
 [features] = cAtoms last droplast chains;

 local nums;

 if length features == 13 then
 nums = [6,7,8,9,10,11,12,13];
 elseif length features == 12 then
 nums = [6,7,8,9,10,11,12];
 elseif length features == 11 then
 nums = [6,7,8,9,10,11];
 elseif length features == 10 then
 nums = [6,7,8,9,10];
 elseif length features == 9 then
 nums = [6,7,8,9];
 elseif length features == 8 then
 nums = [6,7,8];
 elseif length features == 7 then
 nums = [6,7];
 elseif length features == 6 then
 nums = [6];
 endif

 if length features > 5 then
 WindowTrigger [wkey, [mainlist:nums]];
 if length SelectedAtoms[] < length features then
 WindowTrigger [wkey, [button_delete:1024]];
 endif
 endif
 nvp = WindowValues wkey;
 mainlist = nvp.mainlist(1);
 if length features <= 5 then break;
 endif
 endloop

 n=n+1;

 data = ph4_EditorGetData wkey;
 fwrite_PH4 [tok_cat [totok n,'.ph4'], data, [header:1]];
 WindowDestroy wkey;

 iterations= iterations+1;

 db_Write [
 output, 0, [
 Fragment1: swrite ['{G}', fdata.names(1)],
 Fragment1_mol: fdata.mol(1),
 Fragment2: swrite ['{G}', fdata.names(2)],
 Fragment2_mol: fdata.mol(2),
 Fragment3: swrite ['{G}', fdata.names(3)],
 Fragment3_mol: fdata.mol(3),
 Fragment4: swrite ['{G}', fdata.names(4)],

 294

 Fragment4_mol: fdata.mol(4),
 Fragment5: swrite ['{G}', fdata.names(5)],
 Fragment5_mol: fdata.mol(5),
 Fragment1_num: fragdata.number(1),
 Fragment2_num: fragdata.number(2),
 Fragment3_num: fragdata.number(3),
 Fragment4_num: fragdata.number(4),
 Fragment5_num: fragdata.number(5),
 filename: swrite ['{G}', tok_cat [totok n,'.ph4']]
]
];

 print cat['iteration:', n];
 until iterations==iter
endloop

print 'done creating database';

entries = db_Entries output;
counter = 1;

db_CreateField [output, 'index','int'];
for entry_key in entries loop
 db_Write [output, entry_key, tagpoke[[],'index', counter]];
 counter = counter + 1;
endloop

print 'done numbering database';

Open 'output.mdb';
//print fdata;
endfunction

 295

random_ph4search.svl

Description: This script is used to perform pharmacophore searches within a directory of

pharmacophore (.ph4) files generated with random_ph4gen.svl.

Arguments

lig_mdb: filename of compound database to be searched

receptor_name: name of receptor formatted as a string

partial_features: number of matching features required for a prospective compound to be

considered a hit against the pharmacophore model

db_active: percentage of compounds in lig_mdb possessing activity for a receptor of

interest (ex. 15.9, *not* 0.159)

db_active_mols: number of compounds in lig_mdb possessing activity for a target

receptor

db_mols: number of unique molecules in lig_mdb

function Close;
function Open;
function prolig_Calculate;
function pro_Contacts;
function db_ImportASCII;
function ph4_aType;
function ph4_EditorWkeyList;
function ph4_EditorGetData;
function fwrite_PH4;
function ph4_Search;

global function random_ph4search [lig_mdb, ph4_dir, receptor_name,
partial_features, db_active_mols, db_mols]

local output = db_Open ['ph4_search_output_5feats.mdb', 'create'];
db_CreateField [output, 'Enrichment', 'float'];
db_CreateField [output, 'GH', 'float'];
db_CreateField [output, 'Active_Rate', 'float'];
db_CreateField [output, 'Hits', 'int'];
db_CreateField [output, 'Actives', 'int'];
db_CreateField [output, 'filename', 'char'];

local ph4_files = flist[[ph4_dir],'*.ph4'];
local ph4;
local e_vals = [];

 296

local towrite;
local towrite2;

for ph4 in ph4_files loop

 logfile 'log.txt';
 ph4_Search [lig_mdb, ph4,
 [
 abspos : 0,
 action : 0,
 descexpr : '',
 esel : 0,
 matchsize : partial_features, //tweak feature #
 maxconfhits : 0,
 maxmolhits : 0,
 molfield : 'mol',
 o_molfield : 'mol',
 o_mseqfield : 'mseq',
 o_rmsdxfield : 'rmsdx',
 o_rscore_colfield : 'rscore[F#]',
 o_rscore_sumfield : 'rscore',
 out_append : 0,
 out_dbfile : tok_cat [fbase ph4,'.mdb'],
 out_dbv : 0,
 out_type_molecules : 1,
 sortby : 'rmsdx',
 use_mname : 0,
 use_mseqfield : 0,
 use_o_fileIdxField : 0,
 use_o_fileNameField : 0,
 use_o_hitmapfield : 0,
 use_o_hitmapfieldC : 0,
 use_o_hitsizefield : 0,
 use_o_hitsizefieldC : 0,
 use_o_molfield : 1,
 use_o_mseqfield : 1,
 use_o_rmsdfield : 0,
 use_o_rmsdxfield : 1,
 use_o_rowfield : 0,
 use_o_rscore_colfield : 1,
 use_o_rscore_sumfield : 1,
 use_o_rscore_vecfield : 0,
 use_out_dbfile : 1,
 usepsilo : 0
]
];

 logfile 0;
 logfile[];

 //obtain hits from log file
 local hitline = last droplast droplast freadb ['log.txt', 'line',
INT_MAX];

 local ws = wordsplit [hitline, " "];
 local hits = ws(3);
 hits = atoi token hits;

 297

 //search for actives

 local function pharm_count_all [receptor_name]

 local entry_key, entry_record, values, index;
 local mdb_key = db_Open [tok_cat [fbase ph4,'.mdb'], 'read'];
 local entries = db_Entries mdb_key;
 local count = 0;
 local prior_mseq = 0;
 local i=0;
 local sum = [];

 for entry_key in entries loop // for each entry, untag and compare
prior_mseq to mseq in entry

 entry_record = db_Read [mdb_key, entry_key];
 values = last untag entry_record; // removes tags from tagged
vector, just values

 if prior_mseq <> values(2) then // if prior_mseq isn't equal to
current mseq (molecule sequence number)
 prior_mseq = values(2);
 for index in values loop // for each mseq in all mseqs
 i=i+1;
 if eqL [receptor_name, index] then // if the top level
arguments are identical AND
 if values(i-1) then
 count = count+1;
 endif
 endif
 endloop
 i=0;
 endif

 endloop

 //print_count; // print how many
 sum = cat[sum,count];
 count = 0;
 prior_mseq= 0;
 i=0;

 for entry_key in entries loop // for each entry, untag and compare
prior_mseq to mseq in entry

 entry_record = db_Read [mdb_key, entry_key];
 values = last untag entry_record; // removes tags from tagged
vector, just values

 if prior_mseq <> values(2) then // if prior_mseq isn't equal to
current mseq (molecule sequence number)
 prior_mseq = values(2);
 for index in values loop // for each mseq in all mseqs
 i=i+1;

 298

 if eqL [receptor_name, index] then // if the top level
arguments are identical AND
 if values(i-2) then
 count = count+1;
 endif
 endif
 endloop
 i=0;
 endif

 endloop

 //print_count; // print how many
 sum = cat[sum,count];
 count = 0;
 prior_mseq= 0;
 i=0;

 for entry_key in entries loop // for each entry, untag and compare
prior_mseq to mseq in entry

 entry_record = db_Read [mdb_key, entry_key];
 values = last untag entry_record; // removes tags from tagged
vector, just values

 if prior_mseq <> values(2) then // if prior_mseq isn't equal to
current mseq (molecule sequence number)
 prior_mseq = values(2);
 for index in values loop // for each mseq in all mseqs
 i=i+1;
 if eqL [receptor_name, index] then // if the top level
arguments are identical AND
 if values(i-3) then
 count = count+1;
 endif
 endif
 endloop
 i=0;
 endif

 endloop

 //print_count; // print how many
 sum = cat[sum,count];
 count = 0;
 prior_mseq= 0;
 i=0;

 for entry_key in entries loop // for each entry, untag and compare
prior_mseq to mseq in entry

 entry_record = db_Read [mdb_key, entry_key];
 values = last untag entry_record; // removes tags from tagged
vector, just values

 if prior_mseq <> values(2) then // if prior_mseq isn't equal to
current mseq (molecule sequence number)

 299

 prior_mseq = values(2);
 for index in values loop // for each mseq in all mseqs
 i=i+1;
 if eqL [receptor_name, index] then // if the top level
arguments are identical AND
 if values(i-4) then
 count = count+1;
 endif
 endif
 endloop
 i=0;
 endif

 endloop

 //print_count; // print how many
 sum = cat[sum,count];
 count = 0;
 prior_mseq= 0;
 i=0;

 for entry_key in entries loop // for each entry, untag and compare
prior_mseq to mseq in entry

 entry_record = db_Read [mdb_key, entry_key];
 values = last untag entry_record; // removes tags from tagged
vector, just values

 if prior_mseq <> values(2) then // if prior_mseq isn't equal to
current mseq (molecule sequence number)
 prior_mseq = values(2);
 for index in values loop // for each mseq in all mseqs
 i=i+1;
 if eqL [receptor_name, index] then // if the top level
arguments are identical AND
 if values(i-5) then
 count = count+1;
 endif
 endif
 endloop
 i=0;
 endif

 endloop

 //print_count; // print how many
 sum = cat[sum,count];
 count = 0;
 prior_mseq= 0;
 i=0;

////print_count; // print how many
 sum = cat[sum,count];

 local actives = add sum;

 300

 return actives;
 count = 0;
 prior_mseq= 0;
 i=0;

 endfunction

 local actives = pharm_count_all [receptor_name];
 local active_rate = (actives/hits);
 local enrichment = active_rate/(db_active_mols/db_mols);
 local goodness =
((actives*((3*actives)+hits))/(4*hits*db_active_mols)) * (1 -(hits-
actives)/(db_mols-db_active_mols));
 print enrichment;
 db_Write [
 output, 0, [
 Enrichment: enrichment,
 GH: goodness,
 Hits: hits,
 Actives: actives,
 Active_Rate: active_rate,
 filename: swrite ['{G}', ph4]
]
];

 e_vals = cat [e_vals, enrichment];
 local enr = tok_cat [totok enrichment,'\n'];
 towrite = cat[towrite, enr];

 db_Close [tok_cat [fbase ph4,'.mdb']];
 fdelete tok_cat [fbase ph4,'.mdb'];
 print cat['iteration:', fbase ph4];
endloop

print 'done creating database';

fwrite['enrichments.txt', '{}', towrite];

Open 'ph4_search_output.mdb';
endfunction

 301

Scripts used in Chapter 4

feature_search_dir_7_feats.svl

Description: This function is used to search a compound database with all pharmacophore

models containing 7 features that are present in a directory at 3, 4, 5, 6, and 7 features.

Arguments

compound_db: compound database to be searched

mseq_field: field in compound_db containing the mseq numbers

function ph4_Search;
global function feature_search_dir_7feats [compound_db, mseq_field];
// sort type is the score type
local files = flist[[],'*.ph4'];
local ph4fname;
local hits = [];
//local i = 1;

for ph4fname in files loop
print ph4fname;
local score_type = fbase ph4fname;
logfile tok_cat['log1.txt'];
ph4_Search [compound_db, ph4fname,
 [
 abspos : 0,
 action : 0,
 descexpr : '',
 esel : 0,
 matchsize : 3,
 maxconfhits : 0,
 maxmolhits : 0,
 molfield : 'mol',
 mseqfield :mseq_field,
 o_molfield : 'mol',
 o_mseqfield : 'mseq',
 o_rmsdxfield : 'rmsdx',
 o_rscore_colfield : 'rscore[F#]',
 o_rscore_sumfield : 'rscore',
 out_append : 0,
 out_dbfile : tok_cat [score_type, '_3.mdb'],
 out_dbv : 0,
 out_type_molecules : 1,
 sortby : 'rmsdx',
 use_mname : 0,
 use_mseqfield : 1,
 use_o_fileIdxField : 0,
 use_o_fileNameField : 0,
 use_o_hitmapfield : 0,
 use_o_hitmapfieldC : 0,

 302

 use_o_hitsizefield : 0,
 use_o_hitsizefieldC : 0,
 use_o_molfield : 1,
 use_o_mseqfield : 1,
 use_o_rmsdfield : 0,
 use_o_rmsdxfield : 1,
 use_o_rowfield : 0,
 use_o_rscore_colfield : 1,
 use_o_rscore_sumfield : 1,
 use_o_rscore_vecfield : 0,
 use_out_dbfile : 1,
 usepsilo : 0
]
];

 logfile 0;
 logfile[];

 //obtain hits from log file
 local hitline = last freadb ['log1.txt', 'line', INT_MAX];
 local ws = wordsplit [hitline, " "];
 local hits1 = ws(3);
 hits1 = atoi token hits1;
 hits1 = cat[tok_cat [score_type, '_3'], hits1];

logfile 'log2.txt';
ph4_Search [compound_db, ph4fname,
 [
 abspos : 0,
 action : 0,
 descexpr : '',
 esel : 0,
 matchsize : 4,
 maxconfhits : 0,
 maxmolhits : 0,
 molfield : 'mol',
 mseqfield : mseq_field,
 o_molfield : 'mol',
 o_mseqfield : 'mseq',
 o_rmsdxfield : 'rmsdx',
 o_rscore_colfield : 'rscore[F#]',
 o_rscore_sumfield : 'rscore',
 out_append : 0,
 out_dbfile : tok_cat [score_type, '_4.mdb'],
 out_dbv : 0,
 out_type_molecules : 1,
 sortby : 'rmsdx',
 use_mname : 0,
 use_mseqfield : 1,
 use_o_fileIdxField : 0,
 use_o_fileNameField : 0,
 use_o_hitmapfield : 0,
 use_o_hitmapfieldC : 0,
 use_o_hitsizefield : 0,
 use_o_hitsizefieldC : 0,
 use_o_molfield : 1,
 use_o_mseqfield : 1,

 303

 use_o_rmsdfield : 0,
 use_o_rmsdxfield : 1,
 use_o_rowfield : 0,
 use_o_rscore_colfield : 1,
 use_o_rscore_sumfield : 1,
 use_o_rscore_vecfield : 0,
 use_out_dbfile : 1,
 usepsilo : 0
]
];

logfile 0;
logfile[];

 //obtain hits from log file
 hitline = last freadb ['log2.txt', 'line', INT_MAX];
 ws = wordsplit [hitline, " "];
 local hits2 = ws(3);
 hits2 = atoi token hits2;
 hits2 = cat[tok_cat [score_type, '_4'], hits2];

logfile 'log3.txt';
ph4_Search [compound_db, ph4fname,
 [
 abspos : 0,
 action : 0,
 descexpr : '',
 esel : 0,
 matchsize : 5,
 maxconfhits : 0,
 maxmolhits : 0,
 molfield : 'mol',
 mseqfield : mseq_field,
 o_molfield : 'mol',
 o_mseqfield : 'mseq',
 o_rmsdxfield : 'rmsdx',
 o_rscore_colfield : 'rscore[F#]',
 o_rscore_sumfield : 'rscore',
 out_append : 0,
 out_dbfile : tok_cat [score_type, '_5.mdb'],
 out_dbv : 0,
 out_type_molecules : 1,
 sortby : 'rmsdx',
 use_mname : 0,
 use_mseqfield : 1,
 use_o_fileIdxField : 0,
 use_o_fileNameField : 0,
 use_o_hitmapfield : 0,
 use_o_hitmapfieldC : 0,
 use_o_hitsizefield : 0,
 use_o_hitsizefieldC : 0,
 use_o_molfield : 1,
 use_o_mseqfield : 1,
 use_o_rmsdfield : 0,
 use_o_rmsdxfield : 1,
 use_o_rowfield : 0,
 use_o_rscore_colfield : 1,

 304

 use_o_rscore_sumfield : 1,
 use_o_rscore_vecfield : 0,
 use_out_dbfile : 1,
 usepsilo : 0
]
];

logfile 0;
logfile[];

 //obtain hits from log file
 hitline = last freadb ['log3.txt', 'line', INT_MAX];
 ws = wordsplit [hitline, " "];
 local hits3 = ws(3);
 hits3 = atoi token hits3;
 hits3 = cat[tok_cat [score_type, '_5'], hits3];

logfile 'log4.txt';
ph4_Search [compound_db, ph4fname,
 [
 abspos : 0,
 action : 0,
 descexpr : '',
 esel : 0,
 matchsize : 6,
 maxconfhits : 0,
 maxmolhits : 0,
 molfield : 'mol',
 mseqfield : mseq_field,
 o_molfield : 'mol',
 o_mseqfield : 'mseq',
 o_rmsdxfield : 'rmsdx',
 o_rscore_colfield : 'rscore[F#]',
 o_rscore_sumfield : 'rscore',
 out_append : 0,
 out_dbfile : tok_cat [score_type, '_6.mdb'],
 out_dbv : 0,
 out_type_molecules : 1,
 sortby : 'rmsdx',
 use_mname : 0,
 use_mseqfield : 1,
 use_o_fileIdxField : 0,
 use_o_fileNameField : 0,
 use_o_hitmapfield : 0,
 use_o_hitmapfieldC : 0,
 use_o_hitsizefield : 0,
 use_o_hitsizefieldC : 0,
 use_o_molfield : 1,
 use_o_mseqfield : 1,
 use_o_rmsdfield : 0,
 use_o_rmsdxfield : 1,
 use_o_rowfield : 0,
 use_o_rscore_colfield : 1,
 use_o_rscore_sumfield : 1,
 use_o_rscore_vecfield : 0,
 use_out_dbfile : 1,
 usepsilo : 0

 305

]
];

logfile 0;
 logfile[];

 //obtain hits from log file
 hitline = last freadb ['log4.txt', 'line', INT_MAX];
 ws = wordsplit [hitline, " "];
 local hits4 = ws(3);
 hits4 = atoi token hits4;
 hits4 = cat[tok_cat [score_type, '_6'], hits4];

logfile 'log5.txt';
ph4_Search [compound_db, ph4fname,
 [
 abspos : 0,
 action : 0,
 descexpr : '',
 esel : 0,
 matchsize : 7,
 maxconfhits : 0,
 maxmolhits : 0,
 molfield : 'mol',
 mseqfield : mseq_field,
 o_molfield : 'mol',
 o_mseqfield : 'mseq',
 o_rmsdxfield : 'rmsdx',
 o_rscore_colfield : 'rscore[F#]',
 o_rscore_sumfield : 'rscore',
 out_append : 0,
 out_dbfile : tok_cat [score_type, '_7.mdb'],
 out_dbv : 0,
 out_type_molecules : 1,
 sortby : 'rmsdx',
 use_mname : 0,
 use_mseqfield : 1,
 use_o_fileIdxField : 0,
 use_o_fileNameField : 0,
 use_o_hitmapfield : 0,
 use_o_hitmapfieldC : 0,
 use_o_hitsizefield : 0,
 use_o_hitsizefieldC : 0,
 use_o_molfield : 1,
 use_o_mseqfield : 1,
 use_o_rmsdfield : 0,
 use_o_rmsdxfield : 1,
 use_o_rowfield : 0,
 use_o_rscore_colfield : 1,
 use_o_rscore_sumfield : 1,
 use_o_rscore_vecfield : 0,
 use_out_dbfile : 1,
 usepsilo : 0
]
];

logfile 0;

 306

logfile[];

 //obtain hits from log file
 hitline = last freadb ['log5.txt', 'line', INT_MAX];
 ws = wordsplit [hitline, " "];
 local hits5 = ws(3);
 hits5 = atoi token hits5;
 hits5 = cat[tok_cat [score_type, '_7'], hits5];

 local hitv = cat [hits1,hits2,hits3,hits4,hits5];
 hits = cat [hits, hitv];

endloop

logfile 'ph4_searchlog.txt';

write ['Hits:\n'];
write ['{} : {}\n', hits(1),hits(2)]; //dE(class) 3
write ['{} : {}\n', hits(3),hits(4)]; //dE(class) 4
write ['{} : {}\n', hits(5),hits(6)]; //dE(class) 5
write ['{} : {}\n', hits(7),hits(8)]; //dE(class) 6
write ['{} : {}\n', hits(9),hits(10)]; //dE(class) 7
write ['{} : {}\n', hits(11),hits(12)]; //dE 3
write ['{} : {}\n', hits(13),hits(14)]; //dE 4
write ['{} : {}\n', hits(15),hits(16)]; //dE 5
write ['{} : {}\n', hits(17),hits(18)]; //dE 6
write ['{} : {}\n', hits(19),hits(20)]; //dE 7
write ['{} : {}\n', hits(21),hits(22)]; //du class 3
write ['{} : {}\n', hits(23),hits(24)]; // du class 4
write ['{} : {}\n', hits(25),hits(26)]; //du class 5
write ['{} : {}\n', hits(27),hits(28)]; //du class 6
write ['{} : {}\n', hits(29),hits(30)]; // du class 7
write ['{} : {}\n', hits(31),hits(32)]; // dU 3
write ['{} : {}\n', hits(33),hits(34)]; // dU 4
write ['{} : {}\n', hits(35),hits(36)]; // dU 5
write ['{} : {}\n', hits(37),hits(38)]; // dU 6
write ['{} : {}\n', hits(39),hits(40)]; // dU 7

logfile[];
endfunction

 307

mfss_subset.svl

Description: This script will create a database containing a subset of placed MCSS

fragments from a MCSS output performed using all fragments. This is meant to save

time, since performing additional fragment searches for each subset is time-consuming.

Arguments

mfss_output: filename of MCSS output performed with all fragments

receptor: receptor file resulting from MCSS suffixed ‘_minrec.moe’

frag_db: filename of database containing a subset of fragments contained in the default

MOE fragment database

prefix: desired name prefix for subset files

global function mfss_subset [mfss_output, receptor, frag_db, prefix];

local new_db = tok_cat [prefix, '_output.mdb'];
db_Open [new_db, 'create'];
local [fn, ft] = db_Fields [mfss_output];
local length_fn = length fn;
length_fn = length_fn+1;
local i = 1;

while i < length_fn loop
 db_EnsureField [new_db, fn(i), ft(i)];
 i=i+1;
endloop

local names = db_ReadColumn [frag_db, 'name'];
local entries = db_Entries mfss_output;
local entry, fragname;

for entry in entries loop
 local [name] = db_ReadFields [mfss_output, entry, 'name'];
 for fragname in names loop
 if name === fragname then
 db_Write [new_db, 0, db_Read [mfss_output, entry]];
 endif
 endloop
endloop

local new_receptor = tok_cat [prefix, '_minrec.moe'];
fcopy [receptor, new_receptor];
write 'Done.\n';
endfunction

 308

 309

PH4_classifier.py

Description: This script is used to classify pharmacophore models that have been

generated with our research group's score-based pharmacophore modeling protocol. The

kmeans_5clusters.pkl and clusterI_regression_model.pkl files must be present in the

same directory as this script for it to run. Input for this script is a .csv file resulting from

use of the scorebased_datacollection.svl MOE script. The following command can be

used to run the script with a csv file (where file.csv is the output of the

scorebased_datacollection.svl script): python PH4_classifier.py file.csv

Arguments

Input: .csv file

#module imports/exception handling
try:
 import sklearn
 from sklearn import preprocessing, neighbors
 from sklearn import model_selection
 from sklearn.model_selection import train_test_split
 from sklearn.preprocessing import StandardScaler
 from sklearn.cluster import KMeans
 from sklearn import model_selection
 from sklearn.linear_model import SGDClassifier
 from sklearn.model_selection import train_test_split
 from sklearn.preprocessing import scale
except:
 msg = "PH4_classifier.py requires the sklearn module."
 print(msg)
 raise Exception(msg)

try:
 import pickle
except:
 msg = "PH4_classifier.py requires the pickle module."
 print(msg)
 raise Exception(msg)

try:
 import pandas as pd
except:
 msg = "PH4_classifier.py requires the pandas module."
 print(msg)
 raise Exception(msg)

try:

 310

 import numpy as np
except:
 msg = "PH4_classifier.py requires the numpy module."
 print(msg)
 raise Exception(msg)

import random, os
import csv
import sys
from typing import Tuple

#open pickled machine learning models, handle exception if they are not
present in the same directory as this file
try:
 with open('kmeans_5clusters.pkl', 'rb') as f:
 clustering = pickle.load(f)
except:
 msg = "Make sure that the 'kmeans_5clusters.pkl' is located in the
same directory as this Python script."
 print(msg)
 raise Exception(msg)

try:
 with open('clusterI_regression_model.pkl', 'rb') as f:
 sgdc0 = pickle.load(f)
except:
 msg = "Make sure that the 'clusterI_regression_model.pkl' is
located in the same directory as this Python script."
 print(msg)
 raise Exception(msg)

def scale_features_single(X: pd.DataFrame) -> Tuple[pd.DataFrame,
pd.DataFrame]:
 """
 applies standard scaler (z-scores) to training data and predicts z-
scores for the test set
 """
 scaler = StandardScaler()
 to_scale = [col for col in X.columns.values]
 scaler.fit(X[to_scale])
 X[to_scale] = scaler.transform(X[to_scale])

 return X

def main():
 #read the input file, handle exception if no file is given
 try:
 ext_df = pd.read_csv(sys.argv[1])
 except:
 msg = "PH4_classifier requires a .csv file input."
 print(msg)
 raise Exception(msg)

 #if filename is not .csv, inform the user
 split_tup = os.path.splitext(sys.argv[1])
 file_extension = split_tup[1]
 if file_extension != '.csv':

 311

 raise Exception('Input filetype must be .csv.')

 #fill NA values in input with -99999
 ext_df.fillna(-99999)

 #extract columns with text and columns with data that needs to be
non-scaled when returned to the user
 receptors = ext_df.Receptor
 hits_actual = ext_df.Hits
 score_types = ext_df['score_type']
 subsets = ext_df.subset
 match_features = ext_df.match_features

 #extract predictor columns from input csv
 ext_df = ext_df[['s_score','Hits', 'max_feat', 'avg_feat',
'max_centr', 'min_centr', 'avg_centr', 'features', 'all_same',
'hyd_prop', 'don_prop', 'catdon_prop', 'hydaro_prop', 'aniacc_prop']]
 x = ext_df

 # predict cluster labels for the data
 ext_labels = clustering.predict(x)
 X_clstrs = x.copy()

 X_scaled = scale_features_single(X_clstrs)
 ext_clusters = X_scaled.copy()

 #add receptors, hits_actual, score_type, and subset columns back
prior to 0/1/2/3 split
 ext_clusters['Receptor'] = receptors
 ext_clusters['hits_actual'] = hits_actual
 ext_clusters['score_type'] = score_types
 ext_clusters['subset'] = subsets
 ext_clusters['match_features'] = match_features
 ext_clusters['clusters'] = ext_labels

 #get cluster values to match to input pharmacophore model
clustering results
 uniq_clusters = ext_clusters['clusters'].unique()
 uniqs = uniq_clusters.tolist()
 uniqs.sort()

 #locate the "0" cluster
 ext_0 = ext_clusters.loc[ext_clusters.clusters == 0]
 ext_0_receptors = ext_0.Receptor
 ext_0_hits_actual = ext_0.hits_actual
 ext_0_score_types = ext_0['score_type']
 ext_0_subsets = ext_0.subset
 ext_0_match_features = ext_0.match_features

 #drop columns from the dataframe that are not used as predictors
 X_ext_0 = ext_0.drop(columns=['Receptor', 'hits_actual',
'score_type', 'subset', 'match_features'])

 #predict quality classes for input pharmacophore models segregated
into the first cluster
 print('\nPharmacophore models predicted as quality:\n')
 y_pred = (sgdc0.predict(X_ext_0))

 312

 #add columns that were dropped prior to classification
 X_ext_0['Receptor'] = ext_0_receptors
 X_ext_0['hits_actual'] = ext_0_hits_actual
 X_ext_0['score_type'] = ext_0_score_types
 X_ext_0['subset'] = ext_0_subsets
 X_ext_0['match_features'] = ext_0_match_features
 X_ext_0['quality_pred'] = y_pred

 #print the ph4s classified as quality and write them to .csv
 selected_ph4s = X_ext_0.loc[X_ext_0['quality_pred'] == 1]
 selected_ph4s = selected_ph4s[['Receptor','hits_actual',
'score_type', 'subset', 'match_features', 'quality_pred']]
 print(selected_ph4s)
 ph4_preds = X_ext_0.loc[X_ext_0['quality_pred'] == 1]
 ph4_preds.to_csv(os.path.splitext(sys.argv[1])[0] +
'_clusterI_ph4_preds.csv', index = False)
 print('\nResults written to', os.path.splitext(sys.argv[1])[0] +
'clusterI_ph4_preds.csv.\n')

if __name__ == '__main__':
 main()

 313

ph4_search_specify_features.svl

Description: This function is used to perform searches of a compound database

(compound_db) at a range of specified partial match feature values (start, end) using all

pharmacophore models in a directory. This script is an improved version of the

feature_search_dir_7feats.svl script.

Arguments

compound_db: database you wish to search

mseq_field: field in compound_db containing the mseq numbers

start: partial match feature value to start searches with

end: partial match feature value to end searches with

db_outname: name of the database to be included in the pharmacophore search output

database name

function ph4_Search;
global function ph4_search_specify_features [compound_db, mseq_field,
start, end, db_outname];
local files = flist[[],'*.ph4'];
local ph4fname, pmf_value, output_mdb;
local output_mdbs = [];

for ph4fname in files loop
 print ph4fname;
 for pmf_value = start, end, 1 loop

 // perform ph4_Search
 ph4_Search [compound_db, ph4fname, [
 abspos : 0,
 action : 0,
 descexpr : '',
 esel : 0,
 matchsize : pmf_value,
 maxconfhits : 0,
 maxmolhits : 0,
 molfield : 'mol',
 mseqfield : mseq_field,
 o_molfield : 'mol',
 o_mseqfield : 'mseq',

 314

 o_rmsdxfield : 'rmsdx',
 o_rscore_colfield : 'rscore[F#]',
 o_rscore_sumfield : 'rscore',
 out_append : 0,
 out_dbfile : tok_cat [fbase ph4fname, '_',
db_outname, '_', totok pmf_value, '.mdb'],
 out_dbv : 0,
 out_type_molecules : 1,
 sortby : 'rmsdx',
 use_mname : 0,
 use_mseqfield : 1,
 use_o_fileIdxField : 0,
 use_o_fileNameField : 0,
 use_o_hitmapfield : 0,
 use_o_hitmapfieldC : 0,
 use_o_hitsizefield : 0,
 use_o_hitsizefieldC : 0,
 use_o_molfield : 1,
 use_o_mseqfield : 1,
 use_o_rmsdfield : 0,
 use_o_rmsdxfield : 1,
 use_o_rowfield : 0,
 use_o_rscore_colfield : 1,
 use_o_rscore_sumfield : 1,
 use_o_rscore_vecfield : 0,
 use_out_dbfile : 1,
 usepsilo : 0]

];

 output_mdbs = cat [output_mdbs, tok_cat [fbase ph4fname, '_',
db_outname, '_', totok pmf_value, '.mdb']];
 endloop
 endloop

write '\nHits\n';

// loop through ph4_Search output mdbs and get unique hit totals
for output_mdb in output_mdbs loop
 local hits = length uniq db_ReadColumn [output_mdb, mseq_field];
 write ['{} : {}\n', output_mdb, hits];
endloop

write ['Done.\n'];

endfunction

 315

pharmcount.svl

Description: This script will determine the number of active compounds for a receptor in

a pharmacophore search output database resulting from searching the internal test

database used in chapter 4.

Arguments

mdb: filename of pharmacophore search output database

receptor: name of the target, entered as a string

offset1: 1

offset2: 2

offset3: 3

offset4: 4

offset5: 5

global function pharmcount [mdb, receptor,
offset1,offset2,offset3,offset4,offset5]
Close [force:1, viewreset:1, delgobj:1]; // close any open
structures

local entry_key, entry_record, values, index, output_token;
local files = flist [[],'*.mdb'];
local output = flist [[],'*_output.mdb'];
files = diff[files,output];
local count = 0;
local prior_mseq = 0;
local i=0;

logfile 'pharmcount_log.txt';

 local mdb_key = db_Open [mdb, 'read'];
 local entries = db_Entries mdb_key;
 local report_file = tok_cat[fbase mdb, '_pharmcount.txt'];
 local sum = [];

for entry_key in entries loop // for each entry, untag and compare
prior_mseq to mseq in entry

 entry_record = db_Read [mdb_key, entry_key];
 values = last untag entry_record; // removes tags from tagged
vector, just values

 316

 if prior_mseq <> values(2) then // if prior_mseq isn't equal to
current mseq (molecule sequence number)
 prior_mseq = values(2);
 for index in values loop // for each mseq in all mseqs
 i=i+1;
 if eqL [receptor, index] then // if the top level arguments
are identical AND
 if values(i-offset1) then
 count = count+1;
 endif

 if values(i-offset2) then
 count = count+1;
 endif

 if values(i-offset3) then
 //print i;
 count = count+1;
 endif

 if values(i-offset4) then
 //print i;
 count = count+1;
 endif

 if values(i-offset5) then
 //print i;
 count = count+1;
 endif
 endif

 endloop
 i=0;
 endif

endloop

db_Close mdb_key;

sum = cat[sum,count];
prior_mseq= 0;
i=0;

//write number of actives
write['{} : {}\n', mdb, add sum];
count = 0;
prior_mseq= 0;
i=0;

//print count; // print how many
local fnum = fopenw report_file;
output_token = tok_cat ['\nOffset5:',totok count];
fwrite[fnum, '{}', output_token];
fclose fnum;
count = 0;

 317

prior_mseq= 0;
i=0;

print 'done';
logfile[];
endfunction

 318

results2excel_7feats_dir.svl

Description: This script is to be used after performing database searches with score-based

pharmacophore models. This script will format search results into a text file that is more

easily transferrable to Excel.

global function results2excel_7feats_dir[]

local text_files = flist[[],'*.txt'];
local folders = flist[];
folders = diff [folders, text_files];
local folder;

logfile 'results_cat.txt';

for folder in folders loop

 cd folder;
 local line_count = 1;
 local feat_count = 1;
 local score_count = 1;

 local score_types = ['dE_class', 'dE', 'dU_class', 'dU'];
 local score;

 if folder <> first folders then
 write '\n';
 endif

 write ['{}\n',tok_cat [folder]];
 write ['{}\n',tok_cat ['Hits', ':']];

 loop
 line_count = line_count + 1;
 local hits1 = token last fieldsplit [last freadb
['results.txt', 'line', line_count], ": "];
 feat_count = feat_count + 1;

 line_count = line_count + 1;
 local hits2 = token last fieldsplit [last freadb
['results.txt', 'line', line_count], ": "];
 feat_count = feat_count + 1;

 line_count = line_count + 1;
 local hits3 = token last fieldsplit [last freadb
['results.txt', 'line', line_count], ": "];
 feat_count = feat_count + 1;

 line_count = line_count + 1;
 local hits4 = token last fieldsplit [last freadb
['results.txt', 'line', line_count], ": "];

 319

 feat_count = feat_count + 1;

 line_count = line_count + 1;
 local hits5 = token last fieldsplit [last freadb
['results.txt', 'line', line_count], ": "];
 feat_count = feat_count + 1;

 write [tok_cat[hits1, '\t', hits2, '\t', hits3, '\t', hits4,
'\t', hits5, '\n']];

 score_count = score_count + 1;

 until score_count == 5
 endloop

//print cat ['line_count', line_count];
//return;

 line_count = line_count + 1;
 score_count = 1;
 write ['{}\n',tok_cat ['Actives', ':']];

 loop
 line_count = line_count + 1;
 local actives1 = token last fieldsplit [last freadb
['results.txt', 'line', line_count], ": "];
 feat_count = feat_count + 1;

 line_count = line_count + 1;
 local actives2 = token last fieldsplit [last freadb
['results.txt', 'line', line_count], ": "];
 feat_count = feat_count + 1;

 line_count = line_count + 1;
 local actives3 = token last fieldsplit [last freadb
['results.txt', 'line', line_count], ": "];
 feat_count = feat_count + 1;

 line_count = line_count + 1;
 local actives4 = token last fieldsplit [last freadb
['results.txt', 'line', line_count], ": "];
 feat_count = feat_count + 1;

 line_count = line_count + 1;
 local actives5 = token last fieldsplit [last freadb
['results.txt', 'line', line_count], ": "];
 feat_count = feat_count + 1;

 write [tok_cat[actives1, '\t', actives2, '\t', actives3, '\t',
actives4, '\t', actives5, '\n']];

 score_count = score_count + 1;

 until score_count == 5
 endloop

 cd '..';

 320

endloop

logfile[];
endfunction

 321

scorebased_datacollection.svl

Description: This script is used to extract the information necessary for pharmacophore

model classification from score-based pharmacophore models. For each pharmacophore

model in a directory, the following attributes are calculated:

• Maximum/minimum/mean distances between pharmacophore features

• Maximum/minimum/mean distances pharmacophore features and binding site

centroid

• Fragment-receptor interaction scores for the set of fragments used to annotate

features in the pharmacophore model

• Counts for each feature type (Hyd, Don, Acc, etc.) comprising the model

• Feature type proportions (X of 7 features are of Type Y)

Once calculations are complete, attributes for pharmacophore models are stored on an

entry-by-entry basis in a database titled 'ph4_data.mdb'. The 'match_features' and 'Hits'

fields are left empty for each entry and will need to be filled in manually.

Arguments

rec_name: name of the target, entered as a token (e.g. 'GPR37')

receptor: receptor structure filename

function ph4_EditorWkeyList;
function ph4_EditorGetData;
function prolig_Calculate;

//CALCULATE DISTANCES BETWEEN FEATURES
local function feat_dist_calc [receptor, mdb]

write 'Calculating feature distances...\n';
Open receptor;
local ph4;
local ph4_files = flist [[],'*.ph4'];

// open sitefinder
loop
 Open '$MOE/svl/run/sitefind.svl';

 322

 local wkey2 = WindowKeyList[];
 WindowTrigger [wkey2, [panel:'Apply']];
 WindowTrigger [wkey2, [disp_aselect:1]];
 sleep 0.2;
 if notnull SelectedAtoms[] then break;
 endif
endloop;

 sleep 5;
 WindowDestroy wkey2;
 local site_center = oCentroid SelectedAtoms[];
 local site_dum = mol_Create ['', ['', '', '', 1],
 ['*', 1, " ", 'none', 1],
 ['LP', 0, 'sp', 0, 0, [[]], 0, 'DU', 0,
site_center(1),site_center(2),site_center(3)]];
 aSetSelected [SelectedAtoms[], 0];
 site_dum = cAtoms site_dum;

local entry;

for ph4 in ph4_files loop
 Open ph4;
 local wkey = ph4_EditorWkeyList [];
 local [fatoms] = cAtoms last droplast Chains[];
 local mtx = aDist [tr fatoms, fatoms];
 mtx = cat mtx;
 mtx = pack mtx;
 local max = max mtx;
 local min = min mtx;
 local mean = (add mtx)/(length mtx);
 local mtx2 = aDist [site_dum, fatoms];
 local mean_2 = (add mtx2)/(length mtx2);
 local min_2 = first sort mtx2;
 local max_2 = last sort mtx2;

 local value = [
 score_type: swrite ['{G}', fbase ph4],
 max_feat: max,
 min_feat: min,
 avg_feat: mean,
 max_centr: max_2,
 min_centr: min_2,
 avg_centr: mean_2];

 db_Write [mdb, 0, value];
 sleep 2;
 WindowDestroy wkey;
endloop

write 'Done calculating feature distances.\n';

endfunction

//CALCULATE FEATURE COMPOSITION//
local function featcomp_calc [receptor_name, mdb];
local ph4, feature, feat_name, entry;
local ph4s = flist[[], '*.ph4'];

 323

local hyd_count = 0;
local don_count = 0;
local acc_count = 0;
local donhyd_count = 0;
local catdon_count = 0;
local hydaro_count = 0;
local aniacc_count = 0;
local donacc_count = 0;
local i = 1;
local feat_types = [
 'Hyd',
 'Don',
 'Acc',
 'Don|Hyd',
 'Cat&Don',
 'Hyd|Aro',
 'Ani&Acc',
 'Don&Acc'
];

local entry_count = 0;
local entries = db_Entries mdb;

write 'Calculating feature compositions...\n';

for ph4 in ph4s loop
 Open ph4;
 local data = ph4_EditorGetData first ph4_EditorWkeyList [];
 local features = data.F.expr;
 for feat_name in feat_types loop
 local tf = feat_name == features;
 tf = add tf;
 if feat_name == 'Hyd' then
 hyd_count = hyd_count + tf;
 elseif feat_name == 'Don' then
 don_count = don_count + tf;
 elseif feat_name == 'Acc' then
 acc_count = acc_count + tf;
 elseif feat_name == 'Don|Hyd' then
 donhyd_count = donhyd_count + tf;
 elseif feat_name == 'Cat&Don' then
 catdon_count = catdon_count + tf;
 elseif feat_name == 'Hyd|Aro' then
 hydaro_count = hydaro_count + tf;
 elseif feat_name == 'Ani&Acc' then
 aniacc_count = aniacc_count + tf;
 else
 donacc_count = donacc_count + tf;
 endif

 i = inc i;
 tf = 0;
 endloop

 local feat_count = hyd_count + don_count + acc_count + donhyd_count
+ catdon_count + hydaro_count + aniacc_count + donacc_count;

 324

 entry_count = inc entry_count;
 db_Write [mdb, entries(entry_count), tagpoke[[],'hyd', hyd_count]];
 db_Write [mdb, entries(entry_count), tagpoke[[],'don', don_count]];
 db_Write [mdb, entries(entry_count), tagpoke[[],'acc', acc_count]];
 db_Write [mdb, entries(entry_count), tagpoke[[],'donhyd',
donhyd_count]];
 db_Write [mdb, entries(entry_count), tagpoke[[],'catdon',
catdon_count]];
 db_Write [mdb, entries(entry_count), tagpoke[[],'hydaro',
hydaro_count]];
 db_Write [mdb, entries(entry_count), tagpoke[[],'aniacc',
aniacc_count]];
 db_Write [mdb, entries(entry_count), tagpoke[[],'donacc',
donacc_count]];
 db_Write [mdb, entries(entry_count), tagpoke[[],'features',
feat_count]];
 db_Write [mdb, entries(entry_count), tagpoke[[],'hyd_prop',
hyd_count/feat_count]];
 db_Write [mdb, entries(entry_count), tagpoke[[],'don_prop',
don_count/feat_count]];
 db_Write [mdb, entries(entry_count), tagpoke[[],'acc_prop',
acc_count/feat_count]];
 db_Write [mdb, entries(entry_count), tagpoke[[],'donhyd_prop',
donhyd_count/feat_count]];
 db_Write [mdb, entries(entry_count), tagpoke[[],'catdon_prop',
catdon_count/feat_count]];
 db_Write [mdb, entries(entry_count), tagpoke[[],'hydaro_prop',
hydaro_count/feat_count]];
 db_Write [mdb, entries(entry_count), tagpoke[[],'aniacc_prop',
aniacc_count/feat_count]];
 db_Write [mdb, entries(entry_count), tagpoke[[],'donacc_prop',
donacc_count/feat_count]];

 if anytrue
[[hyd_count,don_count,acc_count,donhyd_count,catdon_count,hydaro_count,
aniacc_count,donacc_count] == feat_count] then
 db_Write [mdb, entries(entry_count), tagpoke[[],'all_same',
1]];
 else
 db_Write [mdb, entries(entry_count), tagpoke[[],'all_same',
0]];
 endif

 sleep 0.5;
 WindowDestroy last WindowKeyList[];

 hyd_count=0;
 don_count=0;
 acc_count=0;
 donhyd_count=0;
 catdon_count=0;
 hydaro_count=0;
 aniacc_count=0;
 donacc_count=0;

endloop

 325

WindowDestroy ph4_EditorWkeyList [];
write 'Done calculating feature compositions.\n';
endfunction

//CALCULATE S_SCORE//

local function s_score_calc [mdb]
local frag1_chain, frag2_chain, frag3_chain, frag4_chain, frag5_chain;
local frag1_name, frag2_name, frag3_name, frag4_name, frag5_name;
local fragfiles = flist[[], '*_fragments.moe'];
local fragfile;
local entries = db_Entries mdb;
local i = 0;

write 'Calculating s_scores...\n';

for fragfile in fragfiles loop
 Close [force:1, viewreset:1, delgobj:1]; // close any open
structures;
 Open fragfile;
 local chains = Chains[];
 local [rec_atoms] = cAtoms chains(1); // get receptor atoms
 local frags = dropfirst chains; // create subset of just fragments
 local frag_chain;
 local ligkeys = cat cAtoms frags;
 local dummy_mask = aElement ligkeys <> 'LP';
 ligkeys = ligkeys | dummy_mask;
 local use_frags = [];
 local sel_atoms = []; // empty vector for fragment atoms that are
to be selected

 local itypes = ['Hbond', 'Metal', 'Ionic', 'Covalent', 'Arene',
'Distance'];
 local iopt = [
 emin_hb: minE[-0.1, 0.10],
 emin_hpi: minE[-0.1, 0.10],
 emin_ion: 0.10,
 distance_threshold: 4.5, //4.5 default
 layoutrechb: 1 // incl. rec-rec hbond in layout
];

 //from prolig2d.svl, calculates fragments with strong interactions
 local iract = prolig_Calculate [itypes, ligkeys, rec_atoms, iopt];
 aSetSelected [ligkeys, 1];
 local [iract_2, iract_3] = [iract(2), iract(3)];
 local lrmask = indexof [iract_2, ligkeys] and indexof [iract_3,
rec_atoms];
 local rlmask = indexof [iract_3, ligkeys] and indexof [iract_2,
rec_atoms];
 local mask = andE [indexof [iract(1), ['Hbond', 'Metal', 'Ionic',
'Covalent']],lrmask or rlmask];
 local s_lim = select [iract(2), iract(3), lrmask] | mask; //
multi atom
 local s_rim = select [iract(3), iract(2), lrmask] | mask; // for
arene
 local s_score = iract(4) | mask;
 local mean_score = (add s_score)/(length s_score);

 326

 //write s_score to mdb
 i = inc i;
 db_Write [mdb, entries(i), tagpoke[[],'s_score', mean_score]];
endloop

write 'Done calculating s_scores.\n';

endfunction

//GLOBAL FUNCTION//

global function scorebased_datacollection [rec_name, receptor]
Close [force:1, viewreset:1, delgobj:1]; // close any open structures

//create database that ph4 data will be filled in to
local mdb_key = db_Open ['ph4_data.mdb', 'create'];

//ensure fields for data to be collected in ph4_data.mdb
db_EnsureField [mdb_key, 'Receptor', 'char'];
db_EnsureField [mdb_key, 'subset', 'char'];
db_EnsureField [mdb_key, 'match_features', 'int'];
db_EnsureField [mdb_key, 'score_type', 'char'];
db_EnsureField [mdb_key, 's_score', 'float'];
db_EnsureField [mdb_key, 'Hits', 'int'];
db_EnsureField [mdb_key, 'max_feat', 'float'];
db_EnsureField [mdb_key, 'min_feat', 'float'];
db_EnsureField [mdb_key, 'avg_feat', 'float'];
db_EnsureField [mdb_key, 'max_centr', 'float'];
db_EnsureField [mdb_key, 'min_centr', 'float'];
db_EnsureField [mdb_key, 'avg_centr', 'float'];
db_EnsureField [mdb_key, 'hyd', 'int'];
db_EnsureField [mdb_key, 'don', 'int'];
db_EnsureField [mdb_key, 'acc', 'int'];
db_EnsureField [mdb_key, 'donhyd', 'int'];
db_EnsureField [mdb_key, 'catdon', 'int'];
db_EnsureField [mdb_key, 'hydaro', 'int'];
db_EnsureField [mdb_key, 'aniacc', 'int'];
db_EnsureField [mdb_key, 'donacc', 'int'];
db_EnsureField [mdb_key, 'features', 'int'];
db_EnsureField [mdb_key, 'all_same', 'int'];
db_EnsureField [mdb_key, 'hyd_prop', 'float'];
db_EnsureField [mdb_key, 'don_prop', 'float'];
db_EnsureField [mdb_key, 'acc_prop', 'float'];
db_EnsureField [mdb_key, 'donhyd_prop', 'float'];
db_EnsureField [mdb_key, 'catdon_prop', 'float'];
db_EnsureField [mdb_key, 'hydaro_prop', 'float'];
db_EnsureField [mdb_key, 'aniacc_prop', 'float'];
db_EnsureField [mdb_key, 'donacc_prop', 'float'];

Open 'ph4_data.mdb';

feat_dist_calc [receptor, mdb_key];
s_score_calc [mdb_key];
featcomp_calc[receptor, mdb_key];

local entries = db_Entries mdb_key;

 327

local entry;

for entry in entries loop
 db_Write [mdb_key, entry, tagpoke[[],'subset', string ftail cd
[]]];
 db_Write [mdb_key, entry, tagpoke[[],'Receptor', string rec_name]];
endloop

write 'Done.\n';

endfunction

 328

scorebased_ph4gen.svl

Description: This script is used to generate pharmacophore models using fragments

placed with the MultiFragment Search tool. Each MFSS output is sorted by 4 different

scores:

1. dE(class)

2. dE

3. dU(class)

4. dU

For each iteration of this script, the MFSS output database will be sorted by 1 of the 4

scores and pharmacophore models will be created. For each loop of pharmacophore

model generation, n+1 fragments will be created (starting with n = 0) in the system and

pharmacophore feature distances will be compared. Fragments that do not fit the

specified distance cutoffs will be removed from the system. Any remaining fragment

atoms possessing interactions with the receptor will then be annotated as pharmacophore

model features. This process repeats until 7 features are present in the pharmacophore

model.

Arguments

fragment_sets: 0 if using a single output .mdb and receptor, 1 if generating

pharmacophore models in a directory containing subdirectories with differing MFSS

outputs.

function ph4_Search;
function Close;
function Open;
function prolig_Calculate;
function pro_Contacts;
function db_ImportASCII;
function ph4_aType;
function ph4_EditorWkeyList;

 329

function ph4_EditorGetData;
function fwrite_PH4;
function QuaSAR_DescriptorMDB;
function feature_search_dir_7feats;
function pharmacount_dir;

///////////////////PHARMACOPHORE GENERATION////////////////////////
 local function SBP_7feats [receptor, database_file, sortfield]
 local features_length = 0;
 local max_i = 0; //change starting fragments, default = 0

 QuaSAR_DescriptorMDB [database_file, 'mol' , 'ASA_H'];

 Close [force:1, viewreset:1, delgobj:1]; // close any open
structures
 Open receptor;

 logfile tok_cat [receptor, '_', sortfield, '.txt'];
 // open sitefinder
 local tcount = 0;
 local tatoms = [];
 loop
 tcount = tcount + 1;
 Open '$MOE/svl/run/sitefind.svl';
 local wkey2 = WindowKeyList[];
 if tcount = 1 then
 WindowTrigger [wkey2, [panel:'Apply']];
 endif

 WindowTrigger [wkey2, [disp_aselect:1]];
 sleep 0.5;
 if notnull SelectedAtoms[] then break;
 endif
 endloop;

 sleep 1;
 WindowDestroy wkey2;

 local site_center = oCentroid SelectedAtoms[];
 local site_dum = mol_Create ['BP Centroid', ['centroid', '', '',
1], // create a dummy atom representing the centroid of the BP
 ['*', 1, " ", 'none', 1],
 ['LP', 0, 'sp', 0, 0, [[]], 0, 'DU', 0,
site_center(1),site_center(2),site_center(3)]];
 aSetSelected [Atoms[], 0];
 site_dum = cAtoms site_dum;

 //BP Centroid has been created

 while features_length < 7 loop // change minimum feature number,
default is 7
 max_i = max_i + 1;
 local entry_key, entry, x;
 local mdb_key = db_Open [database_file, 'read-write']; //open
database with fragments

 330

 db_Sort [mdb_key, [sortfield, 'ASA_H'], [0,1]]; //sort fields
by score (ascending) then ASA_H (descending)
 local entries = db_Entries database_file;
 local scores = [];
 local centroids = [];
 local dummies = [];
 local i=0;
 for entry in entries while i < max_i loop // loop creates max_i
number of fragments
 local [ligand] =db_ReadFields [mdb_key, entry,'mol']; //get
structure from fieldname
 local [ligand_chain, ligand_name] =db_CreateMolecule
ligand;
 local centroid = oCentroid ligand_chain;
 local dum = mol_Create ['', ['frag. centroid', '', '', 1
], // create a centroid dummy atom for each fragment
 ['*', 1, " ", 'none', 1],
 ['LP', 0, 'sp', 0, 0, [[]], 0, 'DU', 0,
centroid(1),centroid(2),centroid(3)]];
 scores = append[scores, db_ReadFields [mdb_key, entry,
sortfield]];
 dummies = cat [dummies, cAtoms dum];
 i = i+1;

 endloop

 //frag dummies have been created

 aSetSelected [dummies,1];
 local matrix = aDist [tr dummies, dummies];
 local matrix2 = aDist [site_dum, dummies]; // distance matrix
with distance from BP centroid to fragments
 i=0;
 local cnums = cNumber oParent oParent dummies;
 local chains = Chains[];
 local dummydist;
 local frag_delete = [];
 local dum_delete = [];
 local scores2 = scores;

 // FRAGMENT TO CENTROID CHECK
 for dummydist in matrix2 loop // find fragments that are far
(>10 A) from the center of the binding site
 i=i+1;
 local fnum = cNumber chains(cnums(i)-1);
 if dummydist > 10 and scores(i) == 0 and freq [0, scores2]
> 1 then // if the dummy atom is 10 Ang. from the BP, delete it and its
corresponding dummy atom
 print cat['dummydist:', dummydist];
 oDestroy [cAtoms chains(cnums(i)-1)];
 oDestroy [cAtoms chains(cnums(i))];
 scores2 = dropfirst scores2; // drop 0 score
 write ['Deleted {} because of distance from
centroid.\n', cat [cName chains(cnums(i)-1), (fnum-1)/2]];
 elseif dummydist > 10 and scores(i) == 0 then
 print cat['dummydist:', dummydist];

 331

 oDestroy [cAtoms chains(cnums(i)-1)];
 oDestroy [cAtoms chains(cnums(i))];
 scores2 = dropfirst scores2; // drop 0 score
 write ['Deleted {} because of distance from
centroid.\n', cat [cName chains(cnums(i)-1), (fnum-1)/2]];
 elseif dummydist > 10 then
 print cat['dummydist:', dummydist];
 oDestroy [cAtoms chains(cnums(i)-1)];
 oDestroy [cAtoms chains(cnums(i))];
 scores2 = diff[scores2, scores(i)]; // remove deleted
fragment's score from score matrix
 write ['Deleted {} because of distance from
centroid.\n', cat [cName chains(cnums(i)-1), (fnum-1)/2]];
 endif
 endloop

 fnum = [];
 dummies = SelectedAtoms[]; // assign new dummy vector WITHOUT
dummies that were too far from the centroid
 aSetSelected [Atoms[], 0]; // deselect dummies

 // END FRAGMENT TO CENTROID CHECK

 aSetSelected [dummies, 1];
 local dum_chains = oParent oParent dummies; // create vector of
dummy atoms chains so they can be deleted if they don't fit the
distance cutoff
 matrix = aDist [tr dummies, dummies]; // new distance matrix
based on refreshed dummy vector

 local mat_scored = [scores: scores2, dist: matrix]; // assign
mat_scored.scores as scores2, the vector containing scores of fragments
that haven't been deleted. Scores and dist matrix should be the same
size
 print mat_scored;
 chains = Chains[];
 local d, r;
 frag_delete = [];
 i=0; // reset count for new loop
 cnums = cNumber oParent oParent dummies;

 print mat_scored.dist;
 print length mat_scored.dist;

 for d in mat_scored.dist loop // loop through remainining
fragments to see which overlap or are too far from other fragments.
 // scores2 remains the same and is checked,
while mat_scored.scores is changed
 if length d > 1 then
 d = pack d;
 endif
 local fragtypes = rName cResidues dropfirst Chains[];
 local ft = fragtypes <> '*';
 print cat['d:', d];
 i = i+1;

 332

 local s = scores2(i);
 fnum = cNumber chains(cnums(i)-1);

 if length pack (d < 0.5) > 0 and scores2(i) == 0 and freq
[0, mat_scored.scores] > 1 and (fnum-1)/2 <> 1 then // fragments that
overlap and have the same score
 oDestroy cAtoms chains(cnums(i)-1); // destroy fragment
atoms (doesn't destroy fragment chain which ensures correct numbering
((fragment is before dummy chain, hence i-1)))
 dummies = diff[dummies, cAtoms dum_chains(i)]; //
reassign new dummy vector by dropping deleted dummy for new distance
calc.
 oDestroy cAtoms dum_chains(i); // destroy the dummy
atom associated with the deleted fragment, necessary for new distance
calculation
 write ['Deleted {} because of overlap.\n', cat [cName
chains(cnums(i)-1), (fnum-1)/2]];
 print cat['d:', d];
 mat_scored.scores = dropfirst mat_scored.scores;
 mat_scored.dist = aDist [tr dummies, dummies];

 elseif length pack (d < 0.5) > 0 and anytrue (scores2(i) >
mat_scored.scores) and (fnum-1)/2 <> 1 and length pack ft <> 1 then
 oDestroy cAtoms chains(cnums(i)-1); // destroy fragment
atoms (doesn't destroy fragment chain which ensures correct numbering
((fragment is before dummy chain, hence i-1)))
 dummies = diff[dummies, cAtoms dum_chains(i)]; //
reassign new dummy vector by dropping deleted dummy for new distance
calc.
 oDestroy cAtoms dum_chains(i);
 write ['Deleted {} because of overlap and score.\n',
cat [cName chains(cnums(i)-1), (fnum-1)/2]];
 print cat['d:', d];
 mat_scored.scores = diff[mat_scored.scores,
mat_scored.scores(indexof[s, mat_scored.scores])];
 mat_scored.dist = aDist [tr dummies, dummies];

 elseif length pack (d < 15) <= 1 and scores2(i) == 0 and
length pack ft > 2 and (fnum-1)/2 <> 1 and length pack ft <> 1 then
//and anytrue (mat_scored.scores(i) > mat_scored.scores) then
 oDestroy cAtoms chains(cnums(i)-1); // destroy fragment
atoms (doesn't destroy fragment chain which ensures correct numbering
((fragment is before dummy chain, hence i-1)))
 dummies = diff[dummies, cAtoms dum_chains(i)]; //
reassign new dummy vector by dropping deleted dummy for new distance
calc.
 oDestroy cAtoms dum_chains(i);
 write ['Deleted {} because of distance from other
fragments.\n', cat [cName chains(cnums(i)-1), (fnum-1)/2]];
 print cat['d:', d];
 mat_scored.scores = dropfirst mat_scored.scores;
 mat_scored.dist = aDist [tr dummies, dummies];

 elseif length pack (d < 15) <= 1 and length pack ft > 2
and (fnum-1)/2 <> 1 then

 333

 oDestroy cAtoms chains(cnums(i)-1); // destroy fragment
atoms (doesn't destroy fragment chain which ensures correct numbering
((fragment is before dummy chain, hence i-1)))
 dummies = diff[dummies, cAtoms dum_chains(i)]; //
reassign new dummy vector by dropping deleted dummy for new distance
calc.
 oDestroy cAtoms dum_chains(i);
 write ['Deleted {} because of distance from other
fragments.\n', cat [cName chains(cnums(i)-1), (fnum-1)/2]];
 print cat['d:', d];
 mat_scored.scores = diff[mat_scored.scores,
mat_scored.scores(indexof[s, mat_scored.scores])];
 mat_scored.dist = aDist [tr dummies, dummies];

 endif
 endloop

 aSetSelected [Atoms[], 0];

 chains = Chains[];
 local [rec_atoms] = cAtoms chains(1); // get receptor atoms
 local frags = dropfirst chains; // create subset of just
fragments
 local frag_chain;
 local ligkeys = cat cAtoms frags;
 local dummy_mask = aElement ligkeys <> 'LP';
 ligkeys = ligkeys | dummy_mask;
 local use_frags = [];
 local sel_atoms = []; // empty vector for fragment atoms that
are to be selected

 local itypes = ['Hbond', 'Metal', 'Ionic', 'Covalent', 'Arene',
'Distance'];
 local iopt = [
 emin_hb: minE[-0.1, 0.10],
 emin_hpi: minE[-0.1, 0.10],
 emin_ion: 0.10,
 distance_threshold: 4.5, //4.5 default
 layoutrechb: 1 // incl. rec-rec hbond in layout
];

 //from prolig2d.svl, calculates fragments with strong
interactions
 local iract = prolig_Calculate [itypes, ligkeys, rec_atoms,
iopt];
 local [iract_2, iract_3] = [iract(2), iract(3)];
 local lrmask = indexof [iract_2, ligkeys] and indexof [iract_3,
rec_atoms];
 local rlmask = indexof [iract_3, ligkeys] and indexof [iract_2,
rec_atoms];
 local mask = andE [indexof [iract(1), ['Hbond', 'Metal',
'Ionic', 'Covalent']],lrmask or rlmask];
 local s_lim = select [iract(2), iract(3), lrmask] | mask; //
multi atom

 334

 local s_rim = select [iract(3), iract(2), lrmask] | mask; //
for arene
 local s_score = iract(4) | mask;
 local s_score_sorted = sort s_score;
 local score;
 local s_lim_sorted = [];
 aSetSelected [s_lim,1]; //select atoms that have strong
interactions
 write ['Fragments with strong interactions: {} \n', uniq cat
[cName oParent oParent s_lim]];
 local atom;
 local ring_centroids = [];
 for score in s_score_sorted loop
 s_lim_sorted = cat [s_lim_sorted, get [s_lim, indexof
[score, s_score]]];
 endloop;

 for atom in s_lim_sorted loop // for atoms with strong
interactions
 print aElement atom;
 if [aIn6Ring atom] == 1 then // 6-ring fragments have
hydrophobic centers, making a dummy atom conserves the Hyd center while
allowing for removal of the AtomQ queries which are unnecessary
 rSetSelected [oParent atom, 1];
 centroid = oCentroid [oParent atom];
 local mol = mol_Create ['', ['', '', '', 1],
 ['*', 1, " ", 'none', 1],
 ['LP', 0, 'sp', 0, 0, [[]], 0, 'DU', 0,
centroid(1),centroid(2),centroid(3)]];
 ring_centroids = cat[ring_centroids, cAtoms last
Chains[]];
 endif

 local [parent_atoms] = rAtoms oParent atom;
 local ox_mask = aElement parent_atoms == 'O';
 local n_mask = aElement parent_atoms == 'N';
 local ox_atoms = parent_atoms | ox_mask;
 local n_atoms = parent_atoms | n_mask;
 local [selected_ox] = aSelected [ox_atoms];
 local [selected_n] = aSelected [n_atoms];
 if cName oParent oParent atom == 'methylsulfonate' and
aElement atom == 'O' and geE [add selected_ox, 2] == 1 then
 aSetSelected [atom, 0];
 endif

 if cName oParent oParent atom == 'acetate ion' and aElement
atom == 'O' and geE [add selected_ox, 2] == 1 then
 aSetSelected [atom, 0];
 endif

 if cName oParent oParent atom == 'methyltetrazolium' and
aElement atom == 'N' and geE [add selected_n, 2] == 1 then
 aSetSelected [atom, 0];
 endif

 335

 if cName oParent oParent atom == 'methylguanidinium' and
aElement atom == 'N' and geE [add selected_n, 2] == 1 then
 aSetSelected [atom, 0];
 endif

 if cName oParent oParent atom == 'methylamidinium' and
aElement atom == 'N' and geE [add selected_n, 2] == 1 then
 aSetSelected [atom, 0];
 endif
 endloop

 local hyd_atom;
 local chain;
 for chain in Chains[] loop
 if cName chain == '3-methylindole' then // create
hydrophobic annotation point for 3-MI hydrophobic 5-membered ring
 local [MIN_atoms] = cAtoms chain;
 if anytrue freq [MIN_atoms, s_lim] == 1 then // ensure
that 3-MI atoms are in s_lim
 local fivering_mask = aIn5Ring MIN_atoms;
 local fivering_atoms = MIN_atoms | fivering_mask;
 centroid = oCentroid fivering_atoms;
 hyd_atom = mol_Create ['', ['', '', '', 1],
 ['*', 1, " ", 'none', 1],
 ['C', 0, 'sp3', 0, 0, [[]], 0, 'C', 0,
centroid(1),centroid(2),centroid(3)]];
 ring_centroids = cat[ring_centroids, cAtoms last
Chains[]];
 endif
 endif
 endloop
 aSetSelected [ring_centroids,1]; //select centroids to annotate
rings as Hyd

 local atoms = SelectedAtoms[];
 local atoms_type = ph4_aType atoms;
 local info = [atoms: atoms, atype: atoms_type];
 i=1;

 //run ph4 editor
 run '$MOE/svl/run/ph4_edit_2.svl';
 local wkey = ph4_EditorWkeyList [];
 WindowShow wkey;
 if notnull SelectedAtoms[] == 1 then
 WindowTrigger [wkey, [create_F:1024]];
 loop
 chains = Chains[];
 local [features] = cAtoms last droplast chains;
 until notnull features
 endloop
 endif

 chains = Chains[];

 336

 local data = ph4_EditorGetData wkey;
 local feat = [atoms: features, names: data.F.expr];

 local feat_name;
 local feat_delete = [];
 i=0;
 for feat_name in feat.names loop
 i=i+1;
 if feat_name == 'AtomQ' then
 feat_delete = cat [feat_delete,feat.atoms(i)];
 endif
 endloop

 aSetSelected [Atoms[],0]; //deselect all features
 aSetSelected [feat_delete,1]; //select AtomQ features to be
deleted
 sleep 2;
 local nvp = WindowValues wkey;
 local mainlist = nvp.mainlist(1);
 local tf = feat.names == 'AtomQ';
 loop
 if alltrue tf == 1 then
 WindowTrigger [wkey, [button_delete:1024]];
 break;
 elseif length mainlist == length feat.atoms then // if
selected atoms are all AtomQ then
 nvp = WindowValues wkey;
 mainlist = nvp.mainlist(1);
 break;
 elseif length mainlist < length feat.atoms then // if the
mainlist length is less than the length of the feature atoms
 WindowTrigger [wkey, [button_delete:1024]];
 break;
 elseif length mainlist == 1 then
 WindowDestroy wkey;
 break;
 endif
 endloop

 sleep 1;
 [features] = cAtoms last droplast Chains[];
 features_length = length features;

 // from random_ph4gen.svl //
 loop
 [features] = cAtoms last droplast chains;

 local nums;

 if length features == 13 then
 nums = [8,9,10,11,12,13];
 elseif length features == 12 then
 nums = [8,9,10,11,12];
 elseif length features == 11 then
 nums = [8,9,10,11];

 337

 elseif length features == 10 then
 nums = [8,9,10];
 elseif length features == 9 then
 nums = [8,9];
 elseif length features == 8 then
 nums = [8];
 endif

 if length features > 7 then
 WindowTrigger [wkey, [mainlist:nums]];
 if length SelectedAtoms[] < length features then
 WindowTrigger [wkey, [button_delete:1024]];
 endif
 endif
 sleep 0.1;
 nvp = WindowValues wkey;
 mainlist = nvp.mainlist(1);
 if length features <= 7 then break;
 endif
 endloop
 // end from random_ph4gen.svl //

 [features] = cAtoms last droplast Chains[];
 features_length = length features;

 SaveAs tok_cat [sortfield, '_ph4_fragments.moe'];
 data = ph4_EditorGetData wkey;
 fwrite_PH4 [tok_cat [sortfield,'.ph4'], data, [header:1]];

 print cat['features:',features_length];
 sleep 2;
 if wkey == ph4_EditorWkeyList [] then
 WindowDestroy wkey;
 endif;

 if features_length < 7 then
 oDestroy dropfirst dropfirst Chains[]; // destroy
everything except the receptor
 endif
 endloop;

 write ['Done.\n'];
 logfile[];
 endfunction
///////////////////END PHARMACOPHORE GENERATION////////////////////////

///////////////////RUN SBP 7 FEATS////////////////////////
//function to generate ph4s for each score type present in
//the MCSS output database

 local function run_SBP_7feats [receptor, database_file]

 fdelete ['dE(class).ph4','dE.ph4','dU(class).ph4','dU.ph4'];

 write 'Old ph4 files deleted.\n';

 338

 //number entries in _output.mdb
 local entry_key;
 local entries = db_Entries database_file;
 local counter = 1;

 db_EnsureField [database_file, 'index','int'];
 for entry_key in entries loop
 db_Write [database_file, entry_key, tagpoke[[],'index',
counter]];
 counter = counter + 1;
 endloop

 write 'Index created in output DB.\n';
 logfile tok_cat [receptor, '_ph4log.txt'];

 SBP_7feats [receptor, database_file, 'dE(class)'];

 write 'dE(class) ph4 generated.\n';

 if length flist[[], '*.ph4'] == 1 then
 SBP_7feats [receptor, database_file, 'dE'];
 write 'dE ph4 generated.\n';
 endif

 if length flist[[], '*.ph4'] == 2 then
 SBP_7feats [receptor, database_file, 'dU(class)'];
 write 'dU(class) ph4 generated.\n';
 endif

 if length flist[[], '*.ph4'] == 3 then
 SBP_7feats [receptor, database_file, 'dU'];
 write 'dU(class) ph4 generated.\n';
 endif

 write ['\n'];

 logfile[];

 //Warning 'Done, click OK.';

 endfunction

///////////////////END RUN SBP 7 FEATS////////////////////////

global function scorebased_ph4gen [fragment_sets]; //fragment_sets: 0
or 1, depending on whether ph4s are being generated for each fragment
set or not
local folders = flist[];
local f_mask = ftype flist[] == 'dir';
folders = folders | f_mask;
local folder, receptor, database_file;

if fragment_sets == 0 then
 receptor = FilePrompt ['Input Structure Selection', 'open', []];
 database_file = FilePrompt ['MultiFragment Search Output
Selection', 'open', []];

 339

 run_SBP_7feats [receptor, database_file];
elseif fragment_sets == 1 then
 for folder in folders loop
 cd folder;
 receptor = flist[[], '*_minrec.moe'];
 database_file = flist[[], '*_output.mdb'];
 run_SBP_7feats [receptor, database_file];
 cd '..';
 endloop
endif

Warning 'Done, click OK.';

endfunction

 340

Alignment Scripts

align_new_chains.svl

Description: This function is used to align a database of receptors to a reference

alignment that is contained in a .moe file. First, the reference file is opened and its chains

are selected to be frozen during the alignment. For each entry in the database, the

structure contained in 'mol_field' is then imported and aligned to the frozen reference

chains. The newly aligned chain is then frozen in the same block as the reference chains

prior to importing/aligning any new structure sequences.

Arguments

ref_alignment: .moe file containing a reference alignment

mdb: database containing structures to align

mol_field: field in mdb containing structures (e.g. 'mol_Refined')

output_file: desired name for output file ending in .moe (e.g. 'output.moe')

function pro_Align;
global function align_new_chains [ref_alignment, mdb, mol_field,
output_file]

Close [force:1, viewreset:1, delgobj:1];
Open ref_alignment;
local ref_chains = Chains[];

//generate vector for chain_blocks argument
local i;

local entries = db_Entries mdb;
local entry, mol, mol_chain, mol_name, chain;
//local j = 1;

for entry in entries loop
 local blocks = [];
 for i = 1, length Chains[], 1 loop
 blocks = cat [blocks, 1];
 endloop
 [mol] = db_ReadFields[mdb, entry, mol_field];
 [mol_chain, mol_name] =db_CreateMolecule mol;
 //j = inc j;
 for chain in diff [Chains[], ref_chains] loop
 //blocks = cat[blocks, j];

 341

 blocks = cat[blocks, 2];
 endloop
 //print length Chains[];
 //print blocks;

 //add new chain to ref_chains prior to next loop
 ref_chains = Chains[];

 pro_Align [Chains[], [
 mda:'blosum62',
 mda2:'nuc',
 method:'progressive',
 gapstart:10,
 gapextend:2,
 gapstart_structural:1,
 gapextend_structural:0.1,
 max_iterations:100,
 failure_count:10,
 print_table:0,
 multi_chain:0,
 retain_frozen_gaps:1,
 enable_structural:0,
 realign_only:0,
 superpose:1,
 endgap_penalties:0,
 round_robin:0,
 shuffle:0,
 selected_res_only:0,
 restrict:'All Residues',
 chain_blocks: blocks,
 split_by_subunit:0,
 optimize_gap_penalties:1,
 verbose:1]];

 write ['Done aligning {} to the reference alignment.\n', cName last
Chains[]];

 //sleep 100;
endloop

SaveAs output_file;

endfunction

 342

check_gap_positions.svl

Description: This script is used to find gap positions in an alignment that is open in MOE.

global function check_gap_positions []

local chains = Chains[];
local chain;
local cMask = [];

//loop through chains to delete null chains
for chain in chains loop
 if isnull cat oChildren chain then
 oDestroy chain;
 endif
endloop

//reset chains variable after deletion
chains = Chains[];

//loop through chains to determine which chains are ligand chains
//so they can be removed with cMask
for chain in chains loop
 local r_type = uniq rType cat oChildren chain;
 if isnull r_type == 1 or r_type <> 'amino' then
 cMask = cat [cMask, 0];
 else
 cMask = cat [cMask, 1];
 endif
endloop

//remove ligand chains from chains
chains = chains | cMask;

//find max residue position in sequence editor
local rposns = sort uniq cat rPos oChildren chains;
print rposns;
local max_rposn = max rposns;
local rposn;

local i;

logfile 'log.txt';

write ['residue positions with no residue\n'];
write['---------------------------------\n'];

//loop through each chain position and chain to determine
//which residue positions are empty
for i = 1, max_rposn, 1 loop
 local pos_count = 0;
 for chain in chains loop
 if anytrue [i == cat rPos oChildren chain] then
 pos_count = inc pos_count;
 endif
 endloop

 343

 if pos_count == 0 then
 //write ['{}:{}\n', i, pos_count];
 write ['{}\n', i];
 endif
 pos_count = 0;
endloop

logfile[];

endfunction

 344

pairwise_alignment.svl

Description: To use this script, save and load this file (SVL menu) and then load a .moe

file containing the sequences you want aligned on a pairwise basis. Once the sequences

are loaded, use the command pairwise_alignment [] to calculate sequence

similarities. A similarity matrix will be written to ‘sequence_similarity_report.txt’.

function pro_Align;
function pro_ReadMDA;
function _pro_Align_Residues;
global function pairwise_alignment []

// Helper function to get aligned residue letter matrix from residue
keys.
// It returns the one-letter alignment and mask of gaps and unknown
// residues (X).
local function get_letter_matrix res
 local pos = app x_pack res;
 local maxrp = maxR pos;
 local sym = apt put [[rep [".", maxrp]], pos, rLetter2 app pack
res];
 local R = sym <> ".";
 local X = sym <> "X" and R;
 local mask = not andE not R;
 sym = sym || [mask]; // pack alignment (subunit offset gaps)
 R = R || [mask];
 X = X || [mask];
 return [sym, R, X];
endfunction

// Return identity matrix for residues from atoms.
local function get_identity_matrix [residues, opt]
 local [seq, res, X] = get_letter_matrix residues;

 local i, idx = x_id res, S = matid length res;
 for i = 1, length seq loop
 S(i) = put [S(i), idx, app add ((seq[i] == seq[idx]) and X[i])];
 idx = dropfirst idx;
 endloop

 S = 100 * (S + tr S) * invz app add res;
 S = apt poke [S, x_id S, 100];

 return tr S;
endfunction

// Return similarity matrix for residues. This is here used for the
// alignment check only!
local function get_similarity_matrix [residues, opt]
 local [seq, res, X] = get_letter_matrix residues;

 345

 local [mat,sym] = pro_ReadMDA [opt.mda,opt.mda2]; //!!! for align
check only

 seq = apt indexof [seq, [sym]];
 seq = apt mput [seq, not seq, indexof ["X", sym]];

 local i, V, x = tr seq;
 for i = 1, length seq loop;
 V(i) = add (0 < apt get [mat[seq(i)], x] and X(i));
 endloop;

 return tr (100 * V * invz app add res);
endfunction

////////END LOCAL FUNCTIONS/////////////////
///////START GS CODE////////////////////////
//

local chains = Chains[];
local chain;
local diff_chain;
local similarities = [];
local table_mat = [];
local i;
local prev_cnum = 0;

//MATRIX GENERATION
//create a "fluff" matrix containing the same number of rows/cols as
there are chains
for i = 1, length chains, 1 loop
 table_mat = cat [table_mat, [igen length chains]];
endloop

//CHAIN ALIGNMENT
//for each chain loaded into the system, compare it to itself and every
other chain
//in the system on a pairwise basis.
for chain in chains loop
 for diff_chain in chains loop //using default pro_Align settings
 pro_Align [
 [chain, diff_chain],
 [
 mda: 'blosum62',
 gapstart: 10.0,
 gapextend: 2.0,
 method: 'tree-based',
 round_robin: 0,
 shuffle: 0,
 max_iterations: 100,
 failure_count: 10,
 enable_structural: 0, //sequence only alignment
 gapstart_structural: 1.0,
 gapextend_structural: 0.1,
 realign_only: 0,
 multi_chain: 0,
 retain_frozen_gaps: 0,

 346

 restrict: 'All Residues',
 chain_blocks: [],
 split_by_subunit: 1,
 superpose: 0,
 optimize_gap_penalties:0,
 print_table: 0]
];
 local compared_chains = cat [chain, diff_chain];
 local chain_number = first cNumber compared_chains;
 //print cNumber compared_chains; DEBUG
 local res = _pro_Align_Residues [compared_chains];
 local mat = get_identity_matrix [res];
 local chain_numbers = cNumber compared_chains;
 local C1 = first chain_numbers;
 local C2 = second chain_numbers;
 local sim = last first mat;
 local rev_sim = first last mat;
 //since the output returned into the mat variable is odd, need to
make sure that
 //we don't overwrite a value in a row or column that has already
been written.
 //
 //i.e. table writes row 1 and column 1 starting at [1,1], row 2 and
column 2
 //starting at [2,2], etc.
 if C1 > prev_cnum and C2 > prev_cnum then
 table_mat(C1) = poke [table_mat(C1), C2, sim];
 chain_numbers = reverse chain_numbers;
 C1 = first chain_numbers;
 C2 = second chain_numbers;
 table_mat(C1) = poke [table_mat(C1), C2, rev_sim];
 endif

 //print mat; DEBUG
 endloop
write ['Comparing chain {} to all other chains...\n', chain_number];

//update previous chain number for comparison in the next loop
prev_cnum = inc prev_cnum;
endloop

//write table to svl commands window and save as .txt file
logfile ['sequence_similarity_report.txt'];
local chain_num;
write ['\t\t'];
for chain_num = 1, length chains, 1 loop
 write ['{}\t', chain_num];
endloop

write '\n';

local row;
local counter = 0;
local row_counter = 1;
write ['{}:{}|', row_counter, tok_keep [cName chains(row_counter), 6]];
for row in table_mat loop
 for sim in row loop

 347

 write ['\t{f.1}', sim];
 endloop
 row_counter = inc row_counter;
 if row_counter <= length chains then
 write ['\n{}:{}|', row_counter, tok_keep [cName
chains(row_counter), 6]];
 else
 write ['\n'];
 endif
endloop

logfile[];

ted_Open 'sequence_similarity_report.txt';
endfunction

 348

Docking Scripts

create_docking_jobs.sh

Description: This script will create a job file for docking on the HPC based on .svl

docking scripts located in a directory. Use the command chmod u+x

dock_job_create.sh to obtain ownership of the file and then use

./dock_job_create.sh jobname to run the script, where jobname is the

desired prefix for each numbered job file.

jobname=$1
i=1
path='/public/apps/moe/moe_2019.0102/bin/moebatch -run'
for file in *.svl

do
 {
 echo '#!/bin/csh'
 echo '#SBATCH --ntasks=4'
 echo '#SBATCH --partition=computeq'
 echo '#SBATCH --job-name='$jobname
 echo $path $file
 } > dock$i.sh

 let i=i+1

done

 349

docking_figuregen_mdb.svl

Description: This script will allow a user to generate .PNG images of every ligand-

receptor complex contained in a database. Receptor ribbon color, ligand atom color and

residue atom color (if desired) can be set using the color arguments.

Arguments

mdb: database containing docked poses

ribbon_type: type of backbone to be rendered

ligand_color: desired ligand atom color. Available colors are listed below in the

PLOT_COLORS section.

rec_color: desired receptor ribbon color. 'default' will be the default MOE color scheme,

otherwise use a color listed in PLOT_COLORS

res_nums: UID numbers of residues whose atoms are to be displayed entered as a vector

of integers ex. [34, 65, 144]

//PLOT_COLORS:
//['black','red','green','blue','yellow','cyan','magenta','orange','bro
wn','pink','gray','darkRed','darkGreen','darkBlue','darkYellow','darkCy
an','darkMagenta','darkOrange','darkBrown','darkPink']

//RIBBON TYPES:
//['none', 'line', 'trace', 'flat', 'tube', 'slab', 'auto']

//EXAMPLE COMMAND W/ RESIDUES DISPLAYED:
//docking_figuregen ['output.mdb', 'tube', 'green', 'red', 'blue',
[100, 110, 114]]

//EXAMPLE COMMAND W/ NO RESIDUES DISPLAYED:
//docking_figuregen ['output.mdb', 'tube', 'green', 'red', 'blue', []]

//close any open structures
Close [force:1, viewreset:1, delgobj:1];

local chain, entry, ligand_chain, receptor_chain, receptor_name,
ligand_name, res_num;

local entries = db_Entries [mdb];
local i = 1;

for entry in entries loop

 350

 local [receptor] = db_ReadFields [mdb, entry, 'receptor'];
 local [ligand] = db_ReadFields [mdb, entry, 'mol'];
 [receptor_chain, receptor_name] =db_CreateMolecule receptor;
 [ligand_chain, ligand_name] =db_CreateMolecule ligand;

 //hide all receptor ribbons/atoms
 rSetRibbonEnable [oChildren receptor_chain, 0];
 aSetHidden [oChildren oChildren Chains[], 1];

 //render receptor and ligand atoms
 rSetRibbonMode [oChildren receptor_chain, ribbon_type];
 if rec_color == 'default' then
 rSetRibbonColorBy [oChildren receptor_chain, 'r:aseg'];
 else
 rSetRibbonRGB [oChildren receptor_chain, icolor rec_color];
 rSetRibbonColorBy [oChildren receptor_chain, 'rgb'];
 endif
 rSetRibbonEnable [oChildren receptor_chain, 1]; //render receptor
 aSetHidden [cat oChildren oChildren ligand_chain, 0]; //render
ligand atoms
 aSetRGB [cat oChildren oChildren ligand_chain, icolor
ligand_color];
 aSetColorBy [cat oChildren oChildren ligand_chain, 'a:rgb'];

 //render specific residues if res_nums argument is entered
 if notnull res_nums then
 local [residues] = oChildren receptor_chain;
 aSetRGB [cat oChildren residues, icolor res_color]; //set rgb
color for residue atoms
 aSetColorBy [cat oChildren residues, 'a:rgb']; // change
residue atom color
 for res_num in res_nums loop
 local rindex = indexof [res_num, rUID residues];
 aSetHidden [cat oChildren residues(rindex), 0]; //render
residue atoms
 endloop
 endif

 //prompt user to adjust view when first receptor is rendered
 if i == 1 then
 local wkey = WindowCreate [
 name : 'ViewPrompt',
 location: 'MOE',
 title : 'Adjust the view and visualization settings to your
liking.',
 Button: [
 name : 'button',
 text : 'OK'
]
];
 local v = WindowWait [wkey];
 WindowDestroy wkey;
 endif

 //export current view of system as a .png image
 local image = ViewGetImage [];

 351

 fwrite_PNG [tok_cat[fbase mdb, '_entry_', totok i, '.png'], image,
[
 transparent_background: 1,
 dpi: 600
]
];

 sleep 1;

 //re-hide receptor and ligand atoms
 rSetRibbonEnable [oChildren receptor_chain, 0]; //render receptor
 aSetHidden [oChildren oChildren ligand_chain, 1]; //render ligand
atoms

 //hide residues
 if notnull res_nums then
 for res_num in res_nums loop
 rindex = indexof [res_num, rUID residues];
 aSetHidden [cat oChildren residues(rindex), 1]; //render
residue atoms
 endloop
 endif
 //destroy ligand/receptor before reading in the next entry
 oDestroy [ligand_chain];
 oDestroy [receptor_chain];

 i = inc i;
endloop

endfunction

 352

gen_tm_database.svl

Description: This script is used to add fields representing Ballesteros-Weinstein residue

numbers to a database based on given maximum start (max_start) and maximum end

(max_end) values for a set of GPCR with indexed positions. For example, our work with

391 GPCR structures determined that the earliest start point for TM1 across all studied

structures was 29 residues behind TM1 residue 1.50. This work also identified that the

latest end point for TM1 was 10 residues ahead of TM1 residue 1.50. Given the

command:

 gen_TM_database['../gpcr db tm evaluation

050322_gs.mdb', ['index','PDBID'],

'364_interaction_energies.mdb', 1, 29, 10]

this script will fill a database with fields meant to be filled with interaction types and

energies for residues 1.21 (50 - max_start) to 1.60 (50 + max_end). If the database does

not already exist, it will be created.

Arguments

idx_mdb: database containing a field numbering each entry as well as a field containing

PDBid codes

fields: names of the fields containing entry numbers/PDBid codes in idx_mdb (ex.

['index', 'PDBID'])

mdb: desired filename of database to be created

TM_num: TM domain (1, 2, 3, 4, 5, 6 or 7) to create fields for

max_start: absolute value of the maximum difference in residue position between TM

X.50 and the first residue of TM X across all structures

 353

max_end: absolute value of the maximum difference in residue position between TM

X.50 and the last residue of TM X across all structures

function db_ImportDB;
global function gen_TM_database [idx_mdb, fields, mdb, TM_num,
max_start, max_end]

// create a database to fill with fields representing TM residue
if notnull flist[[], mdb] == 0 then
 local mdb_key = db_Open [mdb, 'create'];
endif

local TM_50 = TM_num + 0.50;
local min_res_num = 50 - max_start;
local max_res_num = 50 + max_end;
local i, tok_res;

// import fields from idx_mdb if they are not present in the database
if isnull join [fields, first db_Fields[mdb]] then
 db_ImportDB [mdb, idx_mdb, fields, fields, ['int', 'char'], []];
endif

// create fields for the minimum TM residue to TM X.50 - 0.01
for i = min_res_num, 50, 1 loop
 tok_res = totok i;
 db_EnsureField [mdb, tok_cat[totok TM_num, '.', tok_res,
'_intenergysum'], 'float'];
 db_EnsureField [mdb, tok_cat[totok TM_num, '.', tok_res,
'_inttype1'], 'char'];
 db_EnsureField [mdb, tok_cat[totok TM_num, '.', tok_res,
'_intenergy1'], 'float'];
 db_EnsureField [mdb, tok_cat[totok TM_num, '.', tok_res,
'_inttype2'], 'char'];
 db_EnsureField [mdb, tok_cat[totok TM_num, '.', tok_res,
'_intenergy2'], 'float'];
endloop

// create fields for the x.50 residue
db_EnsureField [mdb, tok_cat[tok_cat[totok TM_50, '0'],
'_intenergysum'], 'float'];
db_EnsureField [mdb, tok_cat[tok_cat[totok TM_50, '0'], '_inttype1'],
'char'];
db_EnsureField [mdb, tok_cat[tok_cat[totok TM_50, '0'], '_intenergy1'],
'float'];
db_EnsureField [mdb, tok_cat[tok_cat[totok TM_50, '0'], '_inttype2'],
'char'];
db_EnsureField [mdb, tok_cat[tok_cat[totok TM_50, '0'], '_intenergy2'],
'float'];

// create fields for TM X.50 - 0.01 to the maximum TM residue
for i = 51, max_res_num, 1 loop
 tok_res = totok i;
 db_EnsureField [mdb, tok_cat[totok TM_num, '.', tok_res,
'_intenergysum'], 'float'];

 354

 db_EnsureField [mdb, tok_cat[totok TM_num, '.', tok_res,
'_inttype1'], 'char'];
 db_EnsureField [mdb, tok_cat[totok TM_num, '.', tok_res,
'_intenergy1'], 'float'];
 db_EnsureField [mdb, tok_cat[totok TM_num, '.', tok_res,
'_inttype2'], 'char'];
 db_EnsureField [mdb, tok_cat[totok TM_num, '.', tok_res,
'_intenergy2'], 'float'];
endloop

write 'Done.\n';

endfunction

 355

get_gpcr_interactions.svl

Description: This script is used to calculate interaction energies for all ligand-receptor

pairings within a .moe alignment. Prior to using this script, the gen_tm_database.svl

script must first be used to generate a database containing 5 fields for each Ballesteros-

Weinstein (BW) numbered residue in transmembrane domains 1-7. This database serves

as the output_mdb argument for this script. The ordering of the PDBid entries in this

database must match the ordering of the structures in the alignment. For each ligand-

receptor pairing in the alignment, this script will first identify the receptor chain. For each

residue in TM domains 1-7 of the receptor chain (denoted by the indices in indices_mdb),

5 cells are filled in the database that denote:

1. Overall interaction energy between the residue and its receptor's ligand

2. The type of the 1st interaction made between the residue and ligand

3. The interaction energy of the 1st interaction

4. The type of the 2nd interaction made between the residue and ligand

5. The interaction energy of the 2nd interaction

Interaction scoring follows these rules:

1. Overall interaction energies are summed.

2. If a residue has no interaction energy and no interaction type, its interactions are

scored as 0.

3. If a residue has an interaction type but no interaction energy, it is scored as 0.

4. If a residue does not exist in a structure, its interaction is scored as NaN.

Since residue numbering varies from structure to structure, most structures will not have

all TM residues scored. Once initial residue scoring is complete, empty cells in 'float'

 356

type fields (representing score fields) will be filled with NaN values. Additionally, empty

cells in 'char' type fields (representing interaction types) will be filled with NA values.

Arguments

alignment: .moe file containing ligand-receptor pairings. The ordering of the structures in

this alignment must match the ordering of the PDBids in output_mdb

indices_mdb: database containing indices for the start/X.50/end residues of each

structure's TM domains

output_mdb: database generated using gen_tm_database.svl. Calculations using this script

will be written to this database

function prolig_Calculate;
global function get_GPCR_interactions[alignment, indices_mdb,
output_mdb]

// from prolig2d.svl
const COLLAPSE_MULT_ATOM_TO_NEAREST = 1;
local itypes = ['Hbond', 'Metal', 'Ionic', 'Covalent', 'Arene',
'Distance'];
local iopt = [
 emin_hb: minE[-0.1, 0.10],
 emin_hpi: minE[-0.1, 0.10],
 emin_ion: 0.10,
 distance_threshold: 4.5, //4.5 default
 layoutrechb: 0 // incl. rec-rec hbond in layout
];

//from prolig2d.svl, calculates strong interactions
local function collapse_mult_atom_interactions [a1, a2]

 local function getnearatoms [a, b]
 a = stretch [a, length b];
 b = resize [b, length a];
 local min = x_min add sqr sub [aPos a, aPos b];
 return [a(min), b(min)];
 endfunction

 if COLLAPSE_MULT_ATOM_TO_NEAREST then
 local am_mask = gtE [app length a1, 1] or gtE [app length a2,
1];
 local am1 = a1 | am_mask;
 local am2 = a2 | am_mask;
 [am1, am2] = tr app getnearatoms tr [am1, am2];
 a1 | am_mask = am1;
 a2 | am_mask = am2;
 else

 357

 a1 = app first a1;
 a2 = app first a2;
 endif
 return [a1, a2];
endfunction

// end from prolig2d.svl

// close open structures
Close [force:1, viewreset:1, delgobj:1];

// open alignment
Open alignment;

local chains = Chains[];
local i, chain, entry, a;
local TM_start, TM_x50, TM_end, TM_num;

// determine chain lengths
local chain_lengths = [];
for i = 1, length chains, 1 loop
 local chain_length = length cat cResidues chains(i);
 chain_lengths = cat [chain_lengths, chain_length];
endloop

// get receptor chains
local rmask = chain_lengths > 1;
local rchains = chains | rmask;

// get ligand chains
local lmask = chain_lengths == 1;
local lchains = chains | lmask;

// get entries of indices_mdb
local idx_entries = db_Entries[indices_mdb];

//get entries of output_mdb
local output_entries = db_Entries[output_mdb];

// loop through the 7 TM domains
for TM_num = 1, 7, 1 loop
 //start entry count
 local entry_count = 1;

 // loop through chains and calculate interaction energies
 for chain in rchains loop
 write ['Writing information for entry {} for TM {} ...\n',
entry_count, TM_num];
 write['\nresidue\tE(kcal/mol)\ttype\n'];
 write['-------\t-----------\t----\n'];

 // increase entry count for next loop
 entry_count = inc entry_count;

 // get residues and rUID of chain
 local [residues] = cResidues chain;
 local res_ids = rUID residues;

 358

 // get ligand atoms
 local l_atoms = cat cAtoms chains(indexof[chain, chains] + 1);

 // info read from indices_mdb
 TM_start = db_ReadFields[indices_mdb,
idx_entries(indexof[chain, rchains]), tok_cat['TM', totok TM_num,
'_start']];
 TM_x50 = db_ReadFields[indices_mdb, idx_entries(indexof[chain,
rchains]), tok_cat['TM_', totok TM_num, '.50']];
 TM_end = db_ReadFields[indices_mdb, idx_entries(indexof[chain,
rchains]), tok_cat ['TM', totok TM_num, '_end']];
 //print [indexof[chain, rchains], TM_start, TM_x50, TM_end];

 // loop through residues from start of TM to end of TM and
calculate interaction energies
 for a = TM_start, TM_end, 1 loop

 // determine BW number of current residue based on current
residue number
 if a <= 50 then
 local BW_resnum = 50 - (TM_x50 - a);
 elseif a == TM_x50 then
 BW_resnum = 50;
 elseif a > 50 then
 BW_resnum = 50 + (a - TM_x50);
 endif
 //write ['Calculating interactions for residue {} (BW #:
{})',
 //print tok_cat [totok TM_num, '.', totok BW_resnum]; //
check BW residue number of current residue
 //print[a, res_ids];
 // handle cases where residues are not in the structure
 if isnull join[a, res_ids] then
 local s_score = [];
 local int_types = [];
 else
 local residue = residues(indexof[a, res_ids]);
 local r_atoms = cat oChildren residue;
 //aSetSelected[r_atoms, 1];
 local r_name = rName residue;
 local r_UID = rUID residue;
 //rSetSelected[residue, 1]; // check if residue is
being selected
 local iract = prolig_Calculate [itypes, l_atoms,
r_atoms, iopt];
 local [iract_2, iract_3] = [iract(2), iract(3)];
 [iract_2,iract_3] = collapse_mult_atom_interactions
[iract(2),iract(3)];
 local lrmask = indexof [iract_2, l_atoms] and indexof
[iract_3, r_atoms];
 local rlmask = indexof [iract_3, l_atoms] and indexof
[iract_2, r_atoms];
 local mask = andE [indexof [iract(1), ['Hbond',
'Metal', 'Ionic', 'Covalent']],lrmask or rlmask];
 local arene_mask = andE [iract(1) == 'Arene', lrmask or
rlmask];

 359

 mask = mask or arene_mask;
 local s_lim = select [iract(2), iract(3), lrmask] |
mask; // multi atom
 local s_rim = select [iract(3), iract(2), lrmask] |
mask; // for arene
 s_lim = split [indexof [cat s_lim, l_atoms], app length
s_lim];
 s_rim = split [indexof [cat s_rim, r_atoms], app length
s_rim];
 local s_mask = pack mask;
 local s_li = indexof [select [iract_2, iract_3, lrmask]
| mask, l_atoms];
 local s_ri = indexof [select [iract_3, iract_2, lrmask]
| mask, r_atoms];
 local s_ui = uniq[s_ri];
 local s_type = rep ['', l_length iract];
 s_type | iract(1) == 'Hbond' and lrmask = 'hbdon';
 s_type | iract(1) == 'Hbond' and rlmask = 'hbacc';
 s_type | iract(1) == 'Metal' = 'ion';
 s_type | iract(1) == 'Ionic' = 'ion';
 s_type | iract(1) == 'Covalent' = 'cov';
 s_type | iract(1) == 'Arene' = 'arene';
 s_type = s_type | mask;
 s_score = iract(4) | mask;
 [s_mask, s_li, s_ri, s_ui, s_type, s_score] = [s_mask,
s_li, s_ri, s_ui, s_type, s_score] || [s_li and s_ri];
 int_types = iract(1);
 local int_score = first s_score;
 //print ['residue:', tok_cat [totok TM_num, '.', totok
BW_resnum], iract(1), s_score];

 // deselect current residue atoms
 //aSetSelected[r_atoms, 0];

 endif

 // calculate sum of interaction energies. if s_score is
null, then interaction energy is written as 0
 if notnull s_score then
 local s_score_sum = add s_score;
 else
 s_score_sum = 0;
 endif

 //print['s_score:', s_score, 'sum:', s_score_sum];

 // write sum of interaction energies to the database
 db_Write [output_mdb, output_entries(indexof[chain,
rchains]), tagpoke[[], tok_cat [totok TM_num, '.', totok BW_resnum,
'_intenergysum'], s_score_sum]];

 // loop through s_scores and int_types and determine which
information to write to the database
 for i = 1, 2, 1 loop // i <= 3 keeps loop from writing more
than 2 interaction energies

 360

 if isnull s_score(i) and isnull int_types(i) and i <= 2
then // interactions with no interaction score nor interaction type get
scored as 0, NA for interaction type
 //print[s_score(i), int_types(i), tok_cat [totok
TM_num, '.', totok BW_resnum], iract(1)];
 db_Write [output_mdb, output_entries(indexof[chain,
rchains]), tagpoke[[], tok_cat [totok TM_num, '.', totok BW_resnum,
'_intenergy', totok i], 0]];
 db_Write [output_mdb, output_entries(indexof[chain,
rchains]), tagpoke[[], tok_cat [totok TM_num, '.', totok BW_resnum,
'_inttype', totok i], string 'None']];
 //write['{}\t{f.1}\t\t{}\n',tok_cat [totok TM_num,
'.', totok BW_resnum] , s_score(i), int_types(i)];
 elseif isnull s_score(i) and notnull int_types(i) and i
<= 2 then // interactions with no interaction score but an interaction
type get scored as 0
 //print[s_score(i), int_types(i), tok_cat [totok
TM_num, '.', totok BW_resnum], iract(1)];
 db_Write [output_mdb, output_entries(indexof[chain,
rchains]), tagpoke[[], tok_cat [totok TM_num, '.', totok BW_resnum,
'_intenergy', totok i], 0]];
 db_Write [output_mdb, output_entries(indexof[chain,
rchains]), tagpoke[[], tok_cat [totok TM_num, '.', totok BW_resnum,
'_inttype', totok i], string int_types(i)]];
 //write['{}\t{f.1}\t\t{}\n',tok_cat [totok TM_num,
'.', totok BW_resnum] , s_score(i), int_types(i)];
 elseif i <= 2 then
 //print[s_score(i), int_types(i), tok_cat [totok
TM_num, '.', totok BW_resnum], iract(1)];
 db_Write [output_mdb, output_entries(indexof[chain,
rchains]), tagpoke[[], tok_cat [totok TM_num, '.', totok BW_resnum,
'_intenergy', totok i], s_score(i)]];
 db_Write [output_mdb, output_entries(indexof[chain,
rchains]), tagpoke[[], tok_cat [totok TM_num, '.', totok BW_resnum,
'_inttype', totok i], string int_types(i)]];
 write['{}\t{f.1}\t\t{}\n',tok_cat [totok TM_num,
'.', totok BW_resnum] , s_score(i), int_types(i)];
 endif
 endloop
 endloop
 write '\n';
 endloop
endloop

write 'Done calculating interaction scores. Filling all other fields
with NA values...\n';

// fill all other inttype fields with NA, all other intenergy fields
with NaN
local output_fields = dropfirst dropfirst first db_Fields output_mdb;
local field;
for field in output_fields loop
 for entry in output_entries loop
 local [record] = db_ReadFields [output_mdb, entry, field];
 print [record, field, indexof[entry, output_entries]];
 if isnull record and db_FieldType [output_mdb, field] == 'char'
then

 361

 db_Write [output_mdb, entry, tagpoke[[], field, string
'NA']];
 elseif isnull record and db_FieldType [output_mdb, field] ==
'float' then
 db_Write [output_mdb, entry, tagpoke[[], field, NaN]];
 endif
 endloop
endloop

write 'Done.\n';

endfunction

 362

get_gpcr_interactions_docked.svl

Description: This script is used to calculate interaction energies for all entries

within a docking output database (mdb). Prior to using this script, the

gen_tm_database.svl script must first be used to generate a database (output_mdb)

containing 5 fields for each Ballesteros-Weinstein (BW) numbered residue in

transmembrane domains 1-7. This database serves as the output_mdb argument for this

script. The ordering of the entries in output_mdb must match the ordering of the entries in

your docking output database. For each entry in the database, the docked molecule as

well as receptor are loaded into the system. This script will then identify the receptor

chain. For each residue in TM domains 1-7 of the receptor chain (denoted by the indices

in indices_mdb), 5 cells are filled in the database that denote:

1. Overall interaction energy between the residue and its receptor's ligand

2. The type of the 1st interaction made between the residue and ligand

3. The interaction energy of the 1st interaction

4. The type of the 2nd interaction made between the residue and ligand

5. The interaction energy of the 2nd interaction

Interaction scoring follows these rules:

1. Overall interaction energies are summed.

2. If a residue has no interaction energy and no interaction type, its interactions are

scored as 0.

3. If a residue has an interaction type but no interaction energy, it is scored as 0.

4. If a residue does not exist in a structure, its interaction is scored as NaN.

 363

Since residue numbering varies from structure to structure, most structures will not have

all TM residues scored. Once initial residue scoring is complete, empty cells in 'float'

type fields (representing score fields) will be filled with NaN values. Additionally, empty

cells in 'char' type fields (representing interaction types) will be filled with NA values.

Arguments

mdb: database file with top scoring docked poses. This database must have a field

denoting the name of each target matching target_name

indices_mdb: database containing indices for the start/x.50/end residues of each

structure's TM domains. Target fields between mdb and indices_mdb will be compared

during the calculation

output_mdb: database generated using gen_tm_database.svl. Calculations using this

script will be written to this database. The number entries in this database must

correspond to the number of entries in mdb

database_field1: .mdb field containing ligand poses, most likely 'mol'

database_field2: .mdb field containing receptor poses, most likely 'receptor'

target_field: field in indices_mdb with a token identifying each entry (e.g. 'Target',

'PDBID')

function prolig_Calculate;
function pro_Join;
global function get_GPCR_interactions_docked [mdb, indices_mdb,
output_mdb, database_field1, database_field2, target_field]

// from prolig2d.svl
const COLLAPSE_MULT_ATOM_TO_NEAREST = 1;
local itypes = ['Hbond', 'Metal', 'Ionic', 'Covalent', 'Arene',
'Distance'];
local iopt = [
 emin_hb: minE[-0.1, 0.10],
 emin_hpi: minE[-0.1, 0.10],
 emin_ion: 0.10,
 distance_threshold: 4.5, //4.5 default
 layoutrechb: 0 // incl. rec-rec hbond in layout

 364

];

//from prolig2d.svl, calculates strong interactions
local function collapse_mult_atom_interactions [a1, a2]

 local function getnearatoms [a, b]
 a = stretch [a, length b];
 b = resize [b, length a];
 local min = x_min add sqr sub [aPos a, aPos b];
 return [a(min), b(min)];
 endfunction

 if COLLAPSE_MULT_ATOM_TO_NEAREST then
 local am_mask = gtE [app length a1, 1] or gtE [app length a2,
1];
 local am1 = a1 | am_mask;
 local am2 = a2 | am_mask;
 [am1, am2] = tr app getnearatoms tr [am1, am2];
 a1 | am_mask = am1;
 a2 | am_mask = am2;
 else
 a1 = app first a1;
 a2 = app first a2;
 endif
 return [a1, a2];
endfunction

// end from prolig2d.svl

// close open structures
Close [force:1, viewreset:1, delgobj:1];

// get entries of docking mdb
local entries = db_Entries mdb;
local entry, ligand, receptor, receptor_chain, receptor_name,
ligand_chain, ligand_name, pro_chain;

// get entries of indices_mdb
local idx_entries = db_Entries[indices_mdb];
local idx_entry;

// get Target names from indices_mdb
local target_names = [];
for idx_entry in idx_entries loop
 local [name] = db_ReadFields [indices_mdb, idx_entry,
target_field];
 name = token name;
 target_names = cat[target_names, name];
endloop

//print target_names;

// loop through docking mdb
for entry in entries loop
 [ligand] =db_ReadFields [mdb, entry,[database_field1]]; //get
structure from fieldname
 [receptor] =db_ReadFields [mdb, entry, [database_field2]];

 365

 [receptor_chain, receptor_name] =db_CreateMolecule receptor;

 // check if receptor exists in multiple chains rather than a single
chain.
 // (example of this is Beta 2 structure 3NY8)
 // if so, move all residues to a single chain and delete empty
chains.
 if length Chains[] > 1 then
 for pro_chain in dropfirst Chains[] loop
 local [pro_residues] = cResidues pro_chain;
 oReparent[pro_residues, first Chains[]];
 oDestroy pro_chain;
 endloop
 endif

 [ligand_chain, ligand_name] =db_CreateMolecule ligand;

 // get name of Target
 local [target_name] = db_ReadFields [mdb, entry, target_field];
 target_name = token target_name;
 //print target_name;

 local chains = Chains[];
 local i, chain, a;
 local TM_start, TM_x50, TM_end, TM_num;

 // determine chain lengths
 local chain_lengths = [];
 for i = 1, length chains, 1 loop
 local chain_length = length cat cResidues chains(i);
 chain_lengths = cat [chain_lengths, chain_length];
 endloop

 // get receptor chains
 local rmask = chain_lengths > 1;
 local rchains = chains | rmask;

 // get ligand chains
 local lmask = chain_lengths == 1;
 local lchains = chains | lmask;

 //get entries of output_mdb
 local output_entries = db_Entries[output_mdb];

 // loop through the 7 TM domains
 for TM_num = 1, 7, 1 loop
 //start entry count
 local entry_count = 1;

 // loop through chains and calculate interaction energies
 for chain in rchains loop
 write ['Writing information for entry {} for TM {} ...\n',
indexof[entry, entries], TM_num];
 write['\nresidue\tE(kcal/mol)\ttype\n'];
 write['-------\t-----------\t----\n'];

 366

 // increase entry count for next loop
 entry_count = inc entry_count;

 // get residues and rUID of chain
 local [residues] = cResidues chain;
 local res_ids = rUID residues;

 // get ligand atoms
 local l_atoms = cat cAtoms chains(indexof[chain, chains] +
1);

 // info read from indices_mdb
 TM_start = db_ReadFields[indices_mdb,
idx_entries(indexof[target_name, target_names]), tok_cat['TM', totok
TM_num, '_start']];
 TM_x50 = db_ReadFields[indices_mdb,
idx_entries(indexof[target_name, target_names]), tok_cat['TM_', totok
TM_num, '.50']];
 TM_end = db_ReadFields[indices_mdb,
idx_entries(indexof[target_name, target_names]), tok_cat ['TM', totok
TM_num, '_end']];
 //print [indexof[chain, rchains], TM_start, TM_x50,
TM_end];

 // loop through residues from start of TM to end of TM and
calculate interaction energies
 for a = TM_start, TM_end, 1 loop

 // determine BW number of current residue based on
current residue number
 if a <= 50 then
 local BW_resnum = 50 - (TM_x50 - a);
 elseif a == TM_x50 then
 BW_resnum = 50;
 elseif a > 50 then
 BW_resnum = 50 + (a - TM_x50);
 endif
 //write ['Calculating interactions for residue {} (BW
#: {})',
 //print tok_cat [totok TM_num, '.', totok BW_resnum];
// check BW residue number of current residue
 //print[a, res_ids];
 // handle cases where residues are not in the structure
 if isnull join[a, res_ids] then
 local s_score = [];
 local int_types = [];
 else
 local residue = residues(indexof[a, res_ids]);
 local r_atoms = cat oChildren residue;
 //aSetSelected[r_atoms, 1];
 local r_name = rName residue;
 local r_UID = rUID residue;
 //rSetSelected[residue, 1]; // check if residue is
being selected
 local iract = prolig_Calculate [itypes, l_atoms,
r_atoms, iopt];
 local [iract_2, iract_3] = [iract(2), iract(3)];

 367

 [iract_2,iract_3] = collapse_mult_atom_interactions
[iract(2),iract(3)];
 local lrmask = indexof [iract_2, l_atoms] and
indexof [iract_3, r_atoms];
 local rlmask = indexof [iract_3, l_atoms] and
indexof [iract_2, r_atoms];
 local mask = andE [indexof [iract(1), ['Hbond',
'Metal', 'Ionic', 'Covalent']],lrmask or rlmask];
 local arene_mask = andE [iract(1) == 'Arene',
lrmask or rlmask];
 mask = mask or arene_mask;
 local s_lim = select [iract(2), iract(3), lrmask] |
mask; // multi atom
 local s_rim = select [iract(3), iract(2), lrmask] |
mask; // for arene
 s_lim = split [indexof [cat s_lim, l_atoms], app
length s_lim];
 s_rim = split [indexof [cat s_rim, r_atoms], app
length s_rim];
 local s_mask = pack mask;
 local s_li = indexof [select [iract_2, iract_3,
lrmask] | mask, l_atoms];
 local s_ri = indexof [select [iract_3, iract_2,
lrmask] | mask, r_atoms];
 local s_ui = uniq[s_ri];
 local s_type = rep ['', l_length iract];
 s_type | iract(1) == 'Hbond' and lrmask = 'hbdon';
 s_type | iract(1) == 'Hbond' and rlmask = 'hbacc';
 s_type | iract(1) == 'Metal' = 'ion';
 s_type | iract(1) == 'Ionic' = 'ion';
 s_type | iract(1) == 'Covalent' = 'cov';
 s_type | iract(1) == 'Arene' = 'arene';
 s_type = s_type | mask;
 s_score = iract(4) | mask;
 [s_mask, s_li, s_ri, s_ui, s_type, s_score] =
[s_mask, s_li, s_ri, s_ui, s_type, s_score] || [s_li and s_ri];
 int_types = iract(1);
 local int_score = first s_score;
 //print ['residue:', tok_cat [totok TM_num, '.',
totok BW_resnum], iract(1), s_score];

 // deselect current residue atoms
 //aSetSelected[r_atoms, 0];

 endif

 // calculate sum of interaction energies. if s_score is
null, then interaction energy is written as 0
 if notnull s_score then
 local s_score_sum = add s_score;
 else
 s_score_sum = 0;
 endif

 //print[a, tok_cat [totok TM_num, '.', totok
BW_resnum], 's_score:', s_score, 'sum:', s_score_sum];

 368

 // write sum of interaction energies to the database
 print tok_cat [totok TM_num, '.', totok BW_resnum,
'_intenergysum'];
 db_Write [output_mdb, output_entries(indexof[entry,
entries]), tagpoke[[], tok_cat [totok TM_num, '.', totok BW_resnum,
'_intenergysum'], s_score_sum]];

 // loop through s_scores and int_types and determine
which information to write to the database
 for i = 1, 2, 1 loop // i <= 3 keeps loop from writing
more than 2 interaction energies
 if isnull s_score(i) and isnull int_types(i) and i
<= 2 then // interactions for existing residues with no interaction
score nor interaction type get scored as 0, None for interaction type
 //print[s_score(i), int_types(i), tok_cat
[totok TM_num, '.', totok BW_resnum], iract(1)];
 db_Write [output_mdb,
output_entries(indexof[entry, entries]), tagpoke[[], tok_cat [totok
TM_num, '.', totok BW_resnum, '_intenergy', totok i], 0]];
 db_Write [output_mdb,
output_entries(indexof[entry, entries]), tagpoke[[], tok_cat [totok
TM_num, '.', totok BW_resnum, '_inttype', totok i], string 'None']];
 //write['{}\t{f.1}\t\t{}\n',tok_cat [totok
TM_num, '.', totok BW_resnum] , 0, 'None'];
 elseif isnull s_score(i) and notnull int_types(i)
and i <= 2 then // interactions for existing residues with no
interaction score but an interaction type get scored as 0
 //print[s_score(i), int_types(i), tok_cat
[totok TM_num, '.', totok BW_resnum], iract(1)];
 db_Write [output_mdb,
output_entries(indexof[entry, entries]), tagpoke[[], tok_cat [totok
TM_num, '.', totok BW_resnum, '_intenergy', totok i], 0]];
 db_Write [output_mdb,
output_entries(indexof[entry, entries]), tagpoke[[], tok_cat [totok
TM_num, '.', totok BW_resnum, '_inttype', totok i], string
int_types(i)]];
 //write['{}\t{f.1}\t\t{}\n',tok_cat [totok
TM_num, '.', totok BW_resnum] , 0, int_types(i)];
 elseif i <= 2 then // otherwise, write interaction
data
 //print[s_score(i), int_types(i), tok_cat
[totok TM_num, '.', totok BW_resnum], iract(1)];
 db_Write [output_mdb,
output_entries(indexof[entry, entries]), tagpoke[[], tok_cat [totok
TM_num, '.', totok BW_resnum, '_intenergy', totok i], s_score(i)]];
 db_Write [output_mdb,
output_entries(indexof[entry, entries]), tagpoke[[], tok_cat [totok
TM_num, '.', totok BW_resnum, '_inttype', totok i], string
int_types(i)]];
 write['{}\t{f.1}\t\t{}\n',tok_cat [totok
TM_num, '.', totok BW_resnum] , s_score(i), int_types(i)];
 endif
 endloop
 endloop
 write '\n';
 endloop
 endloop

 369

// close open structures
Close [force:1, viewreset:1, delgobj:1];

endloop

write 'Done calculating interaction scores. Filling all other fields
with NA values...\n';

// fill all other inttype fields with NA, all other intenergy fields
with NaN
local output_fields = dropfirst dropfirst first db_Fields output_mdb;
local field;
for field in output_fields loop
 for entry in output_entries loop
 local [record] = db_ReadFields [output_mdb, entry, field];
 print [record, field, indexof[entry, output_entries]];
 if isnull record and db_FieldType [output_mdb, field] == 'char'
then
 db_Write [output_mdb, entry, tagpoke[[], field, string
'NA']];
 elseif isnull record and db_FieldType [output_mdb, field] ==
'float' then
 db_Write [output_mdb, entry, tagpoke[[], field, NaN]];
 endif
 endloop
endloop

 write 'Done.\n';

endfunction

 370

get_topscored_pose_by_mseq.svl

Description: This script is used to go through each docking database in a directory, get

the best scoring pose for each mseq number in each docking database, and write each best

scoring pose to an output database.

Arguments

output_prefix: desired prefix of output database filename

global function get_topscored_pose_by_mseq [output_prefix]

local mseq, mdb, entry, mseq_entry;
local field_names, field_types;

// create mdb to put top scoring entries in

// get list of mdbs in directory
local mdbs = flist[[],'*.mdb'];

// create output_mdb and get fieldnames from first mdbs
local namebase = tok_drop [fbase first mdbs, -2];
local output_mdb = db_Open [tok_cat[output_prefix,
'_topscored_poses.mdb'],'create'];
[field_names, field_types] = db_Fields first mdbs;

//create fields from first mdbs in output_mdb
local i;
for i = 1, length field_names, 1 loop
 db_EnsureField [output_mdb, field_names(i), field_types(i)];
endloop

// loop through each mdb file
for mdb in mdbs loop
 write ['Getting top scored pose from {}.\n', mdb];
 local entries = db_Entries mdb;
 local mseqs = uniq db_ReadColumn [mdb, 'mseq'];
 // loop through each mseq
 for mseq in mseqs loop
 local mseq_entries = [];
 // loop through each entry
 for entry in entries loop
 // get entries matching mseq
 if db_ReadFields [mdb, entry, 'mseq'] == mseq then
 mseq_entries = cat[mseq_entries, entry];
 endif
 endloop

 //get the first entry matching the mseq's entry record, write
it to output_mdb
 local top_entry = first mseq_entries;

 371

 local entry_record = db_Read [mdb, top_entry];
 db_Write [output_mdb, 0, entry_record];
 endloop
endloop

write ['Done. Poses written to {}\n', tok_cat[output_prefix,
'_topscored_poses.mdb']];

endfunction

 372

ligand_rmsd_symm.svl

Description: This script calculates two RMSD values between two ligand chains (each

containing symmetrical functional groups) based on two ligand-receptor complexes that

have been aligned and superposed based using MOE's built-in tools.

Arguments

reference_file: .pdb or .moe file containing your crystal structure

database_file: .mdb with docked ligand poses

database_field1: name of the field in database_file containing docked ligands

database_field2: name of the field in database_file containing receptor structures

ref_groups/pose_groups: should be a nested vector containing indices of atoms (e.g.

[[3,5,6,7,14], [4,8,9,10,15]])

function Close;
function pro_Superpose;
function pro_Align;
global function ligandRMSD_symmetry [reference_file, database_file,
database_field1, database_field2, ref_groups, pose_groups];

 Close [force:1, viewreset:1, delgobj:1]; // close any open
structures
 local mdb_key = db_Open [database_file, 'read-write'];
 local entries = db_Entries mdb_key;
 local entry_key, ligand, receptor, atoms2, ligand_chain,
ligand_name, receptor_chain, receptor_name, ref_chains, mask,
ref_residues, rec_residues, ref_ligand, ligand_heavy, ref_heavy;

// create field for Ligand RMSD
 db_EnsureField [mdb_key,'Ligand RMSD','float'];
 db_EnsureField [mdb_key,'Ligand RMSD (symmetry)','float'];

// open reference file
 Open reference_file;
 ref_chains = Chains[];
 [ref_ligand] = ref_chains(2);

// loop through the database to make measurements for each ligand
 for entry_key in entries loop
 [ligand] =db_ReadFields [mdb_key,
entry_key,[database_field1]]; //get structure from fieldname
 [receptor] =db_ReadFields [mdb_key, entry_key,
[database_field2]];
 [receptor_chain, receptor_name] =db_CreateMolecule receptor;

 373

 local [rec_atoms] = cAtoms receptor_chain;
 aSetHidden [rec_atoms, 1];
 [ligand_chain, ligand_name] =db_CreateMolecule ligand;

// align & superpose chains with ligands
 pro_Align[Chains[]];
 pro_Superpose[[Chains[]], [auto_associate:1, accent_conserved: 1]];

//local function prompter_example [ref_groups, pose_groups]

 local i=0;
 local p1, p2, p3, p4, p5;
 local r1, r2, r3, r4, r5;
 local posegroups = [p1, p2, p3, p4, p5];
 local refgroups = [r1, r2, r3, r4, r5];
 local chains = Chains[];
 local [ref] = cAtoms ref_ligand;
 aSetColorBy [ref, 'chain'];
 local [pose] = cAtoms ligand_chain;
 mask = aElement ref <> 'H';
 ref_heavy = ref | mask;
 local mask2 = aElement pose <> 'H';
 local pose_heavy = pose | mask2;

 while i < length ref_groups loop
 i = i+1;
 refgroups(i) = get [ref_heavy, ref_groups(i)];
 //aSetSelected [Atoms[], 0];
 //WindowDestroy wkey;
 print cat ['refgroups:', refgroups(i)];
 endloop

 i = 0;
 while i < length pose_groups loop
 i = i+1;
 posegroups(i) = get [pose_heavy, pose_groups(i)];
 //aSetSelected [Atoms[], 0];
 //WindowDestroy wkey;
 print cat ['posegroups:', posegroups(i)];
 endloop

 local ref_unsym = diff [ref_heavy, cat refgroups];
 local pose_unsym = diff [pose_heavy, cat posegroups];

 aSetSelected [ref_unsym, 1];
 local dist_sq = sqr (aDist [pose_unsym, ref_unsym]);
 local dist_sq2 = cat [dist_sq, sqr (aDist [refgroups(1),
posegroups(1)])];
 dist_sq2 = cat [dist_sq2, sqr (aDist [refgroups(2),
posegroups(2)])];
 local RMSD1 = sqrt(add dist_sq2/length dist_sq2);
 print RMSD1;

 374

 dist_sq2 = cat [dist_sq, sqr (aDist [refgroups(1),
posegroups(2)])];
 dist_sq2 = cat [dist_sq, sqr (aDist [refgroups(2),
posegroups(1)])];
 local RMSD2 = sqrt(add dist_sq2/length dist_sq2);
 print RMSD2;

 db_Write [mdb_key, entry_key, tagpoke[[],'Ligand RMSD', RMSD1[1]]];
 db_Write [mdb_key, entry_key, tagpoke[[],'Ligand RMSD (symmetry)',
RMSD2[1]]];

// destroy one ligand before reading in the next
 oDestroy [ligand_chain];
 oDestroy [receptor_chain];
endloop

endfunction

 375

ligandrmsdrigid.svl

Description: This script calculates the RMSD between two chains (ideally containing

ligands) based on two ligand-receptor complexes resulting from rigid docking runs that

have been aligned and superposed based using MOE's built in tools. Receptor structures

will be pulled from a database.

Arguments

reference_file: filename of a reference structure to compare docked poses to

database_file: database with ligand poses

database_field1: name of the field in database_file containing docked ligands

database_file2: database containing receptor models that ligands were docked into

database_field2: name of the field in database_file2 containing receptor structures

entry_number: entry number corresponding to an entry in database_file2, determines

which receptor structure will be loaded

function Close;
function pro_Superpose;
function pro_Align;
global function ligandRMSDrigid [reference_file, database_file,
database_field1, database_file2, database_field2, entry_number];

Close [force:1, viewreset:1, delgobj:1]; // close any open structures
local mdb_key = db_Open [database_file, 'read-write'];
local mdb_key2 = db_Open [database_file2, 'read-write'];
local entry_key, rec_entries, ligand, receptor, atoms2, ligand_chain,
ligand_name, receptor_chain, receptor_name, ref_chains, mask,
ref_residues, rec_residues, ref_ligand, ligand_heavy, ref_heavy;
local entries = db_Entries mdb_key;
local atoms;
// create field for Ligand RMSD
db_CreateField [mdb_key,'Ligand RMSD','float'];

// open reference file
Open reference_file;
ref_chains = Chains[];
[ref_residues] = cResidues ref_chains;
[ref_ligand] = ref_chains(2);

// open receptor
rec_entries = dbv_Entries [database_file2];

 376

[receptor] =db_ReadFields [mdb_key2, rec_entries(entry_number),
[database_field2]];

// mask heavy atoms and create heavy reference
[atoms] = cAtoms ref_ligand;
mask = aElement atoms <> 'H' ;
ref_heavy = atoms | mask;

// loop through the database to make measurements for each ligand
for entry_key in entries loop

[ligand] =db_ReadFields [mdb_key, entry_key,[database_field1]];

//get structure from fieldname
[receptor_chain, receptor_name] =db_CreateMolecule receptor;
[ligand_chain, ligand_name] =db_CreateMolecule ligand;
[rec_residues] = cResidues receptor_chain;
[atoms2] = cAtoms ligand_chain;
mask = aElement atoms2 <> 'H';
ligand_heavy = atoms2 | mask;

// align & superpose chains with ligands
pro_Align[Chains[]];
pro_Superpose[[Chains[]], [auto_associate:1, accent_conserved:

1]];

// measure distances
local [dist] = aDist[ref_heavy, ligand_heavy];

// square root of distances

 local dist_sq = sqr dist;

// find RMSD
 local RMSD = sqrt(add dist_sq/length dist_sq);

// write ligand RMSD to the database
 db_Write [mdb_key, entry_key, tagpoke[[],'Ligand RMSD',
RMSD[1]]];

// destroy one ligand before reading in the next
 oDestroy [ligand_chain];
 oDestroy [receptor_chain];

endloop

endfunction

 377

pli_gen.svl

Description: This script will allow you to generate .png images of protein-ligand

interactions for all docked poses inside a database.

Arguments

mdb: filename of the database containing docked poses

function DrawLigandInteractions;
global function pli_gen [mdb];

Close [force:1, viewreset:1, delgobj:1]; // close any open structures
local entry;
local entries = db_Entries mdb;

for entry in entries loop
 local entry_num = indexof [entry, entries];
 local mseq = db_ReadFields [mdb, entry, 'mseq'];
 local [ligand] =db_ReadFields [mdb, entry, 'mol']; //get
structure from fieldname
 local [receptor] =db_ReadFields [mdb, entry, 'receptor'];
 local [receptor_chain, receptor_name] =db_CreateMolecule
receptor;
 local [ligand_chain, ligand_name] =db_CreateMolecule ligand;

 local [rec_atoms] = cAtoms receptor_chain; // get receptor
atoms
 local [lig_atoms] = cAtoms ligand_chain;
 gr_fwrite [
 tok_cat [fbase mdb, '_', 'entry_', totok entry_num, '_',
'mseq_', totok mseq, '_', totok ligand_name, '.png'],
 DrawLigandInteractions [[lig_atoms], [rec_atoms], []],
 'image/png',
 [],
 []
];

 oDestroy receptor_chain;
 oDestroy ligand_chain;
endloop

write 'Done.\n';

endfunction

 378

res_select.svl

Description: This script allows a user to select sequence editor residues in the first loaded

chain based on residue number/position values.

Arguments

resnums: a vector of integers representing the indexed positions of each residue to select

global function res_select [resnums]
local x;
local residues = cat oChildren first Chains[];
rSetSelected[residues, 0]; //clear selected residues prior to residue
selection
for x in resnums loop
 rSetSelected[residues(x), 1];
endloop

endfunction

 379

self_dock_from_database.svl

Description: This script is used to generate batch files that will allow for self-docking of

ligand-receptor complexes in a database.

Arguments

mdb: database containing a field with ligand-receptor complexes

receptor_field: name of the field in mdb containing ligand-receptor complexes

function Protonate3D;
function ViewCenter;
global function self_dock_from_database [mdb, receptor_field]

Close [force:1, viewreset:1, delgobj:1]; // close any open structures

local entries = db_Entries mdb;
local entry, rec_chain, lig_chain, rec_name;

for entry in entries loop
 // get receptor in complex with ligand from database and open it
 local [receptor] =db_ReadFields [mdb, entry, [receptor_field]];
 [[rec_chain, lig_chain], rec_name] = db_CreateMolecule receptor;

 // center view, show ribbons instead of atoms for receptor chain
 ViewCenter[];
 local [rec_residues] = oChildren rec_chain;
 rSetRibbonMode [rec_residues, 'line'];
 rSetRibbonEnable [rec_residues, 1];
 aSetHidden[oChildren rec_residues, 1];

 // protonate system
 local chains = Chains[];
 local atoms = Atoms[];
 Protonate3D [atoms,atoms,atoms,[],[],[]];

 print rec_name;

 // run Site Finder, click Apply, check 'select contact atoms'
 local tcount = 0;
 local tatoms = [];
 loop
 tcount = tcount + 1;
 Open '$MOE/svl/run/sitefind.svl';
 local wkey2 = WindowKeyList[];
 if tcount = 1 then
 WindowTrigger [wkey2, [panel:'Apply']];
 endif

 WindowTrigger [wkey2, [disp_aselect:1]];
 sleep 0.5;
 if notnull SelectedAtoms[] then break;

 380

 endif
 endloop;

 sleep 1;
 WindowDestroy wkey2;

 // extend selection to residues
 local atom_set = Atoms[];
 local sel_atoms = Atoms [] | aSelected Atoms [];
 local residues = uniq oParent sel_atoms;
 local new_atoms = cat oChildren residues;
 local select_atoms = join [atom_set, new_atoms];
 aSetSelected [select_atoms, 1];

 // open dock UI
 run '$MOE/svl/run/dock_ui.svl'; // uses edited dock_ui.svl to
prevent asking for overwrites
 local wkey = WindowKeyList[];
 WindowSetData [wkey, ['siteset': 6]]; // set docking site as
selected atoms
 WindowSetData [wkey, ['maxpose': 400]]; // set max placement poses
to 400
 WindowSetData [wkey, ['refine': 1]]; // set refinement to induced
fit
 WindowSetData [wkey, ['remaxpose': 5]]; // set max refined poses to
5
 //WindowSetData [wkey, ['outfile': tok_cat[rec_name,
'_selfdock.mdb']]];
 local jobname = tok_cat [rec_name, '_selfdock.mdb'];
 WindowSetData [wkey, ['outfile': jobname]];

 // click Batch... and then create batch file
 WindowTrigger [wkey, ['panel': 'Batch...']];
 sleep 1;
 WindowTrigger[first WindowKeyList[], ['Create':1]];
 sleep 1;
 WindowDestroy wkey;

 loop
 until isnull WindowNameList[] == 1
 endloop

 Close [force:1, viewreset:1, delgobj:1]; // close any open
structures
endloop

endfunction

 381

symm_groupselect.svl

Description: This function will allow a user to identify atom numbers for atoms

comprising symmetrical functional groups of interest.

Arguments

num_groups: number of groups of atoms that are symmetrical in a functional group of

interest

global function symm_groupselect [num_groups];
local atom_indices = [];

local i = 0;
while i < num_groups loop
 i = i+1;
 aSetSelected [Atoms[], 0];
 local chains = Chains[];
 local [atoms] = cAtoms chains(1);
 local mask = aElement atoms <> 'H';
 atoms = atoms | mask;
 local title = tok_cat ['Pick group',' ', totok i, ' ', 'atoms'];
 aSetSelected [Atoms[], 0];
 local wkey = WindowCreate [
 name : 'AtomPrompt',
 mode : 'pickNone',
 location: 'MOE',
 title : title,
 Button: [
 name : 'button',
 text : 'OK'
]
];
 local v = WindowWait [wkey];
 WindowDestroy wkey;
 print indexof [SelectedAtoms[], atoms];
 atom_indices = cat [atom_indices, [indexof [SelectedAtoms[],
atoms]]];
endloop

print atom_indices;
endfunction

 382

Pharmacophore Scripts

feat_dist_dir.svl

Description: This script can be used to calculate interfeature and feature to centroid

distances for all .ph4 files in a directory. Results will be written to output_mdb.

Arguments

output_mdb: desired filename of output database

receptor: receptor structure filename

global function feat_dist_dir [output_mdb, receptor]

Close [force:1, viewreset:1, delgobj:1]; // close any open structures
Open receptor;

local mdb_key = db_Open [output_mdb, 'create'];

db_EnsureField [mdb_key, 'ph4_name', 'char'];

db_EnsureField [mdb_key, 'max_feat', 'float'];
db_EnsureField [mdb_key, 'min_feat', 'float'];
db_EnsureField [mdb_key, 'avg_feat', 'float'];

db_EnsureField [mdb_key, 'max_centr', 'float'];
db_EnsureField [mdb_key, 'min_centr', 'float'];
db_EnsureField [mdb_key, 'avg_centr', 'float'];

local entries = db_Entries output_mdb;
local ph4;
local ph4_files = flist [[],'*.ph4'];

// open sitefinder

 loop
 Open '$MOE/svl/run/sitefind.svl';
 local wkey2 = WindowKeyList[];

 WindowTrigger [wkey2, [panel:'Apply']];
 WindowTrigger [wkey2, [disp_aselect:1]];
 sleep 0.2;
 if notnull SelectedAtoms[] then break;
 endif
 endloop;

 sleep 5;
 WindowDestroy wkey2;

 local site_center = oCentroid SelectedAtoms[];

 383

 local site_dum = mol_Create ['', ['', '', '', 1],
 ['*', 1, " ", 'none', 1],
 ['LP', 0, 'sp', 0, 0, [[]], 0, 'DU', 0,
site_center(1),site_center(2),site_center(3)]];
 aSetSelected [SelectedAtoms[], 0];
 //print oType site_dum;
 site_dum = cAtoms site_dum;

local count = 1;

for ph4 in ph4_files loop

 Open ph4;

 //print 'Features to Features';
 local [fatoms] = cAtoms last droplast Chains[];
 local mtx = aDist [tr fatoms, fatoms];
 mtx = cat mtx;
 mtx = pack mtx;
 //print mtx;
 local max = max mtx;
 local min = min mtx;
 local mean = (add mtx)/(length mtx);
 //print cat ['Mean:', mean];

 //print 'Centroid to Features';
 local mtx2 = aDist [site_dum, fatoms];
 mtx2 = cat mtx2;
 mtx2 = pack mtx2;
 local mean_2 = (add mtx2)/(length mtx2);
 local min_2 = first sort mtx2;
 local max_2 = last sort mtx2;

 local value = [
 ph4_name: swrite ['{G}', fbase ph4],
 max_feat: max,
 min_feat: min,
 avg_feat: mean,
 max_centr: max_2,
 min_centr: min_2,
 avg_centr: mean_2];

 db_Write [output_mdb, 0, value];

 WindowDestroy last WindowKeyList[];

endloop

dbv_Open output_mdb;
write 'Done.\n';

endfunction

 384

feature_composition_dir.svl

Description: This script is used to obtain the feature composition of all pharmacophore

files in a directory and then print the total count of each feature type in all

pharmacophores.

function ph4_EditorGetData;
function ph4_EditorWkeyList;
global function feature_composition_dir [];

local ph4, feature, feat_name;
local ph4s = flist[[], '*.ph4'];
local hyd_count = 0;
local don_count = 0;
local acc_count = 0;
local ani_count = 0;
local cat_count = 0;
local aro_count = 0;
local donhyd_count = 0;
local catdon_count = 0;
local hydaro_count = 0;
local aniacc_count = 0;
local donacc_count = 0;
local i = 1;
local feat_types = [
 'Hyd',
 'Don',
 'Acc',
 'Ani',
 'Cat',
 'Aro',
 'Don|Hyd',
 'Cat&Don',
 'Hyd|Aro',
 'Ani&Acc',
 'Don&Acc'
];

for ph4 in ph4s loop
 Open ph4;
 local data = ph4_EditorGetData first ph4_EditorWkeyList [];
 local features = data.F.expr;
 for feat_name in feat_types loop
 local tf = feat_name == features;
 tf = add tf;
 if feat_name == 'Hyd' then
 hyd_count = hyd_count + tf;
 elseif feat_name == 'Don' then
 don_count = don_count + tf;
 elseif feat_name == 'Acc' then
 acc_count = acc_count + tf;

 385

 elseif feat_name == 'Ani' then
 ani_count = ani_count + tf;
 elseif feat_name == 'Cat' then
 cat_count = cat_count + tf;
 elseif feat_name == 'Aro' then
 aro_count = aro_count + tf;
 elseif feat_name == 'Don|Hyd' then
 donhyd_count = donhyd_count + tf;
 elseif feat_name == 'Cat&Don' then
 catdon_count = catdon_count + tf;
 elseif feat_name == 'Hyd|Aro' then
 hydaro_count = hydaro_count + tf;
 elseif feat_name == 'Ani&Acc' then
 aniacc_count = aniacc_count + tf;
 else donacc_count = donacc_count + tf;
 endif

 //count = count + (add tf);
 //print cat [feat_name, ':', count];
 //count = 0;
 i = i + 1;
 tf = 0;
 endloop

 sleep 1;
 WindowDestroy last WindowKeyList[];
endloop

print cat ['Hyd:', hyd_count];
 print cat ['Don:', don_count];
 print cat ['Acc:', acc_count];
 print cat ['Ani:', ani_count];
 print cat ['Cat:', cat_count];
 print cat ['Aro:', aro_count];
 print cat ['Don|Hyd:', donhyd_count];
 print cat ['Cat&Don:', catdon_count];
 print cat ['Hyd|Aro:', hydaro_count];
 print cat ['Ani&Acc:', aniacc_count];
 print cat ['Don&Acc:', donacc_count];

endfunction

 386

multiple_ph4_search.svl

Description: This script will allow you to perform pharmacophores searches on a

database (mdb) using all .ph4 files in a directory. Output databases will be named after

the pharmacophore used for searching.

Arguments

mdb: database to search

local ph4s = flist [[], '*.ph4'];
local ph4;
local ph4_hits;
local hitv = [];

for ph4 in ph4s loop
 logfile 'log.txt';
 ph4_Search [mdb, ph4,
 [
 abspos : 0,
 action : 0,
 descexpr : '',
 esel : 0,
 maxconfhits : 0,
 maxmolhits : 0,
 molfield : 'mol',
 mseqfield :'mseq',
 o_molfield : 'mol',
 o_mseqfield : 'mseq',
 o_rmsdxfield : 'rmsdx',
 o_rscore_colfield : 'rscore[F#]',
 o_rscore_sumfield : 'rscore',
 out_append : 0,
 out_dbfile : tok_cat [fbase ph4, '.mdb'],
 out_dbv : 0,
 out_type_molecules : 1,
 sortby : 'rmsdx',
 use_mname : 0,
 use_mseqfield : 1,
 use_o_fileIdxField : 0,
 use_o_fileNameField : 0,
 use_o_hitmapfield : 0,
 use_o_hitmapfieldC : 0,
 use_o_hitsizefield : 0,
 use_o_hitsizefieldC : 0,
 use_o_molfield : 1,
 use_o_mseqfield : 1,
 use_o_rmsdfield : 0,
 use_o_rmsdxfield : 1,
 use_o_rowfield : 0,
 use_o_rscore_colfield : 1,
 use_o_rscore_sumfield : 1,

 387

 use_o_rscore_vecfield : 0,
 use_out_dbfile : 1,
 usepsilo : 0
]
];

logfile 0;
logfile[];

//obtain hit molecules from log file
local hitline = last droplast droplast freadb ['log.txt', 'line',
INT_MAX];
local ws = wordsplit [hitline, " "];
local hits = ws(3);
hits = atoi token hits;
sleep 0.1;
hitv = cat [hitv, hits];
ph4_hits = 0;

endloop

//loop to print results
local i = 0;
write ['\n'];
for ph4 in ph4s loop
 i = inc i;
 write [tok_cat [ph4, ' hits: {}\n'], hitv(i)];
endloop

write 'Done.\n';

endfunction

 388

partial_ph4_gen_nminus1.svl

Description: This script will create a directory, set it to the current directory, then create

"partial" pharmacophore models by sampling combinations of n-1 pharmacophore

features. For example, using this in a directory containing 7 feature pharmacophore

models will create 7 partial pharmacophore models each possessing 6 features.

Arguments

features: number of features possessed each pharmacophore models in a directory.

Pharmacophore models in a directory must each have the same number of features.

Close [force:1, viewreset:1, delgobj:1]; // close any open structures
fmkdir 'partial_ph4s';
cd 'partial_ph4s/';
local ph4, i;
local ph4_files = flist [['..'],'*.ph4'];

for ph4 in ph4_files loop
 for i = 1, features, 1 loop
 //print i;
 run ['$MOE/svl/run/ph4_edit_2.svl', ph4];
 local wkey = ph4_EditorWkeyList [];
 local data = ph4_EditorGetData wkey;
 local feature_types = data.F.expr;
 local nvp = WindowValues wkey;
 local mainlist = nvp.mainlist(1);
 WindowTrigger [wkey, [mainlist:i]];
 WindowTrigger [wkey, [button_delete:1024]];
 data = ph4_EditorGetData wkey;
 fwrite_PH4 [tok_cat [tok_drop [fbase ph4, 3], '_', totok i,
'.ph4'], data, [header:1]];
 sleep 1.5;
 if wkey == ph4_EditorWkeyList [] then
 WindowDestroy wkey;
 endif;
 endloop
endloop

cd '..';
write 'Done.\n';

endfunction

 389

ph4_distcalc.svl

Description: This script is used to obtain:

• A matrix of distances from pharmacophore feature centroids to a binding pocket

centroid

• A matrix of distances from pharmacophore feature centroids to other

pharmacophore feature centroids

• The averages, minimums, and maximums of the above values

Arguments

ph4: filename of pharmacophore model to be to analyzed

receptor: .pdb or .moe file containing a receptor structure

function ph4_EditorWkeyList;
global function ph4_distcalc [ph4, receptor]

Close [force:1, viewreset:1, delgobj:1]; // close any open structures
loop
 Open receptor;
 if notnull Atoms[] == 1 then break;
 endif
endloop

local chains = Chains[];
chains = droplast chains;

// open sitefinder and create dummy atom at the centroid of residues
//comprising first elucidated site in SiteFinder
 loop
 Open '$MOE/svl/run/sitefind.svl';
 sleep 1;
 local wkey2 = WindowKeyList[];

 WindowTrigger [wkey2, [panel:'Apply']];
 WindowTrigger [wkey2, [disp_aselect:1]];
 sleep 0.2;
 if notnull SelectedAtoms[] then
 break;
 endif
 endloop;
sleep 5;
WindowDestroy wkey2;

 390

local site_center = oCentroid SelectedAtoms[];
local site_dum = mol_Create ['', ['', '', '', 1],
 ['*', 1, " ", 'none', 1],
 ['LP', 0, 'sp', 0, 0, [[]], 0, 'DU', 0,
site_center(1),site_center(2),site_center(3)]];
aSetSelected [SelectedAtoms[], 0];

//get dummy atom from dummy chain
site_dum = cAtoms site_dum;

//open pharmacophore file
Open ph4;

//write interfeature distance header
write '\n';
write 'Interfeature Distances (Å)\n';
write '----------------------------\n';

local i, vector, distance;
local [fatoms] = cAtoms last droplast Chains[];
local mtx = aDist [tr fatoms, fatoms];

//write matrix of feature to feature distances
write ['\t'];
for i = 1, length fatoms, 1 loop
 write ['{}\t', tok_cat['F', totok i]];
endloop

write '\n';
write ['F1'];
i = 1;

for vector in mtx loop
 for distance in vector loop
 if distance == 0 then
 write ['\t-', distance];
 else
 write ['\t{f.2}', distance];
 endif;
 endloop
 write['\n'];
 i = inc i;
 if i <= length fatoms then
 write [tok_cat['F', totok i]];
 else
 write ['\n'];
 endif
endloop

//reshape mtx so all values can be compared
mtx = cat mtx;
mtx = pack mtx;

//write max/min/mean values
write ['Maximum: {f.2}\n', max mtx];
write ['Minimum: {f.2}\n', min mtx];
local mean = (add mtx)/(length mtx);

 391

write ['Mean: {f.2}\n\n', mean];

//write feature to BP centroid distance header
write '\n';
write 'Feature to Centroid Distances (Å)\n';
write '-----------------------------------\n';

//calculate centroid to feature distances
local mtx2 = aDist [site_dum, fatoms];

//write matrix of feature to centroid distances
write ['\t'];
for i = 1, length fatoms, 1 loop
 write ['{}\t', tok_cat['F', totok i]];
endloop

write ['\nDU'];
i = 1;

for distance in mtx2 loop
 write ['\t{f.2}', distance];
endloop

write['\n\n'];

//write feature to BP centroid distances
write ['Maximum: {f.2}\n', max mtx2];
write ['Minimum: {f.2}\n', min mtx2];
mean = (add mtx2)/(length mtx2);
write ['Mean: {f.2}\n', mean];

//Destroy the ph4 editor window
WindowDestroy ph4_EditorWkeyList [];

endfunction

 392

ph4_near_residue_dist.svl

Description: This script will calculate the distance from binding pocket residue centroids

(found with the Site Finder tool) to each annotation point in a given pharmacophore

model.

Arguments

receptor: file containing a receptor structure

function ph4_EditorWkeyList;
global function ph4_near_residues [receptor];

Close [force:1, viewreset:1, delgobj:1]; // close any open structures
Open receptor;
local res_dummies = [];
local mdb_key = db_Open ['ph4_dist_to_residues.mdb', 'create'];

db_EnsureField [mdb_key, 'filename', 'char'];
db_EnsureField [mdb_key, 'max_res', 'float'];
db_EnsureField [mdb_key, 'min_res', 'float'];
db_EnsureField [mdb_key, 'avg_res', 'float'];
// open sitefinder

 loop
 Open '$MOE/svl/run/sitefind.svl';
 local wkey2 = WindowKeyList[];

 WindowTrigger [wkey2, [panel:'Apply']];
 WindowTrigger [wkey2, [disp_aselect:1]];
 sleep 0.2;
 if notnull SelectedAtoms[] then break;
 endif
 endloop;

 sleep 5;
 WindowDestroy wkey2;

local residues = oParent SelectedAtoms[];
local residue;
aSetSelected [Atoms[], 0];
for residue in residues loop
 local [res_atoms] = oChildren residue;
 local site_center = oCentroid res_atoms;
 local site_dum = mol_Create ['', ['', '', '', 1],
 ['*', 1, " ", 'none', 1],
 ['LP', 0, 'sp', 0, 0, [[]], 0, 'DU', 0,
site_center(1),site_center(2),site_center(3)]];
 res_dummies = cat [res_dummies, cAtoms site_dum];

 393

endloop

local ph4;
local ph4_files = flist [[],'*.ph4'];

for ph4 in ph4_files loop
Open ph4;

local [fatoms] = cAtoms last droplast Chains[];
local fatom;
local distv = [];

//print oType fatoms;
//print oType res_dummies;
for fatom in fatoms loop
 local distance = min aDist [fatom, res_dummies];
 distv = cat[distv, distance];
endloop

local max = max distv;
local min = min distv;
local mean = (add distv)/(length distv);

print cat ['Max:', max];
print cat ['Min:', min];
print cat ['Mean:', mean];

local value = [
 filename: swrite ['{G}', fbase ph4],
 max_res: max,
 min_res: min,
 avg_res: mean];

db_Write [mdb_key, 0, value];
sleep 2;
WindowDestroy ph4_EditorWkeyList [];
endloop

endfunction

 394

s_score_calc.svl

Description: This script is used to calculate the mean interaction score of each set of

fragments used to annotate randomly generated pharmacophore model features. Each

score is written to the output database that results from random pharmacophore model

generation.

Arguments

receptor: receptor model, should end in ‘minrec.moe’ (receptor structure written to file

during MCSS)

mdb: database containing fragments used to annotate each pharmacophore model's

features

function prolig_Calculate;
global function s_score_calc [receptor, mdb];
local frag1_chain, frag2_chain, frag3_chain, frag4_chain, frag5_chain;
local frag1_name, frag2_name, frag3_name, frag4_name, frag5_name;

Close [force:1, viewreset:1, delgobj:1]; // close any open structures

Open receptor;

local entries = db_Entries mdb;
local entry;
db_EnsureField [mdb, 's_score', 'float'];
//db_EnsureField [mdb, 's_score_all', 'float'];

for entry in entries loop
 local [frag1] = db_ReadFields [mdb, entry, 'Fragment1_mol'];
 local [frag2] = db_ReadFields [mdb, entry, 'Fragment2_mol'];
 local [frag3] = db_ReadFields [mdb, entry, 'Fragment3_mol'];
 local [frag4] = db_ReadFields [mdb, entry, 'Fragment4_mol'];
 local [frag5] = db_ReadFields [mdb, entry, 'Fragment5_mol'];

 [frag1_chain, frag1_name] =db_CreateMolecule frag1;
 [frag2_chain, frag2_name] =db_CreateMolecule frag2;
 [frag3_chain, frag3_name] =db_CreateMolecule frag3;
 [frag4_chain, frag4_name] =db_CreateMolecule frag4;
 [frag5_chain, frag5_name] =db_CreateMolecule frag5;

 local chains = Chains[];
 local [rec_atoms] = cAtoms chains(1); // get receptor atoms
 local frags = dropfirst chains; // create subset of just fragments
 local frag_chain;
 local ligkeys = cat cAtoms frags;

 395

 local dummy_mask = aElement ligkeys <> 'LP';
 ligkeys = ligkeys | dummy_mask;
 //aSetSelected [ligkeys, 1];
 local use_frags = [];
 local sel_atoms = []; // empty vector for fragment atoms that are
to be selected

 local itypes = ['Hbond', 'Metal', 'Ionic', 'Covalent', 'Arene',
'Distance'];
 local iopt = [
 emin_hb: minE[-0.1, 0.10],
 emin_hpi: minE[-0.1, 0.10],
 emin_ion: 0.10,
 distance_threshold: 4.5, //4.5 default
 layoutrechb: 1 // incl. rec-rec hbond in layout
];

 //from prolig2d.svl, calculates fragments with strong interactions
 local iract = prolig_Calculate [itypes, ligkeys, rec_atoms, iopt];
 aSetSelected [ligkeys, 1];
 local [iract_2, iract_3] = [iract(2), iract(3)];
 local lrmask = indexof [iract_2, ligkeys] and indexof [iract_3,
rec_atoms];
 local rlmask = indexof [iract_3, ligkeys] and indexof [iract_2,
rec_atoms];
 local mask = andE [indexof [iract(1), ['Hbond', 'Metal', 'Ionic',
'Covalent']],lrmask or rlmask];
 //local arene_mask = andE [iract(1) == 'Arene', lrmask or rlmask];
 //mask = mask or arene_mask;
 local s_lim = select [iract(2), iract(3), lrmask] | mask; //
multi atom
 local s_rim = select [iract(3), iract(2), lrmask] | mask; // for
arene
 local s_score = iract(4) | mask;
 local mean_score = (add s_score)/(length s_score);
 //local mean_scoreall = (add iract(4)/(length iract(4)));
 write ['Mean score: {}\n', (add s_score)/(length s_score)];

 db_Write [mdb, entry, tagpoke[[],'s_score', mean_score]];
 //db_Write [mdb, entry, tagpoke[[],'s_score_all', mean_scoreall]];
 oDestroy frags;
endloop

write 'Done.\n';
Open mdb;
endfunction;

 396

Miscellaneous Scripts

db_2_dockmdb.svl

Description: This script will allow a user to convert a MOE database to a docking

database so both receptor structures and docked ligand poses within the database can be

viewed together with the MOE database browser.

Arguments

mdb: database to be converted

global function db_2_dockmdb [mdb]

db_SetEnv [mdb, '{mol}dbvbrowse_Dock', 'ligand'];
db_SetEnv [mdb, '{receptor}dbvbrowse_Dock', 'receptor'];
db_SetEnv [mdb, '{S}dbvbrowse_Dock', 'score'];

endfunction

 397

db_conf_range.svl

Description: This script will allow a user to calculate the number of conformations per

mseq value (molecule) in a database. After the calculation, the minimum and maximum

number of conformations are returned.

Arguments

mdb: database to be analyzed

global function db_conf_range [mdb]
local entry;
local entries = db_Entries mdb;
local mseqs = uniq db_ReadColumn [mdb, 'mseq'];

local prev_mseq = db_ReadFields [mdb, first entries, 'mseq'];
local prev_chi = db_ReadFields [mdb, first entries, 'chi'];
local count = 0;
local count_vector = [];
local chi_count_vector = [];
local chi_count = 1; //set chi_count at 1 for first entry (if all chi
values for first entry's mseq value are the same, chi_count wouldn't be
updated without setting chi_count to 1)

write 'mseq\t# confs.\tchiral configurations\n';
write '----\t--------\t----------------------\n';

for entry in entries loop
 local mseq = db_ReadFields [mdb, entry, 'mseq'];
 local chi = db_ReadFields [mdb, entry, 'chi'];
 if mseq == prev_mseq then //if the current mseq value matches the
previous mseq value, molecule is the same. increase count
 count = inc count;
 if chi <> prev_chi then //if the current chi value does not
match the previous chi value, it is a new chiral config. increase
chi_count
 chi_count = inc chi_count;
 prev_chi = chi;
 endif
 elseif mseq <> prev_mseq and count <> 0 then //if the current mseq
value is different from the previous mseq value, write counts for
previous mseq
 write ['{}\t{}\t\t{}\n', prev_mseq, count, chi_count];
 count_vector = cat[count_vector, count];
 chi_count_vector = cat[chi_count_vector, chi_count];
 prev_mseq = mseq;
 count = 1; //set count at 1 since mseq after prev_mseq should
be counted
 prev_chi = chi;
 chi_count = 1;
 endif
endloop

 398

write ['{}\t{}\t\t{}\n', mseq, count, chi_count];

local min_mseq_index = indexof[min count_vector, count_vector];
local max_mseq_index = indexof[max count_vector, count_vector];

write ['\nMinimum # of confs: {}\tmseq: {}\tchiral configurations:
{}\n', min count_vector, mseqs(min_mseq_index),
chi_count_vector(min_mseq_index)];
write ['Maximum # of confs: {}\tmseq: {}\tchiral configurations: {}\n',
max count_vector, mseqs(max_mseq_index),
chi_count_vector(max_mseq_index)];

endfunction

 399

db_refine_pdb.svl

Description: This script is used to refine each structure in a database containing

structures downloaded from the PDB. Most GPCR structures downloaded from the PDB

typically contain extraneous chains, solvent molecules, and ions that need to be removed.

For each entry in a database, this function first opens the structure in the 'mol' field and

deletes protein chains that are shorter than the longest chain present in the system (the

receptor). Next, the Site Finder function is used to determine a binding pocket (BP)

centroid. If more than 1 non-amino acid (ligand/solvent/ion) residue is present in the

system, the mean distance of all atoms comprising the residue to the BP centroid atom is

calculated and the residue with the shortest mean distance to the center of the binding

pocket is kept. To ensure that ions/solvent atoms do not interfere with this distance

comparison, any residues comprised of only 1 atom are deleted. Refined structures

(containing only a GPCR structure and its orthosteric ligand) are then imported into the

newly created 'mol_Refined' category in the database. Visual inspection is still

recommended after using this function on a database. Once this function is used, the

database browser can be used to view the 'mol_refined' database field for visual

inspection.

Arguments

mdb: database with a field containing structures to refine

mol_field: name of the field containing the structures to refine

function Protonate3D;
global function db_refine_pdb [mdb, mol_field];
Close [force:1, viewreset:1, delgobj:1];
local entries = db_Entries[mdb];
local entry, mol, mol_chain, mol_name, chain;

//ensure mdb has a mol field to import to
db_EnsureField [mdb, 'mol_Refined', 'molecule'];

 400

for entry in entries loop
 [mol] = db_ReadFields[mdb, entry, mol_field];
 [mol_chain, mol_name] =db_CreateMolecule mol;
 View[];
 local chains = Chains[];
 local i;
 local chain_lengths = [];
 local helix_props = [];
 //find chain lengths, then find chain name suffixed ".R". if ".R"
chain is not present,
 //use the chain with the highest proportion of helical residues.
Else, GPCR will be the
 //longest chain.
 for i = 1, length chains, 1 loop
 local chain_length = length cat cResidues chains(i);
 chain_lengths = cat [chain_lengths, chain_length];
 if length cat oChildren chains(i) < 100 then //if the chain has
less than 100 residues
 local helix_prop = 0.00;
 else
 helix_prop = add(rActualSegment cat oChildren chains(i) ==
'helix') / length cat oChildren chains(i);
 endif
 helix_props = cat [helix_props, helix_prop];
 endloop

 local chain_names = cName chains;
 local rmask = fext cName chains == 'R';
 if anytrue rmask and add rmask > 1 then //if there's more than 1 .R
chain
 local rchain = chains | rmask;
 local rchain_lengths = chain_lengths | rmask;
 local length_mask = rchain_lengths == max rchain_lengths;
 rchain = rchain | length_mask;
 elseif anytrue rmask then //if there's only 1 .R chain
 rchain = chains | rmask;
 else //if there's no .R chain
 local hprop_mask = helix_props == max helix_props;
 rchain = chains | hprop_mask;
 //rmask = chain_lengths == max chain_lengths;
 //rchain = chains | rmask;
 //if length rchain > 1 then
 //rchain = first rchain;
 //endif
 endif

 //check to ensure that only 1 rchain is selected
 if length rchain > 1 then
 rchain = first rchain;
 endif

 write ['Receptor chain: {}\n', cName rchain];
 aSetHidden [cAtoms rchain, 1];
 rSetRibbonMode [Residues[], 'tube'];

 //remove fusion partners

 401

 local [rchain_residues] = cResidues rchain;
 local rUID_resmask = rUID rchain_residues < 900;
 local rUID_fusionmask = rUID rchain_residues > 900;

 local rchain_residues1 = rchain_residues | rUID_resmask;
 local rchain_residues2 = rchain_residues | rUID_fusionmask;

 if max rUID rchain_residues1 < 500 and alltrue[rUID rchain_residues
> 900] == 0 then //check numbering for cases where fusion partners are
not numbered differently
 oDestroy rchain_residues2;
 endif

 //remove receptor chain from chains being considered in next loop
 local chain_mask = chains <> rchain;
 chains = chains | chain_mask;

 //determine ligand chains
 for chain in chains loop
 //get residue letters for each chain. '?' denotes ligand, ion,
or solvent
 local letter_vector = totok rLetter cat oChildren chain == '?';
 //if no ?'s are present in letter_vector and the chain isn't
the ligand chain, delete the chain
 if add letter_vector == 0 and chain <> rchain then
 oDestroy chain;
 endif
 endloop

 // open sitefinder (from SBP script) (move this so structures with
only 1 ligand residue don't use this code?)
 local tcount = 0;
 local tatoms = [];
 loop
 tcount = tcount + 1;
 Open '$MOE/svl/run/sitefind.svl';
 local wkey2 = WindowKeyList[];
 if tcount = 1 then
 WindowTrigger [wkey2, [panel:'Apply']];
 endif

 WindowTrigger [wkey2, [disp_aselect:1]];
 sleep 0.5;
 if notnull SelectedAtoms[] then
 break;
 endif
 endloop;

 sleep 1;
 WindowDestroy wkey2;

 local site_center = oCentroid SelectedAtoms[];
 local site_dum = mol_Create ['BP Centroid', ['centroid', '', '',
1], // create a dummy atom representing the centroid of the BP
 ['*', 1, " ", 'none', 1],
 ['LP', 0, 'sp', 0, 0, [[]], 0, 'DU', 0,
site_center(1),site_center(2),site_center(3)]];

 402

 aSetSelected [Atoms[], 0];
 site_dum = cAtoms site_dum;

 //create empty vectors for ligand distances, residues to delete
 local dists = [];
 local res_delete = [];

 //find the non-receptor residue with the shortest distance to the
binding pocket
 local residues = droplast Residues[]; //don't want to consider
dummy atom
 local resmask = rType residues == 'none';
 local lig_residues = residues | resmask;
 local lig_res;

 if length lig_residues > 1 then
 for lig_res in lig_residues loop
 local [res_atoms] = rAtoms lig_res;
 aSetSelected [res_atoms,1];
 sleep 0.5;
 aSetSelected [res_atoms,0];
 if length res_atoms == 1 then
 res_delete = cat [res_delete, lig_res];
 local avg_dist = 99999;
 elseif add aMass res_atoms < 100 then
 res_delete = cat [res_delete, lig_res];
 avg_dist = 99999;
 else
 avg_dist = add aDist [res_atoms, site_dum] / length
res_atoms;
 endif
 dists = cat [dists, avg_dist];
 endloop

 local dist_mask = dists <> min dists;
 res_delete = cat[res_delete, lig_residues | dist_mask];
 local res;
 for res in res_delete loop
 oDestroy res;
 endloop
 endif

 //destroy site dummy atom prior to database addition
 oDestroy oParent oParent site_dum;

 //protonate 3D
 local atoms = Atoms[];
 Protonate3D [atoms,atoms,atoms,[],[],[pH: 7.4]];

 //extract refined receptor, add to entry under the "mol_Refined"
field
 local mol_refined = mol_Extract Chains[];
 db_Write[mdb, entry, [mol_Refined: mol_refined]];
 Close [force:1, viewreset:1, delgobj:1];
endloop

 403

write['Done.\n'];

endfunction

 404

db_subset_entries.svl

Description: This script allows the user to select a subset of entries from a MOE database

and put them into a newly created database.

Arguments

mdb: filename of the database to select a subset of entries from

output_mdb: name of the database to be created that will contain the subset of entries

from mdb

entry_numbers: mdb entry numbers to subset, entered as a vector (e.g. [33, 56, 72])

global function db_subset_entries [mdb, output_mdb, entry_numbers];

local field_names, field_types;
local entries = db_Entries mdb;
entries = get [entries, entry_numbers];
[field_names, field_types] = db_Fields mdb;

local subset_mdb = db_Open [output_mdb,'create'];
[field_names, field_types] = db_Fields 'output.mdb';

//create fields from mdb in output_mdb
local i;
for i = 1, length field_names, 1 loop
 db_EnsureField [output_mdb, field_names(i), field_types(i)];
endloop

//read each entry from mdb and write it to output_mdb
local entry;
for entry in entries loop
 local entry_record = db_Read [mdb, entry];
 db_Write [output_mdb, 0, entry_record];
endloop

endfunction

 405

db_subset_generation.svl

Description: This function is used to split a database into a specified number of subset

databases, ideally for use prior to conformational searches. Each subset database will

contain an equal number of entries except the last, which will contain the equal number

plus the remainder of entries.

Arguments

mdb: database to create subsets of

num_dbs: desired number of subset databases

global function db_subset_generation [mdb, num_dbs]

local entries = db_Entries mdb;
local entry;
local num_entries = length entries;
local subset_num = round (num_entries / num_dbs);
local field_names, field_types;
[field_names, field_types] = db_Fields mdb;
local i = 1; //subset database counter
local entry_counter = 1;

for entry in entries loop
 //if the database counter (i) is equal to the desired number of
 //databases and the current entry is the first to be written to
 //a new subset database, create a final subset database.
 if i == num_dbs and entry_counter == 1 then
 local dst_mdb = tok_cat [fbase mdb, '_', totok i, '.mdb'];
 db_Open [dst_mdb, 'create'];
 write ['Created subset database #{}.\n', i];
 local j = 0;
 while j < length field_names loop
 j = inc(j);
 db_EnsureField [dst_mdb, field_names(j), field_types(j)];;
 endloop
 i = 0; //reset i so no further databases are created

 //if the entry is the first to be written to the subset database
 //and i does not equal the desired number of databases, create
 //a new subset database.
 elseif entry_counter == 1 and i <> num_dbs and i >= 1 then
 dst_mdb = tok_cat [fbase mdb, '_', totok i, '.mdb'];
 db_Open [dst_mdb, 'create'];
 write ['Created subset database #{}.\n', i];
 j = 0;
 while j < length field_names loop
 j = inc(j);
 db_EnsureField [dst_mdb, field_names(j), field_types(j)];;

 406

 endloop
 i = inc i;
 endif

 //write entry to created database (dst_mdb)
 local entry_record = db_Read [mdb, entry];
 db_Write [dst_mdb, 0, entry_record];
 entry_counter = inc entry_counter;
 if entry_counter > subset_num then
 entry_counter = 1;
 endif
endloop

write 'Done.\n';

endfunction

 407

db_tanimoto_calc.svl

Description: This script is used to calculate a Tanimoto Similarity coefficient between a

molecule loaded into the first chain and molecules in a database. Make sure to load the

molecule you wish to compare to into the system prior to running this script.

Arguments

mdb: database containing molecules in a field titled 'mol'

function ph4_MACCSBIT_Fingerprint;
function ph4_MACCSBIT_Tanimoto;
function ph4_Tanimoto_idx;

global function db_Tanimoto_calc [mdb]

local entries = db_Entries mdb;
local entry, ent_mol, ent_mol_chain, ent_mol_name, ent_atoms;

//ensure new field in mdb to write Tanimoto coefficients to
db_EnsureField [mdb, 'Tanimoto Similarity', 'float'];

//calculate fingerprint for molecule loaded into system
local [lig_atoms] = cAtoms first Chains[];
local FP = ph4_MACCSBIT_Fingerprint lig_atoms;

//loop through database and calculate a Tanimoto coefficient between
each entry
//and the molecule loaded into the first chain
for entry in entries loop
 [ent_mol] = db_ReadFields [mdb, entry, 'mol'];
 [ent_mol_chain, ent_mol_name] = db_CreateMolecule ent_mol;
 [ent_atoms] = cAtoms [ent_mol_chain];
 local FP2 = ph4_MACCSBIT_Fingerprint ent_atoms;
 local sim = ph4_MACCSBIT_Tanimoto [FP, FP2];
 db_Write [mdb, entry, tagpoke[[],'Tanimoto Similarity', sim]];
 oDestroy [ent_mol_chain];
endloop

write 'Done.\n';

endfunction

 408

dbmol2smiles.svl

Description: This script is used to extract SMILES strings from each molecule present in

a database. The user can choose to write each entry's SMILES string to a field in the

database.

Arguments

mdb: database containing molecules

database_field: database field containing molecules ('mol')

db_write: 1 to write entries to database, otherwise use 0

function Close;
global function dbmol2smiles [mdb, database_field, db_write];

Close [force:1, viewreset:1, delgobj:1];
local entries = db_Entries mdb;
local entry;

if db_write == 1 then
 db_EnsureField [mdb, 'SMILES', 'char'];
endif

for entry in entries loop
 local [ligand] =db_ReadFields [mdb, entry,[database_field]];
//get structure from fieldname
 local [ligand_chain, ligand_name] =db_CreateMolecule ligand;
 local smiles = sm_ExtractUnique Atoms[];
 ligand_name = tok_keep [ligand_name, 16];
 if db_write == 1 then
 db_Write [mdb, entry, tagpoke[[],'SMILES', string smiles]];
 endif
 write ['{}\n', smiles];
 oDestroy [ligand_chain];

endloop

write 'Done.\n';

endfunction

 409

dock_rescore.svl

Description: This function allows for the rescoring of molecules in any database using

MOE GBVI scoring.

Arguments

database_file: database file to rescore

database_field1: database field containing ligand structures

database_field2: database field containing receptor structures

output_mdb: name of output for each molecule's rescoring (use ‘temp.mdb’)

cat_mdb: desired name of output database containing all rescored molecules

function Close;
function DockAtoms;
function db_ImportDB;
global function dock_rescore [database_file, database_field1,
database_field2, output_mdb, cat_mdb];

 Close [force:1, viewreset:1, delgobj:1]; // close any open
structures
 local mdb_key = db_Open [database_file, 'read-write'];
 local entry_key, ligand, receptor, atoms2, ligand_chain,
ligand_name, receptor_chain, receptor_name, ref_chains, mask,
ref_residues, rec_residues, ref_ligand, ligand_heavy, ref_heavy;
 local entries = db_Entries mdb_key;
 local atoms, receptor_atoms, ligand_atoms;
local opt = [
 outrmsd: 0,
 sel_ent_only_rec: 0,
 sel_ent_only: 0,
 wall: ['', 0, [0, 0, 0], [1000000, 1000000, 1000000], 0],
 csearch: 0,
 confGenMethod: 'None',
 ignoreMseq: 0,
 retainData: [0, 1],
 placement: 'None',
 placement_opt: [],
 scoring: 'London dG',
 scoring_opt: [],
 dup_placement: 1,
 maxpose: 30,
 refine: 'None',
 refine_opt: [fixrec : ''],
 rescoring: 'GBVI/WSA dG',
 rescoring_opt: [],
 dup_refine: 1,
 remaxpose: 30,

 410

 descexpr: '',
 descexpr: '',
 receptor_mfield: '',
 ligand_mfield: 'mol',
 rxnFile: '',
 rxsite: [],
 edsupport: 1,
 ed_data: [ed_dockpath : ''],
 check_pose_geom: [],
 multiLigand: 0,
 need_dmat: 1,
 gen_plif: 1,
 BatchFile: 'dock_batch.svl'
];
// loop through the database to create receptor and ligand pairs and
then 'dock' them to rescore
 for entry_key in entries loop
 [ligand] =db_ReadFields [mdb_key, entry_key,[database_field1]];
//get structure from fieldname
 [receptor] =db_ReadFields [mdb_key, entry_key,
[database_field2]];
 [receptor_chain, receptor_name] =db_CreateMolecule receptor;
 [ligand_chain, ligand_name] =db_CreateMolecule ligand;
 [rec_residues] = cResidues receptor_chain;
 receptor_atoms = cat cAtoms receptor_chain;
 ligand_atoms = cat cAtoms ligand_chain;
 DockAtoms [receptor_atoms, [], ligand_atoms, output_mdb, opt];

// destroy one ligand before reading in the next
 oDestroy [ligand_chain];
 oDestroy [receptor_chain];
 // import .mdb output into one large database
 db_ImportDB [cat_mdb,output_mdb, []];

endloop
endfunction

 411

get_compound_vendors.py

Description: This script is used to determine the commercial availablity (via PubChem)

of compounds in a .txt file exported from a MOE database. For each smiles string in the

.txt file, this script uses PubChemPy to obtain a compound ID number from the smiles

string. Each ID number is then used with BeautifulSoup to obtain XML data containing

vendor information for each compound from PubChem. The .csv file resulting from this

script can be imported into a MOE database and merged with the compound database

based on smiles keys.

Arguments

Inputs: a .txt file obtained by saving a MOE .mdb file as .txt, name of the field in the

.mdb file containing smiles strings

imports
import pubchempy as pcp
from bs4 import BeautifulSoup
import re
import urllib.request
from urllib.error import HTTPError
import sys
import time
import os

pandas import/options
import pandas as pd
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)

def get_compound_vendors():
 # args from CMD
 txt_file = str(sys.argv[1])
 smiles_field = str(sys.argv[2])

 # read in MOE database .txt file, get smiles strings
 input_df = pd.read_csv(txt_file)
 smiles_strings = input_df[smiles_field]
 i = 1

 # create empty dataframe to fill with compound vendor information
 output_df = pd.DataFrame(columns = ['smiles', 'name',
'commercially_available', 'num_vendors', 'vendors'])

 for string in smiles_strings:

 412

 print('Getting information for compound', i, '(' + string +
')')
 i += 1
 # get compound with pubchempy
 compound = pcp.get_compounds(string, 'smiles')
 # get compound number to use in BeautifulSoup URL
 num = ''
 for c in str(compound):
 if c.isdigit():
 num = num + c

 # if there is no compound ID (length of 0), name is NA. else,
name is the compound's IUPAC name.
 if len(num) == 0:
 name = 'NA'
 else:
 name = compound[0].iupac_name

 # get XML with vendor information using the compound number
 BASE_URL =
'https://pubchem.ncbi.nlm.nih.gov/rest/pug_view/categories/compound/'
 URL = BASE_URL + num + '/XML/'
 try:
 source = urllib.request.urlopen(URL)
 soup = BeautifulSoup(source,'lxml')
 # exception handling for cases where no vendor info exists
 except HTTPError as err:
 if err.code == 400:
 #print('N')
 CA = 'N'
 num_vendors = 0
 dict = {'smiles': [string], 'name': [name],
'commercially_available': [CA], 'num_vendors': [num_vendors],
'vendors': ['NA']}
 df = pd.DataFrame(dict)
 output_df = pd.concat([output_df, df],
ignore_index=True)
 else:
 # find vendor names, strip XML tags, store vendors
 vendors_xml = soup.find_all('sourcename')
 xml_stripped = re.sub('<[^>]*>', '', str(vendors_xml))
 vendors = xml_stripped.split(',')
 CA = 'Y'
 num_vendors = len(vendors)
 if num_vendors > 0:
 dict = {'smiles': [string], 'name': [name],
'commercially_available': [CA], 'num_vendors': [num_vendors], 'vendors'
: [vendors]}
 df = pd.DataFrame(dict)
 output_df = pd.concat([output_df, df],
ignore_index=True)

 # print table to user
 print(output_df)

 #write table to csv

 413

 output_df.to_csv(os.path.splitext(txt_file)[0] + '_CA.csv', index =
False)
 print('Results written to', os.path.splitext(txt_file)[0] +
'_CA.csv.\n')

#call main function
get_compound_vendors()

 414

get_missing_mols.svl

Description: This function is used to obtain molecules that might be missing from a

database after performing a conformational search.

Arguments

mdb1: database used as input for a conformational search

mdb2: database containing conformations

global function get_missing_mols [mdb1, mdb2, fieldname]

local names_1 = db_ReadColumn [mdb1, fieldname];
local names_2 = uniq db_ReadColumn [mdb2, fieldname];

local diff_names = diff [names_1, names_2];

local entries = db_Entries mdb1;
local diff_name, entry;

Open mdb1;

for diff_name in diff_names loop
 //print diff_name;
 for entry in entries loop
 local [entry_name] = db_ReadFields [mdb1, entry, fieldname];
 //print entry_name;
 if token entry_name == token diff_name then
 dbv_EntrySetSelected [mdb1, entry, 1];
 endif
 endloop
endloop

write 'Done.\n';

endfunction

 415

get_molnames.svl

Description: This script is used to obtain a text file containing the names of every

molecule in a database containing the field 'name'.

Arguments

mdb: database to get names from

global function get_molnames [mdb]

local entries = db_Entries [mdb];
local entry;

logfile 'names.txt';

for entry in entries loop
 local [name] = db_ReadFields [mdb, entry, 'name'];
 print name;
endloop

logfile[];

endfunction

 416

get_selected_poses.svl

Description: This script is used to import certain entries from a database containing

docked poses (mdb) into another database containing selected docked poses (pose_mdb).

Arguments

mdb: database containing poses to import to pose_mdb

pose_mdb: name of desired/existing selected pose database

entry_numbers: vector of integers containing entries to import

global function get_selected_poses [mdb, pose_mdb, entry_numbers];

local field_names, field_types;
[field_names, field_types] = db_Fields mdb;

//check if pose_mdb exists. if not, create the database and create
fields
//from mdb within pose_mdb
if notnull flist[[], pose_mdb] == 0 then
 local mdb_key = db_Open [pose_mdb,'create'];

 //create fields from mdb in output_mdb
 local i;
 for i = 1, length field_names, 1 loop
 db_EnsureField [pose_mdb, field_names(i), field_types(i)];
 endloop
else
 //create fields from mdb in output_mdb
 for i = 1, length field_names, 1 loop
 db_EnsureField [pose_mdb, field_names(i), field_types(i)];
 endloop
endif

//create field that denotes the source mdb of each entry
db_EnsureField [pose_mdb, 'source_mdb', 'char'];

//create tagged vector with source mdb name
local value = [source_mdb: string mdb];

//read each entry from mdb and write it to output_mdb
local entries = db_Entries mdb;
entries = get [entries, entry_numbers];

local entry;
for entry in entries loop
 local entry_record = db_Read [mdb, entry];
 entry_record = tagcat [entry_record, value];
 db_Write [pose_mdb, 0, entry_record];
endloop

 417

//convert database to docking database
db_SetEnv [pose_mdb, '{mol}dbvbrowse_Dock', 'ligand'];
db_SetEnv [pose_mdb, '{receptor}dbvbrowse_Dock', 'receptor'];
db_SetEnv [pose_mdb, '{S}dbvbrowse_Dock', 'score'];

//only open output_mdb if it is not currently open
//if no databases are open, open pose_mdb
if notnull dbv_KeyList[] == 0 then
 dbv_Open pose_mdb;
//else if the open databases aren't pose_mdb, open pose_mdb
elseif anytrue dbv_KeyList[] <> db_Open[pose_mdb, 'read-write'] then
 dbv_Open pose_mdb;
endif

endfunction

 418

get_uniq_mols.svl

Description: This script is used to get unique molecules (i.e. 1 molecule per mseq) from a

database containing many entries per mseq.

Arguments

dst_mdb: desired name of output database

src_mdb: database containing molecules with many entries per mseq

method: 'mseq' or 'token' to determine unique molecules based on mseq or token

fieldname: token name of the field to use to determine unique molecules

global function get_uniq_mols [src_mdb, dst_mdb, method, fieldname];
local field_names, field_types;

local entry, mseq, db_mseq, string;
db_Open [dst_mdb, 'create'];
[field_names, field_types] = db_Fields src_mdb;
local i = 0;

// ensure that dst_mdb has the same fields as src_mdb
while i < length field_names loop
 i = i + 1;
 db_EnsureField [dst_mdb, field_names(i), field_types(i)];;
endloop

// mseq method
if method == 'mseq' then
 // get mseqs and entries from src_mdb
 local mseqs = uniq db_ReadColumn [src_mdb, fieldname];
 local entries = db_Entries src_mdb;

 // for each entry in src_mdb, determine if it is a unique entry
based on mseq value
 for entry in entries loop
 db_mseq = db_ReadFields [src_mdb, entry, fieldname];
 print cat ['db_mseq:', db_mseq];
 if isnull mseqs then // for first entry
 break;
 elseif db_mseq == first mseqs then
 local entry_record = db_Read [src_mdb, entry];
 db_Write [dst_mdb, 0, entry_record];
 mseqs = dropfirst mseqs;
 endif
 endloop

// token method. works for 'char' field types
elseif method == 'token' then
 // get strings from specified fieldname

 419

 local strings = uniq db_ReadColumn [src_mdb, fieldname];
 local tokens = [];

 // convert each string to a token for later comparison
 for string in strings loop
 local tokname = tok_cat totok string;
 tokens = cat [tokens, tokname];
 endloop

 // get entries from src_mdb
 entries = db_Entries src_mdb;

 // for each entry in src_mdb, determine if it is a unique entry
based on token value
 for entry in entries loop
 [tokname] = db_ReadFields [src_mdb, entry, fieldname];
 tokname = token tokname;
 print cat ['token:', tokname];
 if isnull tokens then // for first entry
 break;
 elseif tokname == first tokens then
 entry_record = db_Read [src_mdb, entry];
 db_Write [dst_mdb, 0, entry_record];
 tokens = dropfirst tokens;
 endif
 endloop
endif

Open dst_mdb;

write 'Done.\n';
endfunction

 420

ism_to_txt.py

Description: This script will allow a user to import convert an inactives_nM.ism file

downloaded from a target's folder on DUD-E to .txt for use within MOE.

Arguments

Inputs: .ism file

#import pandas, sys, and time modules
import pandas as pd
import sys
import time

#main function
def main():
 ism_file = sys.argv[1]
 df = pd.read_csv(ism_file, sep=" ", header=None)

 # drop columns that do not contain smiles, dat, activity, or
uniprot code
 df.drop(list(set(df.columns) - set([0,1,2,3,4,5,8])), axis = 1,
inplace = True)
 df.columns = ['smiles', 'dat', 'act1', 'act2', 'act3', 'act4',
'uniprot']
 df.insert(2, 'activity', df['act1'] + df['act2'] +
df['act3'].astype('str') + df['act4'])
 df.drop(['act1', 'act2', 'act3', 'act4'], axis = 1, inplace = True)

 # write table to .txt
 ism_filename = ism_file.split('/')[-1]
 filename = ism_filename[:-4] + '_for_moe_import.txt'
 df.to_csv(filename, header=list(df.columns), index=None, sep=' ')

 print('\nDone.', ism_file, 'has been converted to', filename + '.')
#call main function
main()

 421

ligand_similarity.svl

Description: This script allows a user to calculate ligand similarity between molecules in

a database (mdb) and a molecule that is loaded into MOE.

Arguments

mdb: database containing molecules in a field titled ‘mol’

refmol_name: name of the molecule loaded into the system, enter as a token (e.g.

'risperidone')

function ph4_MACCSBIT_Fingerprint;
function ph4_MACCSBIT_Tanimoto;
function ph4_Tanimoto_idx;

global function ligand_similarity [mdb, refmol_name]

//Close [force:1, viewreset:1, delgobj:1]; // close any open
structures

local entries = db_Entries mdb;
local ent, ligand_chain, ligand_name, ligand, lig_atoms;

db_EnsureField [mdb, tok_cat[refmol_name, '_similarity'], 'float'];

local [ref_atoms] = cAtoms [first Chains[]];
local ref_FP = ph4_MACCSBIT_Fingerprint ref_atoms;

for ent in entries loop
 [ligand] = db_ReadFields [mdb, ent, 'mol'];
 [ligand_chain, ligand_name] =db_CreateMolecule ligand;
 [lig_atoms] = cAtoms [ligand_chain];
 sleep 0.5;
 local FP = ph4_MACCSBIT_Fingerprint lig_atoms;
 print FP;
 local sim = ph4_MACCSBIT_Tanimoto [ref_FP, FP];
 db_Write [mdb, ent, tagpoke[[], tok_cat[refmol_name,
'_similarity'], sim]];
 oDestroy [ligand_chain];
endloop

endfunction

 422

ligand_similarity_mdb.svl

Description: This script allows a user to calculate ligand similarity between molecules in

2 separate databases.

Arguments

mdb: database containing molecules in the 'mol' field

refmdb: database to compare molecules in mdb to

function ph4_MACCSBIT_Fingerprint;
function ph4_MACCSBIT_Tanimoto;
function ph4_Tanimoto_idx;

global function ligand_similarity_mdb [mdb, ref_mdb]

Close [force:1, viewreset:1, delgobj:1]; // close any open structures
local entries = db_Entries mdb;
local ref_entries = db_Entries ref_mdb;
local ent, ref_ent, ligand_chain, ligand_name, refligand_chain,
refligand_name, ligand, lig_atoms;

for ref_ent in ref_entries loop
 local [ref_ligand] = db_ReadFields [ref_mdb, ref_ent, 'mol'];
 [refligand_name] = first ref_ligand;
 db_EnsureField [mdb, tok_cat[refligand_name, '_similarity'],
'float'];
 [refligand_chain, refligand_name] =db_CreateMolecule ref_ligand;
 local [ref_atoms] = cAtoms [refligand_chain];
 local ref_FP = ph4_MACCSBIT_Fingerprint ref_atoms;
 local i = 1;

 for ent in entries loop
 [ligand] = db_ReadFields [mdb, ent, 'mol'];
 [ligand_chain, ligand_name] =db_CreateMolecule ligand;
 [lig_atoms] = cAtoms [ligand_chain];
 sleep 0.1;
 local FP = ph4_MACCSBIT_Fingerprint lig_atoms;
 local sim = ph4_MACCSBIT_Tanimoto [ref_FP, FP];
 db_Write [mdb, ent, tagpoke[[], tok_cat[refligand_name,
'_similarity'], sim]];
 oDestroy [ligand_chain];
 if sim >= 0.5 then
 write [tok_cat['entry ', totok i, '/', refligand_name,
'_similarity: {}\n'], sim];
 endif
 i = inc i;
 endloop
oDestroy [refligand_chain];
endloop

endfunction

 423

 424

loopnumber.svl

Description: This script is used to loop through a database and number each entry in a

new field titled 'index'.

Arguments

database_file: database whose entries will be numbered

global function loopnum [database_file]
 local entry_key;
local mdb_key = db_Open [database_file, 'read-write'];
local entries = db_Entries mdb_key;
local counter = 1;

db_CreateField [mdb_key, 'index','int'];
for entry_key in entries loop
 db_Write [mdb_key, entry_key, tagpoke[[],'index', counter]];
 counter = counter + 1;
endloop
endfunction

 425

mseq_renum.svl

Description: This script is used to renumber the molecules in a database with an identifier

other than ‘mseq’. This script is useful when multiple databases containing similar mseq

numbers are joined.

Arguments

mdb: database whose molecules will be renumbered

method: 'mseq' or 'name'

fieldname: token name of mseq or name field

global function mseq_renum [mdb, method, fieldname]

db_EnsureField [mdb, 'mseq_renum', 'int'];

local entries = db_Entries mdb;
local mseq_counter = 1;
local entry;

if method == 'mseq' then
 for entry in entries loop
 local mseq = db_ReadFields [mdb, entry, fieldname];
 if entry == first entries then
 db_Write [mdb, entry, tagpoke[[],'mseq_renum',
mseq_counter]];
 local prev_mseq = mseq;
 elseif mseq == prev_mseq then
 db_Write [mdb, entry, tagpoke[[],'mseq_renum',
mseq_counter]];
 elseif mseq <> prev_mseq then
 mseq_counter = inc mseq_counter;
 db_Write [mdb, entry, tagpoke[[],'mseq_renum',
mseq_counter]];
 prev_mseq = mseq;
 endif
 endloop
elseif method == 'name' then
 for entry in entries loop
 local [name] = mseq = db_ReadFields [mdb, entry, fieldname];
 print name;
 name = token name;
 if entry == first entries then
 db_Write [mdb, entry, tagpoke[[],'mseq_renum',
mseq_counter]];
 local prev_name = name;
 elseif name == prev_name then
 db_Write [mdb, entry, tagpoke[[],'mseq_renum',
mseq_counter]];

 426

 elseif name <> prev_name then
 mseq_counter = inc mseq_counter;
 db_Write [mdb, entry, tagpoke[[],'mseq_renum',
mseq_counter]];
 prev_name = name;
 endif
 endloop
endif

write 'Done.\n';

endfunction

 427

name_to_smiles.py

Description: Using a text file containing a list of compound names copied and pasted

from a MOE database as input, this script will allow a user to get SMILES keys for each

compound outputted to a text file.

Arguments

Inputs: .txt file

#import pubchempy, sys, and time modules
import pubchempy as pcp
import sys
import time

#main function
def main():
 i=1
 file = sys.argv[1]

 #spacing
 print('\n')

 #strip quotes from line
 with open(file, 'r') as f, open('names.txt', 'w') as fo:
 for line in f:
 #line = line.lstrip('\"')
 #line = line.rstrip('\"')
 fo.write(line.replace('"', '').replace("'", ""))

 #get length of names list
 with open('names.txt', 'r') as f:
 namelist = list(f)
 l = len(namelist)

 #create empty list for compounds unable to be found
 c_list = []

 #write each compound's name and corresponding SMILES string to file
 with open('names.txt', 'r') as f, open('SMILES_strings.txt', 'w')
as fo:
 for line in f:
 result = pcp.get_compounds(line, 'name')
 print('Getting ' + line.rstrip() + ' SMILES string (' +
str(i) + ' of ' + str(l) + ')')
 i=i+1
 if len(result) > 1:
 result = result[0]
 fo.write(line.rstrip())
 fo.write('\t')
 fo.write(result.isomeric_smiles + '\n')

 428

 elif result == []:
 c_list.append(line)
 else:
 for compound in result:
 #only write 1 SMILES string if multiple are listed
since MOE will
 #take care of stereochemistry sampling during the
conf. search
 fo.write(line.rstrip())
 fo.write('\t')
 fo.write(compound.isomeric_smiles + '\n')

 print("Done.\n")
 if len(c_list) > 0:
 print('SMILES strings could not be found for the following',
str(len(c_list)), 'compounds:\n')
 for name in c_list:
 print(name.rstrip())
#call main
main()

 429

nearby.svl

Description: Given two sets of atoms, this script will find atoms in the first set that are

within a given distance to atoms in the second set.

Arguments

Aatoms: first set of atom objects, entered as a vector

Batoms: second set of atom objects, entered as a vector

dist: distance threshold in Å

global function Nearby [Aatoms, Batoms, dist]
 local i, seg, idx, r2, prox;
 local nmask = zero Aatoms;
 const PACKET = 100;

 if length Aatoms > length Batoms then
 prox = prox_open [dist, aPos Aatoms, dist];

 for i in split [x_id Batoms, PACKET] loop
 [seg, idx, r2] = prox_find [prox, aPos Batoms[i], 0];
 nmask[idx] = 1;
 endloop

 prox_close prox;
 else
 prox = prox_open [dist, aPos Batoms, dist];

 for i in split [x_id Aatoms, PACKET] loop
 [seg, idx, r2] = prox_find [prox, aPos Aatoms[i], 0];
 nmask[i] = notnot seg;
 endloop

 prox_close prox;
 endif

 local near_atoms = Aatoms | nmask;
 local near_residues = oParent near_atoms;

 return near_atoms; // this prints protein atoms near ligand/water
atoms (whatever you put as Batoms)
 // change "print" to "return" and comment out the
next line if atoms are wanted
 //return near_residues; // return residues near ligand/water atoms
endfunction

 430

pdb_db_import.svl

Description: This script is used to import PDB structures into a database, provided there

is a "PDB" field in the database that lists the 4-letter PDBid for each entry.

Arguments

mdb: database to import structures to that contains a field with PDBids

pdb_field: token name of the field containing PDBid codes

function rcsb_download;

global function pdb_db_import [mdb, pdb_field];
local entries = db_Entries[mdb];
local entry;

//ensure mdb has a mol field to import to
db_EnsureField [mdb, 'mol', 'molecule'];

//create temp directory to download pdb files into
fmkdir ['temp'];

//for each entry, use PDBid to download structure and import
//into mol field
for entry in entries loop
 local [PDBid] = db_ReadFields [mdb, entry, pdb_field];
 print PDBid;
 PDBid = token PDBid;
 print PDBid;
 rcsb_download [PDBid, [directory: 'temp/', readPDB:1,
showPanel:0]];
 local mol = mol_Extract Chains[];
 db_Write[mdb, entry, [mol: mol]];
 Close [force:1, viewreset:1, delgobj:1];
endloop

//temp file cleanup
local tempfiles = flist['temp'];
local file;
for file in tempfiles loop
 fdelete file;
endloop

//delete temp folder
frmdir 'temp';

write['Done.\n'];

endfunction

 431

pdb_dockprep.svl

Description: This script is used to take a database containing structures downloaded from

the PDB using pdb_db_import.svl and modify each structure so that only the receptor

chain is kept. This script basically cleans each PDB structure of all ligands, ions, waters,

etc. so that it can be used for docking. No protonation is performed with this script.

Arguments

mdb: database with a field containing PDB structures downloaded with

pdb_db_import.svl

mol_field: name of the field containing the structures

global function pdb_dockprep [mdb, mol_field];
Close [force:1, viewreset:1, delgobj:1];
local entries = db_Entries[mdb];
local entry, mol, mol_chain, mol_name, chain;

//ensure mdb has a mol field to import to
db_EnsureField [mdb, 'mol_receptor', 'molecule'];

for entry in entries loop
 [mol] = db_ReadFields[mdb, entry, mol_field];
 [mol_chain, mol_name] =db_CreateMolecule mol;
 View[];
 local chains = Chains[];
 local i;
 local chain_lengths = [];
 local helix_props = [];
 //find chain lengths, then find chain name suffixed ".R". if ".R"
chain is not present,
 //use the chain with the highest proportion of helical residues.
Else, GPCR will be the
 //longest chain.
 for i = 1, length chains, 1 loop
 local chain_length = length cat cResidues chains(i);
 chain_lengths = cat [chain_lengths, chain_length];
 if length cat oChildren chains(i) < 100 then //if the chain has
less than 100 residues
 local helix_prop = 0.00;
 else
 helix_prop = add(rActualSegment cat oChildren chains(i) ==
'helix') / length cat oChildren chains(i);
 endif
 helix_props = cat [helix_props, helix_prop];
 endloop

 local chain_names = cName chains;

 432

 local rmask = fext cName chains == 'R';
 if anytrue rmask and add rmask > 1 then //if there's more than 1 .R
chain
 local rchain = chains | rmask;
 local rchain_lengths = chain_lengths | rmask;
 local length_mask = rchain_lengths == max rchain_lengths;
 rchain = rchain | length_mask;
 elseif anytrue rmask then //if there's only 1 .R chain
 rchain = chains | rmask;
 else //if there's no .R chain
 local hprop_mask = helix_props == max helix_props;
 rchain = chains | hprop_mask;
 endif

 //check to ensure that only 1 rchain is selected
 if length rchain > 1 then
 rchain = first rchain;
 endif

 write ['Receptor chain: {}\n', cName rchain];
 aSetHidden [cAtoms rchain, 1];
 rSetRibbonMode [Residues[], 'tube'];

 //remove fusion partners
 local [rchain_residues] = cResidues rchain;
 local rUID_resmask = rUID rchain_residues < 900;
 local rUID_fusionmask = rUID rchain_residues > 900;

 local rchain_residues1 = rchain_residues | rUID_resmask;
 local rchain_residues2 = rchain_residues | rUID_fusionmask;

 if max rUID rchain_residues1 < 500 and alltrue[rUID rchain_residues
> 900] == 0 then //check numbering for cases where fusion partners are
not numbered differently
 oDestroy rchain_residues2;
 endif

 //remove receptor chain from chains being considered in next loop
 local chain_mask = chains <> rchain;
 chains = chains | chain_mask;

 //delete other chains
 for chain in chains loop
 if chain <> rchain then
 oDestroy chain;
 endif
 endloop

 //extract refined receptor, add to entry under the "mol_Refined"
field
 local mol_receptor = mol_Extract Chains[];
 db_Write[mdb, entry, [mol_receptor: mol_receptor]];
 Close [force:1, viewreset:1, delgobj:1];
endloop

 433

write['Done.\n'];

endfunction

 434

remove_chiconstraint.svl

Description: This script is used to remove chirality constraints from molecules in a

database.

Arguments

mdb: database containing molecules

field1: database field containing molecules

field2: desired name of new database field containing molecules stripped of chirality

constraints

global function remove_chiconstraint [mdb, field1, field2]

local mdb_key = db_Open [mdb, 'read-write'];
local entries = db_Entries mdb;
local ent;
db_EnsureField [mdb, field2,'molecule'];

for ent in entries loop
 local [ligand] =db_ReadFields [mdb_key, ent,field1]; //get
structure from fieldname
 local [ligand_chain, ligand_name] =db_CreateMolecule ligand;
 local akeys = Atoms[];
 akeys = akeys | aAtomicNumber akeys > 1;
 akeys = akeys | aHeavyValence akeys >= 2;
 akeys = akeys | not aInHRing akeys;
 akeys = akeys | aHCount akeys < 2;

 akeys = akeys | (
 aHeavyValence akeys >= 3 and aGeometry akeys == 'sp3'
 or aHeavyValence akeys >= 2 and aGeometry akeys == 'sp2'
);

 aSetForceRS [akeys, 0]; // remove chirality constraint
 local name = tok_drop [ligand_name, -4];
 cSetName [ligand_chain, name];

 db_Write [mdb, ent, [mol: mol_Extract oChildren ligand_chain]];
 oDestroy [ligand_chain]; //destroy one ligand before reading in the
next
endloop

print 'done';
endfunction

 435

remove_empty_chains.svl

Description: This script will allow a user to delete all empty chains (i.e. chains with no

residues) from an opened system.

global function remove_empty_chains []

local chains = Chains[];
local chain;

for chain in chains loop
 local [residues] = cResidues chain;
 if isnull residues then
 oDestroy chain;
 write ['Destroyed chain {}.\n', indexof[chain, chains]];
 endif
endloop

endfunction

 436

remove_ligandless_chains.svl

Description: This script will allow a user to delete all chain tags that lack a ligand (i.e.

chain tags with only one chain) from an opened system.

global function remove_ligandless_chains []

local chains = Chains[];
local tag_id_numbers = cTagId chains;
local uniq_tags = uniq tag_id_numbers;
local ctag;

for ctag in uniq_tags loop
 local test = tag_id_numbers == ctag;
 if add test < 2 then // <2 chains means no ligand chain
 local chain = chains(indexof [ctag, tag_id_numbers]);
 write ['Destroyed chain {}.\n', indexof[chain, chains]];
 oDestroy chain;
 endif
endloop

write 'Done.\n';

endfunction

 437

select_db_entries_from_token.svl

Description: This script is used to select all entries in a database (mdb) that possess a

certain value or values (tokens) for a certain database field (field). For example, running

the command

select_db_entries_from_token ['test.mdb', 'function',

'agonist']

would select all entries in 'test.mdb' that possess the value 'agonist' in their 'function'

field.

Arguments

mdb: database to select entries from

field: field to check for tokens

tokens: values to check each entry for, entered as a token

global function select_db_entries_from_token [mdb, field, tokens]

// open database, get entries
Open mdb;
local mdb_key = db_Open mdb;
local entries = db_Entries mdb_key;
local entry;

// loop through entries and select those whose values match the
// specified token in the specified field
for entry in entries loop
 local [entry_record] = db_ReadFields [mdb_key, entry, field];
 local entry_token = token entry_record;
 //print entry_token;
 if anytrue [entry_token == tokens] then
 dbv_EntrySetSelected [mdb_key, entry, 1];
 endif
endloop

endfunction

 438

similarity_matrix_db.svl

Description: This script will allow a user to calculate a similarity matrix between all

molecules in a database that will be printed to the SVL commands window.

Arguments

mdb: database containing molecules

molecule_field: database field containing molecules to compare

function ph4_MACCSBIT_Fingerprint;
function ph4_MACCSBIT_Tanimoto;
function ph4_Tanimoto_idx;

global function similarity_matrix_db [mdb, molecule_field]

Close [force:1, viewreset:1, delgobj:1]; // close any open structures

local entries = db_Entries mdb;
local ent, ligand_chain, ligand_name, ligand, lig_atoms, i, j;
local other_ent, ligand_chain2, ligand_name2, ligand2, lig_atoms2;

//start logfile
logfile 'similarity_matrix_output.txt';

//print header of similarity matrix with entry numbers
write ['\t'];
for i = 1, length entries, 1 loop
 write ['{}\t', i];
endloop
write ['\n'];

//loop to obtain molecular fingerprints for each entry as well as the 6
other entries so similiarities can be calculated
i=1;

for ent in entries loop
 [ligand] = db_ReadFields [mdb, ent, molecule_field];
 [ligand_chain, ligand_name] =mol_Create ligand;
 [lig_atoms] = cAtoms [ligand_chain];
 //sleep 0.0001;
 local FP = ph4_MACCSBIT_Fingerprint lig_atoms;
 local ent_mask = ent <> entries;
 local other_ents = entries | ent_mask; //only calculate
similarities to other molecules
 local sim_v = [];
 for ent in entries loop
 [ligand2] = db_ReadFields [mdb, ent, molecule_field];
 [ligand_chain2, ligand_name2] = mol_Create ligand2;
 [lig_atoms2] = cAtoms [ligand_chain2];
 //sleep 0.0001;
 local FP2 = ph4_MACCSBIT_Fingerprint lig_atoms2;

 439

 local sim = ph4_MACCSBIT_Tanimoto [FP, FP2];
 sim_v = cat[sim_v, sim];
 oDestroy [ligand_chain2];
 endloop

 //print row number
 write ['{}\t', i];

 //print similarities in row while ensuring that comparisons of the
same molecule are not given a value
 j=1;
 for sim in sim_v loop
 if sim == 1 and j == length entries then
 write ['{}\n', '-'];
 elseif j == length entries then
 write ['{f.2}\n', sim];
 elseif sim == 1 then
 write ['{}\t', '-'];
 else
 write ['{f.2}\t', sim];
 endif;
 j = inc j;
 endloop
 oDestroy [ligand_chain];
 i = inc i;
endloop

logfile [];

write ['\nDone.\n'];

endfunction

	Benchmarking and Developing Novel Methods for G Protein-coupled Receptor Ligand Discovery
	Recommended Citation

	BENCHMARKING AND DEVELOPING NOVEL METHODS FOR G PROTEIN-COUPLED RECEPTOR LIGAND DISCOVERY
	Dedication
	Acknowledgments
	Preface
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1 Review of Computational Methods Utilized for Class A GPCR Ligand Discovery
	Introduction
	GPCR Structure Prediction
	Receptor Modeling
	Loop Modeling

	Ligand-based Approaches to GPCR Ligand Discovery
	Similarity Searching
	Ligand-based Pharmacophore Modeling

	Structure-based Approaches to GPCR Ligand Discovery
	In silico Fragment-based Methods
	Structure-based Pharmacophore Modeling

	Hit List Generation and Refinement
	Database Searching
	Hit List Refinement by Ligand Docking

	Conclusions

	Chapter 2 Benchmarking GPCR homology model template selection in combination with de novo loop generation
	Introduction
	Results and Discussion
	Homology Model Template Selection
	Protein Model Development and Analysis
	Ligand Docking and Analysis

	Conclusions
	Methodology
	Target/Template Selection and Preparation:
	Homology Model Construction and Analysis:
	De Novo Extracellular Loop 2 (ECL2) Modeling:
	Ligand Docking:

	Chapter 3 Structure-based Pharmacophore Modeling 1. Automated Random Pharmacophore Model Generation
	Introduction
	Results and Discussion
	Database Creation/Target Selection
	Homology/Loop Modeling
	Multiple Copy Simultaneous Search (MCSS)
	Automated Pharmacophore Model Generation
	Internal Test Database Searching/Scoring

	Conclusions
	Methodology
	Homology/Loop Modeling
	Multiple Copy Simultaneous Search (MCSS)
	Automated Pharmacophore Model Generation
	Internal Test Database Searching/Scoring

	Chapter 4 Structure-based Pharmacophore Modeling 2. Developing a Novel Framework for Structure-based Pharmacophore Model Generation and Selection
	Introduction
	G Protein-Coupled Receptors
	Pharmacophore Modeling
	Pharmacophore Model Selection
	Research Aims and Outcomes

	Results and Discussion
	Homology/Loop Modeling
	Multiple Copy Simultaneous Search (MCSS)
	Score-based Pharmacophore Model Generation
	Internal Test Database Searching/Scoring
	Pharmacophore Model Classification

	Conclusions
	Methodology
	Homology/Loop Modeling
	Multiple Copy Simultaneous Search (MCSS)
	Score-based Pharmacophore Model Generation
	Internal Test Database Searching/Scoring
	Pharmacophore Model Classification
	Data Preprocessing
	K-Means Clustering Analysis
	Logistic Regression with SGDClassifier

	Chapter 5 Conclusions and Future Directions
	Conclusions
	Future Directions

	References
	Appendix A Chapter 3: Benchmarking GPCR homology model template selection in combination with de novo loop generation
	Appendix B Chapter 4: Structure-based Pharmacophore Modeling 1. Automated Random Pharmacophore Model Generation
	Appendix C Chapter 5: Structure-based Pharmacophore Modeling 2. Developing a Novel Framework for Structure-based Pharmacophore Model Generation and Selection
	Appendix D Scripts
	Scripts used in Chapter 2
	cleanpdbs.bash
	hm_filegen.bash
	ligandrmsd.svl
	pdbgen.svl

	Scripts used in Chapter 3
	batch_ph4search.svl
	frag_count.svl
	random_ph4gen.svl
	random_ph4search.svl

	Scripts used in Chapter 4
	feature_search_dir_7_feats.svl
	mfss_subset.svl
	PH4_classifier.py
	ph4_search_specify_features.svl
	pharmcount.svl
	results2excel_7feats_dir.svl
	scorebased_datacollection.svl
	scorebased_ph4gen.svl

	Alignment Scripts
	align_new_chains.svl
	check_gap_positions.svl
	pairwise_alignment.svl

	Docking Scripts
	create_docking_jobs.sh
	docking_figuregen_mdb.svl
	gen_tm_database.svl
	get_gpcr_interactions.svl
	get_gpcr_interactions_docked.svl
	get_topscored_pose_by_mseq.svl
	ligand_rmsd_symm.svl
	ligandrmsdrigid.svl
	pli_gen.svl
	res_select.svl
	self_dock_from_database.svl
	symm_groupselect.svl

	Pharmacophore Scripts
	feat_dist_dir.svl
	feature_composition_dir.svl
	multiple_ph4_search.svl
	partial_ph4_gen_nminus1.svl
	ph4_distcalc.svl
	ph4_near_residue_dist.svl
	s_score_calc.svl

	Miscellaneous Scripts
	db_2_dockmdb.svl
	db_conf_range.svl
	db_refine_pdb.svl
	db_subset_entries.svl
	db_subset_generation.svl
	db_tanimoto_calc.svl
	dbmol2smiles.svl
	dock_rescore.svl
	get_compound_vendors.py
	get_missing_mols.svl
	get_molnames.svl
	get_selected_poses.svl
	get_uniq_mols.svl
	ism_to_txt.py
	ligand_similarity.svl
	ligand_similarity_mdb.svl
	loopnumber.svl
	mseq_renum.svl
	name_to_smiles.py
	nearby.svl
	pdb_db_import.svl
	pdb_dockprep.svl
	remove_chiconstraint.svl
	remove_empty_chains.svl
	remove_ligandless_chains.svl
	select_db_entries_from_token.svl
	similarity_matrix_db.svl

