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Abstract 

G protein-coupled receptors (GPCR) are integral membrane proteins mediating 

responses from extracellular effectors that regulate a diverse set of physiological 

functions. Consequently, GPCR are the targets of  ~34% of current FDA-approved 

drugs.3 Although it is clear that GPCR are therapeutically significant, discovery of novel 

drugs for these receptors is often impeded by a lack of known ligands and/or 

experimentally determined structures for potential drug targets. However, computational 

techniques have provided paths to overcome these obstacles. As such, this work discusses 

the development and application of novel computational methods and workflows for 

GPCR ligand discovery. 

Chapter 1 provides an overview of current obstacles faced in GPCR ligand 

discovery and defines ligand- and structure-based computational methods of overcoming 

these obstacles. Furthermore, chapter 1 outlines methods of hit list generation and 

refinement and provides a GPCR ligand discovery workflow incorporating computational 

techniques. 

In chapter 2, a workflow for modeling GPCR structure incorporating template 

selection via local sequence similarity and refinement of the structurally variable 

extracellular loop 2 (ECL2) region is benchmarked. Overall, findings in chapter 2 support 

the use of local template homology modeling in combination with de novo ECL2 

modeling in the presence of a ligand from the template crystal structure to generate 

GPCR models intended to study ligand binding interactions. 

Chapter 3 details a method of generating structure-based pharmacophore models 

via the random selection of functional group fragments placed with Multiple Copy 
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Simultaneous Search (MCSS) that is benchmarked in the context of 8 GPCR targets. 

When pharmacophore model performance was assessed with enrichment factor (EF) and 

goodness-of-hit (GH) scoring metrics, pharmacophore models possessing the theoretical 

maximum EF value were produced in both resolved structures (8 of 8 cases) and 

homology models (7 of 8 cases). 

Lastly, chapter 4 details a method of structure-based pharmacophore model 

generation using MCSS that is applicable to targets with no known ligands. Additionally, 

a method of pharmacophore model selection via machine learning is discussed. Overall, 

the work in chapter 4 led to the development of pharmacophore models exhibiting high 

EF values that were able to be accurately selected with machine learning classifiers. 

 

  



 

 vii 

Table of Contents 

BENCHMARKING AND DEVELOPING NOVEL METHODS FOR G PROTEIN-
COUPLED RECEPTOR LIGAND DISCOVERY ............................................................. i 

Dedication ............................................................................................................... ii 
Acknowledgments.................................................................................................. iii 
Preface.................................................................................................................... iv 
Abstract ....................................................................................................................v 
Table of Contents .................................................................................................. vii 
List of Tables ......................................................................................................... ix 
List of Figures ...................................................................................................... xiii 
Chapter 1 Review of Computational Methods Utilized for Class A GPCR Ligand 
Discovery .................................................................................................................1 

Introduction ..................................................................................................1 
GPCR Structure Prediction ..........................................................................8 
Ligand-based Approaches to GPCR Ligand Discovery ............................17 
Structure-based Approaches to GPCR Ligand Discovery .........................29 
Hit List Generation and Refinement ..........................................................38 
Conclusions ................................................................................................46 

Chapter 2 Benchmarking GPCR homology model template selection in 
combination with de novo loop generation ............................................................49 

Introduction ................................................................................................49 
Results and Discussion ..............................................................................55 
Conclusions ................................................................................................73 
Methodology ..............................................................................................76 

Chapter 3 Structure-based Pharmacophore Modeling 1. Automated Random 
Pharmacophore Model Generation ........................................................................84 

Introduction ................................................................................................84 
Results and Discussion ..............................................................................88 
Conclusions ..............................................................................................109 
Methodology ............................................................................................111 

Chapter 4 Structure-based Pharmacophore Modeling 2. Developing a Novel 
Framework for Structure-based Pharmacophore Model Generation and Selection
..............................................................................................................................117 

Introduction ..............................................................................................117 
Results and Discussion ............................................................................124 
Conclusions ..............................................................................................163 
Methodology ............................................................................................167 

Chapter 5 Conclusions and Future Directions .....................................................177 
Conclusions ..............................................................................................177 
Future Directions .....................................................................................180 

References ............................................................................................................182 
Appendix A Chapter 3: Benchmarking GPCR homology model template selection 
in combination with de novo loop generation......................................................212 



 

 viii 

Appendix B Chapter 4: Structure-based Pharmacophore Modeling 1. Automated 
Random Pharmacophore Model Generation ........................................................221 
Appendix C Chapter 5: Structure-based Pharmacophore Modeling 2. Developing 
a Novel Framework for Structure-based Pharmacophore Model Generation and 
Selection ...............................................................................................................254 
Appendix D Scripts ..............................................................................................273 

 

 



 

 ix 

List of Tables 

Table 2.1. GenBank accession numbers and PDB ID numbers for GPCR used in this 
study. ..................................................................................................................................56 

Table 2.2. Variation among experimental structures for each receptor used as a template 
and/or target in this study. ..................................................................................................57 

Table 2.3 ECL2 loop start/end residues for each receptor’s crystal structure and lowest 
RMSD homology model. ...................................................................................................79 

Table 3.1 PDB158 ID numbers and homology modeling RMSD values for GPCR used in 
this study. ...........................................................................................................................91 

Table 3.2 Internal test database statistics for each target used in this study. .....................96 

Table 3.3 Aggregated feature composition for higher enrichment (HE) and lower 
enrichment (LE) pharmacophore models generated in experimentally determined 
structures for each receptor. .............................................................................................107 

Table 3.4 Aggregated feature composition higher enrichment (HE) and lower enrichment 
(LE) pharmacophore models generated in homology models for each receptor. ............108 

Table 4.1 GenBank accession numbers, PDB ID numbers, and homology model RMSD 
values from experimental reference target structures for GPCR used in this study. .......127 

Table 4.2 Best sampled enrichment values (corresponding GH value in parentheses) for 
PED models with each fragment subset when searching our internal test database with all 
partial match feature numbers. .........................................................................................136 

Table 4.3 Best sampled enrichment values (corresponding GH value in parentheses) for 
PHM models with each fragment subset when searching our internal test database with all 
partial match feature numbers. .........................................................................................137 

Table 4.4 Pharmacophore search performance for each parameter considered during 
pharmacophore generation/searching for PED models. ....................................................138 

Table 4.5 Pharmacophore search performance for each parameter considered during 
pharmacophore generation/searching for PHM models. ....................................................139 

Table 4.6 Attributes used in pharmacophore model classification. .................................143 

Table 4.7 Averages of all recorded classification scoring metrics (PPV, accuracy, recall, 
f1-score) when classifying test set data using logistic regression classifiers trained on k = 
1, 2, 3, 4, 5, or 6 clusters. .................................................................................................147 



 

 x 

Table 4.8 Positive predictive values when classifying external set pharmacophore models 
generated in experimentally determined structures (PED) or homology models (PHM) with 
logistic regression classifiers trained on data segregated into k = 1, 2, 3, 4, 5, or 6 clusters.
..........................................................................................................................................149 

Table 4.9 Per receptor classification results for score-based pharmacophore models 
(abbreviated as PH4s) generated in experimentally determined structures and segregated 
into cluster I of k = 5 clusters when predicting quality classes with the k = 5 cluster I 
classifier. ..........................................................................................................................152 

Table 4.10 Per receptor classification results for score-based pharmacophore models 
(abbreviated as PH4s) generated in homology models and segregated into cluster I of k = 
5 clusters when predicting quality classes with the k = 5 cluster I classifier. ..................154 

Table 4.11 Per receptor classification results for score-based pharmacophore models 
(abbreviated as PH4s) generated in experimentally determined structures and segregated 
into cluster I of k = 4 clusters when predicting quality classes with the k = 4 cluster I 
classifier. ..........................................................................................................................156 

Table 4.12 Per receptor classification results for score-based pharmacophore models 
(abbreviated as PH4s) generated in homology models and segregated into cluster I of k = 
4 clusters when predicting quality classes with the k = 4 cluster I classifier. ..................158 

Table A1. Alpha-carbon receptor RMSD values with and without loop modeling for the 
set of highest CoINPocket scored target:template receptor pairings. ..............................212 

Table A2. Global receptor RMSD values relative to crystallographic reference structures 
for receptor models generated by approach A1 with and without loop modeling for 
receptors modeled using two templates. ..........................................................................213 

Table A3. Loop modeling approach A1 ECL2 loop RMSD values for each 
target:template receptor pairing (10 models each in rank-order by score) compared to the 
loop of the reference crystal structure as well as loop models from our previous 
benchmark.35 ....................................................................................................................214 

Table A4. Loop modeling approach A1 ECL2 loop RMSD values for receptors modeled 
using two templates (10 models each in rank-order by score) compared to the loop of the 
reference crystal structure. ...............................................................................................216 

Table A5. Ligand RMSD values (LRMSD) calculated in comparison to the crystallized 
reference structure for three different docking methods employed in the context of 
approach A1 models. .......................................................................................................217 

Table A6. Ligand RMSD values for ligand poses docked into receptor models generated 
using three different receptor modeling approaches for the set of highest CoINPocket 
scored target:template receptor pairings. .........................................................................218 



 

 xi 

Table A7. Comparison of MOE induced fit docking poses and crystallographic ligand 
poses for receptors modeled using two templates when docked into approach A1 models.
..........................................................................................................................................220 

Table B1. Names of GPCR ligands used in the internal test database. ...........................234 

Table B2. Fragments used during MCSS. .......................................................................242 

Table B3. Unique fragment placements for each target used in benchmarking our 
pharmacophore model generation protocol. ....................................................................245 

Table B4. Pharmacophore model scoring data when searching with 3 partial match 
features using pharmacophores generated in experimentally determined structures. ......246 

Table B5. Pharmacophore model scoring data when searching with 4 partial match 
features using pharmacophores generated in experimentally determined structures. ......247 

Table B6. Pharmacophore model scoring data when searching with 5 partial match 
features using pharmacophores generated in experimentally determined structures. ......248 

Table B7. Pharmacophore model scoring data when searching with 3 partial match 
features using pharmacophores generated in homology models. ....................................249 

Table B8. Pharmacophore model scoring data when searching with 4 partial match 
features using pharmacophores generated in homology models. ....................................250 

Table B9. Pharmacophore model scoring data when searching with 5 partial match 
features using pharmacophores generated in homology models. ....................................251 

Table B10. Average feature distances (in Å) between features/from feature to centroid for 
the sets of HE and LE pharmacophore models generated in experimentally determined 
structures for each receptor used in this study. ................................................................252 

Table B11. Average feature distances (in Å) between features/from feature to centroid for 
the sets of HE and LE pharmacophore models generated in homology models for each 
receptor used in this study................................................................................................253 

Table C1. Fragments used during MCSS. .......................................................................254 

Table C2. Unique fragment placements for each target used in benchmarking our 
pharmacophore model generation protocol. ....................................................................257 

Table C3. Number of ligands, theoretical maximum enrichment factor (EF) values, 
percentages at which each target’s theoretical maximum EF is represented by our EF 
cutoff of 2, and search database percent actives for the 13 targets represented in our 
internal test database containing 569 class A GPCR ligands ..........................................258 

Table C4. Names of GPCR ligands used in the internal test database. ...........................259 



 

 xii 

Table C5. Sampled EF and GH values for PED models with the GH fragment subset when 
searching our internal test database. ................................................................................267 

Table C6. Sampled EF and GH values for PHM models with the receptor EF fragment 
subset when searching our internal test database. ............................................................269 

Table C7. Anchor residues used in ECL2 modeling for each target studied. ..................271 
 

 



 

 xiii 

List of Figures 

Figure 1.1 G protein-coupled receptor structure, binding site locations, helix positions 
before and after activation, and activation cycle. ................................................................3 

Figure 1.2 GPCR ligand identification workflows. .............................................................8 

Figure 1.3. Workflow for constructing Class A GPCR homology models. ......................10 

Figure 1.4. Similarity search fingerprinting methods and Tanimoto coefficient 
calculation. .........................................................................................................................21 

Figure 1.5. Ligand-based pharmacophore model generation. ............................................25 

Figure 1.6. Pharmacophore models of CDK2 inhibitors developed using Catalyst by 
Hecker et al.89 (left),  Toba et al.90 (center), and Vadivelan et al. (right). 91 ......................28 

Figure 1.7. Methods of novel ligand design in fragment-based drug discovery. ...............30 

Figure 1.8. Structure-based pharmacophore model generation using functional group 
fragments............................................................................................................................34 

Figure 2.1. Homology modeling/loop modeling protocol. ................................................54 

Figure 2.2. Names and structures of ligands docked into protein models. ........................58 

Figure 2.3. Alpha carbon receptor RMSD values for the homology models generated with 
and without loop modeling for three different modeling approaches. ...............................60 

Figure 2.4. Alpha carbon receptor RMSD values relative to crystallographic reference 
structures for receptor models generated by approach A1 with and without loop modeling 
for receptors modeled using two templates of varying local similarity score. ..................61 

Figure 2.5. Lowest RMSD P2Y12 homology model constructed from PDB 3VW7  
superposed on reference crystallographic structure (PDB 4PY0). ....................................61 

Figure 2.6. The lowest RMSD model of the top 10 scoring ECL2 models (cyan) and local 
template homology model (salmon) was superposed onto the crystallized reference 
structure (green). ................................................................................................................62 

Figure 2.7. All atom superposition of crystal structures used in this study with segments 
of TM3 and TM4 highlighted (green: FFAR1, red: all other receptors) to showcase the 
unusual binding mode of FFAR1. ......................................................................................64 

Figure 2.8. An example of CXCR4 ligand 1 docked using three different methods with 
the lowest LRMSD pose shown. ........................................................................................66 



 

 xiv 

Figure 2.9. Ligand RMSD (LRMSD) values calculated in comparison to the crystallized 
reference structure for three different docking methods employed in the context of 
approach A1 models. .........................................................................................................67 

Figure 2.10. Comparison of MOE induced fit docking poses and crystallographic ligand 
poses for receptors modeled using two templates when docked into approach A1 receptor 
models. ...............................................................................................................................70 

Figure 2.11. Ligand RMSD values for ligand poses docked into receptor models 
generated using three different receptor modeling approaches. ........................................71 

Figure 2.12. Tanimoto coefficients for ligand poses docked into receptor models 
generated using three different receptor modeling approaches. ........................................72 

Figure 3.1. Fragment-based pharmacophore generation and application workflow. ........93 

Figure 3.2. Randomly generated pharmacophore model enrichment factor scoring data 
(scaled from 0 to 1 based on each target’s theoretical maximum enrichment (TME) value) 
when searching with (A) 3, (B) 4, or (C) 5 partial match features using pharmacophore 
models generated in target experimentally determined structures. ....................................94 

Figure 3.3. Randomly generated pharmacophore model enrichment factor scoring data 
(scaled from 0 to 1 based on each target’s TME value) when searching with (A) 3, (B) 4, 
or (C) 5 partial match features using pharmacophore models generated in target 
homology models. ..............................................................................................................94 

Figure 3.4. Randomly generated pharmacophore model goodness-of-hit scoring data 
when searching with (A) 3, (B) 4, or (C) 5 partial match features using pharmacophore 
models generated in target experimentally determined structures. ....................................95 

Figure 3.5. Randomly generated pharmacophore model goodness-of-hit scoring data 
when searching with (A) 3, (B) 4, or (C) 5 partial match features using pharmacophore 
models generated in target homology models. ..................................................................95 

Figure 3.6. Pharmacophore models generated within the Beta 2 experimentally 
determined structure PDB158 entry 2RH1196. .....................................................................97 

Figure 3.7. Enrichment factor scoring data for pharmacophore models generated in 
triplicate for the best scoring A2A homology model (A) and the lowest RMSD homology 
model (B) when searching with 5 partial match features. ...............................................100 

Figure 3.8. Goodness-of-hit scoring data for pharmacophore models generated in 
triplicate for the best scoring A2A homology model (A) and the lowest RMSD homology 
model (B) when searching with 5 partial match features. ...............................................100 

Figure 3.9. Differences in the distributions of mean (A), maximum (B), and minimum (C) 
interfeature distances and mean (D), maximum (E), and minimum (F) feature to centroid 



 

 xv 

distances between the selected HE and LE pharmacophore models generated in 
experimentally determined structures. .............................................................................103 

Figure 3.10. Differences in the distributions of mean (A), maximum (B), and minimum 
(C) interfeature distances and mean (D), maximum (E), and minimum (F) feature to 
centroid distances between the selected HE and LE pharmacophore models generated in 
homology models. ............................................................................................................104 

Figure 4.1. Score-based pharmacophore generation workflow. ......................................120 

Figure 4.2. Cluster-then-predict workflow used in pharmacophore model classification 
illustrated using 5 clusters. ...............................................................................................122 

Figure 4.3. Fragment subsets used in MCSS. ..................................................................129 

Figure 4.4. Pharmacophore models generated in experimental reference structures of 4 of 
the 13 GPCR targets using the MOE fragment subset. ....................................................131 

Figure 4.5. Workflow for selecting an optimal k value in K-means clustering. ..............146 

Figure 4.6. PCA plots for training (A) and testing (B) data after performing K-means 
clustering with k = 5. ........................................................................................................163 

Figure B1. GPCR Ligands included in the internal test database. ...................................221 

Figure C1. Venn diagram denoting training set overlap between cluster I for k = 4 and 
cluster I for k = 5. .............................................................................................................272 
 



 

 1 

Chapter 1  

Review of Computational Methods Utilized for Class A GPCR Ligand Discovery 

Introduction 

G protein-coupled receptors (GPCR) are integral membrane proteins responsible 

for signal transduction across cell membranes. Members of this protein superfamily are 

commonly classified with the A-F system, which separates GPCR into 6 classes (A, B, C, 

D, E, and F) based on amino acid sequence and functional similarities.1 Of these 6 

classes, class A “rhodopsin-like” GPCR comprise the largest proportion of the GPCR 

superfamily (around 80%1) and are commonly involved in varied signaling pathways, 

including those regulating physiological functions such as vision and neurotransmission.2 

Structurally, class A GPCR consist of 7 alpha-helical transmembrane (TM1-7) segments, 

an 8th intracellular helix (H8), 3 intracellular loop regions (ICL1-3), 3 extracellular loop 

regions (ECL1-3), an extracellular N-terminus, and an intracellular C-terminus (Figure 

1.1A).3 Ligands activating class A GPCR typically bind at the extracellular side of the 

receptor within an orthosteric site formed by the TM domains, where differences in 

binding pocket size, shape, and electrostatics result in receptor-ligand selectivity.3 For 

example, the binding site of the β2-adrenergic receptor (ADRB2) and other aminergic 

GPCR is located deep within the 7 TM domains (Figure 1.1Bi), while the binding site of 

the A2A adenosine receptor extends much closer to the extracellular site of the 7 TM 

domains (Figure 1.1Bii).4 Additional variation in class A GPCR binding pocket location 

and size is observed with the C-X-C chemokine receptor type 4, where the pocket is 
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much larger and more exposed than those observed in other class A GPCR to allow for 

the binding of peptide ligands (Figure 1.1Biii).4 

Upon agonist binding, a conformational change resulting in the rearrangement of 

intrahelical residue contacts5 is initiated within the receptor. Particularly, movement of 

the intracellular ends of TM domains 5, 6, and 7 resulting from class A GPCR activation6 

(Figure 1.1C) leads to the elimination of residue contacts between TM domains 3 and 6, 

the formation of residue contacts between TM domains 3 and 7, and the structural 

repacking of TM domains 5 and 6.5 TM3, on the other hand, often undergoes helical 

rotation upon receptor activation and serves as a hub for activation state stabilization due 

to its large number of state-specific contacts to other TM domains.6 

The conformational change resulting from agonist binding in class A GPCR 

ultimately stimulates activation of the intracellular G protein to which the receptor is 

coupled to (Figure 1.1D).7 After G protein activation, guanosine diphosphate (GDP) is 

replaced by guanosine triphosphate (GTP) on the Gα subunit of the heterotrimeric G 

protein. Once GDP is swapped for GTP, the Gα and Gβγ subunits of the G protein 

dissociate and both subunits can then modulate the activity of downstream effectors 

involved in cell signaling pathways.  Restoration of the basal state is assisted by regulator 

of G protein signaling protein (RGS) binding, which stimulates GTPase activity.  

Hydrolysis of GTP to GDP lowers receptor affinity for the ligand and returns the 

complex to the basal state. 
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Figure 1.1 G protein-coupled receptor structure, binding site locations, helix positions 
before and after activation, and activation cycle. 

(A) Snake plot of the β2-adrenergic receptor demonstrating class A GPCR structure. 
Transmembrane segments 1-7 are colored green, helix 8 is colored magenta, ECL1-3 are 
colored orange, ICL1-3 are colored cyan, N-terminus is colored yellow, C-terminus is 
colored purple. (B) Structures of the β2-adrenergic receptor in complex with agonist 
isoprenaline (left, colored magenta, PDBid 7DHR), the A2A adenosine receptor in 
complex with agonist 6-(2,2-diphenylethylamino)-9-[(2R,3R,4S,5S)-5-(ethylcarbamoyl)-
3,4-dihydroxy-oxolan-2-yl]-N-[2-[(1-pyridin-2-ylpiperidin-4-
yl)carbamoylamino]ethyl]purine-2-carboxamide (center, colored cyan, PDBid 5WF6), 
and the C-X-C chemokine receptor 4 in complex with peptide antagonist CVX15 (right, 
colored orange, PDBid 3OE0). (C) Superposition of β2-adrenergic receptor inactive 
state structure 7DHR (TM domains colored red) and active state structure 6PS2 (TM 
domains colored green) demonstrating the movement of TM domains 5, 6, and 7 upon 
receptor activation. (D) GPCR activation cycle. In step (i), the receptor is at a resting 
state and the Gα and Gβγ subunits of the receptor’s G protein are associated. In step (ii), 
ligand binding initiates a conformational change of the receptor that catalyzes the 
exchange of GDP for GTP on the Gα subunit, causing the Gα and Gβγ subunits to 
dissociate. In step (iii), the dissociated Gα and Gβγ subunits interact with downstream 
effectors E1 and E2, resulting in downstream signaling. In step (iv), regulator of G 
protein signaling protein (RGS) binds the Gα-GTP complex, accelerating GTPase 
activity. GTP is hydrolyzed to GDP and the receptor returns to the resting state observed 
in step (i). 
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In addition to their importance in maintaining normal biological function, 

dysregulation of GPCR signaling pathways often leads to the development of diseases 

such as cancer and diabetes.8 As a result, GPCR have become increasingly attractive as 

drug targets, with approximately one third of FDA-approved drugs targeting these 

receptors.9 Two examples of the many drugs exerting their effects through GPCR include 

salbutamol and exenatide, which are ADRB2 and glucagon-like peptide-1 receptor 

agonists treating asthma and type 2 diabetes, respectively.8 

Although GPCR-based therapeutics account for over $180 billion10 in global 

annual sales, current FDA-approved drugs only target a subset of the 360 known 

“druggable” non-olfactory GPCR.9 For the nearly 60% of GPCR targets yet to be 

clinically leveraged,9 the ability to better understand and modulate their signaling 

pathways would support the development of new therapeutics and identification of 

previously undiscovered pathways relevant to disease development. Thus, the discovery 

of novel ligands for understudied receptors is a valued goal. Since the mid-1990s11, 

random high-throughput screening (HTS) has been a valuable tool in GPCR ligand 

discovery and involves screening large compound libraries for activity against a 

biological target.12 While many GPCR ligands have been identified using this approach, 

random HTS workflows are often costly and time-consuming13, which is impractical for 

research efforts limited by a finite amount of resources. Rather than employing the 

“screen everything” philosophy historically observed in random HTS workflows, many 

recent GPCR ligand discovery efforts employ virtual screening (VS) workflows to 

computationally screen vast chemical libraries to identify sets of novel compounds best 

complementing a biological target for use in subsequent and more targeted experimental, 
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in vitro screens. A comprehensive VS workflow for GPCR ligand discovery is shown in 

Figure 1.2. After the identification of a biological target, VS follows either a ligand- or 

structure-based workflow.14 In a ligand-based virtual screening (LBVS) workflow, 

information extracted from compounds known to possess biological activity for a target is 

analyzed in order to identify candidate compounds for experimental screening.15 In a 

structure-based virtual screening (SBVS) workflow, experimentally determined or 

modelled structures of a biological target are used to select candidates for experimental 

screening based on protein structure.16 Although LBVS workflows have been more 

commonly employed than their structure-based counterparts,17 SBVS workflows have 

become an increasingly popular route for ligand discovery as advancements in GPCR 

structure determination and prediction have been made.18  

While there are precedents for a well-defined computational workflow in GPCR 

ligand discovery, many challenges still exist for the identification of novel drug 

candidates acting upon these receptors. Many obstacles present in GPCR ligand 

discovery are the result of a lack of structural information, as only 140 of the of the over 

800 known human GPCR possess published, experimentally determined structures as of 

September 30, 2022.19 Without a published structure to serve as a starting point, VS 

workflows are forced to be ligand-based (if active ligands have been identified for the 

target) or rely on the generation of models. In addition to a lack of structural information, 

many roadblocks in GPCR ligand discovery stem from the fact that many GPCR lack 

known endogenous ligands and are considered orphan GPCR (oGPCR).11 These oGPCR 

often also often lack known synthetic ligands or experimentally determined structures, 

leaving researchers with little information to guide GPCR ligand identification efforts. 



 

 6 

Although there are many factors impeding GPCR ligand discovery, computational 

methods have been developed recently to address areas where information may be 

lacking for targets. When attempting to identify new ligands for a target GPCR, 

information deficits typically manifest in 1 of 3 ways: 

1. The target possesses known ligands but no experimentally determined structure. 

2. The target possesses an experimentally determined structure but few known 

ligands. 

3. The target lacks an experimentally determined structure as well as known ligands. 

When a target possesses known active ligands, LBVS workflows incorporating 

similarity searching20 and/or ligand-based pharmacophore modeling21 are typically 

employed to identify compounds that are structurally/chemically similar to known active 

ligands or match a three-dimensional interaction pattern of known ligands (Figure 1.2A). 

For cases where a target possesses an experimentally determined structure, SBVS 

workflows incorporating fragment-based drug design (FBDD)22 or structure-based 

pharmacophore modeling21 can be used to identify compounds complementing a target 

structure’s binding site (Figure 1.2B). For cases where a target’s structure is yet to be 

experimentally determined (regardless of whether active ligands are known or not), 

techniques such as homology modeling23 and conformational sampling of the structurally 

variable ECL2 region24 allow for the generation of a modeled structure that, at the very 

least, serves as a structural point of reference for VS workflows (Figure 1.2C). Ideally, 

generation of a predicted structure serves as a starting point for SBVS as well as a 

method of validating candidate compounds selected with LBVS/SBVS via ligand 

docking (Figure 1.2C). LBVS and SBVS workflows typically identify prospective 

ligands in conjunction with database searching, where filters generated with either 
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workflow are used to identify compounds that complement a chosen biological target 

from large external libraries such as ZINC25. If an experimentally determined or 

predicted structure is available for a GPCR target, binding modes of prospective 

compounds can be generated using ligand docking methods which are ranked using 

scoring functions that denote the energetic feasibility of a given docked pose.26 These 

predicted binding modes can then be used to provide further insight into whether a 

prospective compound can plausibly bind a target and whether a compound should be 

retained in the set of compounds to be experimentally screened. 

Though many advances in traditional wet lab experimentation and protein 

structure determination/prediction for GPCR have been made in recent years27,28, the lack 

of information regarding structure and/or ligand binding for many targets necessitates the 

use of computational techniques in ligand discovery workflows applied to GPCR. As 

such, this work aims to provide a review of computational methods utilized in GPCR 

ligand discovery. In this review, we summarize prominent computational techniques 

applied to GPCR ligand discovery and discuss recent advances in methods applied to VS 

workflows intended to discover novel ligands for GPCR.
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Figure 1.2 GPCR ligand identification workflows. 

(A) Ligand identification workflow for GPCR targets that possess known ligands. In this 
workflow, ligand-based virtual screening techniques such as ligand-based 
pharmacophore modeling and similarity searching can be employed. (B) Ligand 
identification workflow for GPCR targets that possess a known, experimentally 
determined structure. In this workflow, structure-based virtual screening techniques such 
as fragment-based drug design and structure-based pharmacophore modeling can be 
employed. (C) Ligand identification workflow for GPCR targets lacking experimentally 
determined structures and known ligands. In this workflow, homology modeling is used to 
generate a model of a target GPCR that can be used with structure-based approaches to 
ligand identification. 

GPCR Structure Prediction 

Since most GPCR targets lack an experimentally determined structure19, many 

GPCR ligand discovery efforts must rely on the generation of a modeled structure to 

serve as a point of reference when applying SBVS methods. In this section, the basics of 

GPCR homology modeling as well as some deep learning techniques recently applied to 

GPCR structure prediction are discussed. In addition, approaches are discussed for 
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modeling the structurally diverse extracellular loop 2 (ECL2) region of GPCR, which can 

facilitate ligand entry into the orthosteric binding site and directly interact with bound 

ligands.29 

Receptor Modeling 

GPCR structural models are typically generated using homology modeling 

(Figure 1.3), which is rooted in the theory that proteins with similar sequence and similar 

function likely diverged from a common ancestral protein and retain structural 

similarities necessary for the retention of the common function.23 In typical practice, 

homology modeling predicts a target protein’s structure by fitting the target protein’s 

sequence onto an aligned template structure possessing a globally similar sequence to the 

target protein. The homology modeling process involves the following steps: 

1. Template selection 

2. Target:template alignment 

3. Model generation 

4. Model refinement  

The first step, template selection, involves the selection of a homologous template 

structure from which to model a target protein. Template selection is commonly based on 

global amino acid sequence similarity between two receptors, with similarities greater 

than 30% typically considered acceptable30 and similarities greater than 50% desired for 

use in drug discovery applications.23 Given that template selection greatly contributes to 

homology model quality, multiple studies have explored the effects of using template 

structures with varied sequence identity to model GPCR targets with experimentally 

determined structures. In a 2014 study31, 4 serotonin receptors were modeled using  
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Figure 1.3. Workflow for constructing Class A GPCR homology models. 

experimentally determined structures of a set of 10 class A GPCR with varying sequence 

similarity (14 to 55%) as templates. When root mean square deviation (RMSD) values 

were calculated comparing homology models generated for the 5-hydroxytryptamine 

serotonin receptor subtype 6 (5-HT6R) and its experimentally determined structure, 

values for the 5 best homology models decreased with increasing template structure 

sequence similarity. Thus, homology models generated from templates of higher 

sequence similarity more closely resembled the experimentally determined structure of 5-

HT6R. In a similar study, Shahaf et al. generated homology models for the 5-

hydroxytryptamine serotonin receptor subtype 7 (5-HT7R) based on the experimentally 

determined structures of 18 class A GPCR with varying sequence similarity (19.1 to 
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44.8% sequence identity within TM domains) to 5-HT7R.32 After each generated 

homology model was compared to the experimentally determined structure of 5-HT7R, 

correlations between sequence identity and RMSD values were found when template 

structure sequence identities were above 50% or below 20%. Their findings indicated that 

the use of greatly similar template structures (> 50% sequence similarity) for 5-HT7R 

homology model construction led to homology models that were structurally similar to 

the experimentally determined reference structure, while the use of greatly dissimilar 

template structures (< 20% sequence similarity) led to homology models that were 

structurally dissimilar to the reference structure. Though the use of template structures 

with higher sequence similarity generally led to homology models that more closely 

reflected experimentally determined structures, they both mention that little to no 

correlation was observed between template structure sequence similarity and active 

ligand identification when comparing binding poses of ligands docked into homology 

models to experimentally determined binding poses as a means of method validation. 

Since ligand docking is often used to filter which hit compounds identified with 

LBVS/SBVS workflows are selected for experimental screening, ligand discovery 

workflows incorporating ligand docking may wish to employ alternative metrics when 

selecting a template structure for homology model generation. 

As an alternative to template selection based on sequence similarity, metrics 

making other similarity considerations have been developed in recent years to improve 

homology model quality in terms of replicating experimentally determined structures and 

their binding poses. One of such metric is Ngo et al.’s GPCR contact-informed 

neighboring pocket (CoINPocket) score33, a local similarity metric developed based on 
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distance-based contact strength fingerprints of 27 class A GPCR intended to capture 

pharmacological similarities between any 2 GPCR (publication retracted due to errors 

unrelated to the similarity metric or computational methods34). In contrast to purely 

amino acid sequence identity-based similarity, CoINPocket scores are weighted to 

emphasize sequence similarity at residue positions possessing high interaction strengths. 

In a 2019 study, our group assessed the use of global sequence similarity vs. CoINPocket 

scoring as metrics for homology model template selection when generating homology 

models for 6 class A GPCR possessing reference crystal structures.35 While homology 

models generated with template structures selected using either metric both deviated from 

reference crystal structures to a similar degree, ligand docking simulations performed 

with homology models whose templates were selected via CoINPocket scoring led to 

binding poses often exhibiting lower RMSD values than those resulting from docking 

ligands into homology models based on templates selected with global sequence 

similarity. Overall, results from our group’s study indicated that the CoINPocket local 

similarity metric can serve as a viable alternative to global sequence similarity for VS 

workflows incorporating ligand docking into homology models. 

Various web servers designed for GPCR homology modeling also incorporate 

alternate methods of homology model template selection, examples include the GPCR 

Online MOdeling and DOcking server (GOMoDo)36, GPCR-Sequence-Structure-Feature-

Extractor (SSFE)37, and GPCR-ModSim38. These servers use HHsearch (a profile-profile 

alignment tool39) generated sequence-structure profiles, or profile alignments, against a 

set of known GPCR structures to suggest template structures for user-provided GPCR 

sequences. More recently, another method of GPCR template selection has been 
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developed by Jabeen et al. allowing for template selection based on hydrophobic 

correspondence and is named Biophysical approach for GPCRs Automated Template 

Selection (Bio-GATS).40 When each of these 4 aforementioned template selection 

methods were validated via structure comparison to experimentally determined 

structures, resulting homology models were found to closely replicate experimentally 

determined structures. For example, Jabeen et al. performed homology modeling of the 

thromboxane A2 receptor and prostaglandin E2 receptor EP3 subtype with each of the 4 

web servers, resulting in RMSD values ranging from 1.484 to 2.248 Å across both targets 

when TM regions were compared between homology models and experimentally 

determined structures.40 In addition to comparisons of protein structure, docked pose 

assessment of ligands docked into homology models generated with GOMoDo and 

GPCR-ModSim via comparison to experimentally determined binding poses also resulted 

in positive outcomes. For instance, docking the ADRB2 ligand carazolol into a ADRB2 

homology model generated with GOMoDo resulted in an observed ligand RMSD value 

of 1.3 Å36 and docking of the 5-hydroxytryptamine receptor 1B (5-HT1B) ligand 

ergotamine into a 5-HT1B homology model generated with GPCR-ModSim resulted in an 

observed ligand RMSD value of 3.79 Å38,41. While global sequence similarity has been 

the de facto metric for homology model template selection for quite some time, results 

presented by these studies implicate that the application of alternate template selection 

methods may better lend themselves to VS workflows applied to GPCR ligand discovery. 

Although homology modeling is the most commonly utilized method of 

predicting GPCR structure, the application of deep learning techniques as an alternative 

to homology modeling has exhibited success in recent studies.42,43 While an in-depth 
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description of deep learning is beyond the scope of this review, deep learning methods 

for protein structure prediction use neural networks trained on sequences and structures 

of well-characterized proteins to predict a structure for a given target sequence.44 

Although there have been many examples of structure prediction methods implementing 

deep learning45–47, AlphaFold43 is far and away the most renowned in recent years. Using 

a neural network-based model requiring only a primary amino acid sequence as input, 

Jumper et al. were able to accurately predict protein structures with atomic accuracy for a 

variety of protein targets. More recently, AlphaFold predicted structures for over 360,000 

proteins have been made freely available to the public with the creation of the AlphaFold 

Protein Structure Database48, enabling the use of predicted structures in GPCR ligand 

discovery studies for those who may be inexperienced with computational structure 

prediction. In the context of GPCR ligand discovery, however, many AlphaFold 

generated GPCR structures exhibit low confidence scores in non-TM regions48 (including 

extracellular loop 2) which would likely require further refinement prior to effective 

implementation in ligand discovery efforts. Nonetheless, the AlphaFold Protein Structure 

Database provides structural starting points for GPCR ligand discovery workflows and is 

a valuable resource. 

Loop Modeling 

When generating a GPCR structural model intended for use to study ligand 

binding, correctly modeling the extracellular loop 2 (ECL2) region connecting the 4th and 

5th TM segments of the receptor is an important and challenging step. In contrast, 

intracellular loops of GPCR do not make direct interactions with ligands in any known 

structure, and therefore do not need special attention when generating a structural model 
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for ligand discovery applications. Compared to the other extracellular loops possessed by 

GPCR, ECL2 is much longer and more diverse in terms of length, sequence composition 

and secondary structure.49 ECL2 has been shown to be involved in ligand recognition in 

several GPCR50,51 and plays a role in either denying (for receptors binding hydrophobic 

ligands, such as free fatty acid receptor 1 (FFAR1)) or allowing (for receptors binding 

water soluble ligands, such as chemokine receptors) binding pocket water accessibility.52 

In addition, a highly conserved cysteine in ECL2 forms a disulfide bond with a highly 

conserved cysteine in TM3 that serves to stabilize receptor structure in the form of a 

conformational constraint. Given the vast structural and functional diversity of ECL2,29 

careful considerations must be made for this region when generating GPCR structural 

models. 

ECL2 modeling is typically performed with template-based or ab initio methods. 

In template-based loop modeling, loop structures are predicted using structural 

information extracted from loop templates that are similar in sequence to a target 

protein.53 In ab initio loop modeling, loop conformations are first extensively sampled 

and then ranked using criteria such as energy.24 In contrast to template-based methods, ab 

initio methods sample loop conformations without prior knowledge of known structures. 

Consequently, many loop modeling studies choose to employ ab initio methods rather 

than template-based methods due to the structural diversity of ECL2. Due to the 

prevalence of ab initio methods in recent loop modeling studies, the remainder of this 

section focuses on their implementation in GPCR ligand discovery efforts. 

As previously mentioned, ab initio loop modeling involves the conformational 

sampling of ECL2 and scoring of each generated conformation. During conformational 



 

 16 

sampling of ECL2, loop closure methods founded in numerical optimization techniques 

or analytical solutions are employed.54 A variety of loop modeling software packages55,56 

utilize inverse kinematics for loop sampling, a concept adapted from robotics that is 

defined as “the process of characterizing the geometry of an open kinematic chain 

composed of rigid links”.57 Monte Carlo and molecular dynamics (MD) simulations can 

also be used to sample and/or refine loop conformations, though at a higher 

computational cost.54 During the loop sampling process, distance-based constraints 

emulating the conserved ECL2-TM3 disulfide bond observed in many GPCR can also be 

implemented to reduce the conformational space.24 After conformational sampling and 

loop refinement, knowledge- or physics-based scoring methods are used to rank loop 

conformations.54 

While there exist many methods of computational loop modeling, studies 

comparing loop modeling techniques applied to GPCR are few. However, a study 

published by our group in 2019 compared the performance of loop modeling techniques 

bundled into the Rosetta55 and Molecular Operating Environment (MOE)56 software 

suites when applied in the context of modeling GPCR.24 In this study, experimentally 

determined structures of 28 class A GPCR were subjected to ab initio loop modeling of 

their ECL2 regions using loop modeling algorithms present in Rosetta and/or MOE. After 

the superposition of each loop-refined structure onto its experimentally determined 

reference structure and subsequent calculation of Cα RMSD values, the kinematic loop 

closure with fragments (KICF) algorithm within Rosetta58 was found to most frequently 

sample GPCR loop conformations within 2.5 Å RMSD of those present in experimentally 

determined structures.24 As a follow-up to this loop modeling study, our group performed 
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a subsequent study incorporating Rosetta’s KICF loop modeling into a homology 

modeling/ligand discovery workflow applied to 10 class A GPCR with experimentally 

determined structures.59 When KICF loop modeling was performed on each target’s 

homology model generated in MOE56 using template structures selected with the 

CoINPocket similarity metric described by Ngo et al.33, Cα RMSD values for ECL2 

residues in our best loop-refined homology models were found to be lower than Cα 

RMSD values for ECL2 residues in initial homology models (where loop modeling was 

not performed) in most cases when compared to experimentally determined reference 

structures. Furthermore, a comparison of docked ligand RMSD values for ligands docked 

into loop-refined and initial homology models showed that docking into loop-refined 

GPCR models resulted in better docking performance, on average.59 Overall, the results 

of both of our group’s prior loop modeling studies signify that ECL2 modeling plays a 

significant role in accurately predicting GPCR structure as well as binding poses. 

Ligand-based Approaches to GPCR Ligand Discovery 

For the more than 200 class A GPCR with known ligands (209 as of July 18, 

202219), LBVS methods can be employed in GPCR ligand discovery workflows. In short, 

LBVS methods utilize information extracted from GPCR ligand complexes to identify 

compounds that are structurally similar to (in the case of similarity searching) or are 

thought to make the same types of interactions as (in the case of ligand-based 

pharmacophore modeling) known ligands. In this section, 2 of the most utilized 

techniques in LBVS workflows are discussed: similarity searching and ligand-based 

pharmacophore modeling. 



 

 18 

Similarity Searching 

When at least one active ligand is known for a target GPCR, similarity searching 

can be used to find candidate ligands with similar structure and/or chemical properties for 

use in in vitro screens. This method of candidate ligand identification is rooted in the 

observation that molecules similar in structure often exhibit biological activity for the 

same target.60 Similarity searches are conducted by first constructing a search query 

representing an active ligand’s structure and/or chemical features that can be used to 

identify molecules from a database of chemical structures that are most similar to the 

active ligand. During the search process, a similarity metric such as the Tanimoto 

coefficient or Euclidean distance is used to determine similarity to the search query.61 

Similarity searching has become one of the most prominent methods of candidate 

ligand elucidation for multiple reasons. First, similarity searching can be performed with 

only a single known active ligand as a query, which lends itself well to the many GPCR 

with only a handful of known active ligands. In addition, similarity search methods are 

computationally inexpensive62, meaning that search queries can be used to efficiently 

screen large compound databases in silico. 

Similarity searches can be can be structure- or descriptor-based, wherein the 

former uses structural features and the latter uses chemical properties such as molecular 

weight, dipole moment, or van der Waals surface area to determine similarity.62 In 

structure-based similarity searching, structures of active ligands to be used as search 

queries can be represented with molecular fingerprints, which are bit string 

representations of the presence or absence of certain structural features or properties 

within a molecule.63 Rather than a direct structural comparison, the molecular fingerprint 
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representing the query molecule or molecules is compared to the molecular fingerprint of 

each molecule in a searchable database.  Though a variety of molecular fingerprint types 

exist, 3 of the most prominently used fingerprint types are discussed here: topological, 

circular, and substructure-based fingerprints.61 Topological or “path-based” fingerprints 

linearly capture the paths of molecular features from each atom up to a given number of 

connecting bonds and assign bits based on these paths (Figure 1.4Ai).64 The most 

prominent topological example is the Daylight fingerprint, which encodes molecules in 

bit strings up to 2048 bits in length.61 Similar to topological fingerprints, circular 

fingerprints denote the environment of each atom up to a determined radius (Figure 

1.4Aii). The most prominent circular example is the Extended-Connectivity Fingerprint 

(ECFP), which was designed for use in structure-activity modeling.61 In contrast to 

topological and circular fingerprints, which assign no specific meanings to individual 

bits64, substructure-based fingerprints assign the presence or absence of certain functional 

groups or structural features within a molecule to specific bits (Figure 1.4Aiii).61 One of 

the more well-known examples of this type of fingerprint is MACCS structural keys, 

which encodes a molecule’s structure and properties within bit strings that are either 960 

or 166 bits long depending on the MACCS variant used.65 While topological and circular 

fingerprints may more comprehensively represent a given molecule’s structural features, 

substructure-based fingerprints are often used in ligand discovery efforts due to their 

positive performance with small molecules66 and computational efficiency resulting from 

small bit string length.61 

In contrast to the topological, 2D molecular comparisons provided by structure-

based similarity searching, descriptor-based similarity searching moves beyond purely 
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structural comparisons and incorporates 3D and chemical descriptors when comparing a 

set of molecules to assess their similarity. In descriptor-based similarity searching, 

molecules are characterized using descriptors that denote conformational information 

(e.g. distance- and angle-based descriptors), molecular shape (e.g. van der Waals volume 

and surface area), and physicochemical properties (e.g. molecular weight, octanol-water 

partition coefficient (logP), and ionization potential).67 As a result, structural equivalence 

between molecules is often lost with descriptor-based similarity (relative to structure-

based searching) but computational expense is reduced.62 Although structure-based 

similarity searching is typically sufficient for finding compounds similar to a search 

query in a VS workflow, descriptor-based similarity searching allows for a comparison of 

physicochemical properties between compounds, which may be ideal if compounds 

selected based on structure-based similarity show no in vitro activity. Furthermore, we 

would be remiss if we did not mention the importance of these 3D and physicochemical 

descriptors in quantitative structure-activity relationship (QSAR) analysis, which 

constructs a statistical model relating molecular activity to its chemical and physical 

properties.68  
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Figure 1.4. Similarity search fingerprinting methods and Tanimoto coefficient 
calculation. 

(A) Path-based (i), circular (ii), and substructure-based molecular fingerprints. In path-
based fingerprints, linear fragments from 1 to a certain length (in this case 3) are 
enumerated and encoded into a bit string (i). In circular fingerprints, the environment of 
an atom up to a certain radius (in this case 3) is encoded to a bit string (ii). In 
substructure-based fingerprints, the presence or absence of certain functional groups is 
encoded to a bit string (iii). (B) Tanimoto coefficient calculation between 2 compounds. 
In this example, substructure-based fingerprints are calculated for compounds 1 and 2 
and are then compared to calculate a Tanimoto coefficient. (C) Comparison of 2 
compounds elucidated by Zhang et al.75 to C-C chemokine receptor type 9 (CCR9) 
antagonist vircirnon via Tanimoto coefficient. 
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Whether a search query is structure- or descriptor-based, a metric to quantify 

similarity is necessary when prioritizing screening candidates from compound libraries. 

The industry standard for assessing similarity between molecular fingerprints is the 

Tanimoto coefficient (Figure 1.4B), which ranges from 0 (wholly dissimilar) to 1 (wholly 

similar) and measures the similarity between 2 fingerprints by dividing the number of 

features common to both fingerprints (represented by bits set to 1 in both) by the total 

number of features (all bits set to 1 in either) possessed by both fingerprints.61 Ideally, 

similarity searches incorporating the Tanimoto coefficient will set cutoff values 

depending on the desired number of compounds to be returned from the search. In 

addition to the Tanimoto coefficient, other metrics such as Euclidean distance, the Dice 

coefficient, and cosine similarity also provide measures of similarity when comparing 

fingerprints.69 Several studies70–72 comparing the performance of different similarity 

metrics in the context of chemoinformatics applications have found the Tanimoto 

coefficient to perform best, supporting its widespread use in similarity searching. 

Due to its ease of use and low computational cost, similarity searching has been 

the foundation of many GPCR ligand identification studies in recent years. For instance, 

a 2014 study by Levit et al. utilized 2D similarity searches (in conjunction with other 

methods) to discover 12 new Taste 2 Receptor Member 14 (TAS2R14) agonists via 

virtual screens of the BitterDB and DrugBank databases for compounds similar to known 

small-molecule TAS2R14 agonists.73 Similarly, a study published in 2015 by Gianella-

Borradori et al. used the cannabinoid receptor 2 (CB2R) agonist HU-308 as a template 

for similarity searching to identify novel CB2R ligands.74 Even more recently, Zhang et 

al.’s 2018 study identified novel C-C chemokine receptor type 9 (CCR9) antagonists via 
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2D and 3D similarity searches using known CCR9 antagonists as templates for search 

queries (Figure 1.4C).75 Although the work of Levit et al.73 and Zhang et al75 

implemented further refinement of screening candidate lists beyond similarity searching, 

the results shown in these studies imply that similarity searching at the very least 

provides a starting point for identifying promising lead compounds in GPCR ligand 

discovery. 

Ligand-based Pharmacophore Modeling 

The pharmacophore concept was first introduced as a “haptophore” in 1909 by 

Paul R. Erlich and was defined as “a molecular framework that carries (phoros) the 

essential features responsible for a drug’s (pharmacon) biological activity”.76 This 

concept was further elaborated upon in a 1967 study by Lemont P. Kier, where one of the 

first computed pharmacophore models was created to describe a set of chemical features 

eliciting activity in muscarinic receptors.77,78  More recently, the International Union of 

Pure and Applied Chemistry (IUPAC) has defined a pharmacophore as “an ensemble of 

steric and electronic features that is necessary to ensure the optimal supramolecular 

interactions with a specific biological target and to trigger (or block) its biological 

response”.79 Pharmacophore modeling is founded in the theory that compounds 

recognized by the same biological target most likely share a set of common features 

interacting with complementary sites on that target.80  

Much like similarity searching, pharmacophore models provide a method of 

selecting compounds for experimental screening. However, in contrast to similarity 

searching, pharmacophore models move beyond comparisons of structural and/or 

chemical descriptors and instead denote a three-dimensional, “spatial fingerprint” of 
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interactions that are thought to elicit activity within a biological target.21 Pharmacophore 

models can be ligand- or structure-based. This section focuses on the former. The latter is 

discussed below in the section detailing structure-based methods. Ligand-based 

pharmacophore modeling (Figure 1.5) involves identification of a common set of 

chemical features possessed by a set of known ligands for a specific target (otherwise 

known as training set molecules). Though the types of interactions denoted by these 

features can vary depending on the annotation scheme used, pharmacophore features 

typically describe interactions such as hydrogen bond acceptors and donators, 

hydrophobic interactions, aromatic interactions, and ionic interactions.81 Prior to 

pharmacophore model generation, a training set of known active ligands for a target must 

be selected from which to generate a pharmacophore model. While training set size can 

vary based on the availability of known ligands for a target, the ligand-based 

pharmacophore modeling tool HypoGen82 recommends including a minimum of 16 

ligands in a training set. Alternatively, pharmacophore modeling in Catalyst’s HipHop 

can be performed with as few as 2 ligands.83 In general, compounds selected for inclusion 

in the training set should bind at the same active site within a target84 and represent a 

large and diverse set of active ligands.85 Once a training set is finalized, generated 

conformations of training set molecules can be superposed in three-dimensional space. 

Using this comparison, positions where chemically similar functional groups overlap are 

annotated as features within the pharmacophore model.81 
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Figure 1.5. Ligand-based pharmacophore model generation. 

In step (i), known active ligands for a target are chosen for ligand-based pharmacophore 
model construction. In step (ii), structures of chosen active ligands are conformationally 
sampled and optimally superposed. In step (iii), pharmacophore model features are 
annotated based on structural and functional commonalities between active ligands 
based on their superposition. 

If a target possesses enough active ligands, a validation set of compounds not 

used in training the model can be used to assess pharmacophore model quality. In 

addition to active compounds, pharmacophore validation sets typically include 

compounds that are known to be inactive for a target as well as decoy molecules that are 

physicochemically similar to known active ligands and presumed to be inactive.81 Ideally, 

a validation set should consist of active, inactive, and decoy molecules for a target that 

are structurally diverse.86 When screening a validation set with a pharmacophore model, 

the best case scenario would result in the identification of a list of compounds containing 

all of the active compounds and no inactive or decoy compounds. However, the 
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identification of inactive compounds can also provide opportunities for further model 

refinement. To assess pharmacophore model performance when searching a validation 

set, various metrics can be employed to determine how well a pharmacophore model 

identifies compounds that are known to possess activity for a target. Common metrics 

used to evaluate pharmacophore model performance include enrichment factor (EF) and 

goodness-of-hit score (GH), which quantify how many fold better a pharmacophore 

model identifies active compounds when compared to random selection and how well a 

pharmacophore model prioritizes a high yield of actives and a low false-negative rate, 

respectively.86 We refer the reader to Braga and Andrade’s 2013 publication86 for a more 

thorough description of these and other metrics used to assess pharmacophore model 

performance. 

Generated pharmacophore models can be used to search external databases to 

screen for novel ligand candidates. Database searches with pharmacophore models 

typically consist of a multistep filtering process. The first step, pre-filtering, aims to 

quickly identify molecules that cannot be fitted to the pharmacophore model in 3D via 

descriptor-based similarity methods.62,87 Once pre-filtering is complete, 3D matching of 

compounds that might fit the pharmacophore query is performed in the second step. This 

analysis typically consists of a geometric alignment of the pharmacophore model to a 

single molecular conformation. For example, programs such as MOE56 and 

LigandScout88 attempt to match molecular conformations to a pharmacophore model via 

RMSD minimization of features shared between the pharmacophore and molecule 

conformation.87 Furthermore, programs such as MOE56 allow for a less specific search 
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resulting in the identification of hit compounds that only partially match a set of 

pharmacophore model features. 

When generating ligand-based pharmacophore models, multiple factors 

influencing model quality must be considered during model construction and validation. 

Since biological conformations of most active molecules are unknown (exceptions being 

those with experimentally characterized GPCR complexes), ligand-based pharmacophore 

modeling efforts typically rely on the generation of a set of low-energy conformations of 

bioactive molecules. Although many conformational sampling algorithms are produce a 

set of conformations that include a bioactive conformation, it is not guaranteed that a 

superposition used to generate a pharmacophore model will contain bioactive 

conformations.81 In addition, careful considerations must be made when choosing a 

training set of active molecules from which to generate a pharmacophore model. In 

addition to considerations mentioned previously, compounds chosen for a training set 

should ideally share a common set of interactions with a target. This may be more likely 

to occur for a set of structurally similar molecules, as structurally diverse molecules 

generally exhibit different binding modes and would thus share few commonalities when 

superposed prior to feature annotation.81 Moreover, the use of different sets of active 

compounds can result in pharmacophore models that differ in feature placement and 

composition. For example, pharmacophore models generated for cyclin-dependent kinase 

2 (CDK2) in 3 separate studies89–91 that used the same software (Catalyst92) but different 

training sets resulted in three completely different pharmacophore models in terms of 

feature type and location (Figure 1.6).21  
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Figure 1.6. Pharmacophore models of CDK2 inhibitors developed using Catalyst by 
Hecker et al.89 (left),  Toba et al.90 (center), and Vadivelan et al. (right). 91 

Reprinted from Drug Discovery Today, Volume 15, Yang, S.Y., Pharmacophore modeling 
and applications in drug discovery: challenges and recent advances, 444-450, Copyright 
2010, with permission from Elsevier. 

Since the advent of commercially available pharmacophore modeling software, 

the use of pharmacophore models in virtual screening has drastically increased,93 

providing a more informed alternative than random selection when identifying 

compounds for experimental screening. In the context of GPCR, pharmacophore 

modeling studies have resulted in the identification of novel, active ligands in many 

cases. Here, we focus on select examples of ligand-based pharmacophore modeling 

applied to GPCR ligand discovery. 

In a 2008 study by Wang et al.,94 8 known cannabinoid receptor 1 (CB1) ligands 

were used to generate 10 pharmacophore models using Catalyst.92 In order to select a 

pharmacophore model for VS, the pharmacophore model that best mapped onto the 

lowest energy conformation of CB1 training set compound rimonabant (a CB1 inverse 

agonist) was determined. After virtually screening an in-house compound library with 

their selected pharmacophore model and filtering hit molecules based on molecular 

weight and a modified version of Lipinski’s rule of five,95 5 of their 420 compounds 
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selected for screening exhibited binding affinity values (Ki) < 1 µM. More recently, a 

2021 study by Wang et al.96 used deep learning in combination with ligand-based 

pharmacophore models generated with Schrödinger’s PHASE module97 using a training 

set of 8 cannabinoid receptor 2 (CB2) antagonists to identify 7 novel CB2 ligands 

exhibiting Ki binding affinities ≤ 0.22 µM. In addition to these successes concerning 

cannabinoid receptors, VS workflows incorporating ligand-based pharmacophore 

modeling have also led to the discovery of serotonin receptor antagonists98, adrenergic 

receptor antagonists99, and 5-hydroxytryptamine receptor partial agonists.100 

Structure-based Approaches to GPCR Ligand Discovery 

In addition to ligand-based methods, SBVS can be employed in the context of GPCR 

ligand discovery. In contrast to ligand-based methods, structure-based methods extract 

information from experimentally determined or modeled structures to identify screening 

candidates that best complement a structure’s binding site. In this section, we first review 

the use of in silico fragment-based methods in GPCR ligand discovery, followed by a 

discussion of structure-based pharmacophore modeling and its applications. 

In silico Fragment-based Methods 

Over the past few decades, in silico fragment-based drug discovery (FBDD) has 

become an increasingly useful tool for discovering novel leads in ligand identification 

workflows. In silico methods are analogous to experimental FBDD workflows, which use 

experimental screens to identify small chemical building blocks (fragments) binding a 

protein of interest that are then either elaborated upon structurally (by “growing” an 

individual fragment, Figure 1.7A) or linked with a direct connection or structural scaffold 
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(Figure 1.7B) to build novel lead compounds that can be refined with further 

experimentation.101 Despite the demonstrated success of experimental FBDD in drug 

discovery workflows,102,103 its use in GPCR ligand discovery is not without obstacles. 

Experimental FBDD is often restricted by limitations such as time, cost, and the need for 

high concentrations of crystallized proteins, the last of which is generally problematic in 

the context of GPCR.22 In silico FBDD, on the other hand, forgoes the need for in vitro 

screening and instead constructs novel, druglike molecules whose structures are tailored 

to a protein’s binding site by computationally predicting binding energies for prospective 

fragments, providing a higher throughput, cost-efficient de novo drug design approach.104 

 

Figure 1.7. Methods of novel ligand design in fragment-based drug discovery. 

The first step of in silico FBDD involves the construction of fragment libraries. 

Fragments included in these libraries are often first sourced from commercially available 
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compounds and then filtered based on molecular properties.105 Fragments used in FBDD 

generally follow the “rule of three” (molecular weight ≤ 300 g/mol, number of hydrogen 

bond donors ≤ 3, number of hydrogen bond acceptors ≤ 3, calculated LogP ≤ 3) and 

possess polar surface areas ≤ 60 Å2.106 Ideally, fragments included in FBDD libraries 

should be synthetically feasible, cover a diverse range of chemical functional groups, and 

meet certain criteria for physicochemical properties.107  

After fragment library construction, fragments are then placed within a target 

structure’s active site. In essence, this step uses fragments as probes to map binding hot 

spots within a target structure’s active site.107 Moreover, fragment placements are 

energetically optimized in this step, allowing for the determination of a set of fragments 

that best complement the structure’s active site. Feature placement algorithms are 

commonly utilized to determine a structure’s active site. For example, MOE56 fills a 

prospective active site with spheres that are then clustered to define a binding pocket. 

Once an active site is identified, fragments can be energetically mapped within the 

structure. Commonly used methods for active site mapping with fragments include 

GRID108 and multiple copy simultaneous search (MCSS)109. GRID calculates energies 

between probe atoms and a protein surface and thus highlights where interactions are 

most favorable within a protein.108 MCSS randomly places fragments into an active site 

and then energetically minimizes numerous copies to determine energetically optimal 

positions for each fragment.109 Molecular docking (details of which are covered in a later 

section) can also be used for fragment placement, though it is thought to be less reliable 

in FBDD since most docking methods and scoring functions were developed for small 

molecules and not fragments.105 
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After fragment placement, a fragment or set of fragments with favorable binding 

energies is chosen. Once identified, these hit fragments are used to develop novel lead 

compounds. If a single fragment is chosen, its structure can be iteratively grown until a 

potential lead fitting a set of desired properties is achieved.104 If multiple fragments 

occupying different regions of a target structure are chosen, they can be linked to develop 

a novel lead compound. If the structural regions occupied by a set of fragments are 

spatially close, the fragments can be directly linked.104 Alternatively, fragments 

occupying spatially distant regions are linked to a common structural scaffold to generate 

hits.105 If fragments are linked to a scaffold, selection of an appropriate scaffold is key 

when constructing hits with high affinity.107 For example, a linking scaffold must be 

flexible enough to join fragments in different regions of a target structure107 but maintain 

enough rigidity to avoid alternative ligand binding modes.104 Once selected fragments are 

grown or linked into a hypothetical lead compound, the lead compound can be 

synthesized and assayed against a target of interest. 

The application of in silico FBDD to GPCR has led to successful ligand 

identification campaigns for multiple targets. For example, a 2011 study by de Graaf et 

al.110 identified a library of fragment-like compounds that were experimentally screened 

for histamine receptor 1 (H1R) activity. In this work, the authors began with an initial set 

of 757,728 fragment-like compounds. This initial set was filtered to select compounds 

possessing a formal charge ≥ +1 to complement the charged D107 within H1R’s binding 

pocket. The filtered set of 108,790 compounds was then docked into an inverse agonist-

bound H1R structure. After docking was performed, a further subset of compounds was 

selected based on comparisons of protein-ligand interaction fingerprints between 
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prospective fragment binding modes and the binding mode of the known H1R antagonist 

doxepin. The resulting 354 compounds were then subjected to a Tanimoto-based 

comparison to known H1R antagonists and subsequent visual inspection of docked poses, 

yielding a final set of 26 commercially available compounds. Assays with this final set of 

fragment-like compounds identified 19 fragments with H1R affinities ranging from 10 

µM to 6 nM, resulting in a hit rate of 73%. 

More recently, in silico FBDD was used by Vass et al. to identify a library of 

fragment-like compounds that were then experimentally screened for histamine receptor 

4 (H4R) or dopamine receptor 3 (D3R) activity.111 This work began by performing MD 

simulations with a homology model of H4R and a crystal structure of D3R to generate an 

ensemble of structures representing conformational states of each receptor’s binding 

pocket. An in-house set of 12,905 fragment-like compounds were then docked into each 

target’s structure as well as ensemble structures resulting from MD. Final sets of 

compounds for biological testing were then selected for each target based on docking 

score rankings, resulting in a set of 50 compounds for H4R and a set of 56 compounds for 

D3R. Assays with fragment-like compounds selected for each target resulted in the 

identification of 18 and 8 compounds for H4R and D3R, respectively, that exhibited 

target inhibition > 20% with binding affinities ranging from 8.4 to 75.1 µM for selected 

H4R compounds and 0.17 to 2.8 µM for selected D3R compounds. Altogether, these 

studies110,111 indicate that in silico FBDD, at the very least, provides a method of 

identifying fragment-like ligands for GPCR that can be further refined with experimental 

FBDD. 
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Structure-based Pharmacophore Modeling 

In a previous section, the utility of ligand-based pharmacophore modeling in 

GPCR ligand discovery was discussed. However, this type of pharmacophore modeling is 

inherently less effective for or not applicable to targets possessing few or no known 

ligands. As an alternative, pharmacophore models can be developed from a structural 

perspective using structure-based pharmacophore modeling, which establishes 

pharmacophore models by probing a target’s structure for favorable interaction sites 

(Figure 1.8).21 The lone prerequisite for structure-based pharmacophore modeling is a 

three-dimensional structure of a target, ideally one that is experimentally determined. 

However, this strategy can also be applied in the context of structural models generated 

using any of the methods described in our section detailing receptor modeling, providing 

an approach for the many GPCR lacking an experimentally determined structure. 

 

Figure 1.8. Structure-based pharmacophore model generation using functional 
group fragments. 

In this workflow, a structure of the target GPCR is first chosen. After identification of a 
binding site inside the chosen structure, the binding site is probed using functional group 
fragments. Once the binding site is probed, a subset of energetically favorable fragments 
can be chosen from which to annotate pharmacophore features. 
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Structure-based pharmacophore modeling begins with the identification of a 

potential ligand binding site using binding site detection algorithms. These methods often 

utilize energy-based methods that sample binding site properties based on interaction 

energy calculations (e.g. solvation-based methods) or geometry-based methods (grid-

based, alpha spheres112) that define a binding site based on a protein model’s geometry.113 

After a binding site is identified, pharmacophore features can be defined. Traditionally, 

derivation of pharmacophore features within a protein structure is based on the types of 

amino acid residues that comprise the binding pocket (i.e. whether a residue is charged, 

polar or hydrophobic, or solvent-accessible), as well as the use of geometric entities or 

functional group fragments to probe potential ligand-receptor interactions.113 In terms of 

the latter, a structure’s binding site can be mapped using previously discussed methods 

such as GRID108 or MCSS109 to determine energetically favorable sites at which to place 

pharmacophore features. If active ligands are known for a target, they can be used to 

improve the placement and refinement.  

Though structure-based pharmacophore models can be utilized for GPCR targets 

lacking known active ligands (unlike ligand-based pharmacophore modeling) or an 

experimentally determined structure, limitations for this method still exist. Since potential 

binding sites often contain many residues that can make favorable interactions with a 

small molecule ligand, an overabundance of chemical features can be annotated within 

structure-based pharmacophore models, resulting in a pharmacophore model that is 

ineffective when filtering screening candidates from a compound library.21 For GPCR, 

the number of features in a useful pharmacophore model ranges from 3 to 7.114 To refine 

the number of features included in pharmacophore models, structure-based 
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pharmacophore features are often pruned based on energetics, known protein-ligand 

interaction information, or protein sequence analysis.113 An additional limitation of 

structure-based pharmacophore modeling is that pharmacophore feature placement is 

inherently less accurate when compared to ligand-based methods due to difficulties 

determining optimal interaction geometries and the existence of multiple ligand binding 

modes within many biological targets.113 

Recently, the increased availability of high-resolution protein structures and 

advancements in protein structure prediction have led to structure-based pharmacophore 

methods gaining more attention, especially in the context of GPCR ligand discovery. 

Herein the development and application of score-based pharmacophore modeling to 

GPCR ligand discovery is discussed. In 2011, Sanders et al. detailed the development of 

Snooker, a GPCR-specific structure-based pharmacophore modeling protocol 

incorporating homology modeling that derives pharmacophore features from interaction 

points placed at residues identified to be important for ligand-binding within GPCR TM 

domains.115 In this study, Sanders et al. validated their methods by generating 

pharmacophore models for 15 different GPCR and found that all 15 of their generated 

models reflected interactions with residues essential for ligand binding on a target-by-

target basis. 

Another structure-based pharmacophore modeling method, Pharmacophore-Map-

Pick, used pharmacophore models generated within the 39 experimentally determined 

GPCR structures available at time of publication to create a library mapping 

pharmacophore features to the residues they interact with (termed “key residues” in the 

publication).116 After generating homology models for all GPCR, each model was 



 

 37 

subsequently searched for residues matching the position and identity of residues stored 

in the feature-residue mapping library. Using pharmacophore features associated with 

each identified residue, pharmacophore models were then created within each homology 

model. Once created, pharmacophore models were subsequently refined based on local 

feature density. When validating this method using a pharmacophore model for the beta 2 

adrenoceptor (ADRB2) to predict the binding modes of 6 ADRB2 ligands, it was found 

that predicted binding poses deviated very little from experimentally determined binding 

poses (determined RMSD values were 1.46 Å, on average). Additionally, further 

validation with VS for 15 selected GPCR targets resulted in 8 of 15 targets possessing EF 

values > 10, implying that this method would perform well when attempting to identify 

novel active compounds for GPCR targets. 

Though we highlight these 2 specific methods of structure-based pharmacophore 

modeling, a plethora of other methods have been used to identify novel active ligands for 

GPCR in recent years. For instance, a new µ opioid receptor (OPRM) agonist was 

identified in 2019 by Jeong et al. using structure-based pharmacophore modeling.117 In 

their study, an initial hit compound was first obtained by screening an in-house database 

with a structure-based pharmacophore model, followed by synthesis of hit compound 

derivatives predicted as best using R-group screening. Assays with these synthesized 

derivatives identified one compound as a fully active OPRM agonist with an EC50 of 179 

nM. In a similar study, Poli et al. used an experimentally determined structure of OPRM 

in complex with morphinan antagonist β-funaltrexamine to generate a structure-based 

pharmacophore model for inverse agonist identification.118 Searching a library containing 

198,000 tetrapeptides with their generated pharmacophore model led to the identification 
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of 28,070 potential peptide ligands that were then filtered with a combination of 

molecular docking and a qualitative filters, resulting in a final set of 15 tetrapeptides to be 

screened. Ultimately, one of these (peptide 1) demonstrated inverse agonism of OPRM. 

Hit List Generation and Refinement 

Herein we have discussed multiple computational ligand- and structure-based 

approaches to identify novel ligands for GPCR. Whether a ligand- or structure-based VS 

workflow is employed, each method is typically utilizes database searching and hit list 

refinement as a means to select a refined set of compounds for experimental screening.  

Database Searching 

Once a molecular fingerprint, fragment-based lead, or pharmacophore model is 

generated, a database of compounds is then searched to identify candidates for in vitro 

screening assays or alternative lead compounds. Compounds within virtual screening 

databases are usually sourced either from in-house collections or from various chemical 

vendors.16 Examples of databases containing commercially available compounds 

commonly used in GPCR VS studies include ZINC,25 PubChem,119 and ChemSpider.120 

A variety of filters can be applied to compounds within a database to ensure that selected 

compounds meet specified criteria. These include filters for characteristics of 

bioavailable drugs (such as Lipinski’s rule-of-five95), physical descriptors (such as the 

number of rotatable bonds or polar surface area16), or filters to remove compounds with 

functional groups that commonly interfere with biological assays (such as pan-assay 

interference compounds121). 
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If a pharmacophore model or 3D descriptors are employed for compound 

identification, conformational sampling can be performed to reflect the conformational 

flexibility of compounds within the database. Conformational sampling is particularly 

important when using pharmacophore models, as they heavily rely on the conformational 

diversity of compounds stored in the search database.122 For any given VS study, the 

number of conformations required per compound will vary based on computational 

resources and the structural complexity (i.e. number of rotatable bonds) of compounds 

contained within the database. However, computational VS studies employing as few as 

10123 or 20124 conformations per compound have resulted in positive outcomes. 

Furthermore, studies by Cappel et al.125 and Sastry et al.126 demonstrated that a limited 

conformational search (a maximum of 10 conformers per molecule) can result in 

sufficiently high enrichment values. Conformational sampling is usually performed prior 

to a database search using stochastic methods implementing MD/Monte Carlo-simulated 

annealing or systematic methods that rely on the rigid rotor approximation and attempt to 

enumerate all torsions of a molecule.127 Alternatively, on-the-fly conformational 

sampling can also be performed128, though this process results in considerably slower 

database searching.87 

Hit List Refinement by Ligand Docking 

GPCR ligand identification studies often employ ligand docking to refine hit lists 

obtained from database searching based on likelihood of binding. Though a VS workflow 

may choose to screen all compounds identified with a database search, ligand docking 

serves as an additional means of resource management and compound filtration by 
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ensuring that compounds selected for experimental screening can plausibly bind a target 

of interest. 

In the context of a VS workflow, ligand docking begins with the selection of a 

target protein structure to dock selected compounds into. The structure chosen for 

docking can either be experimentally determined or modeled, depending on whether a 

protein target possesses a published experimentally determined structure. Once a 

structure is selected, structure preparation of both prospective ligands and protein is 

performed. In terms of ligand preparation, it is good practice to assess whether a 

compound’s tautomers, stereoisomers and protomers should be enumerated to ensure that 

the structure being docked is chemically sound.129 One should consider which of a 

compound’s tautomers and/or protomers are likely to be populated under the intended 

experimental screening conditions. Furthermore, prospective ligands with undefined 

stereochemistry should have stereoisomers enumerated. In addition to ligand preparation, 

protein preparation is equally important. Given that an overwhelming majority of 

currently resolved human class A GPCR structures were resolved with X-ray 

crystallography at resolutions >1 Å or cryogenic electron microscopy (474 of 475 

structures in GPCRdb19 as of July 18, 2022) where hydrogen atoms are not present, 

protonation of the target protein’s structure must be performed.129 Additionally, one must 

determine whether missing residues within a structure are unlikely to be involved in 

ligand binding (due to distance from the identified binding site). Alternatively, potentially 

missing residues that are likely to be involved in ligand binding should be modeled into 

the protein structure. Furthermore, one must decide whether active site water molecules 

known to play a significant role in protein-ligand interactions130 will be included in the 
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docking simulation. To date, active site water modeling remains a challenging aspect in 

protein-ligand docking due to the computational cost it presents and difficulties in 

accurately accounting for their interaction-mediating effects.131 

After protein and ligand structure preparation, a binding site at which to dock the 

ligand is established. While we briefly covered binding site selection in a previous 

section, we refer the reader to Waszkowycz et. al129 and Pagadala et al132 for more 

comprehensive reviews of various ligand docking methods and their placement 

algorithms.  

Compounds can be docked into a target protein active site once it is determined. 

Ligand docking methods consist of two components: a search algorithm that samples 

plausible, 3D conformations of small molecule ligands bound to a protein (herein referred 

to as poses) and a scoring function to evaluate the sampled poses.129 In the following 

sections, we describe methods of sampling ligand and protein flexibility during ligand 

docking. Subsequently, we provide a brief overview of pose scoring. 

Given that ligand binding events are often associated with conformational 

changes in both ligand and protein, ligand docking algorithms often incorporate methods 

of modeling conformational flexibility. One such approach is to generate molecular 

conformations of a compound prior to active site placement. Historically, this approach 

has been implemented when computing speed is a concern. This approach provides high 

efficiency when a set of candidate ligands will be docked to multiple target protein 

structures, thus sampling conformations once instead of multiple times. If candidate 

ligands are to be docked into a single target structure, on-the-fly conformational sampling 

can be performed during docking if computing speed is adequate.129 In general, on-the-fly 
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conformational sampling commonly utilizes systematic or stochastic searches to consider 

ligand flexibility.131 In a systematic search, all degrees of conformational freedom within 

a molecule are explored via bond rotation. Alternatively, stochastic methods use Monte 

Carlo, genetic algorithm, or Tabu Search methods to sample conformational space by 

performing random changes to a ligand that are then evaluated by a probability 

function.133 Alternatively, simulation methods such as MD or simulated annealing can be 

used to sample a ligand’s conformational space.133 For a more thorough description of 

methods sampling ligand flexibility, we refer the reader to a review by Yadava et al133  

In terms of modeling protein flexibility, docking algorithms have traditionally 

treated the receptor as conformationally rigid during the docking process due to the 

sizeable computational cost associated with sampling the conformational space of protein 

targets.26 However, multiple methods allowing for a limited degree of conformational 

flexibility in protein targets during the docking process have been developed as 

computing speeds have improved, including soft docking, side chain sampling, molecular 

relaxation, and ensemble docking. Soft docking allows for protein flexibility by softening 

interatomic van der Waals calculations during docking calculations. While soft docking 

provides the least computationally expensive method of modeling protein flexibility, it 

only accounts for small conformational changes.26 Protein flexibility can also be 

accounted for by incorporating side chain sampling, which uses a rotamer library to 

sample protein side chain conformations while maintaining a fixed backbone.134 

Molecular relaxation utilizes rigid-body docking followed by protein backbone and 

sidechain relaxation via Monte Carlo or MD simulations.26 When compared to other 

methods of modeling protein flexibility during ligand docking, molecular relaxation is 
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more time-consuming and demands more from a scoring function due to the inclusion of 

backbone sampling.26 The last approach, ensemble docking, docks a prospective ligand 

into multiple structures of the same protein target.26 In contrast to previously discussed 

methods of protein conformation sampling, ensemble docking forgoes structural 

perturbation and instead accounts for conformational variation through the use of 

different protein structures. Due to the use of multiple structures, analysis of ensemble 

docking results can be complicated. However, many ligand docking algorithms use grid-

based methods to combine structural information from multiple protein structures or 

incorporate methods of pose selection when performing ensemble docking.129 

While ligand docking algorithms are often able to generate poses that closely 

resemble biologically observed binding modes, a method of ranking and selecting poses 

generated by a ligand docking algorithms is necessary. Thus, the second component of 

ligand docking component involves the evaluation of generated poses using a 

mathematical scoring function. In practice, scoring functions allow for ligand binding 

mode identification, binding affinity prediction, and virtual database screening.133 In a VS 

context, scoring functions allow for the ranking of prospective screening compounds so 

that only the compounds with the “best” poses are selected for experimental screening. 

An ideal scoring function would recognize poses that resemble bioactive binding modes, 

distinguish between active and inactive poses, and correctly rank compounds based on 

binding affinity.129 However, a scoring function meeting all criteria would be 

computationally expensive. Consequently, current scoring functions employ many 

simplifications and assumptions to reduce computational complexity at the cost of 

accuracy.131 
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Classical scoring functions can be grouped into 3 categories: force field-based, 

empirical, or knowledge-based. In force field-based scoring, a well-parametrized, 

physics-based molecular force field expressing the energy of a system as a sum of non-

bonded terms (such as van der Waals energy, electrostatic potential, and bond 

stretching/bending/torsional energies) is used to score each pose.133 Major challenges 

with force field-based scoring functions include determining how to account for solvent 

and entropic effects, both of which energetically contribute to ligand binding.131 While 

solvation energy is often accounted for using a distance-dependent dielectric constant to 

reflect the effect of water on electrostatic interactions, accounting for entropic effects 

remains a challenge with force-field based scoring functions.26 Examples of force field-

based scoring functions commonly used in ligand docking include COMBINE135, 

GoldScore136, and MedusaScore.137 

Empirical scoring functions, on the other hand, represent “softer” energies than 

their physics-based counterparts and approximate binding energies by relating 

experimental ligand binding data to descriptors derived from a given protein-ligand 

complex.129 Although force field- and empirical-based methods both decompose protein 

ligand binding into individual terms, empirical-based scoring functions use individual 

terms that are weighted by fitting the scoring function to experimental binding constants 

observed in protein-ligand complexes with  multivariate linear regression or partial least-

squares analysis.138 While these regression-based scoring functions are fast to compute, 

they are often limited by the availability and consistency of ligand binding data compiled 

from different sources.129 Examples of empirical scoring functions include GlideScore139, 

Böhm’s scoring function140, and Chem-SCORE.141 
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The last of the 3 types of classical scoring functions, knowledge-based scoring, 

derives its parameters from structural information extracted from experimentally 

determined protein-ligand complexes.26 In contrast to force field-based and empirical 

scoring functions, knowledge-based scoring functions avoid the use of ligand binding 

affinities and instead use the distribution of distances between pairs of ligand and protein 

atom types to generate a potential of mean force.129 As a result, the energy of a docked 

pose in complex with a protein structure is simply the sum of interaction terms for all of 

its protein-ligand atom pairs in the complex.26 Since knowledge-based scoring functions 

extract energy potentials from experimentally determined structures and thus do not rely 

on reproducing known affinities by fitting, they are thought to be quite robust.133 

However, knowledge-based scoring functions have not proven to be as successful as 

force field- or regression-based scoring functions in the context of virtual screening.129 

Examples of knowledge-based scoring functions include DrugScore142, SMoG143, and 

Muegge’s Potential of Mean Force.144 

As an alternative to classical scoring functions, machine learning scoring 

functions have recently become popular as a method of calculating binding energies 

during the ligand docking process. Rather than assuming a functional form to relate 

binding affinities and structural features, these scoring functions train machine learning 

models on protein structures in complex with either known active or inactive compounds 

that are then used to distinguish potential active compounds from inactive compounds.145 

In recent years, machine learning scoring functions have demonstrated the ability to 

predict binding affinities with a high degree of accuracy when redocking cognate ligands 

into their experimentally determined structures and have exhibited success in the realm of 
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SBVS.146 Additionally, machine learning scoring functions have been shown to 

outperform classical scoring functions such as GlideScore139 and X-Score147 when 

applied in a VS context.148,149  However, target-specific machine learning scoring 

functions have been subjected to scrutiny for their poor consistency when applied to 

multiple biological targets150,151, resulting in additional sets of guidelines being suggested 

for their implementation.146,152 Examples of machine learning scoring functions include 

RF-Score153, NNScore154, and SFCscore155. 

Conclusions 

Over the past few decades, GPCR have become prominently studied drug targets 

due to their involvement in many cell signaling pathways involved in both normal 

physiology and disease development. Despite their therapeutic importance, the discovery 

of novel ligands to serve as lead compounds for these targets in drug discovery efforts is 

often impeded by a lack of information concerning structure and ligand binding 

information. However, the development of a plethora of computational methods has 

helped to overcome these obstacles. With this review, we have shown how structure 

modeling, ligand- and/or structure-based approaches to candidate ligand identification, 

and hit list generation and refinement through database searching and ligand docking 

assist in each facet of the GPCR ligand discovery process. 

Since we have discussed many approaches to GPCR ligand identification, we 

wish to set forth basic workflows implementing different techniques discussed in this 

review. Given that the number of known ligands and/or the availability of experimentally 

determined structures can vary depending on the target, it is good practice to first 

determine if a selected target GPCR possesses known ligands and/or an experimentally 
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determined structure. If enough ligands are known for the target, then LBVS techniques 

such as ligand-based pharmacophore modeling and similarity searching can be used to 

can be employed to identify structural commonalities or interaction patterns that serve as 

search queries for the elucidation of screening candidates via database searching (Figure 

1.2A). If the target possesses an experimentally determined structure, then SBVS 

techniques such as FBDD and structure-based pharmacophore modeling can be used to 

probe the structure’s binding site and formulate search queries that can be used to identify 

screening candidates with database searching (Figure 1.2B). If the target lacks known 

ligands as well as an experimentally determined structure, homology modeling followed 

by subsequent ECL2 refinement can be used to generate a modeled structure. Once a 

structure is obtained for the target, structure-based methods such as FBDD and structure-

based pharmacophore modeling can be used to identify screening candidates with 

database searching. Once an initial list of screening candidates is identified, the number 

of compounds being considered can be refined via binding mode prediction with ligand 

docking. After the selection of a finalized list of compounds that best complement the 

target based on in silico experimentation, selected compounds can be experimentally 

screened for activity against the target. 

While the workflows laid out herein address 3 types of information deficits that 

are typically encountered in computational GPCR ligand discovery, they are not meant 

describe the full extent to which various techniques can be applied in computational 

ligand discovery. For example, ligand discovery for a target that lacks an experimentally 

determined structure but possesses known ligands is not limited to the ligand-based 
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techniques described in Figure 2A, as homology modeling can be implemented to 

generate a structure that allows for a structure-based approach to ligand discovery.  

It is important to acknowledge the fact that computational methods, while useful, 

do not represent a perfect solution to GPCR ligand discovery. After all, computational 

methods are merely simulations of chemical processes observed in biological settings. 

For any given GPCR ligand discovery workflow, in silico experiments must still be 

coupled to wet lab experimentation to ensure the best outcomes. However, this does not 

discredit the importance of computational methods in the GPCR ligand discovery 

process. In the future, we look forward to the development of increasingly accurate 

computational methods applicable to GPCR ligand discovery that build upon current 

methods and incorporate novel aspects of bioinformatics, cheminformatics, and deep 

learning. Nonetheless, we believe that computational methods will continue to play an 

important role in GPCR ligand discovery and result in the identification of novel ligands 

for many understudied GPCR targets. 
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Chapter 2  

Benchmarking GPCR homology model template selection in combination with de 

novo loop generation 

Introduction 

G Protein Coupled Receptors (GPCR) are involved in a multitude of cellular 

signaling pathways. When GPCR signaling is dysregulated, diseases such as cancer, 

diabetes, and nervous system disorders can manifest.1 About 34% of FDA-approved 

drugs target GPCR, reflecting their physiological roles in the regulation and development 

of disease.10  

Structurally, GPCR consist of 7 transmembrane (TM) helical domains, 3 

extracellular and 3 intracellular loops that connect the membrane spanning domains, an 

extracellular amino terminus and an intracellular carboxy terminus.3  The Ballesteros-

Weinstein numbering scheme is often used to relate structurally similar sites among 

different GPCR sequences and classes.156  In this scheme, the most conserved residue 

within a transmembrane helix is denoted as the TM.50 residue and other residues within 

the same domain are numbered relative to this position. For example, the most conserved 

residue within class A GPCR transmembrane helix 3 is an arginine, thus it is identified as 

R3.50. An alanine located 5 amino acids prior to the reference arginine (i.e. nearer the 

amino terminus) would be A3.45.  

Of the more than 800 GPCR encoded within the human genome157, only 70 are 

represented in the Protein Data Bank158 by experimentally determined, three-dimensional 
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structures as of April 27, 2020. The lack of experimentally resolved structures for many 

GPCR has led to the use of computational modeling as a GPCR structure prediction tool. 

Despite this trend, GPCR modeling is not without challenges and critical decision points, 

including but not limited to, template structure selection and template-target alignment. 

Additional challenges in GPCR modeling include effectively sampling and selecting 

conformations for the extracellular loop (ECL) and intracellular loop (ICL) regions of the 

target receptor.  Accurately modeling the second ECL region of GPCR models likely 

impacts applications aimed at investigating ligand binding, whereas the ICL region likely 

impacts applications targeting recognition of intracellular signaling partners and G 

protein selection and activation.  Homology modeling, frequently used to model receptors 

with unresolved structure, is rooted in the theory that proteins with similar amino acid 

sequences and common function possess similar structures due to common evolutionary 

origins.23 A receptor with high amino acid sequence identity (and similar function) is 

typically chosen as the template upon which a target receptor sequence is to be modeled. 

Amino acid identities higher than 30% in these applications are generally considered 

acceptable.159 However, selecting a template based solely on global sequence identity 

may not emphasize GPCR regions most relevant to the purpose for which the models are 

being generated.35 For example, if the goal is to study GPCR interactions with G-

proteins, prioritizing intracellular loop sequence homology would most likely produce 

better models than homology models generated using templates with high ligand binding 

pocket similarity. The opposite is true for ligand docking studies. Our recent study 

challenged the conventional use of global sequence identities for GPCR template 

selection. In that study CoINPocket scores developed by Ngo et al.33 were utilized to 
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select templates with which to build GPCR homology models.35 The CoINPocket 

comparison bases its scoring on the importance and strength of individual ligand-residue 

interactions across a representative set of class A GPCR and was used to find closely 

related pharmacological receptor “neighbors” as a ligand identification strategy.33 In the 

previous work, models using templates selected using CoINPocket similarities were 

compared to homology models constructed from templates selected using conventional 

global sequence identity metrics. The resulting homology models were evaluated in terms 

of their overall structural similarity and the similarity of docked poses to the reference 

crystal structures.35 Homology modeling based on CoINPocket nearest neighbors resulted 

in models with greater docked ligand pose accuracy than models whose templates were 

selected based on global sequence similarity alone, although overall similarity of the 

protein models to the crystal structure did not differ substantially.35 

Of the characteristic GPCR regions, extracellular loop 2 (ECL2) is often the 

longest and most variable in terms of both length and amino acid composition.29 This 

length produces intrinsic flexibility.  In addition, ECL2 often contributes to GPCR ligand 

binding and selectivity.160 Site-directed mutagenesis within the ECL2 region can produce 

drastic changes in ligand binding activity (such as in the human histamine H4 receptor 

(H4R)), demonstrating the role ECL2 can play in recognizing and binding ligands.161 A 

recent review published by Woolley et al. discussed the various structural impacts of 

ECL2 on ligand binding.52 In certain GPCR such as rhodopsin, sphingosine-1-phosphate 

receptor 1 (S1P1), and free fatty acid receptor 1 (FFAR1), the intrahelical space between 

transmembrane domains is open in absence of a bound ligand. However, upon ligand 

binding, ECL2 and the N-terminal domain form a “lid” that covers the binding site, 
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forming a more stable ligand-receptor complex that results in slower ligand dissociation. 

In other GPCR such as peptide-binding receptors, the β-hairpin ECL2 structure remains 

open during a ligand binding event.52 A disulfide bond between conserved cysteine 

residues 3.25 in transmembrane domain 3 (TM3) and 45.50 in ECL2 often contributes to 

receptor stabilization, and removal of this bond using site-directed mutagenesis has 

proven detrimental to GPCR ligand binding.29 The structural variability of ECL2 is 

typically addressed by loop modeling, wherein loop conformations can be 

computationally sampled using de novo approaches to best describe loop structure in 

three dimensions.162 In another of our previous benchmark studies, ECL2 was modeled in 

the context of crystallized receptor structures (using accurate loop anchor residues) as a 

method of testing the structural accuracy of loops generated with a variety of loop 

modeling methods.24 This study identified the kinematic loop closure with fragments 

(KICF) algorithm within Rosetta58 as most frequently sampling GPCR loop 

conformations within a 2.5 Å RMSD of the reference crystal structure.24 While loop 

modeling within crystallized receptor structures is not generally needed unless the loop 

region has unresolved atomic coordinates, the results of the benchmark in question 

suggest a preferred method for loop structure prediction within the context of a homology 

model. 

The current benchmark study assessed a combination of previously benchmarked 

modeling choices with new variables on the accuracy of docking into GPCR homology 

models. The previously benchmarked local similarity-guided template selection and loop 

modeling protocols are assessed in combination with the presence or absence of the 

template ligand while modeling the target receptor, as well as three distinct methods of 
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ligand docking. We speculated that inclusion of a ligand from the template receptor 

during the modeling process would produce better quality receptor models and docked 

ligand poses, as closely-related GPCR often share ligands and ligands within different 

GPCR often contact similar residues.33 A set of 10 crystallized class A GPCR were 

subjected to this analysis (Figure 2.1), with a subset of receptors being used to analyze 

various docking methods in addition to the protein modeling process. The 10 GPCR 

employed in this study were: angiotensin type II receptor (AT2R), chemokine receptor 

type 4 (CXCR4), free fatty acid receptor 1 (FFAR1), histamine receptor 1 (H1R), 

muscarinic receptor 1 (M1), muscarinic acetylcholine receptor 4 (M4R), nociceptin 

opioid receptor (NOP), kappa opioid receptor (OPRK), P2Y purinoceptor 12 (P2Y12), 

and protease-activated receptor 1 (PAR1). Performance of this GPCR modeling 

workflow was benchmarked using root mean square deviation (RMSD) of alpha carbon 

positions after superposition of each protein model on its respective reference crystal 

structure to assess protein model quality and two ligand pose quality metrics: 1)  RMSD 

of ligand atomic positions after superposition of each docked complex on the 

crystallographic complex; and 2) Tanimoto coefficients representing the proportion of 

common ligand interaction sites in the modeled and crystallographic complexes.  
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Figure 2.1. Homology modeling/loop modeling protocol. 

The long-term goal of the current research is to optimize a modeling protocol to 

investigate GPCR complexes for any target GPCR sequence.  Potential applications of 

this modeling protocol include prioritization of candidate ligands for experimental 

screening and generation of hypotheses regarding receptor sites involved in ligand 

binding to be tested by subsequent site-directed mutagenesis.  Improved accuracy in 

candidate ligand prioritization will help accelerate receptor deorphanization11 and help 

improve the identification of chemical tool compounds to probe receptor function or to 

serve as preclinical lead compounds in the drug discovery process. Overall, this work 

demonstrates that the integration of loop modeling with homology models constructed 

from locally selected template structures produces better receptor models (0.43 Å average 

RMSD decrease), as well as better docked ligand poses (2.13 Å average ligand RMSD 

decrease) than non-loop modeled local template homology models. In addition, this work 

exhibits that inclusion of a pharmacological neighbor receptor’s ligand throughout the 

receptor modeling process produces a greater proportion of high quality docked 

complexes than receptors modeled without a ligand present (30% of best docked poses 

exhibited RMSD ≤ 4.5Å when selected via ligand complementation). 
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Results and Discussion 

Homology Model Template Selection 

A summary of target and template GPCR, the local similarity measure 

(CoINPocket score), GenBank accession numbers, and PDB identification codes used in 

this study can be found in Table 2.1. Local templates used for the homology modeling of 

GPCR target proteins were selected from a pool of GPCR with available crystal 

structures using the CoINPocket local similarity measure.33,158 GPCR from the same 

subfamily as the target were excluded as templates, for example, C-C chemokine receptor 

type 5 (CCR5) was not selected as a template from which to model CXCR4. Four 

receptors were modeled using two different target-template pairings so models of the 

same receptor with differing template structures (and therefore different local similarity 

scores) could be compared.  

According to the CoINPocket scores set forth by Ngo et al., any receptor 

compared to itself has a GPCR-CoINPocket score of 5.47.33 This self-similarity 

establishes a maximal binding pocket similarity score for target sequence/template 

receptor pairs. It should be noted that a higher local similarity score does not always 

translate to a high global unweighted sequence similarity and vice versa. Local similarity 

scores used herein ranged from 1.23 (M4R/NOP) to 2.58 (M1/H1R), indicating that the 

binding site residues were not perfectly conserved between receptor pairings but still 

shared appreciable residue conservation. Unweighted global sequence identities ranged 

from 7% (FFAR1/P2Y12 and P2Y12/PAR1) to 36% (M1/H1R).  Percent identities at the 

low end of this range would generally be considered unacceptable for the purpose of 
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constructing homology models unless substantial further refinement (such as loop 

modeling) were included in the workflow. 

Table 2.1. GenBank accession numbers and PDB ID numbers for GPCR used in this 
study. 
aCompared to the maximal self-similarity measure of 5.47. A pairing of two receptors 
with a local similarity score of 5 would indicate a near 100% ligand binding pocket 
similarity, while a receptor pairing with a local similarity score of 1 or less would 
indicate low ligand binding pocket similarity. 

Receptor 
Local 
Template 

Local 
Similarity 
Measurea 

Unweighted 
Global 
Similarity 
(%) 

GenBank 
Accession 
Number 

Target 
PDB ID 

Template 
PDB ID 

AT2R CXCR4 1.72 31.43 P50052.1 5UNH163  3OE6  

AT2R DP2 2.21 33.99 P50052.1 5UNH 6D26164 

CXCR4 AT2R 1.72 31.43 CAA12166.1 3OE6165 5UNH 

FFAR1  P2Y12 1.42 7.09 AAI20945.1 5TZR166 4PY0 

H1R OPRK 1.93 20.31 P35367.1 3RZE167 4DJH 

H1R M1 2.58 35.98 P35367.1 3RZE  5CXV168 

M1 H1R 2.58 35.98 CAA68560.1 5CXV  3RZE 

M4R NOP 1.23 14.41 P08173.2 5DSG168 4EA3 

M4R H1R 2.46 34.37 P08173.2 5DSG 3RZE 

NOP M4R 1.23 14.41 NP_872588.1 4EA3169 5DSG 

OPRK  H1R 1.93 20.31 AAC50158.1 4DJH170 3RZE 

PAR1 P2Y12 1.78 16.26 N/A 3VW7171 4PY0 

P2Y12 FFAR1 1.42 16.26 Q9H244.1 4PY0172 5TZR 

P2Y12  PAR1 1.78 7.09 Q9H244.1 4PY0  3VW7 
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Protein Model Development and Analysis 

Homology models developed in this study were benchmarked against 

crystallographic reference structures. In order to place these comparisons in the 

appropriate context, RMSD values between different PDB entries for the same receptor 

were calculated (Table 2.2) to set a baseline for experimental variability. On average, the 

experimental alpha carbon variation among multiple structures of the same receptor was 

1.75 Å, which sets a range of expectations for models generated using our methodology.  

Our expectation is that models that differ from the target crystal structure by no more 

than 2 times the average experimental variation, or 3.5 Å, should be considered high 

quality models.  

Table 2.2. Variation among experimental structures for each receptor used as a 
template and/or target in this study. 
aHighest alpha carbon RMSD between any two structures for each receptor. RMSD was 
calculated using an alpha carbon superposition between residues present within all PDB 
entries for each receptor. Receptors with a value of “N/A” had only one crystal structure 
available at the time of this research. 

Receptor Entries in PDB Variation (Å)
a
 

AT2R 5UNH, 5UNG, 5UNF, 6DO1, 5XJM 1.78 
CXCR4 3ODU, 3OE0, 3OE6, 3OE9, 4RWS 1.35 
DP2 6D26, 6D27 0.49 
FFAR1 4PHU, 5TZR, 5TZY 1.34 
H1R 3RZE N/A 
M1 5CXV, 6OIJ 2.35 
M4R 5DSG N/A 
NOP 4EA3, 5DHG, 5DHH 0.70 
OPRK 4DJH, 6B73 3.29 
P2Y12 4NTJ, 4PXZ, 4PY0 2.67 
PAR1 3VW7 N/A 
Average 

 
1.75 
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Homology models were constructed in MOE using two different model selection 

settings, Generalized Born Solvation (GBVI) scoring173 and contact energy.174  The latter 

produced models with binding pockets that better matched ligand locations in GPCR 

crystallographic complexes in terms of location and volume based on the Alpha Shapes 

methodology discussed in the methods section. This is illustrated using the M1 receptor 

in Figure 2.1 (ligand structure 3 shown in Figure 2.2). 

 

Figure 2.2. Names and structures of ligands docked into protein models. 

The first line of text represents an abbreviated description of the ligand, name of the 
receptor, and PDB entry code in the PDB.  The subsequent lines provide the IUPAC 
name of the ligand. 
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Two approaches were used to generate homology models to be used as the 

starting points for loop modeling and in ligand docking experiments.  Both approaches 

produced eleven homology models for each target:template GPCR pairing modeled using 

the default modeling options in MOE, with the exception of selecting effective atomic 

contact energy as the scoring method. Approach A included no ligand in the binding 

pocket of the template receptor and was applied to all pairings in Table 2.1. Approach B 

was applied only to the target:template pairing with the higher CoINPocket score for each 

target receptor and retained the crystallographic ligand from the template receptor and 

utilized this ligand as an ‘Environment for Induced Fit’.56 

Software packages and algorithms for ECL2 loop modeling in the context of 

GPCR crystal structures have been previously benchmarked, with the best performance 

achieved by Rosetta’s kinematic closure with fragments (KICF) algorithm.24  In the 

current study, KICF was used to sample ECL2 conformations in the context of homology 

models generated by approaches A and B with no ligand present in the binding pocket, 

herein referred to as loop modeling approaches A1 and B1, respectively.  Additionally, 

KICF was used to sample ECL2 conformations in the context of homology models 

generated by approach B with ligand present during the loop modeling process (overall 

process of protein model generation with ligand present through both modeling steps 

considered approach B2). 

For each set of loop modeling results, the ten lowest-scored models with 

intersulfur (Cys 3.25-Cys 45.50) distances ≤ 5.1 Å were selected for further examination. 

Each of the ten loop modeled structures and the local template homology model was 

superposed on the reference crystal structure using non-loop residues, followed by 
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calculation of alpha-carbon receptor RMSD values for the entire structure (Figures 2.3 

and 2.4 and Tables A.1 and A.2) and ECL2 region (Tables A.3 and A.4). 

 

Figure 2.3. Alpha carbon receptor RMSD values for the homology models generated 
with and without loop modeling for three different modeling approaches. 

(A) Approach A1, (B) Approach B1, (C) Approach B2. The dashed line appearing in each 
plot represents our receptor model quality metric of 3.5 Å. 
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Figure 2.4. Alpha carbon receptor RMSD values relative to crystallographic 
reference structures for receptor models generated by approach A1 with and 
without loop modeling for receptors modeled using two templates of varying local 
similarity score. 

A representative superposition of a local template homology model on the 

reference crystal structure is shown in Figure 2.5. Superpositions of loop modeled 

structures on reference crystal structures are shown in Figure 2.6. 

 

Figure 2.5. Lowest RMSD P2Y12 homology model constructed from PDB 3VW7  
superposed on reference crystallographic structure (PDB 4PY0). 

A) View from within membrane plane of P2Y12 local template homology model 
(magenta) and lowest RMSD loop modeled local template homology model (cyan) 
superposed over the crystallized reference structure (orange). B) Extracellular view of 
the same superposition.  C) Ribbons for TM4-ECL2-TM5 segments only shown from 
same viewpoint used in panel A. 
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Figure 2.6. The lowest RMSD model of the top 10 scoring ECL2 models (cyan) and 
local template homology model (salmon) was superposed onto the crystallized 
reference structure (green). 

Loop RMSD values can be found in Tables 2.5 and 2.6. (A) CXCR4 based on PDB 
5UNH, (B) FFAR1 based on PDB 4PY0, (C) M1 based on PDB 3RZE, (D) NOP based on 
PDB 5DSG, (E) OPRK based on PDB 3RZE, (F) P2Y12 based on PDB 3VW7. 

Note that RMSD values for local template homology models are different from 

the values discussed in the prior benchmark35, as the homology models discussed therein 
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were chosen based on GBVI scoring rather than effective atomic contact energies. Alpha 

carbon RMSD values for models generated using approach A1 based on the highest-

similarity templates ranged from 2.76 (M4R) to 6.32 Å (FFAR1) with an average of 4.34 

Å (Table A1 and Figure 2.3a). Initial homology models for three target:template pairings 

achieved our high quality metric of 3.5 Å, H1R (3.15 Å), M1 (2.93 Å), and M4R (2.76 

Å). While these receptor RMSD values are not sub-angstrom (<1.0 Å) or near-atomic 

(<2.5 Å), comparison of the generated RMSD values to structural variation within 

crystallographic structures for each receptor allows for a better examination of model 

quality (Table 2.2). For example, the best scoring initial homology model for P2Y12 had 

an alpha carbon RMSD of 4.07 Å, which falls within 2.32 Å of the average variation 

present in crystallized structures and within 1.4 Å of the observed 2.67 Å variation 

between the most diverse pair of P2Y12 PDB entries, indicating that models being 

generated with the methodology discussed thus far are adequate representations of the 

receptors being modeled. Loop modeling led to substantial improvements in model 

quality in two cases, FFAR1 and OPRK.  In these cases, a loop-modeled structure was 

2.27 Å and 1.24 Å lower in RMSD relative to the crystallographic reference structure. 

There were no cases in which loop modeling resulted in a substantial (>0.25 Å) loss of 

protein model quality. 

Four receptors were modeled using two different templates (AT2R, H1R, M4R, 

P2Y12, Table 2.1). Initial homology model alpha carbon RMSD values were lower for 3 

of 4 receptors (H1R, M4R, P2Y12) when modeled with a more similar template (Figure 

2.4, Table A2), indicating that the use of a template with a higher local similarity score 

leads to better homology models. The largest difference in initial homology model 
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quality due to template choice was for the P2Y12 receptor, for which the distribution of 

alpha carbon RMSD values for loop optimized models based on the low and high 

similarity templates are significantly different based on the Kolmogorov-Smirnov test at 

95% confidence.  The lower similarity template, FFAR1 (PDB entry 5TZR) has an 

unusual ligand binding mode that involves ligand insertion between TM segments 3 and 

4, with a resulting offset of TM3 relative to other known GPCR structures (Figure 2.7). 

 

Figure 2.7. All atom superposition of crystal structures used in this study with 
segments of TM3 and TM4 highlighted (green: FFAR1, red: all other receptors) to 
showcase the unusual binding mode of FFAR1. 

The bound conformation of ligand MK6 within FFAR1 is highlighted in green as well. 

Thus, the dramatic difference in P2Y12 model quality reflected in the over 4 Å RMSD 

difference is likely less a consequence of similarity differences than in the truly unusual 

structure features of the FFAR1 crystal structure relative to all other currently known 

GPCR structures.  Loop modeling provided substantial improvements in three of four 

receptors modeled based on lower similarity templates (H1R, M4R, P2Y12) without 
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detrimental impact in other cases, indicating the value of loop modeling for its potential 

to produce improved receptor models. This is further supported by the observation that 

distributions of loop optimized model RMSD values between low and high similarity 

templates are not significantly different for H1R or M4R based on the Kolmogorov-

Smirnov test at 95% confidence.  This suggests that loop modeling can compensate in 

some cases for differences in initial model quality. 

The effect of including the template ligand only during homology modeling 

(approach B1) or during both homology modeling and loop modeling (approach B2) was 

also assessed (Figure 2.3 and Table A1) Initial homology models generated using the 

‘Environment for Induced Fit’ option via approach B1 possessed similar average receptor 

RMSD values to models created by approach A1 (4.24 Å vs. 4.34 Å, respectively), 

indicating that inclusion of a binding pocket ligand during the homology modeling 

process did not substantially impact protein model quality. Loop modeling produced 

improved models in a similar number of cases by all approaches. 

Ligand Docking and Analysis 

Three docking methods were compared in this study: MOE induced fit, MOE 

rigid receptor, and Rosetta docking.  These methods were first assessed for their 

performance in redocking ligands (Figure 2.2) into six reference crystal structures. In 

order to compare the docked ligand poses generated by each method to the 

crystallographic ligand positions, ligand RMSD (LRMSD) values were calculated using 

MOE. Though LRMSD values are an output of Rosetta’s ligand docking process, 

LRMSD values reported here were calculated in MOE to ensure that a consistent 

superposition process was used prior to LRMSD calculation. Rosetta performed worst of 
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the three methods when docking into crystallized receptor structures.  No poses produced 

possessed LRMSD values under 3 Å (Table A5), in contrast to poses with LRMSD under 

2 and 3 Å in 5 of 6 cases produced by the MOE rigid and induced fit docking, 

respectively, in a previous benchmark.35 

These docking algorithms were further assessed by docking ligands (Figure 2.2) 

into models from approach A1. Examples of poses produced by each docking method can 

be found in Figure 2.8.  

 

Figure 2.8. An example of CXCR4 ligand 1 docked using three different methods 
with the lowest LRMSD pose shown. 

Ligand superpositions of poses docked into CXCR4 models based on PDB 5UNH 
(magenta) and crystallographic reference (PDB 3OE6, green) are shown for three 
docking methods: MOE induced fit (panel A), MOE rigid receptor (panel B), and Rosetta 
(panel C). 

The ability of each method to sample docked poses similar to the crystal structure was 

assessed using the pose with the lowest LRMSD value resulting from each method 

(Figure 2.9). 
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Figure 2.9. Ligand RMSD (LRMSD) values calculated in comparison to the 
crystallized reference structure for three different docking methods employed in the 
context of approach A1 models. 

The dashed line appearing in each plot represents our docking performance target of 4.5 
Å.  (A) Lowest RMSD value found within the retained ligand poses for each method. All 
methods sampled 10,000 ligand poses per receptor (1000 per model).  Both MOE 
Induced Fit and MOE Rigid retained 50 ligand poses per receptor (5 per model) and 
Rosetta retained all ligand poses. (B) Lowest LRMSD value within the top 10 scoring 
ligand poses. (C) Lowest LRMSD value within the top 10 poses based on adjusted 
percent complementation score. 

In addition, LRMSD averages without FFAR1 were calculated as all ligand poses for this 

receptor had LRMSD above 7 Å (Table A5), which can most likely be attributed to the 

unusual ligand binding mode in the crystallized reference structure (Figure 2.7).  The 

distribution of LRMSD values was not significantly different at the 95% confidence level 

between methods based on a Kolmogorov-Smirnov test. However, guidance on docking 

protocol selection can still be drawn on the basis of the proportion of results meeting a 

performance target.  In this case, a docking performance target LRMSD of 4.5 Å was set 

as a reasonable increase of 1.5 Å higher than the majority of re-docking results for MOE 
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induced fit. The best ligand poses sampled with MOE induced fit docking met our 

performance target in 4 of 6 cases while both MOE rigid and Rosetta docking sampled 

best poses ≤ 4.5 Å in only 2 of 6 cases (Figure 2.9, Plot A), indicating that MOE Induced 

Fit docking sampled quality poses most often. This holds true when considering average 

LRMSD values without FFAR1 as well: the average MOE induced fit best pose LRMSD 

averaged 4.35 Å, lower than both MOE rigid (4.93 Å) and Rosetta (4.45 Å) docking 

(Table A5). The best poses produced by MOE rigid receptor docking typically had the 

highest LRMSD values (all receptors except NOP, Figure 2.9), illustrating the importance 

of flexible residue side chains in sampling ligand poses representative of the 

crystallographic ligand pose. This can likely be attributed to the differences between the 

homology modeled structures and the crystallographic reference structures, as MOE rigid 

docking performed well at re-docking ligands into crystal structures in a previous 

benchmark study.35 

When a crystallographic reference is not available, ligand poses must be selected 

based on available information from the docked pose alone, rather than determination of 

LRMSD using a reference structure. Ligand poses are typically selected in such cases 

based on pose scores. In order to measure scoring performance of the docking methods, 

the lowest LRMSD among the top 10 scoring ligand poses using either the scoring 

function associated with the method (T10) or a complementation scoring method (T10 

Comp) for each receptor was determined (Figure 2.9 panels b and c, Table A5). The 

distribution of LRMSD values was not significantly different at the 95% confidence level 

between pose selection methods based on a Kolmogorov-Smirnov test. However, 

guidance on pose selection methods can still be drawn based on differences in average 
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results.  Average T10 Comp values for MOE induced fit, MOE rigid, and Rosetta 

docking across the subset of six receptors were 5.94, 8.05, and 6.62 Å, respectively. 

Average T10 values for the same methods were 6.23, 8.31, and 7.59 Å, respectively. The 

T10 Comp values were lower by 0.29, 0.26, and 0.97 Å, respectively. These data support 

two conclusions: 1) that pose selection using complementation scoring provided a slight 

decrease in LRMSD regardless of the docking method used to generate the poses, 

although the differences were not significant based on the Mann Whitney U test and 2) 

selected poses from MOE induced fit docking had lower LRMSD than those selected 

from the other docking methods (significant difference at the 90% confidence level 

achieved only for the induced fit versus rigid comparison based on the Mann Whitney U 

test). 

Comparisons of docked poses for receptors shared between the current and 

previous benchmark studies35 demonstrate the value of including loop modeling in the 

protein modeling protocol. Induced fit poses (derived from approach B2) selected by 

complementation score in the current study (Table A6) had an average LRMSD of 6.20 Å 

and an average Tanimoto coefficient of 0.52 in contrast to the prior study with an average 

LRMSD of 10.44 Å and an average Tanimoto coefficient of 0.31. Thus, docking results 

are improved by sampling ECL2 loop conformations after homology modeling.  

Ligands were docked into four sets of receptor models generated using modeling 

approach A1 based on two different templates (Figure 2.10 and Table A7).  
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Figure 2.10. Comparison of MOE induced fit docking poses and crystallographic 
ligand poses for receptors modeled using two templates when docked into approach 
A1 receptor models. 

(A) Lowest LRMSD docked pose obtained from docking into the top 10 scoring loop 
refined homology models (black) and best T10 comp LRMSD (grey) for each receptor. 
(B) Calculated Tanimoto coefficients corresponding to the aforementioned docked poses. 

In three out of four cases, a lower LRMSD value and higher Tanimoto coefficient was 

obtained for the best pose sampled when docking into the models based on higher 

similarity templates.  In every case pose selection based on complementation score (as 

evidenced by T10 Comp LRMSD values) selected lower RMSD poses (three of the four 

also with higher Tanimoto coefficients) from docking into models based on the higher 

similarity template. However, distributions of selected pose RMSD value or Tanimoto 

coefficients between the high and low similarity templates were not significantly 

different at the 95% confidence level based on the Kolmogorov-Smirnov test, likely due 

to the comparison of only four cases.  
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MOE induced fit docking was used to dock ligands into models based on the 

highest CoINPocket scored templates generated using modeling approaches A1, B1 and 

B2 (Figures 2.11 and 2.12, Table A6). 

 

Figure 2.11. Ligand RMSD values for ligand poses docked into receptor models 
generated using three different receptor modeling approaches.  

The dashed line appearing in each plot represents our pose quality metric of 4 Å. (A) 
Approach A1, (B) Approach B1, (C) Approach B2. 
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Figure 2.12. Tanimoto coefficients for ligand poses docked into receptor models 
generated using three different receptor modeling approaches. 

The dashed line appearing in each plot represents our Tanimoto coefficient target of 0.6. 
(A) Approach A1, (B) Approach B1, (C) Approach B2. 

These results were assessed using two metrics, LRMSD (Figure 2.11) and Tanimoto 

coefficients (Figure 2.12). The distributions of selected pose RMSD value or Tanimoto 

coefficients between the methods were not significantly different at the 95% confidence 

level based on the Kolmogorov-Smirnov test.  However, comparison of results guided by 

a target LRMSD threshold of 4.5 Å or lower for high-quality poses, coupled with a 

Tanimoto coefficient of 0.6 or greater (at least 60% of ligand contact residues shared) 

does provide some guidance for protocol selection.  Based on these targets, approach B2 
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coupled with complementation scoring for pose selection can be clearly identified as the 

best protocol for obtaining high quality ligand poses when using homology models in 

docking studies.  In particular, docking into three of the targets sampled a pose that met 

both of these thresholds, and the complementation scoring included a pose that met both 

thresholds in all three cases. Approaches A1 and B1 yielded zero cases in which both 

thresholds were met after pose selection. Overall, homology modeling and loop modeling 

with a template protein ligand present produces target protein ligand poses that meet 

performance goals for a greater proportion of docking targets than in the absence of the 

template protein ligand. Thus, we recommend the use of receptor modeling approach B2, 

wherein a template ligand is present throughout both homology modeling and loop 

modeling of the target receptor. 

Conclusions 

The overall goal of the work described here was to assess a combination of 

previously benchmarked modeling choices with new variables on the accuracy of 

docking into GPCR homology models.  The previously benchmarked local similarity-

guided template selection and loop modeling protocols are assessed in combination with 

the presence or absence of the template ligand while modeling the target receptor as well 

as three distinct methods of ligand docking.   

Loop modeling led to substantial improvements (>1 Å decreases in alpha carbon 

RMSD compared to the crystallographic reference structure) in protein model quality in 

two cases by all three protein modeling approaches, FFAR1 and OPRK (Figure 2.3, 

Table A1). There was only one case in which loop modeling caused a substantial 

reduction in protein model quality (PAR1 modeled with a P2Y12 ligand as environment 
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for induced fit). Loop modeling also provided substantial improvements in three of four 

receptors modeled based on lower similarity templates without detrimental impact in 

other cases (Figure 2.4), indicating the value of loop modeling for its potential to produce 

improved receptor models.  The refined ECL2 regions of each receptor also played a role 

in producing more accurate ligand poses, as evident by the average 2.59 Å decrease in 

LRMSD (from 7.72 Å to 5.13 Å) and 0.1 increase (from 0.45 to 0.55) in Tanimoto 

coeffients between contact residues compared to ligand poses docked into initial 

homology models (Table A6).  

When docking native ligands into homology models generated using the protocols 

discussed herein, ligand poses with LRMSD values within 4.5 Å of the crystallized 

reference structure ligand pose were most often sampled using MOE induced fit docking 

(Figure 2.9). When looking at methods of pose selection (pose scoring and ligand 

complementation) across all 3 docking methods (Figure 2.9), MOE induced fit docking 

poses selected via T10 or T10 Comp scoring were far better than MOE rigid receptor or 

Rosetta docking. NOP docking results illustrate this point, as the best ligand pose 

selected via complementation scoring from the MOE induced fit docking was 2.99 Å and 

5.44 Å lower than from Rosetta and MOE rigid receptor docking, respectively (Table 

A5). Though the need to further validate docked ligand models via methods such as site-

directed mutagenesis is clear, these results remain promising in terms of producing ligand 

poses resembling those of crystallized ligands. 

While MOE induced fit docking often produces the best ligand poses, nuances in 

the other two docking methods must be considered. The Site Finder function within MOE 

was used to provide user-identified docking sites for MOE induced fit and rigid receptor 
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docking. Rosetta docking requires a user-defined XYZ coordinate binding pocket 

centroid, which was defined in this work as the centroid of the site identified by the MOE 

Site Finder function. Rosetta also uses ‘movers’, which change the conformation of the 

ligand-receptor complex during the docking process.55 Arguments for these movers 

include parameters such as ‘box_size’, a maximum translation of a ligand from its 

starting point, and scoring grid width, which defines the cubical space around which the 

ligand will be scored.175 Since all methods utilize user-defined parameters to guide the 

process, docking results can vary depending on the values used for these parameters. 

Efforts were undertaken to match parameters between methods as much as possible in 

order to provide a fair comparison. 

Though homology modeling receptors using the ‘Environment for Induced Fit’ 

option in MOE produced protein models of relatively similar quality as those produced 

using the default homology modeling protocol in MOE (4.24 Å vs 4.34 Å, respectively), 

complementation score pose selection on docking results from receptors modeled with a 

template ligand present throughout both homology and loop modeling is the only method 

that selected high quality poses for any target (LRMSD ≤ 4.5 Å and Tanimoto coefficient 

≥ 0.6) (Figures 2.11 and 2.12, Table A6). suggesting the use of receptor modeling 

approach B2 in future efforts.  

These results provide further evidence that GPCR homology model construction 

from templates selected on the basis of similarity scores weighted toward sites involved 

in strong ligand binding interactions (CoINPocket scores) improves docking pose 

accuracy (Figure 2.10). Among 4 receptors modeled using templates of differing local 

similarity (average similarity score 1.58 versus 2.26), average LRMSD after pose 



 

 76 

selection by complementation was below 6 Å for the models constructed based on higher 

similarity templates, but over 8 Å for the models constructed based on lower similarity 

templates (Table A7).  

A suggested workflow to generate GPCR models to be used to study ligand 

interactions can be extracted based on these comparative performance results.  First, 

homology models should be constructed based on templates with the highest local 

similarity scores and with template ligand included as the ‘Environment for Induced Fit’ 

in MOE.  ECL2 conformations should be sampled with the template ligand present using 

the KICF algorithm in Rosetta constraining formation of the C3.25-C45.50 disulfide 

bond. Ligand docking into the top 10 scored resulting models using induced fit docking 

in MOE followed by pose selection via ligand complementation will serve to select high 

quality poses from the set of sampled poses. 

Methodology 

Target/Template Selection and Preparation: 

Template sequences for homology modeling of targeted, previously crystallized 

receptors used in this study (Table 2.1) were selected using the contact-informed 

neighboring pocket (CoINPocket) scores developed by Ngo et al. to emphasize 

similarities at sites that make important and strong ligand interactions in a set of 27 

unique class A GPCR crystal structures.33 In addition to calculating CoINPocket scores, 

Ngo et al. calculated unweighted global similarity values for each possible sequence 

pairing. Global similarity values for the receptors used in this benchmark can be found in 

Table 1.1. For the initial subset of receptors, a template for each target GPCR was 
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selected that exhibited the highest CoINPocket local similarity score and possessed a 

previously solved and deposited crystal structure. Each template selected was not 1) the 

target GPCR or 2) a closely related GPCR that binds the same endogenous ligand. The 

CoINPocket score-based models were termed “local template” models. A subset of four 

target receptors were additionally modeled on the basis of a lower similarity template for 

comparison. 

Homology Model Construction and Analysis: 

Homology modeling began with the deletion of non-GPCR sequence segments 

from template and crystallographic reference structures including fusion partners such as 

T4 lysozyme or thermostabilized cytochrome b562RIL from the selected template, as these 

are non-native segments used to stabilize a single receptor conformation for 

crystallization.176 Each target sequence was aligned to the selected template sequence 

using a two-step procedure in MOE 2018.01.56 First, the sequences were aligned using 

MOE’s “sequence only” method of automatic alignment. After the initial alignment, any 

gaps in helical segments were manually shifted into the structurally variable intracellular 

and extracellular loop regions while ensuring that conserved TM.50 residues remained 

aligned.35 This structure-independent alignment was performed to account for the 

variability in sequence length and composition of loop regions and to avoid distortions 

within the more structurally conserved helical transmembrane domains. Homology 

models were then generated using two approaches. Models created using approach A 

utilized the default settings in the MOE homology modeling interface, with the exception 

of scoring models based on effective atomic contact energy. The second approach 

(approach B) utilized the same settings for homology model generation as approach A, 
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with the addition of retaining the crystallographic ligand from the template structure as 

the ‘Environment for Induced Fit’. Approach B was applied only to the target:template 

pairing with the higher CoINPocket score for each target receptor. The resulting 

homology models were then superposed onto the crystallized reference structure based on 

non-loop residues prior to calculation of receptor alpha-carbon RMSD values, both for 

the entire sequence and for loop segments, as metrics of structural similarity. 

De Novo Extracellular Loop 2 (ECL2) Modeling: 

Prior to ECL2 modeling, loop ‘anchor’ residues were selected. For each receptor, 

the final helical residue of TM4 and first helical residue of TM5 of the lowest contact 

energy local template homology model were used as anchor points (Table 2.3), with loop 

modeling then sampling conformations of all residues between the anchor points. 

Fragment libraries required by the KICF algorithm58,177 were then generated using the 

Robetta server.178 To generate these fragments, a FASTA formatted sequence containing 

the nine residues prior to the first loop anchor, the ECL2 sequence and the nine residues 

after the second loop anchor was submitted to the server. An atomic disulfide constraint 

that restricts the distance of sulfur atoms in critical cysteine residues 3.25 of TM3 and 

45.50 of ECL2 to 5.1 Å (representative of the known disulfide bond in many GPCR 

structures) was incorporated into the loop modeling protocol.179 This constraint is meant 

to emulate the filtering of models with unrealistic disulfide distances done in the previous 

benchmark, as filtering ECL2 models based on disulfide distance ≤5.1 Å often produced 

models with better loop RMSD values.24 When the constraint was applied to the Rosetta 

loop modeling protocol, far fewer models exhibiting disulfide distances uncharacteristic 

of GPCR resulted. Examples of models with unrealistic disulfide distance include models 
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Table 2.3 ECL2 loop start/end residues for each receptor’s crystal structure and 
lowest RMSD homology model. 

Structures of both the crystal structure and lowest alpha carbon RMSD homology model 
for each were aligned and superposed in MOE, then renumbered from 1 starting at the 
beginning of TM1. aDifference in sequence length between segment bookended by anchor 
points of the homology model and ECL2 of crystal structure. For example, the segment 
loop modeled for the CXCR4 homology model had one more residue than the actual 
ECL2 of the crystal structure of CXCR4, etc. bRMSD of loop anchor residue positions in 
the lowest RMSD loop model from the corresponding residues in the crystal structure 
once superposed. 

 Crystal Structure Homology Model   

Receptor Local 
Template 

ECL2 
Start 
Residue 

ECL2 
End 
Residue 

Anchor 
Residue 1 

Anchor 
Residue 2 

Length 
Differencea 

Avg. 
Anchor 
Residue 
RMSD 
(Å)b 

AT2R CXCR4 F181 P201 F181 Q206 +5 1.69 

AT2R DP2 F181 P201 F181 E202 -1 3.89 

CXCR4 AT2R F174 L194 F174 D193 -1 2.86 

FFAR1 P2Y12 E145 P176 F142 P176 +3 6.65 

H1R OPRK L163 T188 L163 V187 -1 3.15 

M1 H1R V168 P186 W164 I187 +12 2.97 

M4R NOP V175 P193 F170 N192 +4 2.24 

M4R H1R V175 P193 I168 P193 +7 2.42 

NOP M4R M188 Q208 Q192 V214 +2 9.67 

OPRK H1R L196 Y219 L192 D223 -3 2.74 

P2Y12 FFAR1 I161 E181 T163 I193 +10 5.70 

P2Y12 PAR1 I161 E181 M160 V185 +5 4.72 

PAR1 PAR1 L238 G265 K240 E264 -3 5.02 
 

with steric clashes due to sub-angstrom disulfide distances or models with extremely 

large inter-sulfur distances. This atomic constraint also reduces the loop model 
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conformational space. ECL2 models were produced using three different approaches, 

each utilizing a different combination of homology and loop modeling methods: 

A1. Homology and loop modeling without a template ligand present. 

B1. Homology models created using template ligand as ‘Environment for 

Induced Fit’, loop modeled without template ligand present in the binding 

pocket. 

B2. Homology models created using template ligand as ‘Environment for 

Induced Fit’, loop modeled with template ligand present in the binding 

pocket. 

Each approach generated a total of 250 disulfide-constrained ECL2 models for 

each of the target:template pairings in this benchmark. Greater loop sampling was 

achieved for loops meeting the 5.1 Å threshold than in the previous benchmark24 because 

all 250 of the constructed loops met the disulfide distance filter. This number was ten-

fold higher than the number of models typically meeting the 5.1 Å disulfide distance 

filter out of the 1000 generated models for each target in the prior benchmark study.24 

The ECL2-TM3 disulfide bond was formed in the top 10 lowest scoring models followed 

by geometry optimization of the ECL2 segment in MOE. The resulting local template 

derived and ECL2 optimized models were used for subsequent ligand docking.  Receptor 

alpha-carbon RMSD values were calculated for ECL2 optimized models as described in 

the prior section. 

Ligand Docking: 

Ligand docking was initially performed with a subset of 6 targets generated via 

modeling approach A1 using both the MOE and Rosetta software packages. Three 
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distinct methods were examined in this study: MOE induced fit docking, MOE rigid 

receptor docking, and RosettaScripts ligand docking (herein referred to as Rosetta 

docking). MOE induced fit docking places the active ligand into a user-defined binding 

site inside a target receptor whose residue side chains are allowed to move freely during 

the refinement stage. MOE rigid receptor docking places the active ligand into a user-

defined binding site inside a target receptor whose side chains are held static during both 

the placement and refinement stage. The docking methods employed by MOE 

continuously sample ligand conformations as the docking proceeds, allowing for a best fit 

of the ligand within a potential binding pocket. In contrast, Rosetta docking differs from 

MOE in that ligand conformations are generated prior to the docking process, rather than 

actively sampling ligand conformations within the binding pocket during the docking 

analysis. Ligand conformations and a user-defined binding pocket of a target receptor 

with flexible residue side chains are required inputs for Rosetta docking.175 

Conformations for each ligand docked using Rosetta were generated using MOE’s 

Conformational Search tool, which outputs a database of energetically reasonable ligand 

conformations. In addition to homology models, reference crystal structures were used as 

docking targets for Rosetta in order to compare docking performance to the previous 

benchmark.35 The remainder of ligand docking was performed using only MOE induced 

fit docking based on the results of the docking method comparisons. 

Each local template model and the top ten sampled ECL2 optimized models were 

utilized as docking targets.  Each protein and ligand structure was prepared at pH 7.4 

using the “QuickPrep” function in MOE to 1) ensure proper protonation and charge at the 

desired pH and 2) minimize the structure using the AMBER10:EHT forcefield.180 Once 
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each receptor model was prepared, the Site Finder function in MOE was used to define a 

binding pocket within the receptor model. This function organizes potential binding sites 

by the volume of alpha spheres within a potential binding pocket, based on the Alpha 

Shapes methodology of Edelsbrunner et al.112 Both forms of MOE ligand docking used in 

this study utilized the MOE Site Finder function to define the docking site, though it is 

not the sole method of binding pocket selection available within MOE. Rosetta, on the 

other hand, uses XYZ coordinates to define a theoretical binding site within a receptor 

that restricts ligand movement within that defined site. The XYZ coordinates of the 

center of the binding site defined as the docking site for MOE docking were used to 

define the binding site during Rosetta docking.  

Ligands docked into each receptor can be found in Figure 2. Both MOE induced 

fit and rigid receptor docking protocols generated 1000 initial ligand placement poses for 

each of the top ten lowest scoring receptor models, from which the top 400 poses based 

on the London dG scoring function were passed on to the refinement stage.56 Refinement 

used the Generalized-Born Volume Integral/Weighted Surface area (GBVI/WSA) scoring 

function.173 For each of the 10 receptor models with different ECL2 conformations, the 

top 5 refined ligand poses were retained as final complexes after the refinement stage to 

provide 50 poses overall for each target modeled. In order for the Rosetta ligand docking 

to adequately match the sampling of MOE docking, 1,000 ligand poses were generated 

for each of the top ten scoring models. All 1,000 poses were retained for each run as 

Rosetta docking does not remove poses through the workflow. 

Once docked, an alpha carbon superposition of each receptor-ligand complex onto 

a crystallized reference structure was constructed and a heavy atom ligand RMSD 
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(LRMSD) was calculated between the two ligand poses. Tanimoto coefficients were 

calculated to compare first neighbor residues to the ligand in the residue interaction 

network calculated using the RING 2.0 server between docked poses and crystallographic 

reference structures.181 Two sets of poses were selected using different criteria. The first 

pose set included the ten lowest scoring models based on the scoring function for each 

respective docking method. The second pose set included the ten poses with the top ten 

ligand complementation scores, which reflect the ratio of hydrogen bonds made by the 

ligand when docked into a receptor to the number of ligand hydrogen bonding sites. This 

ligand complementation score reflects the proportion of polar functional groups that are 

involved in hydrogen bonding interactions. Polar functional groups within a ligand are 

able to participate in a maximal number of hydrogen bonds while free in solution. 

Docked ligand poses with polar functional groups not involved in hydrogen bonds are 

less energetically favorable in a bound environment than in water for both entropic and 

enthalpic reasons, which this score attempts to capture.  
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Chapter 3  

Structure-based Pharmacophore Modeling 1. Automated Random Pharmacophore 

Model Generation 

Introduction 

G protein-coupled receptors (GPCR) are integral membrane proteins that 

comprise the largest family of membrane receptors in the human genome.182 Regulated 

by a variety of synthetic and endogenous ligands, these receptors act to relay extracellular 

signals to their coupled intracellular, heterotrimeric G proteins, allowing for the 

recruitment and stimulation of multiple effectors in downstream signaling pathways.2 

Though critical to normal biological function, many class A GPCR possess few known 

small molecule ligands, leaving the physiological roles and functions of many targets 

challenging to investigate.19 Consequently, GPCR ligand discovery is an enabling step 

toward understanding receptor roles and functions. For example, many GPCR exhibit 

functional selectivity, a phenomenon wherein certain ligands (biased agonists) cause the 

differential activation of signaling pathways for the same target.183 However, further 

investigation of these alternate GPCR signaling pathways is impeded by a scarcity of 

known ligands for many targets. As such, the development of new methods for GPCR 

ligand discovery will lead to a better understanding of the physiological functions of 

GPCR. Furthermore, new GPCR ligands may lead to therapeutic drugs, as dysregulation 

of GPCR signaling can contribute to diseases including cancer, diabetes, and nervous 

system disorders.1 As a result, the development of GPCR-based therapeutics is a 

significant area of focus, with GPCR serving as targets for ~34% of FDA-approved 

drugs.10 Although these receptors are intensely studied drug targets with immense 
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therapeutic significance, discovery of novel GPCR ligands is not without challenges. For 

example, current drugs known to act upon GPCR targets exploit only a fraction of the 

known “druggable” GPCR genome184, leaving a vastly unexplored source of therapeutic 

targets in the ~60% of GPCR yet to be targeted.9 Furthermore, many of these 

underexplored GPCR possess ligands that are unsuitable for therapeutic use due to poor 

pharmacokinetic properties or differential activation of signaling pathways.185,186 

Additional challenges in GPCR ligand discovery stem from a lack of structural 

information, as the vast majority of GPCR encoded by the human genome are not 

represented in the Protein Data Bank.158 Only 140 of the over 800 known GPCR possess 

experimentally determined structures as of October 24, 2022,19 leading many GPCR 

virtual screening studies to rely on the use of computational methods as a means of 

predicting receptor structures.59 Thus, there is a clear need for methods to identify novel, 

druglike ligands for understudied GPCR targets regardless of whether their three-

dimensional structures have been previously determined. 

When attempting to elucidate novel GPCR ligands, pharmacophore models are 

often utilized to virtually screen compound databases, including some that contain 

millions of compounds. In practice, pharmacophore models act as in silico filters during 

the virtual screening process and greatly reduce the number of compounds 

experimentally screened or passed on to the next phase of virtual screening. Many 

pharmacophore models are constructed using a common set of chemical features 

possessed by known ligands for a target, and thus are termed ligand-based 

pharmacophores.21 Though ligand-based pharmacophore modeling has exhibited success 

in prior GPCR virtual screening studies21, this method is predictably less reliable in cases 
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where a target possesses few known ligands, or in cases where the known ligands lack 

structural diversity. Alternatively, structure-based pharmacophore models are typically 

established by probing possible interaction points within a three-dimensional structure of 

a macromolecular target to establish a collection of features thought to be necessary for 

biological activity.21 Unlike ligand-based pharmacophore models, structure-based 

pharmacophore models only require a three-dimensional structure of a target and often 

result in a better understanding of that target’s binding site.113 While increasing numbers 

of publicly available, experimentally determined protein structures have allowed for 

structurally informed approaches to pharmacophore model generation187–189, a method of 

structure-based pharmacophore model generation for the majority of GPCR without 

experimentally determined structures remains largely unexplored. Though other 

fragment-based methods have succeeded in terms of virtual screening performance187–189, 

most are applied solely in the context of experimentally determined structures. Thus, this 

work focused on the development of a prospective ligand identification method that is 

also applicable to modeled receptor structures. 

The ligand identification workflow described herein is rooted in the concept of the 

Multiple Copy Simultaneous Search (MCSS) and incorporates homology modeling in 

combination with loop modeling for cases where an experimentally determined structure 

is unavailable. During MCSS, many copies of varying chemical fragments are randomly 

placed into a receptor’s active site and then energetically minimized in order to find 

optimal positions for each fragment.109 Pharmacophore models are then generated via 

feature annotation of randomly selected fragments that resulted from MCSS. Though the 

concept of fragment-based pharmacophore model creation has been previously 
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explored,187,188 this work produced a structure-based approach to pharmacophore 

modeling that incorporates modeled receptor structures and thorough computational 

pharmacophore model validation. While known ligands are not a prerequisite for this 

method of pharmacophore generation, a small subset of active ligands is necessary to 

calculate the enrichment factor (EF) and goodness-of-hit (GH) score pharmacophore 

scoring metrics used to select pharmacophore models.86 Pharmacophore models that 

score well with the EF and GH scoring metrics can then be used to search external 

databases such as ZINC25 to identify an initial list of hit compounds. Compounds in the 

hit list can either be experimentally screened, or further refined using additional virtual 

screening methodologies before experimental screening. 

The ultimate goal of this research was to define a method of pharmacophore 

model generation applicable to an experimentally determined or modeled structure of any 

GPCR target for which known ligands are scarce (or absent, in the case of orphan 

GPCR). Pharmacophore models generated with this methodology can then be utilized to 

search commercially available compound databases, allowing for the elucidation of 

diverse sets of candidate ligands for the many GPCR targets with few known ligands. 

Though the work discussed herein pertains exclusively to GPCR, this method can 

realistically be applied to any biological target with few or no known ligands. Overall, 

this work demonstrates that our structure-based pharmacophore model generation 

protocol is capable of generating pharmacophore models possessing enrichment factor 

values matching theoretical maximums for target GPCR experimentally determined 

structures (8 of 8 targets) and homology models (7 of 8 targets).  
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Results and Discussion 

The fully automated method of structure-based pharmacophore model generation 

developed for this work uses feature annotation of randomly selected functional group 

fragments placed into either experimentally determined or modeled protein structures 

using MCSS. Five thousand pharmacophore models were randomly generated for each 

target structure, thus requiring a small set of known ligands in order to select 

pharmacophore models that produce hit lists from database searching enriched with 

actives. 

Database Creation/Target Selection 

To calculate scoring metrics for generated pharmacophore models, creation of an 

internal test database containing known active and inactive GPCR ligands was necessary. 

Thus, 569 ligands acting at a set of 30 GPCR with at least 8 reported agonist and 8 

reported antagonist small molecule ligands listed in IUPHAR/BPS Guide to 

Pharmacology190 were included in our internal test database123 (Figure B1, Table B1). 

The 569 selected GPCR ligands were subjected to stochastic conformational searches 

using the Molecular Operating Environment  (MOE) software, which generated a range 

of 1 to 1,317 conformations per molecule and 1 to 10 conformations per molecular 

stereochemical configuration via the random rotation of all bonds and random inversion 

of unconstrained tetrahedral centers followed by an all-atom energy minimization.56 

Eight of these 30 GPCR with experimentally determined structures deposited in the 

Protein Data Bank158 were chosen as pharmacophore generation protocol benchmarking 

targets (Table 3.1). These 8 receptor targets were: 5-hydroxytryptamine receptor 2B 

(5HT2B), adenosine receptor 2A (A2A), beta-2 adrenergic receptor (Beta 2), histamine 
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receptor 1 (H1), muscarinic acetylcholine receptor 1 (M1), δ-opioid receptor (OPRD), κ-

opioid receptor (OPRK), and μ-opioid receptor (OPRM). 

Homology/Loop Modeling 

Target homology models were constructed using our previously benchmarked 

GPCR modeling workflow which retains the crystallized template ligand throughout the 

homology modeling and extracellular loop 2 (ECL2) modeling processes.24,35,59 Template 

structures for each target receptor were selected from a pool of available experimentally 

determined GPCR structures (excluding the target receptor structures) using the 

CoINPocket local similarity measure (publication retracted due to errors unrelated to the 

similarity metric or computational methods).33,34 A summary of target and template 

GPCR, local similarity measure (CoINPocket score), GenBank accession numbers, and 

PDB identification codes used in this study can be found in Table 3.1. For each target, the 

homology model with the lowest effective atomic contact energy was selected for 

subsequent ECL2 modeling using Rosetta58 in order to sample conformations of the 

structurally variable ECL2 region.29 After filtering loop modeling results to exclude 

models exhibiting Cys 3.25-Cys 45.50 (S-S) distances >5.1 Å59 (unrealistic given 

conservation of a disulfide bond between these residues), each target’s best scoring loop 

refined homology model was then superposed onto a reference experimentally 

determined structure using an alpha-carbon atom set, followed by calculation of alpha-

carbon receptor RMSD values for the overall structure as well as the ECL2 region (Table 

3.1). Alpha-carbon RMSD values for target homology models used to benchmark 

pharmacophore generation ranged from 3.66 Å (M1) to 5.99 Å (OPRK), which is 

comparable to the range of alpha-carbon RMSD values found in our prior homology 
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modeling benchmark.59 ECL2 RMSD values ranged from 6.96 Å (OPRD) to 14.87 Å 

(OPRK), indicating a degree of structural variability between the selected models and 

experimentally determined reference structure that may affect randomly generated 

pharmacophore performance. 
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Table 3.1 PDB158 ID numbers and homology modeling RMSD values for GPCR used in this study. 
a Compared to the maximal self-similarity measure of 5.47. A pairing of two receptors with a local similarity score of 5 would indicate 
a near 100% ligand binding pocket similarity, while a receptor pairing with a local similarity score of 1 or less would indicate low 
ligand binding pocket similarity 
bSequence similarity calculated using a global transmembrane domain alignment by Ngo et al.33 

Receptor 

GenBank191 
Accession  
Number Template 

Local 
Similarity 
Measure33,a 

Unweighted  
Global  
Similarity 
(%)33,b 

Target 
PDB 
ID 

Template  
PDB ID 

Alpha 
Carbon 
RMSD 
(Å) 

ECL2 
RMSD 
(Å)  

5HT2B P41595.1 5HT2C 4.19 69.39 4NC3192 6BQH193 3.85 7.41 

A2A P29274.2 A1A 4.49 64.20 5NM4194 5UEN195 4.14 11.37 

Beta 2 P07550.3 D2 2.80 46.67 2RH1196 6LUQ 4.67 12.40 

H1 P35367.1 M1 2.58 35.98 3RZE167 5CXV 3.73 8.82 

M1 P11229.2 H1R 2.58 35.98 5CXV168 3RZE 3.66 10.03 

OPRD P41143.4 OPRM 4.36 77.79 4N6H197 5C1M 4.55 6.96 

OPRK P41145.2 OPRM 4.41 72.61 4DJH198 5C1M199 5.99 14.87 

OPRM P35372.2 OPRK 4.41 72.61 5C1M 4DJH 4.88 13.02 
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Multiple Copy Simultaneous Search (MCSS) 

MCSS was performed on each target’s chosen experimentally determined 

structure and best scoring loop refined homology model using the fragment database 

included with MOE.56 This database contains 39 fragments representing a diverse set of 

functional groups and pharmacophore annotation points (Table B2). MCSS began with 

100 randomly placed copies of each fragment at sites selected by the “Site Finder” 

feature in MOE56, which performed well when selecting potential binding sites for 

docking in our previous benchmark.59 A total of 3,900 fragments were placed in each 

target’s active site, with optimization of initial fragment placements and elimination of 

duplicate final placements resulting in a range of 1,156 (OPRM reference structure) to 

2,192 (OPRK reference structure) uniquely placed fragments depending on the target 

(Table B3). 

Automated Pharmacophore Model Generation 

Pharmacophore model generation was automated using SVL scripting within 

MOE (Figure 3.1). For each loop of the script, 5 fragments from an MCSS output 

database were randomly selected for feature annotation, which allowed for the sampling 

of diverse chemical features and creation of varied pharmacophore models. Atoms of the 

selected fragments within 4.5 Å of binding pocket residues were annotated as 

pharmacophore features using the built-in MOE pharmacophore editor, which 

differentiates feature types based on the corresponding elements of atoms selected in the 

system. This distance restriction focused annotations on those fragment atoms capable of 
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interaction with the receptor. The maximum number of features in each pharmacophore 

model was capped at 5 to avoid overly restrictive pharmacophore models that would lead 

to sparsely populated hit lists, which are impractical when selecting candidate ligands 

during the virtual screening process. In total, 5000 pharmacophore models were 

generated within the reference experimentally determined structure (herein referred to as 

PED models) and selected homology model (herein referred to as PHM models) for each 

target.  

 

Figure 3.1. Fragment-based pharmacophore generation and application workflow. 

Internal Test Database Searching/Scoring 

Pharmacophore searches were then performed against our internal test database 

containing 12,057 conformations of 569 active ligands for 30 GPCR. Searches were 

performed three times for each set of target pharmacophore models, with each 

consecutive search requiring an increasing number of matching features necessary for a 

molecule to be considered a hit. Searches were conducted with 3, 4, and 5 partial match 
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features, the last of which required molecules to match every feature in a generated 

pharmacophore model to be considered a hit. To assess pharmacophore model 

performance, enrichment factor (EF) and goodness-of hit (GH) score values were 

calculated (Figures 3.2 through 3.5, Tables B4 through B9). Though 5000 

pharmacophore models were generated within each target’s experimentally determined  

 

Figure 3.2. Randomly generated pharmacophore model enrichment factor scoring 
data (scaled from 0 to 1 based on each target’s theoretical maximum enrichment 
(TME) value) when searching with (A) 3, (B) 4, or (C) 5 partial match features using 
pharmacophore models generated in target experimentally determined structures. 

 

Figure 3.3. Randomly generated pharmacophore model enrichment factor scoring 
data (scaled from 0 to 1 based on each target’s TME value) when searching with (A) 
3, (B) 4, or (C) 5 partial match features using pharmacophore models generated in 
target homology models. 
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Figure 3.4. Randomly generated pharmacophore model goodness-of-hit scoring data 
when searching with (A) 3, (B) 4, or (C) 5 partial match features using 
pharmacophore models generated in target experimentally determined structures. 

 

Figure 3.5. Randomly generated pharmacophore model goodness-of-hit scoring data 
when searching with (A) 3, (B) 4, or (C) 5 partial match features using 
pharmacophore models generated in target homology models. 

structure or homology model, the number of pharmacophore models included in each 

target’s EF/GH scoring distributions varied since pharmacophore models producing zero 

hits after a search cannot be scored with either metric. Enrichment values were 

normalized to a range from 0 to 1, since each receptor’s theoretical maximum enrichment 

(TME) differs depending on the proportion of active compounds within the internal test 

database (Table 3.2). TME values for each receptor were calculated using 1/[A/D], where 

1 is the maximum possible active:hit ratio in the hitlist, and A/D is the proportion of  
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Table 3.2 Internal test database statistics for each target used in this study. 
aNumber of compounds possessing activity (agonist, antagonist, inverse agonist, biased 
agonist) for a receptor. 
bPercentage of compounds in the search database (containing 569 compounds) 
possessing activity for a receptor. 

Receptor 

Active Compounds  
in Search  
Databasea 

Search Database  
Active Percentage 
(%)b 

Theoretical 
Maximum  
Enrichment 

5HT2B 86 15.1 6.62 

A2A 29 5.1 19.62 

Beta 2 43 7.6 13.23 

H1R 51 9.0 11.16 

M1 69 12.1 8.25 

OPRD 39 6.9 14.59 

OPRK 56 9.8 10.16 

OPRM 53 9.3 10.74 
 

actives in the database. Though calculation of a TME value provides a means of 

pharmacophore model comparison, it should be noted that this metric (and enrichment 

factor in general) fails to consider hit list size as it only considers the fold-change in 

active proportion relative to random selection when searching a compound database with 

a pharmacophore model.86 Although a pharmacophore search resulting in 1 hit compound 

that possesses activity for a target will score at the TME, it is typically not desirable to 

screen such small hit lists due to failures on the pathway from hit identification to 

approved drug.200,201 Thus, the GH score was implemented as an additional 

pharmacophore scoring metric since this metric prioritizes a high yield of actives and a 

low false-negative rate.86 Examples of pharmacophore models generated for the beta 2 

adrenergic receptor scored with the EF and GH metrics can be found in Figure 3.6. Upon 

visual inspection, pharmacophore models for this target that demonstrated the greatest EF 
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values (Figure 3.6A-C) or GH scores (Figure 3.6D-F) tended to possess features that did 

not overlap and represented varying types of interactions. In contrast, beta 2 

pharmacophore models that demonstrated the lowest non-zero EF values (Figure 3.6G-I) 

tended to possess features that either greatly overlapped (Figure 3.6I) or only represented 

a single type of interaction (Figure 3.6G-I). 

 

Figure 3.6. Pharmacophore models generated within the Beta 2 experimentally 
determined structure PDB158 entry 2RH1196. 

Features are labeled and colored according to annotation type. (A-C) Pharmacophore 
models sampling theoretical maximum enrichment (EF) values when searching with 5 
partial match features, (D-F) Pharmacophore models possessing the greatest goodness-
of-hit (GH) score values when searching with 4 partial match features. (G-I) 
Pharmacophore models possessing the lowest non-zero EF values when searching with 5 
partial match features. 
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Performing pharmacophore searches with 3 partial match features using PED 

models resulted in the lowest proportion of receptors whose TME was sampled (6 of 8 

receptors, Figure 3.2A and Table B4). Increasing the number of partial match features to 

4 resulted in a slightly higher proportion of receptors whose TME was sampled (7 of 8 

receptors, Figure 3.2B and Table B5), while searching with 5 partial match features 

(requiring an internal test database molecule to match every pharmacophore feature) 

resulted in at least one pharmacophore model for each receptor possessing an enrichment 

value matching the theoretical maximum (Figure 3.2C and Table B6). A similar trend 

was found when performing pharmacophore searches of varying partial match feature 

number with PHM models. Pharmacophore searching with 3 partial match features again 

resulted in the lowest proportion of receptors whose TME was sampled (5 of 8 receptors, 

Figure 3.3A and Table B7). Increasing the number of partial match features to 4 and 5 

again resulted in an increase in the proportion of receptors whose TME was sampled (7 

of 8 receptors in both cases, Figure 3.3B-C and Tables B8-9). Since increasing the partial 

match feature number increased the specificity of a pharmacophore search, it is logical 

that requiring ligands to match every feature in a pharmacophore model resulted in the 

highest proportion of receptors with TME values sampled in both experimentally 

determined structures and homology models by reducing the number of false positives in 

the hit list. However, differences in enrichment sampling between PED and PHM models 

should be noted. Performing pharmacophore searches with 5 partial match features using 

PED models resulted in pharmacophore models sampling TME values for all 8 targets 

(Figure 3.2C), while searching with PHM models sampled TME values in 7 of 8 targets 

(Figure 3.3C). Nonetheless, we recommend the use of 5 partial match features during the 
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pharmacophore searches since it resulted in the highest proportion of targets with PED and 

PHM models sampling TME values. 

Table 3.1 shows that the A2A homology model (the lone target receptor to whose 

PHM models did not sample its TME value) does not exhibit either the highest alpha 

carbon or ECL2 RMSD value. Therefore, geometric similarity between the homology 

model and the reference experimentally determined structure is not clearly correlated 

with the ability of pharmacophore models generated against a homology model to sample 

the TME. 

To assess the contribution of using a random process to generate pharmacophore 

models, 5000 pharmacophore models were generated for both the best scoring and lowest 

RMSD A2A homology models in triplicate. Each pharmacophore model was then used to 

search the internal test database using 5 partial match features and was scored with EF 

and GH metrics (Figures 3.7 and 3.8). After additional pharmacophore models were 

generated for the best scoring A2A homology model, it is apparent that the inability of 

the first pharmacophore model generation run to sample the A2A TME value was a result 

of inadequate sampling rather than model quality. While the A2A TME value was not 

sampled by the first set of pharmacophore models generated in the best scoring homology 

model (Figures 3.3 and 3.7A), further pharmacophore model generation in both A2A 

homology models lead to pharmacophore models sampling the target’s TME value. In 

addition, mean GH scores sampled by pharmacophore models generated in the best 

scoring homology model (mean GH score =  0.00363) and pharmacophore models 

generated in the lowest RMSD homology model (mean GH score = 0.00426) after three 

pharmacophore model generation runs were similar (Figure 3.8). Thus, we recommend 
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generating additional pharmacophore models if a target’s TME value is not initially 

sampled. 

 

Figure 3.7. Enrichment factor scoring data for pharmacophore models generated in 
triplicate for the best scoring A2A homology model (A) and the lowest RMSD 
homology model (B) when searching with 5 partial match features. 

 

Figure 3.8. Goodness-of-hit scoring data for pharmacophore models generated in 
triplicate for the best scoring A2A homology model (A) and the lowest RMSD 
homology model (B) when searching with 5 partial match features. 
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Though the frequency at which pharmacophore model enrichments matched TME 

values increased as the partial match feature number increased, GH scores trended 

downward (Figures 3.4-3.5). Pharmacophore searching requiring 3 partial match features 

using PED models resulted in an average maximum GH score of 0.24 (Figure 3.4A and 

Table B4), while increasing the number of partial match features to 4 and 5 resulted in 

average maximum GH scores of 0.22 (Figure 3.4B and Table B5) and 0.14 (Figure 3.4C 

and Table B6), respectively. When performing pharmacophore searches with 3 partial 

match features using PHM models, the average maximum GH for all targets was 0.22 

(Figure 3.5A and Table B7). Increasing the number of partial search features to 4 resulted 

in minimally changed average maximum GH score of 0.23 (Figure 3.5B and Table B8). 

However, increasing the number of partial match features to 5 resulted in the lowest 

average maximum GH score of 0.14 (Figure 3.5C and Table B9), similar to the GH score 

results sampled by PED models. The observed decrease in average maximum GH score as 

partial match feature number increased can most likely be attributed to the increasing 

specificity of the search process resulting from higher partial match feature numbers. As 

the number of features required for a molecule to be considered a hit increases, hit 

compound actives with a lower partial match feature number (and therefore less specific 

search) may not match the additional feature, increasing the number of active compounds 

labeled as false negatives and thus lowering the GH score. Pharmacophore search 

specificity also plays a role in the decrease in median EF and GH values as partial match 

feature number increases (Figures 3.2 through 3.5), since performing more specific 

pharmacophore searches resulted in a greater proportion of randomly generated 
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pharmacophore models that identified a lesser number of hit and active molecules within 

the internal test database. 

The generation of 40,000 pharmacophore models across 8 receptors allowed for a 

closer look into how the spatial arrangement of pharmacophore features related to EF 

scoring. To determine how pharmacophore models exhibiting high EF values differed 

from those exhibiting low EF values, pharmacophore models for each receptor were split 

into high enrichment (EF ≥ 2, herein termed HE pharmacophore models) or low 

enrichment (EF < 2, herein termed LE pharmacophore models) subsets based on scoring 

results from pharmacophore searches incorporating 5 partial match features. In this work, 

an EF cutoff of 2 was chosen to separate pharmacophore model search performance into 

HE and LE since this value represents 10-30% of the theoretical maximum enrichment 

values of all studied targets (Table 3.2). Although this chosen EF cutoff is lower than EF 

values demonstrated by well-performing pharmacophore models generated in other 

pharmacophore modeling studies, our internal test database contains a higher proportion 

of active compounds per target (5.1 to 15.1%, Table 3.2) than a larger, external database 

such as ZINC25. Since the EF metric is entirely dependent upon the proportion of active 

compounds in a search database, we found this cutoff to be appropriate in the context of 

this work. 

Once pharmacophore models were split into HE and LE subsets, two sets of 

distances were calculated for each pharmacophore model. The first set of calculated 

distances measured the mean, minimum, and maximum distances between 

pharmacophore features (termed interfeature distance). The second set of calculated 

distances measured the mean, minimum, and maximum distances between 
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pharmacophore features and the binding pocket centroid (termed feature to centroid 

distance), the mean position of atoms comprising the potential binding site for each 

receptor. For each receptor’s subset of HE and LE PED and PHM models, averages of these 

distances were calculated (Figures 3.9 and 3.10 and Tables B10 and B11, respectively). 

 

Figure 3.9. Differences in the distributions of mean (A), maximum (B), and 
minimum (C) interfeature distances and mean (D), maximum (E), and minimum (F) 
feature to centroid distances between the selected HE and LE pharmacophore 
models generated in experimentally determined structures. 

Kolmogorov-Smirnov test p-values marked with an asterisk are considered significant at 
the 95% confidence level. 
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Figure 3.10. Differences in the distributions of mean (A), maximum (B), and 
minimum (C) interfeature distances and mean (D), maximum (E), and minimum (F) 
feature to centroid distances between the selected HE and LE pharmacophore 
models generated in homology models. 

Kolmogorov-Smirnov test p-values marked with an asterisk are considered significant at 
the 95% confidence level. 

For PED models, distributions of all measured distances were significantly different when 

comparing HE and LE PED models based on a Kolmogorov–Smirnov test (p < 0.05 in all 

cases). Averages of all measured distances were lower in HE PED models than in LE PED 

models, with differences ranging from 0.24 Å (minimum feature to centroid) to 1.94 Å 

(maximum interfeature) (Table B10). Differences in measured distances are especially 

stark when analyzing PED models for A2A and OPRD (Table B10) where 5 of these 



 

 105 

distances (maximum, minimum and mean interfeature and maximum and mean feature to 

centroid distance) differed by > 1.0 Å between HE and LE PED models, on average. For 

PHM models, distributions of all measured distances were again significantly different 

when comparing HE and LE PHM models based on a Kolmogorov–Smirnov test (p < 0.05 

in all cases). Averages of all measured distances were again lower in HE PHM models 

than in LE PHM models, with differences ranging from 0.36 Å (minimum feature to 

centroid) to 2.12 Å (maximum interfeature) (Table B11). Altogether, these findings imply 

that pharmacophore models (generated with the methods described herein) possessing 

greater maximum and minimum interfeature/feature to centroid distances (compared to 

other generated pharmacophore models) are less likely to score well in terms of 

enrichment factor than pharmacophore models with more spatially condensed features.  

In addition to distance calculations, feature compositions of HE and LE PED 

(Table 3.3) and PHM (Table 3.4) models were determined. Of the 20 types of features 

annotated in the ‘Unified’ pharmacophore annotation scheme in MOE, 8 are present in 

our generated pharmacophore models including 3 single-function feature types: 

hydrophobic (Hyd), hydrogen bond donor (Don), hydrogen bond acceptor (Acc), and 5 

defining various feature combinations (Don/Hyd, Cat/Don, Hyd/Aro, Ani/Acc, 

Don/Acc). After initial feature composition calculations, the frequency at which each 

feature type appeared across all pharmacophore models in each subset was also 

calculated to determine which feature types appeared more in high/low enrichment 

pharmacophore models. Overall, hydrophobic features most frequently appeared in PED 

and PHM models (Tables 3 and 4). However, hydrophobic features appeared more 

frequently in all HE pharmacophore models than all LE pharmacophore models for those 
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generated in either structure type (57.9% vs. 46.3% for PED models, Table 3, 50.2% vs. 

42.9% for PHM models, Table 4), indicating that a pharmacophore model with a greater 

proportion of hydrophobic features may be more likely to possess an EF score ≥ 2. In 

contrast, cationic hydrogen bond acceptors (Cat/Don), anionic hydrogen bond donors 

(Ani/Acc), and hydrogen bond acceptors and donors (Don/Acc) were less frequently 

found in all HE pharmacophore models than all LE pharmacophore models for PED 

models (4.1% vs. 8.5% for Cat/Don, 2.0% vs 7.9% for Ani/Acc, 4.0% vs. 5.4% for 

Don/Acc, Table 3) and PHM models (6.3% vs. 9.6% for Cat/Don, 2.2% vs 6.8% for 

Ani/Acc, 4.0% vs. 4.4% for Don/Acc, Table 4), implying that pharmacophore models 

incorporating too many of these feature types may lead to EF values < 2. 
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Table 3.3 Aggregated feature composition for higher enrichment (HE) and lower enrichment (LE) pharmacophore models 
generated in experimentally determined structures for each receptor. 
aFeature annotation types found in MOE that were present in analyzed pharmacophore models. 
bPercentage of total features for all models in each pharmacophore model subset. 

Model 
Subset 

Feature 
Typea 5HT2B A2A Beta 

2 H1 M1 OPRD OPRK OPRM Total Prevalence 
(%)b 

H
ig

h 
En

ric
hm

en
t 

Hyd 400 124 151 26 966 250 286 1157 3360 57.9 

Don 121 16 38 11 213 55 61 127 642 11.1 

Acc 176 40 105 24 411 125 73 240 1194 20.6 

Don/Hyd 0 0 0 0 0 0 0 1 1 <0.1 

Cat/Don 30 31 3 32 66 6 22 48 238 4.1 

Hyd/Aro 4 1 2 0 7 0 4 4 22 0.4 

Ani/Acc 36 0 0 7 0 11 9 54 117 2.0 

Don/Acc 33 3 16 9 15 18 25 114 233 4.0 

Lo
w

 E
nr

ic
hm

en
t 

Hyd 359 104 148 62 825 209 258 733 2698 46.3 

Don 96 17 30 19 207 42 73 166 650 11.2 

Acc 200 57 75 33 268 143 97 307 1180 20.3 

Don/Hyd 0 0 0 0 0 0 0 1 1 <0.1 

Cat/Don 66 11 20 11 173 34 25 157 497 8.5 

Hyd/Aro 9 0 3 0 5 2 1 6 26 0.4 

Ani/Acc 24 20 29 0 86 20 13 269 461 7.9 

Don/Acc 44 6 9 6 116 10 13 110 314 5.4 
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Table 3.4 Aggregated feature composition higher enrichment (HE) and lower enrichment (LE) pharmacophore models 
generated in homology models for each receptor. 
aFeature annotation types found in MOE that were present in analyzed pharmacophore models. 
bPercentage of total features for all models in each pharmacophore model subset. 

Model 
Subset 

Feature 
Typea 5HT2B A2A Beta 

2 H1 M1 OPRD OPRK OPRM Total Prevalence 
(%)b 

H
ig

h 
En

ric
hm

en
t 

Hyd 233 195 562 52 669 437 380 98 2626 50.2 

Don 83 38 212 10 95 71 61 25 595 11.4 

Acc 153 62 302 23 422 143 148 65 1318 25.2 

Don/Hyd 0 1 2 0 1 0 0 2 6 0.1 

Cat/Don 80 17 50 48 66 17 46 8 332 6.3 

Hyd/Aro 7 1 5 2 6 1 6 7 35 0.7 

Ani/Acc 55 0 11 4 0 30 15 0 115 2.2 

Don/Acc 36 1 86 1 10 35 29 10 208 4.0 

Lo
w

 E
nr

ic
hm

en
t 

Hyd 220 132 572 42 497 371 324 88 2246 42.9 

Don 74 37 158 12 78 77 69 29 534 10.2 

Acc 164 97 229 39 405 166 164 65 1329 25.4 

Don/Hyd 0 0 1 0 3 0 0 0 4 0.1 

Cat/Don 89 27 156 32 92 41 43 24 504 9.6 

Hyd/Aro 5 2 11 0 6 2 4 1 31 0.6 

Ani/Acc 46 13 42 11 129 45 63 6 355 6.8 

Don/Acc 39 7 60 3 65 33 18 7 232 4.4 
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Conclusions 

The overarching goal of the work presented herein was to develop and assess a 

method of structure-based pharmacophore model generation that can be applied to any 

experimentally determined or modeled structure of any GPCR target. While this method 

of pharmacophore generation is realistically applicable to any target structure, selection 

of quality pharmacophore models without the ability to score each model using known 

active ligands with the EF/GH scoring metrics remains a challenge. While we have 

addressed this issue in the work described in the companion paper202, the protocol 

described herein is best applied to targets with at least a small number of known ligands. 

Pharmacophore models were generated in both experimentally determined 

structures and homology models (generated with our benchmarked protocol24,35,59) of 8 

GPCR targets using our fully-automated protocol that employed the random selection of 

functional group fragments placed with MCSS followed by feature annotation of 

fragment atoms capable of interacting with a receptor. Generated pharmacophore models 

were then used to search our internal test database consisting of active ligands for 30 

GPCR and scored with the EF and GH scoring metrics to assess virtual screening 

performance. Pharmacophore searches utilized a varying number of partial match 

features (3, 4, or 5), with 5 partial match features (our most specific search) resulting in 

the highest proportion of targets whose generated pharmacophore models sampled TME 

values when searching our internal test database with PED and PHM models (8 of 8 and 7 

of 8 cases, respectively, Figures 3.2C and 3.3C). For the one case where a TME value 
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was not initially sampled (A2A, Figure 3.3C), generating additional pharmacophore 

models remedied this problem.  

In addition to assessing virtual screening performance, all generated 

pharmacophore models were subjected to a thorough analysis of pharmacophore model 

feature distances and composition. Pharmacophore models were split into both HE and 

LE subsets based on whether they met our established EF quality metric of 2. In terms of 

distances, HE PED and PHM models both tended to have more spatially condensed features 

(as exhibited by the decreased average feature distances when compared to LE PED and 

PHM models in Tables B11 and B12). Pharmacophore model feature composition analysis 

revealed that HE PED and PHM models possessed a greater proportion of hydrophobic 

features, while LE PED and PHM models possessed greater proportions of cationic 

hydrogen bond donors, anionic hydrogen bond acceptors, and neutral hydrogen bond 

acceptors and donors (Tables 3.3 and 3.4). Though there are clear differences between the 

spatial arrangement and composition of pharmacophore models possessing high and low 

EF values, adequate classification of pharmacophore model quality remains a challenge. 

Given the varied nature of GPCR active site volumes203, one cannot simply use averages 

of measured distance values as a determinant of pharmacophore model quality since 

many of our best performing pharmacophore models possessed distances greater than 

these average values. 

Based on the results described herein, a suggested virtual screening workflow 

incorporating our method of pharmacophore model generation can be detailed. 

Pharmacophore models should first be generated in either an experimentally determined 

or homology modeled structure of a target of interest. Next, generated pharmacophore 
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models should be used to perform searches of an internal test database (containing 

conformations of active and decoy molecules for a target of interest) that require a 

molecule to match 5 pharmacophore features to be considered a hit. Following a database 

search, EF and GH scoring metrics should be calculated to assess pharmacophore model 

performance as the basis to select pharmacophore models. Once selected, the best scoring 

EF and GH pharmacophore models should then be used to search an external compound 

database such as ZINC.25  Pharmacophore hit lists obtained via external database 

searches should then be analyzed to ensure that they each possess a practical number of 

compounds since overpopulated hit lists are likely indicative of poor pharmacophore 

model performance. In the case where a high performing pharmacophore model results in 

a hit list containing too many compounds, we recommend using the next best performing 

pharmacophore model. Once an initial hit list (resulting from external database searches 

with the best scoring EF and GH pharmacophore models) is obtained, experimental 

screening can be performed without further refinement if the hit list is sufficiently small. 

Alternatively, virtual screening methods such as docking or clustering via diverse subset 

identification can be employed to refine a hit list that is reasonably sized but too large for 

direct experimental screening. Compounds selected in this fashion comprise a high-

priority list of candidates for experimental screening, a step not illustrated in this work. 

Methodology 

Homology/Loop Modeling 

Target homology modeling was performed utilizing a previously benchmarked 

GPCR modeling workflow.24,35,59 First, template sequences from which to model each 
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target were selected using the contact-informed neighboring pocket (CoINPocket) score 

developed by Ngo et al. to emphasize similarities at residue positions that frequently 

make strong interactions in a set of 27 unique class A GPCR experimentally determined 

structures (Table 3.1).33,34 Next, the non-GPCR sequence segments from each template 

and crystallographic reference structure (including fusion partners such as T4 lysozyme 

or thermostabilized cytochrome b562RIL) were deleted. Each target sequence was then 

obtained from GPCRdb19 and aligned to its corresponding template in MOE 2019.010256 

using a two-step procedure. The first step aligned the target and template sequence using 

MOE’s “sequence only” method of automatic alignment. After the initial alignment, gaps 

in helical segments of each sequence were manually shifted into the structurally variable 

intracellular and extracellular loop regions while ensuring that conserved TM.50 residues 

remained aligned.35 Next, 11 initial homology models were generated using our 

previously benchmarked GPCR modeling workflow24,35,59 which utilizes the default 

settings in the MOE homology modeling interface but scores models based on effective 

contact energy and retains the crystallographic ligand from the template structure as the 

‘Environment for Induced Fit’. For each target, the homology model with the lowest 

effective contact energy was selected for de novo extracellular loop 2 (ECL2) modeling. 

ECL2 modeling began with the selection of the final helical residue of TM4 and 

first helical residue of TM5 as loop ‘anchor’ residues. This work utilized Rosetta’s 

“kinematic closure with fragments” (KICF)58 method of sampling ECL2 conformations, 

which requires that fragment libraries be generated prior to de novo conformational 

sampling. Fragment libraries were generated by submitting a FASTA formatted sequence 

containing the nine residues prior to the first loop anchor, the ECL2 sequence and the 
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nine residues after the second loop anchor to the Robetta178 server. The loop modeling 

process used herein incorporated an atomic disulfide constraint that restricts the distance 

of sulfur atoms in critical cysteine residues 3.25 of TM3 and 45.50 of ECL2 to 5.1 Å as a 

means of filtering out models unable to form disulfide bonds. Furthermore, loop 

modeling was performed with the template ligand present in the binding pocket. For each 

target, a total of 250 disulfide-constrained ECL2 models were generated. The ECL2-TM3 

disulfide bond was formed in the top 10 lowest scoring models followed by geometry 

optimization of the ECL2 segment in MOE. Each target’s lowest scoring loop refined 

homology model was then selected for multiple copy simultaneous search. 

Multiple Copy Simultaneous Search (MCSS) 

Structures of the GPCR used in this study (Table 3.1) were prepared using the 

“QuickPrep” function in MOE after removal of ligand and water chains to ensure proper 

protonation and charge at pH 7.4 and to minimize each structure using the 

AMBER10:EHT forcefield.180,204 After structure preparation, the “Site Finder” function 

in MOE was then used to define a binding site for each receptor. This method is based in 

the alpha spheres methodology by Edelsbrunner et al. and organizes potential binding 

sites by the volume of alpha spheres within a potential binding pocket.112 Once a binding 

site was identified for each receptor, MCSS109 (termed  “MultiFragment Search” in 

MOE) was performed utilizing default settings at the residues comprising the potential 

binding site using the MOE56 fragment database. MCSS randomly placed 100 copies of 

each fragment in the potential binding site and each fragment was then energetically 

minimized to refine initial placements. Once refined, unique fragment placements were 

written to an output database. 
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Automated Pharmacophore Model Generation 

Pharmacophore model generation was performed using an automated scripting 

workflow implemented in the scientific vector language (SVL) in MOE (Figure 3.1). This 

process began with the randomized selection of 5 fragments from the MCSS output. Once 

selected, fragment atoms within 4.5 Å of binding pocket residues were annotated as 

pharmacophore features using the built-in MOE pharmacophore editor. The number of 

features in each pharmacophore model was capped at 5, a reasonable approximation of 

the 3 to 7 features typically found in GPCR pharmacophores.114 A total of 5000 

pharmacophore models were generated for each receptor structure used in this study in 

order to sample diverse combinations of pharmacophore features. 

Internal Test Database Searching/Scoring 

Active ligands for 30 GPCR were downloaded from IUPHAR/BPS Guide to 

Pharmacology190 and compiled into an internal test database using MOE. Each entry in 

the database was assigned receptor-specific activities (agonist, inverse agonist, 

antagonist, biased agonist, or allosteric modulator) and labeled according to which 

receptors each ligand possessed activity for. Ionization states of the major species in 

solution at pH 7.4 were constructed and energetically minimized using the 

AMBER10:EHT forcefield.180,204 A stochastic conformational search incorporating 

inversion of unconstrained chiral centers (based on instances where the stereocenter was 

not given a specific assignment in IUPHAR/BPS Guide to Pharmacology190), 

unconstrained double bond rotation, and the random rotation of all bonds (in increments 

biased around 30 degrees128) followed by all-atom energy minimization was then 

performed to generate a set of up to 10 energetically reasonable atomic configurations per 
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molecular stereochemical configuration for each ligand in the database. The energy 

window for each search was kept at the default value of 7 kcal/mol, which discarded 

minimized conformations with potential energies 7 kcal/mol greater than the potential 

energy of the lowest energy minimized conformation. In addition, conformational 

searches utilized a rejection limit of 100, iteration limit of 10,000, RMS gradient of 0.005 

kcal/(mol•Å), and RMSD limit of 0.25 Å.  

Each of the 5000 pharmacophore models generated in each receptor structure was 

used to search the internal test database. Pharmacophore searches were performed three 

times, each requiring a different number of feature matches for a ligand to be considered 

a hit (3, 4, or 5 features). Pharmacophore search performance was evaluated with two 

metrics, enrichment factor (Eq. 1, where Ha = number of active compounds selected via 

pharmacophore search, Ht = number of hit compounds identified via pharmacophore 

search, A = internal test database active compounds, D = number of internal test database 

compounds) and goodness-of-hit score (Eq. 2).86  

 

Enrichment Factor (EF) = Ha/Ht
A/D

     (Eq. 1) 

Goodness-of-hit (GH) score = �[Ha*(3A+ Ht)]
4*Ht*A

� *[1- Ht-Ha
D-A

]   (Eq. 2) 

 

Enrichment factor (EF) measures the fold change between pharmacophore active 

compound selection proportion and active compound proportion in the database. Since 

EF values differ depending on the proportion of actives in the search database, they were 

normalized (scaled from 0 to 1) to the theoretical maximum enrichment for each receptor. 

The maximum active-to-hit ratio of any pharmacophore is 1 (1 hit:1 active, 10 hits:10 
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actives, etc.). Therefore, the theoretical maximum enrichment factor for any receptor was 

calculated as 1/[A/D]. The second metric goodness-of hit (GH) score determines how 

well a pharmacophore prioritizes a high yield of actives and a low false-negative rate 

when searching a compound database. GH scores range from 0 to 1, with 1 representing a 

hit list containing all active compounds with no false positives. 
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Chapter 4  

Structure-based Pharmacophore Modeling 2. Developing a Novel Framework for 

Structure-based Pharmacophore Model Generation and Selection 

Introduction 

G Protein-Coupled Receptors 

G protein-coupled receptors (GPCR) are a superfamily of membrane proteins that serve 

to transmit extracellular signals to intracellular effectors, typically through the binding of an 

extracellular ligand. These receptors play a role in many physiological pathways (such as blood 

pressure and immune response regulation) and disruption of their signaling can lead to the 

manifestation of conditions such as asthma, ulcers, and hypertension.205 Consequently, GPCR 

are drug targets of immense interest, with approximately 35% of FDA-approved drugs acting 

upon these receptors.206 Though GPCR have proven to be therapeutically important targets, 

identification of ligands for these receptors (a critical first step in drug discovery) faces a 

multitude of obstacles. For example, a majority of the known “druggable” GPCR are yet to be 

targeted by currently approved drugs9, implying that novel methods of exploiting the therapeutic 

potential of these understudied GPCR are necessary. Furthermore, ligand discovery for GPCR is 

often impeded by a lack of knowledge concerning ligand activity and receptor structure. In 

regards to ligand activity, many GPCR lack known endogenous ligands (known as orphan 

receptors11), hindering exploration of a receptor’s function and potential signaling pathways. 

Many of these orphan receptors also lack synthetic ligands, further obscuring their biochemical 

and physiological roles. Only 140 of the over 800 known GPCR in the human genome possess 

experimentally resolved structures in the Protein Data Bank as of October 24, 202219,158, leading 
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many drug discovery workflows to rely on modeled structures. Therefore, new methods of ligand 

elucidation for understudied GPCR targets are necessary, regardless of whether a three-

dimensional structure of the target has been experimentally determined. 

Pharmacophore Modeling 

As an alternative to costly and time-consuming high-throughput random screening, 

virtual screening is often employed in GPCR ligand identification workflows to select subsets of 

screening candidates from large compound libraries. During the virtual screening process, 

pharmacophore models (spatial arrangements of chemical features capable of making 

interactions thought to be essential for receptor activity) are frequently utilized as templates to 

identify prospective ligands, effectively reducing the number of compounds considered for 

experimental screening. Pharmacophore models are typically constructed by extracting structural 

commonalities from sets of known ligands for a target, and are thus termed ligand-based 

pharmacophore models.21 While these ligand-based pharmacophore models have exhibited 

success in prior studies21, many GPCR lack sufficient numbers of known ligands to make this 

approach effective for ligand discovery. Alternatively, structure-based pharmacophore models 

can be established by probing possible interaction points with a three-dimensional structure of a 

macromolecular target to establish a collection of features thought to be necessary for biological 

activity.21 Unlike ligand-based pharmacophore modeling, the only prerequisite for structure-

based pharmacophore modeling is a target’s three-dimensional structure, whether experimentally 

determined or modeled. Advances in GPCR structure determination by experimental207 and 

modeling208 methods has led to increases in the numbers of publicly available receptor structures 

as well, further increasing the applicability of a structure-based pharmacophore modeling 

workflow to GPCR ligand discovery. 
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Although past structure-based pharmacophore modeling studies have been successful in 

identifying active ligands for various targets187–189, these studies often fail to consider cases 

where a target does not possess known ligands (e.g. orphan GPCR) or an experimentally 

determined structure. Thus, the work discussed herein describes a method of structure-based 

pharmacophore model generation that is applicable to any GPCR structure, whether 

experimentally determined or modeled. Furthermore, a priori knowledge of active ligands is not 

required, allowing for a truly structure-based method of pharmacophore model generation. 

Pharmacophore models were generated in experimentally determined structures as well as 

homology models generated with our previously benchmarked GPCR modeling workflow24,35,59, 

allowing for the assessment of pharmacophore search performance starting from a wider range of 

structure sources. 

As described in the first paper in this two-paper series, our structure-based 

pharmacophore modeling workflow (Figure 4.1) begins with output from a Multiple Copy 

Simultaneous Search (MCSS), which randomly places numerous copies of varied functional 

group fragments into a receptor’s active site and then energetically minimizes each 

independently of the others to determine energetically optimal positions for each fragment.109 

The method described here differs from that in the companion paper209 through application of a 

“score-based” fragment selection method prior to pharmacophore model generation. In this 

work, each iteration of pharmacophore model generation considers N+1 fragments placed with 

MCSS (starting with N=0) that are first ranked using fragment-receptor interaction scoring and 

are then subjected to automated fragment selection based on distance cutoffs intended to emulate 

the placement and end-to-end distances of ligands that typically bind GPCR. This loop of 

sequentially importing score-sorted fragments and retaining/removing fragments from 
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consideration based on distances continues until the pharmacophore model possesses 7 features 

(the upper limit of the range of features typically observed in GPCR pharmacophore models114), 

at which point it is considered complete. 

 

Figure 4.1. Score-based pharmacophore generation workflow. 

Pharmacophore models were generated in experimentally determined and modeled 

structures of 13 target GPCR with known active ligands. While known ligands are not a 

prerequisite for score-based pharmacophore model generation, here they allowed for the 

calculation of the enrichment factor (EF) and goodness-of-hit (GH) scoring metrics to determine 

pharmacophore model performance. The first metric, EF, describes how many fold better a given 

pharmacophore model is at selecting active compounds when compared to random selection.86 

The second metric, GH, determines how well a pharmacophore model prioritizes a high yield of 

actives and a low false-negative rate when searching a compound database.86 Though both 

scoring metrics are useful, we mainly focus on the EF metric since it is the most relevant to our 

lab’s experimental work. 
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Pharmacophore Model Selection 

When using structure-based pharmacophore models to identify screening candidates, the 

selection of a single pharmacophore model or set of pharmacophore models to use as a search 

query is a critical step in the virtual screening process. While many publications detailing 

structure-based pharmacophore modeling protocols assess search performance in the context of 

protein targets with known ligands, pharmacophore model selection for targets with no known 

ligands is rarely discussed. Even if generated pharmacophore models identify active ligands for 

test case receptors (where active ligands are known), how does one select a pharmacophore 

model to apply to the majority of cases where a target lacks known ligands? For instance, 

structure-based pharmacophore modeling tools such as AutoPH4189 and Catalyst210 demonstrate 

the ability to identify active compounds for protein targets with known ligands in artificial virtual 

screening workflows. However, the application of these structure-based pharmacophore 

modeling methods to apo protein structures often results in an overabundance of features in 

generated pharmacophore models, necessitating manual feature pruning that is likely to result in 

varied virtual screening performance when applied to GPCR with no known ligands.189,211 For 

structure-based pharmacophore modeling tools that do implement automated methods of 

pharmacophore feature refinement (such as FLAP212), mixed results have been observed when 

they are applied to GPCR.213 Thus, there is a clear need for a reliable method of selecting high-

performing pharmacophore models for use in database searches to identify active compounds for 

GPCR with no known ligands.  

Consequently, we explored two distinct methods of selecting score-based pharmacophore 

models that are applicable to any target. We first assessed whether a specific combination of 

variables explored during pharmacophore construction consistently produced high performing 
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pharmacophore models. This first method, herein referred to as progressive variable selection, 

takes advantage of the range of variables (MCSS fragment set, score type used for sorting, etc.) 

considered when generating our score-based pharmacophore models. Upon determining that 

progressive variable selection did not consistently lead to the identification of high-performing 

pharmacophore models, we applied machine learning methods to the pharmacophore models. 

Our method of pharmacophore model selection via machine learning is novel in this context and 

relies on an ensemble machine learning workflow to identify pharmacophore models likely to 

possess higher enrichment values when applied in a virtual screening context (Figure 4.2).  

 

Figure 4.2. Cluster-then-predict workflow used in pharmacophore model classification 
illustrated using 5 clusters. 

Clusters are numbered and abbreviated using C followed by the cluster number. High 
enrichment and low enrichment pharmacophore models are abbreviated as HE and LE, 
respectively. 

In the companion paper, thousands of unique pharmacophore models were generated via the 

annotation of randomly selected functional group fragments placed with MCSS.209 These models 

were used to train an ensemble method of pharmacophore model classification. This ensemble 
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classification utilizes a “cluster-then-predict” workflow that has exhibited success in prior 

studies.214,215 The first algorithm used in our cluster-then-predict workflow, K-means clustering, 

is a method of unsupervised learning used to separate data into k clusters.216 Instances assigned 

to each cluster possess similar attributes, allowing for the identification of groups that have not 

been explicitly labeled in a dataset.216  The second algorithm in our cluster-then-predict 

workflow, logistic regression, is a method of binary classification that uses a set of independent 

variables (predictors) to predict a categorical dependent variable.217 In practice, logistic 

regression is used to model the probability of a certain class or event existing, allowing for the 

classification of observations in a dataset into 1 of 2 labeled classes.218  Consecutive 

implementation of K-means clustering and logistic regression produced binary classification 

models capable of accurately identifying pharmacophore models likely to possess higher 

enrichment values. Since pharmacophore models generated for targets that lack known ligands 

cannot be scored with the EF metric, using logistic regression to predict score-based 

pharmacophore model enrichment class based on features of the pharmacophore models allowed 

for the identification of useful pharmacophore models even when active ligands were not known 

for a target. 

Research Aims and Outcomes 

Ultimately, the goal of this research is to develop a method of pharmacophore model 

generation that can use an experimentally determined or modeled structure of any GPCR target 

as input, regardless of whether active ligands are known or not. Score-based pharmacophore 

models predicted to result in higher enrichment values with this workflow can be used to search 

databases of commercially available compounds, allowing for the identification of candidate 

ligands for the many orphan or understudied GPCR. While we exclusively discuss applications 
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in the context of GPCR, this method of pharmacophore model generation can realistically be 

applied to any biological target, after appropriate training or validation of the cluster-then-predict 

classifiers. Overall, this work demonstrates the ability of our score-based pharmacophore 

modeling and binary classification workflow to generate and accurately select pharmacophore 

models predicted to result in higher enrichment values in both experimentally determined 

structures (12 of 13 cases) and homology models (9 of 13 cases). Furthermore, classification of 

score-based pharmacophore models generated in either structure type with our cluster-then-

predict workflow resulted in accurate classification of an average of 82% of all pharmacophore 

models predicted to result in higher enrichment values, indicating that this workflow identified 

high proportions of higher enrichment pharmacophore models without guidance from known 

active ligands. 

Results and Discussion 

The work discussed herein describes a fully automated method of structure-based 

pharmacophore model generation that can utilize experimentally determined or modeled protein 

structures as input. For each input receptor structure, 4 distinct pharmacophore models (each 

representing a fragment score type) were generated via the annotation of subsets of functional 

group fragments placed with Multiple Copy Simultaneous Search (MCSS). Unlike the random 

pharmacophore model generation described in the companion paper209, score-based 

pharmacophore model generation relies on fragment scoring and distance cutoffs to generate 

pharmacophore models (Figure 4.1). Furthermore, this method does not require ligands with 

known activity at the target for pharmacophore model selection. Progressive variable selection 

and a cluster-then-predict workflow (Figure 2) were assessed as means to identify high 

enrichment pharmacophore models. Pharmacophore model generation and selection was tested 
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in experimentally determined and modeled structures of 13 target GPCR (Table 4.1): 5-

hydroxytryptamine receptor 1B (5HT1B), 5-hydroxytryptamine receptor 2B (5HT2B), 5-

hydroxytryptamine receptor 2C (5HT2C), adenosine receptor 2A (A2A), alpha-2C adrenergic 

receptor (A2C), beta-2 adrenergic receptor (Beta 2), histamine receptor 1 (H1), muscarinic 

acetylcholine receptor 1 (M1), muscarinic acetylcholine receptor 2 (M2), muscarinic 

acetylcholine receptor 4 (M4), δ-opioid receptor (OPRD), κ-opioid receptor (OPRK), and μ-

opioid receptor (OPRM). Fragment subsets used for MCSS (Figure 4.3) were determined via the 

analysis of high performing pharmacophore models generated for the 8 targets (5HT2B, A2A, 

Beta 2, H1, M1, OPRD, OPRK, OPRM) studied in our companion paper.209  

Homology/Loop Modeling 

For the 13 target GPCR used to assess the performance of our score-based 

pharmacophore models, homology modeling was performed using a benchmarked workflow that 

retains a template structure’s ligand throughout homology model generation and extracellular 

loop 2 (ECL2) modeling.24,35,59 Template structures for each target GPCR were first selected 

using Ngo et al’s CoINPocket metric of scoring localized similarity between prospective binding 

pockets of 2 GPCR sequences (publication retracted due to errors unrelated to the similarity 

metric or computational methods).33,34 A summary of target and template GPCR, CoINPocket 

scores, GenBank accession numbers, and PDB identification codes used in this study can be 

found in Table 4.1. After the generation of 10 initial homology models in MOE56, the homology 

model possessing the lowest atomic contact energy was retained for ECL2 refinement in 

Rosetta.58 For each target GPCR, the best scoring loop-refined homology model with the 

conserved disulfide bond between Cys 3.25 and Cys 45.50 was then superposed onto a reference 

structure and alpha-carbon RMSD values were calculated for all residues as well as residues in 
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the ECL2 region (Table 4.1). Alpha-carbon RMSD values for all residues ranged from 2.54 Å 

(M4) to 5.99 Å (OPRK), while alpha-carbon RMSD values for residues localized to ECL2 

ranged from 6.60 Å (5HT1B) to 14.87 Å (OPRK). Both of these ranges are comparable to those 

observed in our prior homology modeling benchmark, where RMSD values for the best scoring 

loop conformations ranged from 2.93 Å to 6.32 Å for all residues and 4.66 Å to 15.41 Å for 

ECL2 residues.59 
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Table 4.1 GenBank accession numbers, PDB ID numbers, and homology model RMSD values from experimental reference 
target structures for GPCR used in this study. 
a Maximal self-similarity measure of 5.47. A pairing of two receptors with a local similarity score of 5 would indicate very similar 
ligand binding pockets, while a receptor pairing with a local similarity score of 1 or less would indicate low ligand binding pocket 
similarity 
bSequence similarity calculated using a global transmembrane domain alignment by Ngo et al.33 

Receptor Template 
Local 
Similarity 
Measurea 

Unweighted 
Global 
Similarity 
(%)b 

GenBank 
Accession 
Number 

Target 
Reference 
PDB ID 

Template 
PDB ID 

Alpha 
Carbon 
RMSD 
(Å) 

ECL2 
RMSD 
(Å) 

5HT1B D2 3.15 47.90 P28286 5V54219 6LUQ220 3.06 6.60 

5HT2B 5HT2C 4.19 69.39 P41595 4NC3192 6BQH 3.78 6.64 

5HT2C 5HT2B 4.19 69.39 P28335 6BQH193 4NC3 3.89 7.90 

A2A A1A 4.49 64.20 P29274 5NM4194 5UEN221 4.14 11.37 

A2C α2A 4.57 80.86 P18825 6KUW222 6KUY223 3.63 11.48 

Beta 2 D2 2.80 46.67 P07550 2RH1196 6LUQ 4.67 12.40 

H1 M1 2.58 35.98 P35367 3RZE167 5CXV 3.51 8.51 

M1 H1R 2.58 35.98 P11229 5CXV168 3RZE 3.66 10.03 

M2 M4 5.00 91.65 P08172 5ZKC224 5DSG 3.17 9.76 

M4 M2 5.00 91.65 P08173 5DSG168 5ZKC 2.54 7.54 

OPRD OPRM 4.36 77.79 P41143 4N6H197 5C1M 4.05 6.86 

OPRK OPRM 4.41 72.61 P41145 4DJH198 5C1M 5.99 14.87 

OPRM OPRK 4.41 72.61 P35372 5C1M199 4DJH 4.89 13.02 
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Multiple Copy Simultaneous Search (MCSS) 

MCSS was performed in each structure using the full set of 39 functional group 

fragments present in the MOE 2019.01 fragment database (Table C1).56 MCSS began with the 

randomized placement of 100 copies of each fragment at residues selected with the MOE Site 

Finder function, which determines potential binding sites based upon the alpha spheres 

methodology detailed by Edelsbrunner et al.112 A total of 3,900 functional group fragments were 

placed in each target’s binding pocket and then optimized to energetically preferred locations 

without interacting with other placed fragments.  Unique fragment placements after optimization 

were retained. MCSS with our 13 selected GPCR targets resulted in ranges of 1,156 (OPRM) to 

2,192 (OPRK) and 1,376 (OPRD) to 2,111 (A2C) uniquely placed fragments in experimentally 

determined structures and homology models, respectively (Table C2).  

After MCSS was performed with the MOE 2019.01 fragment database56, 4 additional 

subsets of placed fragments were utilized. Fragments included in each subset (Figure 4.3) were 

selected based on how frequently their placements resulted in pharmacophore feature annotation 

for each receptor’s top 10 (T10) enrichment factor (EF) or goodness-of-hit (GH) scored 

pharmacophore models from the companion  
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Figure 4.3. Fragment subsets used in MCSS. 

Fragments included in each subset were those whose placements most frequently resulted in 
feature annotation when considering each receptor’s top 10 (T10) enrichment factor (EF) or 
goodness-of-hit (GH) scored pharmacophore models from the companion paper209 in aggregate 
(80 pharmacophore models for each score type across 8 receptors) or individually (10 
pharmacophore models for each score type per receptor). A) Fragments most frequently 
resulting in feature annotation (>10 placements) when considering all T10 EF companion paper 
pharmacophore models for the 8 targets. B) Fragments most frequently resulting in feature 
annotation (>10 placements) when considering all T10 GH companion paper pharmacophore 
models for the 8 targets.  C) Fragments most frequently resulting in feature annotation when 
considering each receptor’s T10 EF companion paper pharmacophore models. D) Fragments 
most frequently resulting in feature annotation when considering each receptor’s T10 GH 
companion paper pharmacophore models. 

paper209 in aggregate (80 pharmacophore models for each score type across 8 receptors, subsets 

herein referred to as the EF subset and GH subset, respectively, Figure 4.3A-B) or individually 

(10 pharmacophore models for each score type per receptor, subsets herein referred to as the 

receptor EF subset and receptor GH subset, respectively, Figure 4.3C-D). Fragments with ≤ 10 
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placements resulting in feature annotation were not considered when selecting EF and GH subset 

fragments in order to maintain reasonably sized subsets. 

Score-based Pharmacophore Model Generation 

Pharmacophore model generation was performed in MOE using a fully automated 

software vector language (SVL) scripting workflow (Figure 4.1). Pharmacophore models were 

generated in experimentally determined and modeled structures of each of the 13 target GPCR 

using the five MCSS fragment sets (complete, EF, GH, Receptor EF, Receptor GH) to assess 

impact of input fragment sets on pharmacophore model performance. Prior to pharmacophore 

model generation, each structure was imported into MOE. The fragments placed in that structure 

with MCSS were then ascendingly sorted by two criteria, fragment-receptor interaction score and 

then water accessible surface area of hydrophobic atoms. Separate pharmacophore models were 

produced after sorting by each of 4 types of fragment-receptor interaction scores: dE (fragment 

interaction energy), dU (fragment interaction potential), dE(class) (fragment interaction energy 

per fragment class), and dU(class) (fragment interaction potential per fragment class).56 In total, 

20 pharmacophore models were generated by the use of four fragment-receptor interaction score 

types and 5 fragment sets placed by MCSS in each experimentally determined and modeled 

target GPCR structure. 

The use of 4 different score types during the pharmacophore generation process resulted 

in varied feature placements and types within each generated pharmacophore model. For 

example, pharmacophore models with features annotated using the top dE/dU scoring fragments 

tended to possess more geometrically clustered features when compared to pharmacophore 

models generated with class-based (dE(class) or dU(class)) fragment scoring (Figure 4.4).  
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Figure 4.4. Pharmacophore models generated in experimental reference structures of 4 of 
the 13 GPCR targets using the MOE fragment subset.  

Hydrophobic features are denoted by green spheres, hydrogen bond acceptor features are 
denoted by blue spheres, hydrogen bond donor features are denoted by magenta spheres, 
aromatic features are denoted by orange spheres, and features that are both hydrogen bond 
acceptors and donors are denoted with purple spheres. 

Since prospective ligands were only going to be required to match a subset of pharmacophore 

features rather than every pharmacophore feature during the search process, we found it 

acceptable for generated pharmacophore models to retain spatially clustered features. The 
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secondary sort by water accessible surface area of all hydrophobic atoms prioritized well-scoring 

fragments making specific H-bond donor/acceptor interactions. Furthermore, this sorting also 

discouraged the inclusion of an excess of hydrophobic fragments, which (if annotated) would 

result in an overabundance of non-specific, non-directional hydrophobic interactions.225  Figure 

4.4 illustrates that in all except 1 case, generated pharmacophore models contain polar feature 

types as well as hydrophobic features. 

For each iteration of the pharmacophore model generation script, N+1 fragments (starting 

with N=0) were imported into the system. The number of fragments brought into the system 

increased by 1 with each unsuccessful attempt at pharmacophore model generation (i.e. a 

pharmacophore model possessing < 7 features), which prioritized the use of few, well-scoring 

fragments during the feature annotation process. Once a new fragment was introduced to the 

system, a series of distance criteria were employed to ensure that geometric centroids of 

fragments selected for feature annotation would not be exceedingly far apart from one another (> 

15 Å from fragment centroid to fragment centroid) or the binding pocket centroid (> 10 Å from 

fragment centroid to the geometric center of binding pocket residues identified with MOE’s Site 

Finder tool) in an attempt to emulate the end-to-end size and binding pocket placement observed 

with typical GPCR ligands. In addition, the script required the distance between any two 

fragment centroids (if present in the system after the first iteration of the script) to be greater than 

0.5 Å to ensure that no two pharmacophore features would be placed at the same coordinates to 

avoid redundancy. If a fragment present in the system failed to satisfy any of the distance 

criteria, it was not considered for feature annotation. Next, fragment atoms within 4.5 Å (the 

default radius defining nearby residues in MOE56) of the binding pocket residues selected with 

the Site Funder function were annotated as pharmacophore features using MOE’s built-in 
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pharmacophore query editor. This pharmacophore generation workflow repeated until the 

pharmacophore model possessed 7 features. While the number of features in pharmacophore 

models generated with this methodology is on the upper end of the 3 to 7 features typically 

observed in GPCR pharmacophore models114, requiring 7 features allowed for diverse, less 

specific combinations of pharmacophore features when performing partial pharmacophore 

searches. 

Internal Test Database Searching/Scoring 

In order to select an EF threshold value separating higher enrichment (HE) and lower 

enrichment (LE) pharmacophore model database searches, the range of maximal EF values for 

each receptor when searching for hits in our internal test database was determined using the 

formula 1/[A/D], where 1 is the maximum possible hit:active ratio in the hitlist and A/D is the 

proportion of target receptor actives in the internal test database (Table C3). Maximum possible 

EF values ranged from 6.6 (5HT2B and 5HT2C) to 19.6 (A2A). Based on maximal EF values for 

each target, an EF cutoff of 2 was chosen to separate pharmacophore model database search 

performance into HE (EF ≥ 2) and LE (EF < 2) categories for this work since this value 

represents 10-30% of the theoretical maximum enrichment values of all studied targets (Table 

C3). While our chosen cutoff is lower than EF values exhibited by well-performing 

pharmacophore models developed in other studies113, the range of EF values resulting from 

pharmacophore searches is entirely dependent on the proportion of active compounds for each 

target within the compound database and thus direct comparisons of EF values when searching 

different databases are not meaningful. Given that our internal database contains 5-15% active 

compounds for any of the 13 studied targets (Table C3), we found an EF cutoff of 2 to be 

appropriate for this study. 
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Although the generation of 20 pharmacophore models per input structure provides 

multiple avenues for ligand identification, the use of this many pharmacophore models in a 

virtual screening context may lead to hit lists that are too large, even if molecular docking or 

chemical descriptors are used as secondary hit list filters. Furthermore, a set of 20 

pharmacophore models may only include a handful of high performing pharmacophore models, 

leading to hit list dilution resulting from searches with low performing pharmacophore models. 

Thus, further guidance is necessary if a single pharmacophore model or group of pharmacophore 

models is to be selected for use in ligand identification. In addition to providing a method of 

separating pharmacophore models into HE and LE classes, imposing an EF cutoff of 2 allowed 

for the determination of which combinations of fragment subset, fragment-receptor interaction 

score type, and partial match feature number (progressive variable selection) most frequently 

resulted in internal test database searches exhibiting EF values that reflect active identification at 

least twice as effective as random compound selection (HE). 

Pharmacophore models were then used to search an internal test database containing 

conformations of 569 active ligands for 30 GPCR (Table C4).123 Since requiring database ligands 

to match all of the features present in each pharmacophore model (7 features) was likely to result 

in sparsely populated hit lists, searches allowing for partial matches of a prospective ligand to 3-

7 features of a pharmacophore model (herein referred to as partial match feature searches) were 

employed during the database search process. This allowed for the determination of an ideal 

number of features to match as part of the progressive variable selection process.  

Database search performance for each pharmacophore model and partial match feature 

search was assessed with the EF and GH scoring metrics. Tables 4.2 and 4.3 illustrate best-

sampled enrichment values for pharmacophore models generated in experimental structures (PED 
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models) and modeled structures (PHM models), respectively. Tables 4.4 and 4.5 illustrate 

pharmacophore search performance as a function of progressive variable selection for PED and 

PHM models, respectively. PED models generated using the GH fragment subset (Figure 4.3B) 

resulted in HE PED models for 12 of 13 targets, the most of any fragment subset (Table 4.2). In 

addition, searching the internal test database with PED models generated with the GH fragment 

subset most frequently resulted in HE database searches (21 of 260 searches across all partial 

match feature numbers, Table 4.4). Thus, the GH fragment subset appears to be optimal for 

pharmacophore generation in the context of published reference structures. None of the fragment 

sets used to annotate pharmacophore features possessed a best performing pharmacophore model 

with an EF value < 1, indicating that the best pharmacophore model generated with each 

fragment set was capable of identifying active ligands at a rate at least modestly higher than 

random compound selection. PHM models generated with both the receptor EF and receptor GH 

fragment subsets (Figure 4.3C-D) most frequently resulted in HE PHM models (9 of 13 targets, 

Table 4.3). When overall search performance is examined for each subset, however, use of the 

receptor EF subset to generate PHM models more frequently resulted in HE database searches 

when compared to the receptor GH subset (16 of 260 searches vs. 13 of 260 searches, 

respectively, across all partial match feature numbers, Table 4.5). Thus, use of the receptor EF 

set appears to be optimal when generating pharmacophore models in the context of homology 

models.  
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Table 4.2 Best sampled enrichment values (corresponding GH value in parentheses) for 
PED models with each fragment subset when searching our internal test database with all 
partial match feature numbers. 

 
Fragment Subset 

Receptor Default EF GH Rec. EF Rec. GH 

5HT1B 4.38 (0.38) 2.92 (0.25) 8.75 (0.75) 4.38 (0.38) 8.75 (0.75) 

5HT2B 6.62 (0.75) 2.21 (0.25) 2.21 (0.25) 3.31 (0.38) 2.21 (0.25) 

5HT2C 1.04 (0.04) 3.31 (0.38) 2.21 (0.25) 1.14 (0.15) 1.10 (0.13) 

A2A 1.64 (0.07) 1.78 (0.08) 6.54 (0.26) 1.31 (0.06) 9.81 (0.38) 

A2C 4.45 (0.21) 3.74 (0.18) 3.56 (0.18) 5.08 (0.24) 3.56 (0.18) 

Beta 2 10.59 (0.62) 4.55 (0.35) 10.59 (0.62) 2.92 (0.27) 1.52 (0.13) 

H1 1.01 (0.00) 1.01 (0.07) 2.79 (0.19) 1.62 (0.15) 3.28 (0.27) 

M1 2.75 (0.25) 4.95 (0.46) 4.95 (0.46) 3.30 (0.31) 8.25 (0.75) 

M2 4.03 (0.29) 10.74 (0.75) 10.74 (0.76) 2.15 (0.15) 5.37 (0.38) 

M4 4.99 (0.38) 4.99 (0.38) 4.99 (0.38) 2.50 (0.19) 9.98 (0.75) 

OPRD 1.22 (0.08) 9.73 (0.51) 5.84 (0.31) 1.25 (0.10) 1.95 (0.13) 

OPRK 10.16 (0.75) 2.54 (0.20) 10.16 (0.75) 2.54 (0.19) 1.44 (0.14) 

OPRM 1.03 (0.01) 1.54 (0.16) 1.79 (0.14) 1.23 (0.12) 1.31 (0.12) 

EF ≥2 8 10 12 8 8 

EF <1 0 0 0 0 0 
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Table 4.3 Best sampled enrichment values (corresponding GH value in parentheses) for 
PHM models with each fragment subset when searching our internal test database with all 
partial match feature numbers. 

 
Fragment Subset 

Receptor Default EF GH Rec. EF Rec. GH 

5HT1B 1.60 (0.19) 2.92 (0.25) 4.38 (0.38) 2.92 (0.25) 4.38 (0.38) 

5HT2B 2.48 (0.29) 3.31 (0.38) 2.48 (0.29) 2.21 (0.25) 2.21 (0.25) 

5HT2C 1.65 (0.19) 1.75 (0.21) 3.31 (0.38) 1.01 (0.12) 1.47 (0.18) 

A2A 5.61 (0.29) 4.91 (0.22) 2.80 (0.12) 6.36 (0.33) 4.20 (0.18) 

A2C 5.56 (0.30) 4.35 (0.26) 1.90 (0.14) 2.60 (0.18) 2.63 (0.14) 

Beta 2 1.12 (0.11) 2.61 (0.20) 1.21 (0.07) 2.53 (0.18) 1.72 (0.16) 

H1 1.86 (0.13) 1.00 (0.00) 1.00 (0.00) 5.58 (0.38) 4.46 (0.31) 

M1 2.75 (0.26) 1.38 (0.16) 2.75 (0.26) 1.83 (0.17) 8.25 (0.75) 

M2 8.05 (0.58) 10.74 (0.76) 10.74 (0.75) 10.74 (0.75) 10.74 (0.75) 

M4 2.00 (0.15) 2.00 (0.15) 2.00 (0.15) 1.43 (0.11) 2.10 (0.17) 

OPRD 1.33 (0.11) 1.84 (0.16) 2.47 (0.21) 2.92 (0.16) 1.34 (0.12) 

OPRK 10.16 (0.75) 5.08 (0.38) 10.16 (0.75) 5.08 (0.38) 10.16 (0.75) 

OPRM 1.36 (0.12) 1.36 (0.12) 1.36 (0.12) 1.06 (0.02) 1.13 (0.06) 

EF ≥2 6 7 8 9 9 

EF <1 0 0 0 0 0 
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Table 4.4 Pharmacophore search performance for each parameter considered during 
pharmacophore generation/searching for PED models. 
aA total of 260 pharmacophore searches were performed using pharmacophore models 
generated with each fragment subset. 
bA total of 65 pharmacophore searches were performed using pharmacophore models generated 
with the GH fragment set after sorting a fragment database by a score type. 
cA total of 13 pharmacophore searches were performed at each partial match feature number 
using pharmacophore models generated with the GH fragment set sorted by dU(class) scoring. 

All Pharmacophore Models 
Fragment Seta EF ≥ 2 EF < 1 
MOE 16 199 
EF 20 195 
GH 21 185 
Receptor EF 14 213 
Receptor GH 16 192 

GH Set Pharmacophore Models 
Score Typeb EF ≥ 2 EF < 1 
dE(class) 5 17 
dE 5 19 
dU(class) 6 25 
dU 5 20 

GH Set dU(class) Pharmacophore Models 
Match Featuresc EF ≥ 2 EF < 1 
3 0 5 
4 0 6 
5 1 10 
6 5 4 
7 0 0 
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Table 4.5 Pharmacophore search performance for each parameter considered during 
pharmacophore generation/searching for PHM models. 
aA total of 260 pharmacophore searches were performed using pharmacophore models 
generated with each fragment subset. 
bA total of 65 pharmacophore searches were performed using pharmacophore models generated 
with the receptor EF fragment set after sorting a fragment database by a score type. 
cA total of 13 pharmacophore searches were performed at each partial match feature number 
using pharmacophore models generated with the receptor EF fragment set sorted by dU scoring. 

All Pharmacophore Models 
Fragment Seta EF ≥ 2 EF < 1 
MOE 9 182 
EF 12 177 
GH 12 169 
Receptor EF 16 209 
Receptor GH 13 195 

Receptor EF Set Pharmacophore Models 
Score Typeb EF ≥ 2 EF < 1 
dE(class) 4 27 
dE 4 21 
dU(class) 2 31 
dU 6 19 

Receptor EF Set dU Pharmacophore Models 
Match Featuresc EF ≥ 2 EF < 1 
3 1 9 
4 3 8 
5 2 2 
6 0 0 
7 0 0 

 

Selection of optimal fragment-receptor interaction scoring type was based on frequencies 

at which each fragment score type resulted in HE database searches performed with PED models 

generated with GH set fragments and PHM models generated with receptor EF set fragments 

(Tables 4.4 and 4.5). For PED models generated using GH set fragments, sorting fragments by the 

dU(class) score type most frequently resulted in HE database searches (6 of 65 cases, Table 4.4). 

For PHM models generated using receptor EF set fragments, sorting by the dU score type most 

frequently resulted in HE database searches (6 of 65 cases, Table 4.5). Therefore, dU(class) and 
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dU scoring to sort fragments prior to pharmacophore generation in experimentally determined 

structures and homology models, respectively, appear to be optimal. 

If too few features are matched during the search process, hit lists are likely to be 

overpopulated and result in EF values near 1 (i.e. search performance equivalent to randomly 

selecting an active compound from a database). In contrast, attempting to match too many 

pharmacophore features during the search process is likely to result in sparsely populated hit lists 

that may also score poorly in terms of EF values. Thus, we determined which partial match 

feature number (3, 4, 5, 6, or 7) most frequently resulted in HE database searches when searching 

with pharmacophore models generated using the best performing fragment set and fragment 

scoring type for each structure type (Tables 4.4 and 4.5). Searching the internal test database 

with 3, 4, 5, 6, or 7 features using PED models resulted in 0, 0, 1, 5, and 0 HE database searches, 

respectively (Table 4.4), implying that matching 6 of 7 features in PED models generated with GH 

set fragments sorted by dU(class) scoring most frequently leads to HE database searches. When 

searching with PHM models at 3, 4, 5, 6, or 7 features, 1, 3, 2, 0, and 0 searches resulted in an HE 

values, respectively (Table 4.5), implying that matching 4 of 7 features in PHM models generated 

with receptor EF set fragments sorted by dU scoring most frequently leads to HE database 

searches.  

As a whole, these results reveal multiple findings regarding which fragment scoring type 

and partial match feature number should be used when generating score-based pharmacophore 

models and using them to search a compound database. First, it is evident that attempting to 

match all 7 features in generated pharmacophore models is too specific, as 0 cases resulted in HE 

database searches (Tables 4.4 and 4.5). Second, while using the combinations of dU(class) 

fragment scoring/6 partial match features for PED models and dU fragment scoring/4 partial 
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match features for PHM models most frequently led to HE internal test database searches based on 

our progressive variable selection, it is evident that selection of a single score-based 

pharmacophore model to use in virtual screening will not consistently result in HE database 

searches. For example, only 5 of 65 searches using PED models generated with dU(class) sorted 

GH set fragments (Table 4.4) and 6 of 65 searches using PHM models generated with dU sorted 

receptor EF set fragments (Table 4.5) could be considered HE database searches. This low 

proportion of HE database searches suggests that inconsistent performance will result from using 

a single fragment set to construct pharmacophore models. This holds the same for our partial 

match feature search number analysis as well, as the best performing partial match feature 

numbers for database searches with PED models generated with dU(class) sorted GH set 

fragments or PHM models generated with dU sorted receptor EF set fragments also resulted in HE 

database searches in less than 50% of observed cases (5 of 13 searches matching 6 features for 

GH set PED models, 3 of 13 searches matching 4 features for receptor EF set PHM models, Tables 

4.4 and 4.5). Altogether, the low proportions of high-performing pharmacophore models chosen 

with the optimal scoring type and partial match feature number warranted an alternative method 

for pharmacophore model selection. 

Pharmacophore Model Classification 

Though it was evident that our score-based pharmacophore models were able to identify 

active ligands for our 13 studied targets, selecting which pharmacophore model(s) to use for 

targets where active ligands are unknown remained a challenge. While trends mentioned in the 

prior section can be used to select a pharmacophore model, using progressive variable selection 

to generate and select pharmacophore models did not guarantee good performance in virtual 

screening. Thus, we aimed to develop a method of pharmacophore model classification that 
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could predict whether a pharmacophore model is likely to result in HE or LE database searches 

based on information extracted from each pharmacophore model. This mechanism of 

pharmacophore model selection utilizes a hybrid approach to classification: any pharmacophore 

model being classified is first segregated into 1 of k clusters based on its attributes via K-means 

clustering and is then fed into 1 of k logistic regression classifiers trained for an individual 

cluster (Figure 4.2). Throughout this work, our goal was to identify a single high-performing 

classifier (rather than multiple classifiers) that would allow for reliable HE/LE class prediction of 

pharmacophore models generated for targets with no known ligands.  

The initial dataset used to develop the K-means clustering and logistic regression 

classifiers consisted of 150,000 pharmacophore models generated in experimentally determined 

structures using our random method of pharmacophore model generation as described in the first 

paper in this two-paper series.209 The number of pharmacophore models in the initial dataset was 

reduced from 150,000 to 116,219 after dropping pharmacophore models with only one feature. 

For each of the remaining pharmacophore models in the initial dataset, a set of 14 attributes were 

extracted describing the spatial arrangement of features, number of features, number of hits when 

searching our internal test database, feature type homogeneity, mean fragment interaction score, 

and proportions at which various pharmacophore feature types were present (Table 4.6). In 

addition, the target class (representing whether a pharmacophore model resulted in HE or LE 

database searches) for each pharmacophore model in the initial dataset was labeled based on its 

respective EF value for the purpose of monitoring classification performance. 
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Table 4.6 Attributes used in pharmacophore model classification. 

Descriptor Meaning 
max_feat Maximum feature-to-feature distance in a pharmacophore model 
avg_feat Mean feature-to-feature distance in a pharmacophore model 
min_centr Minimum feature-to-centroid distance in a pharmacophore model 
max_centr Maximum feature-to-centroid distance in a pharmacophore model 

avg_centr Mean feature-to-centroid distance in a pharmacophore model 
features Number of features present in a pharmacophore model 
all_same Describes whether all features present in a pharmacophore model are 

(1) or are not all of the same annotation type (0) 

s_score Mean interaction score between fragments used to annotate a 
pharmacophore model’s features and the receptor it was generated in 

hyd_prop Number of hydrophobic features present in a pharmacophore model 
divided by the total number of pharmacophore model features 

don_prop Number of hydrogen bond donor features present in a 
pharmacophore model divided by the total number of 
pharmacophore model features 

catdon_prop Number of cationic hydrogen bond donor features present in a 
pharmacophore model divided by the total number of 
pharmacophore model features 

hydaro_prop Number of hydrophobic aromatic features present in a 
pharmacophore model divided by the total number of 
pharmacophore model features 

aniacc_prop Number of anionic hydrogen bond acceptor features present in a 
pharmacophore model divided by the total number of 
pharmacophore model features 

hits Number of hits obtained when a pharmacophore model is used to 
search our internal test database 

 

Prior to splitting the initial dataset into training and testing sets, we chose to address the 

class imbalance present in the data (112,598 LE pharmacophore models vs. 3,621 HE 

pharmacophore models) that was likely present due to the stochastic nature of the method used to 

select functional group fragments during the generation of random pharmacophore models in the 
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initial dataset.209 This class imbalance was remedied by randomly undersampling a subset of LE 

pharmacophore models matched in number to the HE pharmacophore models present in the 

initial dataset. Although any method of pharmacophore model generation is more likely to 

generate a larger number of poorly performing pharmacophore models, we chose to undersample 

the number of LE pharmacophore models due to their excess present in the dataset that was 

likely to bias classifiers toward the identification of LE pharmacophore models. After 

undersampling the initial dataset, it was split into training and testing datasets using a 

randomized 75%/25% train/test split. 

In addition to using randomly generated pharmacophore model data to test and train our 

cluster-then predict workflow, 2 external datasets were created that described the attributes and 

actual performance classes of the 260 score-based pharmacophore models generated for each 

structure type (experimental or modeled structure) used in this study. These datasets were 

employed to externally validate our cluster-then-predict workflow. 

K-means clustering was then performed on the training data to segregate pharmacophore 

models into k distinct clusters, where k = 1, 2, 3, 4, 5, or 6. Use of k = 1 essentially skipped 

clustering prior to the development of a logistic regression classifier and served as a means of 

comparison between a standard logistic regression workflow and our cluster-then-predict 

workflow. After fitting a K-means classifier to split the training dataset into 1-6 clusters, the 

testing dataset as well as the 2 external datasets were assigned to the appropriate training dataset 

cluster. Separate logistic regression classifiers were then trained using each cluster’s training 

data (1 classifier was developed for k = 1, 2 classifiers were developed for k = 2, etc.). In total, 

21 separate logistic regression classifiers were developed in this study. Each logistic regression 

classifier was then used to predict quality classes (HE/LE) for pharmacophore models in the 
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testing (randomly generated pharmacophore models209) and external (score-based 

pharmacophore models) datasets. 

Selection of an optimal k value is a common dilemma when using K-means clustering.226 

While the number of cluster centroids defined during K-means is typically chosen using 

techniques such as the elbow or silhouette methods227, macro-averaging of binary classification 

metrics also provides a method of developing a multilabel metric used for selecting an optimal k 

value.228 Thus, we chose to select the optimal number of clusters based on the average of 4 

scoring metrics obtained after classifying testing set data using logistic regression classifiers 

developed for each of k clusters (Figure 4.5). For this analysis, the positive predictive value 

(PPV), accuracy, recall, and f1-score metrics were used. Each of these metrics provides some 

insight into a classifier’s ability to correctly predict quality classes for generated pharmacophore 

models. The first metric, PPV, defines the proportion of true positive predictions compared to all 

instances predicted as positives.229 We focused heavily on the PPV metric in this work, since a 

PPV of 1 would represent the “gold standard” case where all pharmacophore models predicted as 

HE are actual HE pharmacophore models. In contrast, a PPV of 0 would represent a poorly 

performing classifier where all pharmacophore models predicted to be in the HE class would be 

false positives. The second metric, accuracy, describes the ratio of correctly predicted 

observations to the total number of observations.230 The third metric, recall, can be defined as the 

ratio of correctly predicted positive observations to the number of actual positive observations.230 

Lastly, the f1-score metric is a weighted average of PPV and recall that takes both false positives 

and false negatives into account.230 When these 4 metrics were averaged together, values closer 

to 1 indicated better classification performance. 
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Figure 4.5. Workflow for selecting an optimal k value in K-means clustering. 

Clusters are numbered and abbreviated using C followed by the cluster number. High 
enrichment and low enrichment pharmacophore models are abbreviated as HE and LE, 
respectively. 

With the following analysis, we aimed to assess the classification performance of each 

cluster-specific logistic regression classifier, select an optimal k value, identify a best-performing 

logistic regression classifier to use for score-based pharmacophore models, and validate our use 

of a cluster-then-predict workflow. Table 4.7 describes averages of all recorded classification 

scoring metrics (PPV, accuracy, recall, and f1-score) when classifying test set data using k = 1, 2, 

3, 4, 5, or 6 logistic regression classifiers. Scoring metric averages ≥ 0.80 were observed for 12 

of the 21 logistic regression classifiers when classifying test set data, indicating that identifying 

high proportions of well-performing pharmacophore models is possible with logistic regression. 
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Table 4.7 Averages of all recorded classification scoring metrics (PPV, accuracy, recall, f1-
score) when classifying test set data using logistic regression classifiers trained on k = 1, 2, 
3, 4, 5, or 6 clusters. 

The three classifiers exhibiting the highest scoring metric averages are highlighted in bold. 
Cluster 
Classifier k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 
I 0.850 0.855 0.648 0.893 0.895 0.883 
II   0.343 0.845 0.565 0.113 0.683 
III     0.648 0.853 0.865 0.858 
IV       0.520 0.895 0.860 
V         0.238 0.888 
VI           0.113 

 

To identify the optimal number of clusters for pharmacophore model segregation, we 

looked for the k value possessing the cluster-specific logistic regression classifier exhibiting the 

highest average of the 4 classification scoring metrics after test set data classification. Two 

cluster-specific logistic regression classifiers met this criterion: cluster classifier I for k = 5 

(scoring metric average = 0.895, Table 4.7) and cluster classifier IV for k = 5 (scoring metric 

average = 0.895, Table 4.7). Each of these classifiers outperformed the singular classifier 

(scoring metric average = 0.850 for k = 1, Table 4.7), validating our choice of a cluster-then-

predict workflow rather than a singular logistic regression classifier. 

Although splitting training set data into k = 5 clusters resulted in 2 cluster-specific 

classifiers exhibiting the highest scoring metric average, each k value used for clustering resulted 

in at least 1 cluster-specific classifier exhibiting a scoring metric average ≥ 0.80 (Table 4.7). 

Given this similarity in scoring metric averages between the best performing classifiers (cluster 

classifiers I and IV for k = 5, scoring metric average = 0.895, Table 4.7) and other well-

performing classifiers (e.g. cluster classifier I for k = 4, scoring metric average = 0.893, Table 

4.7) when classifying training data, we wished to further validate our selection of k = 5 as the 

optimal number of clusters by performing external set classification with all cluster-specific 
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classifiers. For each value of k studied (k = 1, 2, 3, 4, 5 or 6), each of the 260 score-based 

pharmacophore models generated in each structure type was first segregated into one of k 

clusters and then classified with the logistic regression classifier corresponding to its cluster. For 

example, pharmacophore models segregated into the 2nd of k = 6 clusters were subsequently 

classified with the logistic regression classifier developed for the 2nd cluster at k = 6. For PED 

models and PHM models whose quality class was predicted, a PPV was calculated to identify the 

logistic regression classifier that resulted in the highest proportion of true positive HE 

pharmacophore models across all pharmacophore models predicted to be in the HE class (Table 

4.8).  
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Table 4.8 Positive predictive values when classifying external set pharmacophore models generated in experimentally 
determined structures (PED) or homology models (PHM) with logistic regression classifiers trained on data segregated into k = 1, 
2, 3, 4, 5, or 6 clusters. 
aNA values indicate instances where no external data was labeled in a cluster. 
 PPV 
 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 
Cluster 
Classifier PED PHM x̅ PED PHM x̅ PED PHM x̅ PED PHM x̅ PED PHM x̅ PED PHM x̅ 

I 0.40 0.26 0.33 NAa NA NA NA NA NA 0.82 0.78 0.80 0.88 0.76 0.82 NA NA NA 

II    0.23 0.13 0.18 0.38 0.19 0.29 NA NA NA NA NA NA NA NA NA 

III       NA NA NA 0.19 0.11 0.15 NA NA NA 0.14 0.05 0.10 

IV          NA NA NA 0.17 0.08 0.13 NA NA NA 

V             NA NA NA NA NA NA 

VI                NA NA NA 
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When classifying external set pharmacophore models with logistic regression classifiers 

individually trained on data separated into 1, 2, 3, or 6 clusters, predictive power was poor (PPV 

≤ 0.40, Table 4.8). Thus, using these k values during K-means clustering resulted in logistic 

regression classifiers that predicted higher proportions of false positive HE pharmacophore 

models. In addition, the poor performance of the singular classifier (average PPV = 0.33, Table 

4.8) further validates the use of our cluster-then-predict approach to classification. PPV were 

much higher when classifying score-based pharmacophore models with logistic regression 

models trained on k = 4 or k = 5 clusters of pharmacophore model data (Table 4.8). For k = 4, 

PPV of 0.82 and 0.78 were observed for PED and PHM models classified with cluster classifier I, 

respectively, indicating that this classifier would most likely aid in identifying HE 

pharmacophore models. For k = 5, PPV of 0.88 and 0.76 were observed for PED and PHM models 

classified with cluster classifier I, respectively, while PPV of 0.17 and 0.08 were observed for 

PED and PHM models classified with cluster classifier IV, respectively. We can thus conclude that 

both the k = 4 and k = 5 cluster classifier I models generalize beyond the testing set produced 

using random pharmacophore model generation, as their observed PPV (when averaged between 

PED and PHM models) indicate that 80% and 82% of score-based pharmacophore models 

generated in either structure type predicted to be HE pharmacophore models truly exhibited EF 

values ≥ 2 (Table 4.8). In contrast, the poor performance of the k = 5 cluster classifier IV when 

classifying external dataset pharmacophore models (PPV = 0.13 when averaged between PED and 

PHM models, Table 4.8) indicates that it is not suited for accurately classifying score-based 

pharmacophore models. 

Next, we investigated clustering and classification on a target-by-target basis for PED and 

PHM models clustered and then classified with the two cluster-specific classifiers that performed 
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best (on average) when classifying external set pharmacophore models: k = 5 cluster classifier I 

(Tables 4.9 and 4.10) and k = 4 cluster classifier I (Tables 4.11 and 4.12). Interestingly, a large 

overlap existed between training set samples assigned to cluster I for k = 4 vs. cluster I for k = 5, 

which supports the consistency of cluster I classification performance for either k value (Figure 

C1). For each selected classifier, we first determined the number of score-based pharmacophore 

models labeled into each classifier’s cluster for each target receptor (PH4s in Cluster, Tables 4.9-

12). The number of true positive HE pharmacophore models labeled into cluster I was then 

determined for each target (Higher Enrichment PH4s in Cluster, Tables 4.9-12), allowing for the 

calculation of a percentage describing the ratio of predicted HE pharmacophore models in a 

classifier’s cluster to the number of actual HE pharmacophore models in a classifier’s cluster 

(Higher Enrichment %, Tables 4.9-12). For additional evaluation of the selected classifiers, the 

number of predicted HE pharmacophore models (Predicted Higher Enrichment PH4s, Tables 

4.9-12) and PPV metric (PPV, Tables 4.9-12) were calculated on a per target basis. Lastly, lists 

of unique internal test database compounds identified with a target’s pharmacophore models 

predicted to be in the HE class were determined (Unique Hits, Tables 4.9-12) and used to 

calculate a combined EF value representing how many fold better than random HE-classified 

pharmacophore models identify active compounds for each target (Combined EF, Tables 4.9-12). 
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Table 4.9 Per receptor classification results for score-based pharmacophore models (abbreviated as PH4s) generated in 
experimentally determined structures and segregated into cluster I of k = 5 clusters when predicting quality classes with the k 
= 5 cluster I classifier. 
aPharmacophore models per receptor classified into cluster 1 possessing an EF value ≥ 2. 
bPercentage of pharmacophore models in Cluster I possessing an EF value ≥ 2. 
cNumber of pharmacophore models predicted as higher enrichment with SGD logistic regression. 
dTotal number of hits for pharmacophore models predicted as higher enrichment. The number of hits for each pharmacophore model 
is derived from the best EF search across all partial match features. 
eCalculated EF value for all unique hits. 
fNA values indicate instances where scoring metrics are inapplicable due to a lack of higher enrichment pharmacophore models. 
gNo higher enrichment pharmacophore models were generated for OPRM.  

Cluster I Classifier (External Set PPV = 0.88) 

Receptor 
PH4s 
in 
Cluster 

Higher 
Enrichment 
PH4s 
in Clustera 

Higher 
Enrichment 
%b 

Predicted 
Higher 
Enrichment 
PH4sc 

PPV Hitsd Unique 
Hits 

Combined 
EFe 

5HT1B 5 5 100 0 NAf NA NA NA 

5HT2B 10 8 80 8 1.00 21 5 1.32 

5HT2C 5 2 40 0 NA NA NA NA 

A2A 4 2 50 2 1.00 5 4 9.81 

A2C 8 8 100 6 1.00 37 10 1.78 

Beta 2 5 2 40 2 1.00 10 5 10.59 

H1 1 1 100 0 NA NA NA NA 

M1 7 6 85.7 4 1.00 15 6 4.12 

M2 10 9 90 10 0.90 49 16 2.68 
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Table 4.9 (continued). Per receptor classification results for score-based pharmacophore models (abbreviated as PH4s) 
generated in experimentally determined structures and segregated into cluster I of k = 5 clusters when predicting quality 
classes with the k = 5 cluster I classifier. 
aPharmacophore models per receptor classified into cluster 1 possessing an EF value ≥ 2. 
bPercentage of pharmacophore models in Cluster I possessing an EF value ≥ 2. 
cNumber of pharmacophore models predicted as higher enrichment with SGD logistic regression. 
dTotal number of hits for pharmacophore models predicted as higher enrichment. The number of hits for each pharmacophore model 
is derived from the best EF search across all partial match features. 
eCalculated EF value for all unique hits. 
fNA values indicate instances where scoring metrics are inapplicable due to a lack of higher enrichment pharmacophore models. 
gNo higher enrichment pharmacophore models were generated for OPRM. 

Receptor 
PH4s 
in 
Cluster 

Higher 
Enrichment 
PH4s 
in Clustera 

Higher 
Enrichment 
%b 

Predicted 
Higher 
Enrichment 
PH4sc 

PPV Hitsd Unique 
Hits 

Combined 
EFe 

M4 9 6 66.7 9 0.67 47 18 1.66 

OPRD 5 1 20 2 0.50 13 12 2.43 

OPRK 4 3 75 0 NA NA NA NA 

OPRMg 2 0 0 0 NA NA NA NA 

Average 5.8 4.1 65.2 3.3 0.88 24.6 9.5 4.30 
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Table 4.10 Per receptor classification results for score-based pharmacophore models (abbreviated as PH4s) generated in 
homology models and segregated into cluster I of k = 5 clusters when predicting quality classes with the k = 5 cluster I 
classifier. 
aPharmacophore models per receptor classified into cluster 1 possessing an EF value ≥ 2. 
bPercentage of pharmacophore models in Cluster I possessing an EF value ≥ 2. 
cNumber of pharmacophore models predicted as higher enrichment with SGD logistic regression. 
dTotal number of hits for pharmacophore models predicted as higher enrichment. The number of hits for each pharmacophore model 
is derived from the best EF search across all partial match features. 
eCalculated EF value for all unique hits. 
fNA values indicate instances where scoring metrics are inapplicable due to a lack of higher enrichment pharmacophore models.  
gNo higher enrichment pharmacophore models were generated for OPRM.  

Cluster I Classifier (External Set PPV = 0.76) 

Receptor 
PH4s 
in 
Cluster 

Higher 
Enrichment 
PH4s 
in Clustera 

Higher 
Enrichment 
%b 

Predicted 
Higher 
Enrichment 
PH4sc 

PPV Hitsd Unique 
Hits 

Combined 
EFe 

5HT1B 6 5 83.3 0 NAf NA NA NA 

5HT2B 6 5 83.3 2 1.00 5 3 2.21 

5HT2C 2 1 50 2 0.50 6 6 2.21 

A2A 1 1 100 1 1.00 5 5 3.92 

A2C 1 1 100 1 1.00 7 7 2.54 

Beta 2 2 0 0 0 NA NA NA NA 

H1 2 2 100 2 1.00 7 7 4.78 

M1 4 3 75 3 0.67 18 9 1.83 

M2 11 11 100 6 1.00 16 11 5.86 
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Table 4.10 (continued). Per receptor classification results for score-based pharmacophore models (abbreviated as PH4s) 
generated in homology models and segregated into cluster I of k = 5 clusters when predicting quality classes with the k = 5 
cluster I classifier. 
aPharmacophore models per receptor classified into cluster 1 possessing an EF value ≥ 2. 
bPercentage of pharmacophore models in Cluster I possessing an EF value ≥ 2. 
cNumber of pharmacophore models predicted as higher enrichment with SGD logistic regression. 
dTotal number of hits for pharmacophore models predicted as higher enrichment. The number of hits for each pharmacophore model 
is derived from the best EF search across all partial match features. 
eCalculated EF value for all unique hits. 
fNA values indicate instances where scoring metrics are inapplicable due to a lack of higher enrichment pharmacophore models.  
gNo higher enrichment pharmacophore models were generated for OPRM. 

Receptor 
PH4s 
in 
Cluster 

Higher 
Enrichment 
PH4s 
in Clustera 

Higher 
Enrichment 
%b 

Predicted 
Higher 
Enrichment 
PH4sc 

PPV Hitsd Unique 
Hits 

Combined 
EFe 

M4 4 0 0 3 0.00 15 5 2.00 

OPRD 1 1 100 1 1.00 10 10 2.92 

OPRK 5 5 100 0 NA NA NA NA 

OPRMg 0 0 NA 0 NA NA NA NA 

Average 3.5 2.7 74.3 1.6 0.80 9.9 7 3.14 
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Table 4.11 Per receptor classification results for score-based pharmacophore models (abbreviated as PH4s) generated in 
experimentally determined structures and segregated into cluster I of k = 4 clusters when predicting quality classes with the k 
= 4 cluster I classifier. 
aPharmacophore models per receptor classified into cluster 1 possessing an EF value ≥ 2. 
bPercentage of pharmacophore models in Cluster I possessing an EF value ≥ 2. 
cNumber of pharmacophore models predicted as higher enrichment with SGD logistic regression. 
dTotal number of hits for pharmacophore models predicted as higher enrichment. The number of hits for each pharmacophore model 
is derived from the best EF search across all partial match features. 
eCalculated EF value for all unique hits. 
fNA values indicate instances where scoring metrics are inapplicable due to a lack of higher enrichment pharmacophore models. 
gNo higher enrichment pharmacophore models were generated for OPRM.  

Cluster I Classifier (External Set PPV = 0.82) 

Receptor 
PH4s 
in 
Cluster 

Higher 
Enrichment 
PH4s 
in Clustera 

Higher 
Enrichment 
%b 

Predicted 
Higher 
Enrichment 
PH4sc 

PPV Hitsd Unique 
Hits 

Combined 
EFe 

5HT1B 5 5 100 3 1.00 7 3 2.92 

5HT2B 10 8 80 9 0.89 35 19 0.70 

5HT2C 3 2 66.7 0 NA NA NA NA 

A2A 3 2 66.7 2 1.00 5 4 9.81 

A2C 8 8 100 1 1.00 5 5 3.56 

Beta 2 3 0 0 2 0.00 28 14 0.00 

H1 1 1 100 0 NA NA NA NA 
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Table 4.11 (continued). Per receptor classification results for score-based pharmacophore models (abbreviated as PH4s) 
generated in experimentally determined structures and segregated into cluster I of k = 4 clusters when predicting quality 
classes with the k = 4 cluster I classifier. 
aPharmacophore models per receptor classified into cluster 1 possessing an EF value ≥ 2. 
bPercentage of pharmacophore models in Cluster I possessing an EF value ≥ 2. 
cNumber of pharmacophore models predicted as higher enrichment with SGD logistic regression. 
dTotal number of hits for pharmacophore models predicted as higher enrichment. The number of hits for each pharmacophore model 
is derived from the best EF search across all partial match features. 
eCalculated EF value for all unique hits. 
fNA values indicate instances where scoring metrics are inapplicable due to a lack of higher enrichment pharmacophore models. 
gNo higher enrichment pharmacophore models were generated for OPRM. 

Receptor 
PH4s 
in 
Cluster 

Higher 
Enrichment 
PH4s 
in Clustera 

Higher 
Enrichment 
%b 

Predicted 
Higher 
Enrichment 
PH4sc 

PPV Hitsd Unique 
Hits 

Combined 
EFe 

M1 6 6 100 4 1.00 15 6 4.12 

M2 9 9 100 7 1.00 44 13 3.30 

M4 8 5 62.5 8 0.63 43 18 1.66 

OPRD 5 1 20 2 0.50 13 12 2.43 

OPRK 3 2 66.7 0 NA NA NA NA 

OPRMg 1 0 0 0 NA NA NA NA 

Average 5.0 3.8 66.4 2.9 0.78 21.7 10.4 3.17 
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Table 4.12 Per receptor classification results for score-based pharmacophore models (abbreviated as PH4s) generated in 
homology models and segregated into cluster I of k = 4 clusters when predicting quality classes with the k = 4 cluster I 
classifier. 
aPharmacophore models per receptor classified into cluster 1 possessing an EF value ≥ 2. 
bPercentage of pharmacophore models in Cluster I possessing an EF value ≥ 2. 
cNumber of pharmacophore models predicted as higher enrichment with SGD logistic regression. 
dTotal number of hits for pharmacophore models predicted as higher enrichment. The number of hits for each pharmacophore model 
is derived from the best EF search across all partial match features. 
eCalculated EF value for all unique hits. 
fNA values indicate instances where scoring metrics are inapplicable due to a lack of higher enrichment pharmacophore models. 
gNo higher enrichment pharmacophore models were generated for OPRM.  

Cluster I Model (External Set PPV = 0.78) 

Receptor 
PH4s 
in 
Cluster 

Higher 
Enrichment 
PH4s 
in Clustera 

Higher 
Enrichment 
%b 

Predicted 
Higher 
Enrichment 
PH4sc 

PPV Hitsd Unique 
Hits 

Combined 
EFe 

5HT1B 6 5 83.3 0 NA NA NA NA 

5HT2B 6 5 83.3 1 1.00 2 2 3.31 

5HT2C 2 1 50 1 0.00 4 4 1.65 

A2A 1 1 100 0 NA NA NA NA 

A2C 0 0 NA 0 NA NA NA NA 

Beta 2 0 0 NA 0 NA NA NA NA 

H1 2 1 50 0 NA NA NA NA 
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Table 4.12 (continued). Per receptor classification results for score-based pharmacophore models (abbreviated as PH4s) 
generated in homology models and segregated into cluster I of k = 4 clusters when predicting quality classes with the k = 4 
cluster I classifier. 
aPharmacophore models per receptor classified into cluster 1 possessing an EF value ≥ 2. 
bPercentage of pharmacophore models in Cluster I possessing an EF value ≥ 2. 
cNumber of pharmacophore models predicted as higher enrichment with SGD logistic regression. 
dTotal number of hits for pharmacophore models predicted as higher enrichment. The number of hits for each pharmacophore model 
is derived from the best EF search across all partial match features. 
eCalculated EF value for all unique hits. 
fNA values indicate instances where scoring metrics are inapplicable due to a lack of higher enrichment pharmacophore models. 
gNo higher enrichment pharmacophore models were generated for OPRM. 

Receptor 
PH4s 
in 
Cluster 

Higher 
Enrichment 
PH4s 
in Clustera 

Higher 
Enrichment 
%b 

Predicted 
Higher 
Enrichment 
PH4sc 

PPV Hitsd Unique 
Hits 

Combined 
EFe 

M1 4 3 75 3 0.67 19 9 1.83 

M2 8 8 100 3 1.00 35 9 7.16 

M4 4 0 0 0 NA NA NA NA 

OPRD 1 1 100 1 1.00 10 10 2.92 

OPRK 5 5 100 0 NA NA NA NA 

OPRMg 0 0 NA 0 NA NA NA NA 

Average 3.0 2.3 74.2 0.7 0.73 14 6.8 3.37 
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From this analysis, we were able to make several conclusions regarding clustering 

performance as well as select a single classifier for use in ligand identification efforts. When 

pharmacophore models were segregated into k = 4 or 5 clusters, a large majority of targets with 

non-zero cluster I sizes possessed at least 1 HE pharmacophore model (12 of 13 targets with PED 

models in cluster I for k = 5 (Table 4.9), 10 of 12 targets with PHM models in cluster I for k = 5 

(Table 4.10), 11 of 13 targets with PED models in cluster I for k = 4 (Table 4.11), 9 of 10 targets 

with PHM models in cluster I for k = 4 (Table 4.12)). Additionally, the average percentage of HE 

pharmacophore models segregated into cluster I ranged from 65.2% (PED models in cluster I for k 

= 5, Table 4.9) to 74.3% (PHM models in cluster I for k = 5, Table 4.10) across all targets. 

Altogether, these results suggest that K-means clustering alone adequately separates HE 

pharmacophore models from LE pharmacophore models in the external dataset. The observed 

average percentages of HE pharmacophore models in cluster I for either k value (4 or 5) also 

provide further insight into clustering PED and PHM models. Interestingly, average percentages of 

HE PHM models for targets with pharmacophore models segregated into cluster I (74.3% for k = 5 

(Table 4.10), 74.2% for k = 4 (Table 4.12))  were higher than those observed for HE PED models 

for targets with pharmacophore models segregated into cluster I (65.2% for k = 5 (Table 4.9), 

66.4% for k = 4 (Table 4.11)), implying that PHM models segregated into cluster I of k = 4 or 5 

clusters are more likely to be HE pharmacophore models than PED models segregated into cluster 

I. Lastly, average percentages of HE PHM models for targets with pharmacophore models 

segregated into cluster I were similar between either k value, suggesting that using k = 4 or 5 

leads to similar proportions of HE pharmacophore models in cluster I. 

When PED models were classified with either classifier, a greater average PPV was 

observed for the k = 5 cluster classifier I (0.88 vs. 0.78, Tables 4.9 and 4.11, respectively), 
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indicating that classification with the k = 5 cluster classifier I identified higher proportions of 

true positive HE PED models and better avoided false positive predictions (LE pharmacophore 

models classified as HE) than the k = 4 cluster classifier I. False negatives were present during 

classification of both PED and PHM models, though we consider this inconsequential to classifier 

performance since our workflow aimed to identify high proportions of true positive HE 

pharmacophore models (reflected by the PPV metric) in the sets of pharmacophore models 

classified into the HE class. In addition to calculating PPV on a target-by target basis, a 

combined EF value (representing the EF value calculated using each target’s set of unique hits 

identified with pharmacophore models predicted to be in the HE class) was also calculated. On 

average, a greater combined EF value was observed for the k = 5 cluster classifier I model (4.30, 

Table 4.9) than the k = 4 cluster classifier I model (3.17, Table 4.11), implying that hits identified 

with pharmacophore models selected by the k = 5 cluster classifier I model are more likely to be 

active than those identified with pharmacophore models selected by the k = 4 cluster classifier I 

model. 

When PHM models were classified with either classifier, a greater average PPV was again 

observed for the k = 5 cluster classifier I (0.80 vs. 0.73, Tables 4.10 and 4.12, respectively), 

indicating that classification with the k = 5 cluster classifier I identified higher proportions of 

true positive HE PHM models than the k = 4 cluster classifier I. Accurately identifying high 

proportions of true positive HE pharmacophore models during classification is especially 

important for PHM models, which are representative of often-encountered cases where a GPCR 

target possesses no experimentally determined structure. Furthermore, classification with the k = 

5 cluster classifier I resulted in a larger proportion of our 13 studied GPCR targets possessing 

predicted HE pharmacophore models (9 of 13 targets, Table 4.10) than the k = 4 cluster classifier 
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I (5 of 13 targets, Table 4.12), indicating that the k = 5 cluster classifier I was able to accurately 

predict HE pharmacophore models for a wider range of targets. On average, combined EF values 

differed very little between the k = 5 cluster classifier I and the k = 4 cluster classifier I (3.14 vs. 

3.37, Tables 4.10 and 4.12, respectively), suggesting that both classifiers identify active 

compounds at similar folds above random compound selection when using PHM models as 

database search queries and should lead to greater proportions of identified active compounds 

when employed in a virtual screening context. Though both classifiers were similar when 

classification of PHM models was measured with the combined EF metric, we selected the k = 5 

cluster classifier I as performing best overall due to its higher observed proportions of true 

positive HE PED and PHM models, as well as the wider range of targets possessing accurately 

predicted HE PHM models. 

After selection of a best-performing classifier, we sought to confirm that the labeled 

clusters created for the testing and training datasets contained pharmacophore models with 

similar attributes. Visualization of the 14-dimensional training and testing datasets required a 

method of dimensionality reduction and we thus performed principal component analysis (PCA) 

on each dataset. In practice, PCA is a method of dimensionality reduction for large datasets that 

is used to identify a subset of attributes that account for a large portion of the variance in the 

original attributes.231 In this work, the implementation of PCA for our training and testing 

datasets allowed for cluster visualization in 2 dimensions (Figure 6). When each dataset is 

projected into a two-dimensional space, pharmacophore models in each cluster were linearly 

separable to some extent. Thus, it is evident that K-means clustering with k = 5 was able to 

adequately segregate pharmacophore models with similar attributes into separate clusters. 
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Figure 4.6. PCA plots for training (A) and testing (B) data after performing K-means 
clustering with k = 5. 

Conclusions 

This work had two primary goals. The first goal was to develop a method of 

pharmacophore model generation that would be applicable to any published or predicted 

structure of a GPCR target, regardless of whether active ligands are known for that target. The 
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second goal was to develop a method of selecting HE pharmacophore models from among 

those generated. 

Across all variable combinations, pharmacophore models resulting in HE database 

searches were produced for most targets using both experimentally determined structures and 

homology models (Tables 4.2 and 4.3). However, this required 100 database searches per 

target receptor structure (20 pharmacophore models each used to search with 5 different partial 

feature matches), many of which did not exhibit acceptable EF values. Selection of a 

pharmacophore model to use for ligand identification via EF values is impossible in cases 

where a target possesses no known ligands. Consequently, we assessed 2 methods of 

pharmacophore model selection for targets with no known active ligands. The first method 

utilized the progressive selection of variables (fragment subset, fragment-receptor interaction 

score type, and partial match feature number) that most frequently resulted in pharmacophore 

model database searches possessing an EF value ≥ 2. Progressive selection of variables for PED 

database searches identified the GH fragment set, the dU(class) scoring, and 6 of 7 partial 

match features as optimal, yet only resulted in HE database searches in 5 of 13 cases (Tables 

4.4 and C5).  Progressive selection of variables for PHM database searches identified the 

receptor EF fragment set, the dU scoring, and 4 of 7 partial match features as optimal, yet only 

resulted in HE database searches in 3 of 13 cases (Tables 4.4 and C6).  

Due to inconsistent performance of pharmacophore models selected based on 

progressive variable selection, we aimed to develop an alternate method of pharmacophore 

model selection using a cluster-then-predict workflow (Figure 4.2) that could predict whether 

searches with any pharmacophore model would lead to higher or lower enrichment values 

based on pharmacophore model attributes. After classification of testing set random 
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pharmacophore models generated as described in the companion paper209, we identified the 

cluster-specific logistic regression classifiers possessing the 3 greatest observed scoring metric 

averages: cluster classifier I for k = 4 (scoring metric average = 0.893, Table 4.7), cluster 

classifier I for k = 5 (scoring metric average = 0.895, Table 4.7), and cluster classifier IV for k 

= 5 (scoring metric average = 0.895, Table 4.7). Although these results implied that 

segregating testing set pharmacophore models into k = 4 or 5 clusters resulted in more accurate 

HE/LE classification relative to other k values, further analysis was performed with external 

dataset pharmacophore models produced as described in this paper to identify a singular, best 

performing classifier that could be utilized in future ligand identification efforts. Thus, the 260 

score-based pharmacophore models were segregated into one of k clusters and then classified 

with the appropriate logistic regression classifier (Table 4.8). Of the 3 cluster-specific 

classifiers exhibiting the greatest scoring metric averages after testing set pharmacophore 

model classification, the cluster I classifier for k = 5 was best performing as it identified the 

highest proportions of true positive HE pharmacophore models when PPV for PED and PHM 

model classification were averaged (average PPV = 0.82, Table 4.8). Classification of PED and 

PHM models with the k = 4 cluster classifier I resulted in a similar average PPV (0.80, Table 

4.8), leading to our target-by-target comparison of the k = 4 cluster classifier I and k = 5 cluster 

classifier I. On a target-by-target basis, the k = 5 cluster classifier I exhibited a greater 

observed PPV, on average, when classifying PED models (0.88 for the k = 5 cluster classifier I 

vs 0.78 for the k = 4 cluster classifier I, Tables 4.9 and 4.11, respectively) and PHM models 

(0.80 for the k = 5 cluster classifier I vs 0.73 for the k = 4 cluster classifier I, Tables 4.10 and 

4.12, respectively). Furthermore, the k = 5 cluster classifier I exhibited a greater observed 

combined EF, on average, when classifying PED models (4.30 for the k = 5 cluster classifier I 
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vs 3.14 for the k = 4 cluster classifier I, Tables 4.9 and 4.11, respectively). Use of the k = 5 

cluster classifier I in external set classification also resulted in a greater number of targets with 

accurately predicted HE PHM models (9 of 13 cases for the k = 5 cluster classifier I vs. 5 of 13 

cases for the k = 4 cluster classifier I, Tables 4.10 and 4.12, respectively). Ultimately, our 

overall as well as target-by-target analyses of classifier performance led us to select the cluster 

I classifier for k = 5 for use in selecting pharmacophore models likely to identify higher 

proportions of active ligands in future ligand identification studies. This classifier largely 

avoided false positive predictions when classifying score-based pharmacophore models 

generated in either type (only 1 case where predicted HE PED or PHM models were wholly false 

positives, M4 in Table 4.10), which we consider a best-case scenario. Additionally, it is worth 

highlighting that although the M4 PHM models predicted to be in the HE class were wholly 

false positives, pooling their hit lists still resulted in a combined EF value that met our 

threshold for combined HE performance (Table 4.10). 

Given that we have developed a classifier that is capable of accurately predicting 

whether searches with any score-based pharmacophore model will lead to higher or lower 

enrichment values, a suggested virtual screening workflow incorporating our method of 

pharmacophore model classification can be detailed. First, a set of 20 score-based 

pharmacophore models (4 per fragment score type across 5 fragment sets) should be generated 

for a target. Next, generated pharmacophore models should be segregated into k = 5 clusters 

using the K-means clustering model trained and tested with our initial dataset. Once 

segregated, HE/LE classes can then be predicted for pharmacophore models projected to 

belong to the first of k = 5 clusters using the k = 5 cluster classifier I (our best performing 

classifier). 
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Overall, the methods set forth in this work provide a novel framework for the 

generation and selection of pharmacophore models for targets lacking known ligands. Though 

previous works have detailed the generation of structure-based pharmacophore models, 

pharmacophore models generated with our score-based method are able to identify active 

ligands at rates higher than random selection, regardless of whether a target possesses an 

experimental structure. In addition, this work addresses the often-overlooked topic of selecting 

a pharmacophore model for use in virtual screening studies when a target possesses no known 

active ligands. Using our cluster-then-predict workflow, we have now provided a method of 

reliably selecting pharmacophore models that are likely to identify active compounds at rates 

higher than random selection. With the rising prevalence of publicly available experimentally 

determined158 or modeled43 protein structures, we are optimistic that this workflow will lead to 

the identification of active ligands for targets thought to be difficult to study. 

Methodology 

Homology/Loop Modeling 

Homology models for 13 GPCR targets were generated using a previously benchmarked 

GPCR modeling workflow.24,35,59 First, template structures for each target were selected using 

the contact-informed neighboring pocket (CoINPocket) score developed by Ngo et al. to 

emphasize similarities at residue positions that frequently make strong ligand interactions in a set 

of 27 unique class A GPCR crystal structures.33,34 Next, non-GPCR sequence segments were 

deleted from each selected template structure. Each target’s sequence was then downloaded from 

GPCRdb19 and aligned to the selected template structure sequence in MOE 2019.0102.56 Target-

template alignment consisted of two steps, the first of which aligned the two sequences using 
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MOE’s “sequence only” method of automatic alignment. Next, gaps in helical segments of each 

sequence were manually shifted into the structurally variable intracellular and extracellular loop 

regions while ensuring that conserved TM.50 residues remained aligned.35 A total of 10 initial 

homology models were generated for each target using our benchmarked GPCR modeling 

workflow, which utilizes the default homology modeling settings in MOE but scores models 

based on effective contact energy and retains the ligand from the template structure as the 

‘Environment for Induced Fit’.24,35,59 For each target, the homology model with the lowest 

effective contact energy was selected for de novo extracellular loop 2 (ECL2) modeling. 

ECL2 modeling began with the selection of the final helical residue of TM4 and first 

helical residue of TM5 as loop ‘anchor’ residues (Table S7). This work utilized Rosetta’s 

kinematic closure with fragments (KICF)58 method of sampling ECL2 conformations, which 

requires the generation of fragment libraries prior to de novo conformation sampling. Fragment 

libraries were generated by submitting a FASTA formatted sequence containing the nine residues 

prior to the first loop anchor, the ECL2 sequence and the nine residues after the second loop 

anchor to the Robetta178 server. The loop modeling process used herein incorporated an atomic 

disulfide constraint that restricts the distance between sulfur atoms in critical cysteine residues 

3.25 of TM3 and 45.50 of ECL2 to 5.1 Å (to enable formation of the disulfide bond present in 

many GPCR structures) as a means of filtering out models with unrealistic disulfide distances. 

Furthermore, loop modeling was performed with the template ligand present in the binding 

pocket. For each target, a total of 250 disulfide constrained ECL2 models were generated. The 

ECL2-TM3 disulfide bond was formed in the top 10 lowest-scoring models followed by 

geometry optimization of the ECL2 segment in MOE. Each target’s lowest-scoring loop-refined 

homology model was then selected for multiple copy simultaneous search. 
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Multiple Copy Simultaneous Search (MCSS) 

MCSS was performed on the experimentally determined structure and homology model 

of each target using the MOE56 fragment database containing 39 fragments representing a 

diverse collection of functional groups (Table C1). Prior to performing MCSS, MOE allows 

users to adjust the belly distance parameter that controls the extent at which receptor atoms are 

allowed to move. For example, a belly distance value of 5 Å allows movement to receptor atoms 

within 5 Å of any fragment atom. In experimentally determined structures, belly distance was 

kept at the default value of 0 Å. In homology models, however, belly distance was set to 10 Å to 

allow for structural flexibility that would offset any discrepancies between the predicted model 

and the reference experimental structure. Fragments were placed at residue atoms selected by the 

MOE Site Finder tool, which allows a user to elucidate a probable binding site within each 

crystal structure. This method of binding site elucidation is based in the alpha spheres 

methodology by Edelsbrunner et al. and organizes potential binding sites by the volume of alpha 

spheres within a potential binding pocket.112 For each receptor crystal structure, 100 copies of 

each fragment were randomly placed in the selected binding site. After initial fragment 

placement, fragment positions were then refined via energetic minimization and written to an 

output database. The entire MCSS output database was used as the default fragment subset. 

Subsets of the MCSS output database containing fragments that were most frequently used to 

annotate features in the 80 pharmacophore models (8 receptors, 10 per receptor) possessing the 

highest EF or GH scores in the first paper in this two-paper series were termed the “EF” and 

“GH” subsets, respectively. Fragment subsets used most frequently to annotate features in each 

receptor’s 10 best EF or GH score pharmacophore models in our prior pharmacophore modeling 

study were titled the “receptor EF” and “receptor GH” subsets, respectively. 
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Score-based Pharmacophore Model Generation 

Pharmacophore generation was performed using an automated SVL scripting workflow. 

At the beginning of this process, each MCSS fragment subset was first sorted by 1 of 4 fragment-

receptor interaction energies calculated in MOE.56 Next, fragments were sorted in ascending 

order by water accessible surface area of all hydrophobic atoms in an attempt to discourage the 

overinclusion of non-specific, non-directional hydrophobic interactions.225 For each energy score 

type, N+1 fragments were loaded into the system (starting at N = 0 and increasing by 1 for each 

iteration of the script) and dummy atoms were created at the mean positions of the atoms 

comprising each fragment. From there, each fragment dummy atom was then subjected to 

distance cutoffs that ensured annotated pharmacophore features would not be too clustered nor 

too far apart. Fragments retained for feature annotation were allowed to be no closer than 0.5 Å 

and no farther than 15 Å from all other fragments. In addition, fragments were allowed to be no 

farther than 10 Å from the binding pocket centroid, the mean position of atoms comprising 

residues identified as a potential binding site for each receptor with MOE’s Site Finder tool.56 

Fragments that satisfied this set of distances were then selected for feature annotation. 

Once selected, fragment atoms within 4.5 Å of any atom in a binding pocket residue were 

annotated as pharmacophore features using the built-in MOE pharmacophore editor. A total of 

20 pharmacophore models (4 per fragment subset each representing a fragment score type, 5 

fragment subsets) were generated for each receptor structure used in this study. 

Internal Test Database Searching/Scoring 

A total of 569 ligands possessing activity at any of 30 GPCR were downloaded from 

IUPHAR/BPS Guide to Pharmacology190 and organized into an internal test database.123 Each 

database entry included activities (inactive, agonist, inverse agonist, antagonist, biased agonist, 
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or allosteric modulator) at each of 30 GPCR. Next, each ligand was protonated to the major form 

expected at pH 7.4 and energetically minimized using the AMBER10:EHT forcefield.180 A 

stochastic conformational search incorporating inversion of unconstrained chiral centers (based 

on instances where the stereocenter was not given a specific assignment in IUPHAR/BPS Guide 

to Pharmacology190), unconstrained double bond rotation, and the random rotation of all bonds 

(in increments biased around 30 degrees128) followed by all-atom energy minimization was then 

performed to generate a set of up to 10 energetically-reasonable atomic configurations per 

stereochemical configuration of each ligand in the database. The energy window for each search 

was kept at the default value of 7 kcal/mol, which discarded minimized conformations with 

potential energies 7 kcal/mol greater than the potential energy of the lowest energy minimized 

conformation. In addition, conformational searches utilized a rejection limit of 100, iteration 

limit of 10,000, RMS gradient of 0.005 kcal/(mol•Å), and RMSD limit of 0.25 Å. 

Prior to searching the internal test database with pharmacophore models, we first 

determined the number of active ligands present in our internal test database for each of the 13 

class A GPCR used in this work (Table C4). A theoretical maximum EF value for each target 

was then calculated using 1/[A/D], where 1 is the maximum possible hit:active ratio in the hitlist 

and [A/D] is the proportion of a target’s actives in the database (A) divided by the total number 

of compounds contained in the database (D). These theoretical maximum EF values were used to 

select an EF value cutoff of 2 that separated all generated pharmacophore models into higher 

enrichment (EF ≥ 2) or lower enrichment (EF < 2) classes. 

Each pharmacophore model was then used to search the internal test database 5 times, 

with each consecutive search using an increasing number of features (beginning at 3 and ending 

at 7) required for a prospective ligand to be considered a match to the pharmacophore model. 
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Pharmacophore search performance was evaluated with two metrics. The first metric was EF 

(Eq. 3, where Ha = number of active compounds selected via pharmacophore search, Ht = number 

of hit compounds identified via pharmacophore search, A = internal test database active 

compounds, D = number of internal test database compounds), which measures the fold 

difference between pharmacophore active compound selection proportion and active compound 

proportion in the database. The second pharmacophore scoring metric was GH score (Eq. 4), 

which determines how well a pharmacophore prioritizes a high yield of actives and a low false-

negative rate when searching a compound database.86 GH scores range from 0 to 1, with 1 

representing a hit list containing the full set of active compounds with no false positives.  

 

Enrichment Factor (EF) = Ha/Ht
A/D

     (Eq. 3) 

Goodness-of-hit (GH) score = �[Ha*(3A+ Ht)]
4*Ht*A

� *[1- Ht-Ha
D-A

]   (Eq. 4) 

Pharmacophore Model Classification 

In this work, classification of generated pharmacophore models was performed utilizing a 

cluster-then-predict workflow written in Python 3.9.7 (freely available at 

https://github.com/gszwabowski/ph4_classification/tree/master/score_based/SGD). The 

clustering and prediction portions of this workflow utilized the K-means clustering and 

SGDClassifier algorithms, respectively, that are both contained in the Scikit-learn version 0.24.2 

machine learning library.232 

Data Preprocessing 

The initial dataset was generated from 150,000 pharmacophore models generated as 

described in the first paper of this two-part series.209 Attributes of each pharmacophore model 

https://github.com/gszwabowski/ph4_classification/tree/master/score_based/SGD
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used in clustering were the number of internal test database search hits, maximum, minimum, 

and mean feature-to-feature distances, maximum, minimum, and mean feature to binding pocket 

centroid distances, individual feature proportions per feature type (for hydrophobic, hydrogen 

bond donor, hydrogen bond acceptor, cationic hydrogen bond donor, hydrophobic aromatic, and 

anionic hydrogen bond acceptor features), and the mean interaction score of all fragments used 

to annotate pharmacophore features (in kcal/mol). The dataset was then refined via the removal 

of pharmacophore models containing only 1 feature. Each pharmacophore model in the dataset 

was assigned a target class of 1 (HE pharmacophore model) or 0 (LE pharmacophore model) 

based on whether the model possessed an EF value ≥ 2 or < 2, respectively. Since a far greater 

number of LE pharmacophore models existed in the dataset (112,598 LE vs. 3,621 HE), the 

number of LE pharmacophore models in the dataset was randomly undersampled to match the 

number of HE pharmacophore models prior to being used in the cluster-then-predict workflow. 

Assigned HE/LE classes were not utilized as attributes during clustering. The initial dataset was 

then split into training and testing datasets using a randomized 75%/25% train-test split.  

In addition to generation of training/testing datasets from randomly generated 

pharmacophore models, score-based pharmacophore model data was also collected in order to 

externally validate our cluster-then-predict workflow. Separate external datasets using the same 

features as the training set examples were created for PED and PHM models. 

Prior to clustering and classification, the training, testing, and external testing datasets 

were standardized with Scikit-learn’s StandardScaler function, which shifted the distribution of 

all input variables to have a mean of 0 and a standard deviation of 1. 
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K-Means Clustering Analysis 

Separation of pharmacophore model data into clusters was performed using the KMeans 

classification algorithm (sklearn.cluster.KMeans) contained in the Scikit-learn machine learning 

library.232 This clustering method is explained as follows: 

1. Create initial group centroids using k random points from the dataset. 

2. For each data point, calculate distances from the point to each group centroid and 

assign the data point to the closest group. 

3. Recalculate cluster centroids based on all data points assigned to each cluster. 

4. Repeat steps 2 and 3 until cluster centroids do not change. 

For k = 1, 2, 3, 4, 5, and 6, a K-means clustering model was fit to the training set data to 

identify k separate clusters of pharmacophore models (labeled I, II, III, IV, V, and VI, depending 

on the k value used) using default settings, save for the user-defined number of clusters and 

“random_state” parameter (the latter of which was set to 1 to ensure reproducibility). Next, the 

clustering model fit to the training data was used to predict cluster labels for the testing set data 

as well as the external score-based pharmacophore model data. Clusters were then visualized 

using principal component analysis in Scikit-learn (sklearn.decomposition.PCA) to ensure that 

clustering was able to adequately separate pharmacophore models based on attributes. 

Logistic Regression with SGDClassifier 

Classification of pharmacophore models was performed via logistic regression with 

stochastic gradient descent (SGD) using the SGDClassifier classification algorithm 

(sklearn.linear_model.SGDClassifier) contained in the Scikit-learn machine learning library. 

Mathematically, logistic regression uses the sigmoid function (Eq. 5): 

p = ef(x)

1+e-f(x)     (Eq. 5) 
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where p is the probability being forecasted and f(x) is a linear function of the predictor 

variables, x and their associated weights, b (Eq. 6): 

f(x) = (∑ bixi
n
i=1 ) + b           (Eq. 6) 

Eq. 3 can be transformed to the logit function, which relates the linear measurements 

represented by f(x) into probabilities (p) between 0 and 1 (Eq. 7): 

logit(p) = ln � p
1-p
�= f(x)              (Eq. 7) 

The probability cutoff for any observation is typically set at 0.5, meaning that 

observations with predicted probabilities ≥ 0.5 are classified in the “positive” class, while 

observations with predicted probabilities < 0.5 are classified in the “negative” class.233 In this 

work, the probability cutoff was set to the default value of 0.5. 

The training and testing sets were then split by k value and cluster label. For each subset 

of training data, a classifier incorporating logistic regression via SGD was trained (hereby 

referred to as cluster 1/2/3/…/6 classifier I/II/III/…/k). In total, 21 separate logistic regression 

classifiers were developed in this study.  

Testing set pharmacophore models were then classified with the appropriate classifier. 

The classification performance of each cluster’s classifier was then measured using the positive 

predictive value (PPV) (Eq. 8), accuracy (Eq. 9), recall (Eq. 10), and f1-score (Eq. 11) metrics. 
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Given a sample confusion matrix that would result after binary classification, these metrics are 

explained as follows: 

 

 PPV = TP
(TP+FP)

         (Eq. 8) 

Accuracy = TP+TN
(TP+FP+FN+TN)

        (Eq. 9) 

Recall = TP
(TP+FN)

           (Eq. 10) 

    f1-score = 2 * (Recall * PPV)
(Recall+PPV)

            (Eq. 11) 

PED and PHM models were also classified with the appropriate classifier. For example, any 

score-based pharmacophore model projected into cluster I of k = 4 clusters would have its quality 

class predicted using the logistic regression classifier trained using training set pharmacophore 

models segregated into the same cluster. In this portion of our analysis, PPV were individually 

calculated for PED and PHM models. Additionally, an average PPV was calculated for each 

classifier. 
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Chapter 5  

Conclusions and Future Directions 

Conclusions 

The work discussed in chapter 2 of this dissertation led to the finalization of a 

comprehensive protocol for modeling class A GPCR. This study built upon the work of 

Castleman et al.35 and Wink et al.24 and sought to determine if local similarity-based 

homology model template selection in combination with de novo conformational 

sampling of ECL2 would result in predictive models and docked ligand poses that better 

represented biologically relevant receptor structures. Receptor modeling results suggested 

that local similarity-based homology models followed by loop modeling produced more 

accurate and predictive receptor models than models produced without loop modeling, 

with decreases in average receptor and ligand RMSD of 0.43 Å and 2.91 Å, respectively. 

Furthermore, the work discussed in chapter 2 assessed how the presence or absence of a 

template structure ligand at various steps of the receptor modeling workflow would affect 

homology model and docked ligand pose quality. Although the inclusion of a template 

ligand during the modeling process did not result in markedly more accurate homology 

models, target receptor models produced with a template ligand present throughout the 

modeling process most often produced target ligand poses with RMSD values ≤ 4.5 Å 

after selection based on pose scoring than target receptor models produced in the absence 

of template ligands. Overall, the findings produced by the work presented in chapter 2 

support the use of local template homology modeling followed by de novo ECL2 
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modeling in the presence of a ligand from the template crystal structure to generate 

GPCR models intended to study ligand binding interactions. 

The work discussed in chapter 3 resulted in the development of a structure-based 

pharmacophore modeling method that aimed to elucidate novel ligands for GPCR with 

few known ligands. This method is rooted in the concept of MCSS, where many copies 

of chemical fragments are randomly placed into a receptor’s active site and then 

energetically minimized in order to find optimal positions. This method was titled 

“random” pharmacophore generation, as functional group fragments placed with MCSS 

were randomly selected from which to annotate features within a prospective 

pharmacophore model. Pharmacophore models were generated in experimentally 

determined and modeled structures of 8 class A GPCR targets and subsequently used to 

search an internal test database containing conformations of known active compounds for 

30 class A GPCR. When pharmacophore models were scored with the EF metric, it was 

determined that searches requiring a prospective ligand to match all 5 features most 

frequently resulted in the highest proportion of targets whose generated pharmacophore 

models sampled TME values in both experimentally determined and modeled structures 

(8 of 8 and 7 of 8 cases, respectively). Ultimately, this work demonstrated that randomly 

generated pharmacophore models could aid in ligand identification efforts for GPCR with 

few known ligands. 

Lastly, research efforts presented in chapter 4 led to the development of an 

additional structure-based pharmacophore modeling protocol that sought to identify novel 

ligands for any GPCR target, regardless of whether active ligands were known. Much 

like the method of pharmacophore model generation discussed in chapter 3, the 
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pharmacophore modeling method presented in chapter 4 used functional group fragments 

placed with MCSS to annotate pharmacophore model features. In contrast to the method 

of random pharmacophore generation detailed in chapter 3, however, the work discussed 

in chapter 4 used interaction scores and distance cutoffs to select fragments to use for 

pharmacophore model feature annotation (rather than randomized fragment selection), 

resulting in the “score-based” nomenclature of the method. To assess the applicability of 

this method to GPCR ligand identification, score-based pharmacophore models were first 

generated in experimentally determined and modeled structures of 13 class A GPCR 

using 5 different functional group fragment subsets. Generated pharmacophore models 

were then used to search the same internal test database utilized in chapter 3’s work at a 

sequentially increasing number of partial match features (beginning at 3 and ending at 7) 

and were scored using the EF and GH metrics to assess virtual screening performance 

and determine which fragment subset most frequently resulted in high EF values. 

Searches performed with pharmacophore models generated in experimentally determined 

structures using the GH fragment subset most frequently resulted in EF values ≥ 2 (12 of 

13 cases), while those performed with pharmacophore models generated in modeled 

structures using the receptor EF or receptor GH fragment subset most frequently resulted 

in EF values ≥ 2 (9 of 13 cases for each fragment subset). Altogether, the high EF values 

observed after searching the internal test database demonstrated that score-based 

pharmacophore models could assist in GPCR ligand identification efforts. Although 

generated pharmacophore models performed well when searching the internal test 

database, a method of selecting pharmacophore models for use in ligand identification 

concerning targets with no known ligands was necessary since pharmacophore models 
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generated for such targets cannot be scored with the EF metric. Thus, a method of 

pharmacophore model selection incorporating a “cluster-then-predict” workflow was 

developed that first clustered and then classified pharmacophore models into higher 

enrichment and lower enrichment classes based on their attributes. As a result, 

pharmacophore models predicted to belong to the higher enrichment class using the best 

performing cluster-then-predict logistic regression classifier resulted in positive 

predictive values (PPV) of 0.88 and 0.76 for pharmacophore models generated in 

experimentally determined and modeled structures, respectively. Ultimately, the work 

showcased in chapter 4 led to a method of developing and selecting pharmacophore 

models likely to lead to higher EF values that can be applied to GPCR targets with no 

known ligands. 

Future Directions 

Although the work discussed in this dissertation is complete, protocols developed 

in each chapter are yet to be applied to the many GPCR targets that lack known ligands. 

Ideally, a student continuing my research efforts would first pick an orphan GPCR target 

with few or no known ligands and generate a model for the target using the benchmarked 

modeling protocol discussed in chapter 2. The student could then employ the 

pharmacophore modeling methods discussed in chapter 3 (if few ligands are known for 

the target) or chapter 4 (if no ligands are known for the target) to develop pharmacophore 

models within the modeled target structure. Predicted higher enrichment pharmacophore 

models could then be identified with the classifier developed in chapter 4, leading to a set 

of pharmacophore models that could be used to identify compounds to screen for activity 

against the chosen target. 
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In addition, the classifier developed in chapter 4 that was used to select high 

enrichment score-based pharmacophore models could be more extensively tested with 

randomly generated pharmacophore models developed using the protocols discussed in 

chapter 3. Although this classifier was trained and tested with randomly generated 

pharmacophore models, it was not used to classify any external sets of randomly 

generated pharmacophore models. Thus, classification of an additional set of randomly 

generated pharmacophore models using the classifier developed for score-based 

pharmacophore models in chapter 4 would help to further determine the utility of the 

classifier with randomly generated pharmacophore models. 
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Appendix A  

Chapter 3: Benchmarking GPCR homology model template selection in 

combination with de novo loop generation 

Table A1. Alpha-carbon receptor RMSD values with and without loop modeling for 
the set of highest CoINPocket scored target:template receptor pairings. 
aNo template ligand present in either the homology or loop modeling processes. 
bTemplate ligand present when homology modeled, absent when loop modeled. cTemplate 
ligand present during both homology and loop modeling. dRange of values for the models 
with the top ten scored loops except in averages which use lowest RMSD among top ten 
scored loop models 

 Approach A1a Approach B1b Approach B2c 

Receptor 

Alpha-Carbon 
RMSD (Å) 
Without / with loop 
modelingd 

Alpha-Carbon 
RMSD (Å) 
Without/with loop 
modeling 

Alpha-Carbon 
RMSD (Å) 
With loop 
modeling 

AT2R based on DP2 
(6D26) 

5.49 / 5.46-6.70 5.53 / 5.62-6.67 5.53-6.32 

CXCR4 based on 
AT2R (5UNH) 

4.33 / 4.28-4.69 4.59 / 4.66-5.04 4.55-5.51 

FFAR1 based on 
P2Y12 (4PY0) 

6.32 / 5.08-6.46 5.89 / 4.80-6.30 4.64-5.55 

H1R based on M1 
(5CXV) 

3.15 / 3.13-4.01 3.14 / 3.16-3.74 3.17-3.91 

M1 based on H1R 
(3RZE) 

2.93 / 2.57-3.91 2.96 / 2.57-3.68 2.88-3.66 

M4R based on H1R 
(3RZE) 

2.76 / 2.99-3.50 2.94 / 2.65-3.71 2.75-3.43 

NOP based on M4R 
(5DSG) 

4.30 / 3.86-4.52 4.33 / 4.08-4.66 4.12-4.39 

OPRK based on H1R 
(3RZE) 

6.19 / 3.92-5.29 5.34 / 3.82-5.73 4.17-6.22 

P2Y12 based on 
PAR1 (3VW7) 

4.07 / 3.88-4.96 3.74 / 3.52-4.47 3.67-4.46 

PAR1 based on 
P2Y12 (4PY0) 

3.89 / 3.92-6.12 3.93 / 4.04-5.28 5.93-6.24 

Overall average 4.34 / 3.91 4.24 / 3.89 4.14 
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Table A2. Global receptor RMSD values relative to crystallographic reference 
structures for receptor models generated by approach A1 with and without loop 
modeling for receptors modeled using two templates. 

Receptor 
Local  
Similarity 

Alpha Carbon 
RMSD (Å) 
Without / with loop 
modelinga 

AT2R based on CXCR4 (3OE6)  1.72 4.44 / 4.58-5.53 

AT2R based on DP2 (6D26) 2.21 5.49 / 5.46-6.70 

H1R based on OPRK (4DJH) 1.93 4.03 / 3.10-4.30 

H1R based on M1 (5CXV)  2.58 3.15 / 3.13-4.01 

M4R based on NOP (4EA3) 1.23 4.37 / 2.99-3.88 

M4R based on H1R (3RZE) 2.46 2.76 / 2.99-3.50 

P2Y12 based on FFAR1 (5TZR) 1.42 8.79 / 8.15-10.08 

P2Y12 based on PAR1 (3VW7) 1.78 4.07 / 3.88-4.96 

Average - lower similarity subset 1.58 5.41/4.71 

Average – higher similarity subset 2.26 3.87/3.87 
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Table A3. Loop modeling approach A1 ECL2 loop RMSD values for each target:template receptor pairing (10 models each in 
rank-order by score) compared to the loop of the reference crystal structure as well as loop models from our previous 
benchmark.35 
aModels are sorted from best (1) to worst scoring (10). bHomology model based on higher similarity scoring template. cBest disulfide 
bonded receptor model among top 10 scoring models from loop modeling benchmark study.24 dLowest contact energy model generated 
from a local template using structure-independent alignment. eEntries with “N/A” values were not analyzed in the loop modeling 
benchmark study.24  

Receptora AT2Rb 

(Å) 
CXCR4 
(Å) 

FFAR1 
(Å) 

H1Rb 

(Å) 
M1 
(Å) 

M4Rb 

(Å) 
NOP 
(Å) 

OPRK 
(Å) 

P2Y12b 

(Å) 
PAR1 
(Å) 

1 4.66 7.39 15.41 7.87 8.38 7.37 9.98 7.30 6.36 10.62 

2 5.84 8.46 10.35 9.19 10.86 7.29 11.85 9.74 9.68 12.07 

3 4.69 9.34 15.48 8.20 8.45 6.29 10.16 11.59 11.67 11.65 

4 13.33 7.59 11.27 7.57 10.88 7.30 8.83 12.28 10.07 15.14 

5 7.48 6.25 14.36 8.74 9.20 8.51 10.16 12.43 8.81 11.84 

6 10.78 8.78 11.27 11.49 8.72 6.99 11.01 8.70 5.42 9.22 

7 7.80 9.48 12.07 7.98 7.83 6.69 10.87 9.67 11.91 6.94 

8 14.59 6.08 12.71 9.44 9.50 7.64 8.20 12.27 11.08 14.76 

9 14.24 9.19 13.43 13.07 5.08 6.62 11.20 12.28 10.94 17.22 

10 8.72 9.13 14.67 5.49 9.79 7.23 10.24 12.27 9.69 11.17 

Average 9.21 8.17 13.10 8.90 8.86 7.19 10.25 10.85 9.56 12.06 

Best 4.66 6.08 10.35 5.49 5.08 6.29 8.20 7.30 5.42 6.94 
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Table A3 (continued). Loop modeling approach A1 ECL2 loop RMSD values for each target:template receptor pairing (10 
models each in rank-order by score) compared to the loop of the reference crystal structure as well as loop models from our 
previous benchmark.35 
aModels are sorted from best (1) to worst scoring (10). bHomology model based on higher similarity scoring template. cBest disulfide 
bonded receptor model among top 10 scoring models from loop modeling benchmark study.24 dLowest contact energy model generated 
from a local template using structure-independent alignment. eEntries with “N/A” values were not analyzed in the loop modeling 
benchmark study.24  

Receptora AT2Rb 

(Å) 
CXCR4 
(Å) 

FFAR1 
(Å) 

H1Rb 

(Å) 
M1 
(Å) 

M4Rb 

(Å) 
NOP 
(Å) 

OPRK 
(Å) 

P2Y12b 

(Å) 
PAR1 
(Å) 

Loop 
Modeled into 
Crystal 
Structurec 

0.79 0.40 7.28 N/Ae N/Ae N/Ae N/Ae N/Ae 2.91 3.48 

Initial 
Modeld 5.11 6.57 14.97 5.89 7.22 5.34 10.72 16.18 6.70 6.77 
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Table A4. Loop modeling approach A1 ECL2 loop RMSD values for receptors 
modeled using two templates (10 models each in rank-order by score) compared to 
the loop of the reference crystal structure. 
aModels are sorted from best (1) to worst scoring (10). b Homology model based on lower 
similarity scoring template. cHomology model based on higher similarity scoring 
template. d Lowest contact energy model generated from a local template using structure-
independent alignment. 

Receptora AT2Rb 
(Å) 

AT2Rc 
(Å) 

H1Rb 
(Å) 

H1Rc 
(Å) 

M4Rb 
(Å) 

M4Rc 
(Å) 

P2Y12b 
(Å) 

P2Y12c 

(Å) 

1 5.82 4.66 6.56 7.87 6.44 7.37 15.66 6.36 

2 8.87 5.84 10.80 9.19 7.29 7.29 15.97 9.68 

3 9.82 4.69 10.38 8.20 6.71 6.29 11.92 11.67 

4 10.04 13.33 5.85 7.57 9.93 7.30 11.76 10.07 

5 7.52 7.48 6.71 8.74 8.19 8.51 8.95 8.81 

6 10.10 10.78 6.92 11.49 5.28 6.99 13.09 5.42 

7 5.91 7.80 9.37 7.98 5.81 6.69 16.36 11.91 

8 5.85 14.59 10.93 9.44 7.90 7.64 12.61 11.08 

9 5.44 14.24 9.24 13.07 6.31 6.62 13.90 10.94 

10 8.37 8.72 9.68 5.49 7.04 7.23 17.53 9.69 

Average 7.77 9.21 8.64 8.90 7.09 7.19 13.78 9.56 

Best 5.44 4.66 5.85 5.49 5.28 6.29 8.95 5.42 

Initial 
Modeld 4.44 5.11 5.89 11.60 12.37 5.34 15.47 6.70 
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Table A5. Ligand RMSD values (LRMSD) calculated in comparison to the crystallized reference structure for three different 
docking methods employed in the context of approach A1 models. 
 aLowest RMSD value found within the retained ligand poses for each method. All methods sampled 10,000 ligand poses per receptor 
(1000 per model).  Both MOE Induced Fit and MOE Rigid retained 50 ligand poses per receptor (5 per model) and Rosetta retained 
all ligand poses. bT10 values are the best LRMSD values in the top 10 scoring ligand poses. cT10 Comp values are the best LRMSD 
values in the top 10 poses based on adjusted percent complementation score. dLowest RMSD value within ligands docked into 
reference crystal structures using Rosetta. 

 MOE Induced Fit MOE Rigid Rosetta 
Receptor 
(Docked 
Ligand) 

PDB 
ID 

Best 
(Å)

a
 

T10 
(Å)

b
 

T10 
Comp (Å)

c
 

Best 
(Å)

a
 

T10 
(Å)

b
 

T10 
Comp (Å)

c
 Best (Å)

a
 
T10 
(Å)

b
 

T10 
Comp (Å)

c
 

Best 
(crystal)d 

CXCR4 (1) 3OE6 4.29 4.29 4.29 4.77 5.77 5.86 3.95 6.88 4.25 3.76 
FFAR1 (2) 5TZR 8.58 8.58 9.42 9.01 13.93 11.83 7.02 13.45 9.42 6.64 
M1 (3) 5CXV 2.45 5.14 5.48 4.50 5.86 5.86 3.26 3.96 4.30 3.14 
NOP (4) 4EA3 3.66   3.66 3.66 5.01 9.64 9.50 5.70 7.18 7.11 6.16 
OPRK (5) 4JDH 4.01 5.19  5.56  4.18 6.15 5.80 4.18 6.54 6.96 4.65 
P2Y12 (6) 4PY0 4.24 8.53  5.06  4.74 7.40 9.29 4.35 6.83 6.77 3.19 
Average  4.54 5.90 5.58 5.37 8.13 8.02 4.74 7.47 6.47 4.59 
Average  
(no FFAR1) 

 3.73 5.36 4.81 4.64 6.96 7.26 4.29 6.29 5.88 4.18 
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Table A6. Ligand RMSD values for ligand poses docked into receptor models generated using three different receptor 
modeling approaches for the set of highest CoINPocket scored target:template receptor pairings. 
aTanimoto coefficient indicates the similarity between first-neighbors to the ligand in the residue interaction network calculated using 
the RING 2.0 server. bNo template ligand present in either the homology or loop modeling processes. cTemplate ligand present when 
homology modeled, absent when loop modeled. dTemplate ligand present during both homology and loop modeling. eMetrics measured 
for lowest RMSD induced fit docked pose in the initial homology model without loop modeling. fMetrics measured for lowest RMSD 
induced fit docked pose across top ten scored loop modeled structures. gMetrics measured for lowest RMSD induced fit docked pose 
among top ten scored poses (using noted scoring method) across top ten scored loop modeled structures. 

Receptor  

 RMSD Values (Å)/ Tanimoto Coefficienta  
Approach A1b Approach B1c Approach B2d 

Initial 
Modele Bestf 

T10 
(Dock 
Score)g 

T10 
(Comp 
Score)g Bestf 

T10 
(Dock 
Score)g 

T10 
(Comp 
Score)g Bestf 

T10 
(Dock 
Score)g 

T10 
(Comp 
Score)g 

AT2R 5.23 / 
0.46 

5.65 / 
0.48 

5.65 / 
0.48 

5.65 / 
0.48 

5.56 / 
0.42 

5.56 / 
0.42 

5.56 / 
0.42 

5.14 / 
0.47 

6.65 / 
0.46 

6.65 / 
0.46 

CXCR4 6.69 / 
0.34 

4.29 / 
0.49 

4.29 / 
0.49 

4.29 / 
0.49 

8.11 / 
0.27 

9.56 / 
0.20 

8.11 / 
0.27 

4.81 / 
0.47 

11.06 / 
0.09 

7.59 / 
0.26 

FFAR1 15.38 / 
0.32 

8.58 / 
0.59 

8.58 / 
0.59 

9.42 / 
0.43 

11.97 / 
0.29 

12.39 / 
0.49 

12.39 / 
0.49 

11.94 / 
0.43 

11.94 / 
0.43 

13.39 / 
0.43 

H1R 4.48 / 
0.63 

4.79 / 
0.56 

4.79 / 
0.56 

4.83 / 
0.64 

2.81 / 
0.42 

2.81 / 
0.42 

2.81 / 
0.42 

4.09 / 
0.38 

4.50 / 
0.43 

4.68  
0.39 

M1 12.91 / 
0.58 

2.45 / 
0.70 

5.14 / 
0.58 

5.49 / 
0.56 

4.87 / 
0.69 

4.87 / 
0.69 

5.15 / 
0.59 

2.28 / 
0.71 

2.28 / 
0.71 

2.28 / 
0.71 

M4R 4.85 / 
0.58 

4.74 / 
0.60 

5.40 / 
0.54 

5.37 / 
0.60 

5.01 / 
0.59 

5.08 / 
0.57 

5.08 / 
0.57 

1.83 / 
0.77 

2.12 / 
0.62 

1.83 / 
0.77 

NOP 3.92 / 
0.50 

3.66 / 
0.57 

3.66 / 
0.57 

3.66 / 
0.57 

3.72 / 
0.53 

3.98 / 
0.51 

3.78 / 
0.57 

3.26 / 
0.64 

5.64 / 
0.51 

3.26 / 
0.64 
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Table A6 (continued). Ligand RMSD values for ligand poses docked into receptor models generated using three different 
receptor modeling approaches for the set of highest CoINPocket scored target:template receptor pairings. 
aTanimoto coefficient indicates the similarity between first-neighbors to the ligand in the residue interaction network calculated using 
the RING 2.0 server. bNo template ligand present in either the homology or loop modeling processes. cTemplate ligand present when 
homology modeled, absent when loop modeled. dTemplate ligand present during both homology and loop modeling. eMetrics measured 
for lowest RMSD induced fit docked pose in the initial homology model without loop modeling. fMetrics measured for lowest RMSD 
induced fit docked pose across top ten scored loop modeled structures. gMetrics measured for lowest RMSD induced fit docked pose 
among top ten scored poses (using noted scoring method) across top ten scored loop modeled structures. 

 RMSD Values (Å)/ Tanimoto Coefficienta 

 Approach A1b Approach B1c Approach B2d 

Receptor 
Initial 
Modele Bestf 

T10 
(Dock 
Score)g 

T10 
(Comp 
Score)g Bestf 

T10 
(Dock 
Score)g 

T10 
(Comp 
Score)g Bestf 

T10 
(Dock 
Score)g 

T10 
(Comp 
Score)g 

OPRK 6.49 / 
0.45 

4.01 / 
0.56 

5.19 / 
0.47 

5.57 / 
0.51 

4.52 / 
0.52 

4.98 / 
0.54 

4.68 / 
0.54 

4.00 / 
0.48 

5.00 / 
0.45 

5.19 / 
0.48 

P2Y12 7.69 / 
0.27 

4.24 / 
0.59 

8.53 / 
0.30 

5.06 / 
0.39 

4.93 / 
0.21 

4.93 / 
0.21 

4.93 / 
0.21 

5.72 / 
0.46 

6.96 / 
0.46 

6.33  
0.57 

PAR1 9.05 / 
0.39 

5.15 / 
0.49 

6.44 / 
0.45 

5.15 / 
0.49 

6.38 / 
0.36 

6.38 / 
0.36 

6.38 / 
0.36 

6.63 / 
0.33 

8.71 / 
0.37 

10.08 / 
0.39 

Overall 
Average 

7.67 / 
0.45 

4.76 / 
0.56 

5.77 / 
0.50 

5.45 / 
0.52 

5.79 / 
0.43 

6.05 / 
0.44 

5.89 / 
0.44 

4.97 / 
0.51 

6.49 / 
0.45 

6.13 / 
0.51 

Average 
without 
FFAR1 

6.13 / 
0.47 

4.33 / 
0.56 

5.45 / 
0.49 

5.00 / 
0.53 

5.10 / 
0.45 

5.35 / 
0.44 

5.16 / 
0.44 

4.20 / 
0.52 

5.88 / 
0.46 

5.32 / 
0.52 

 

 



 

 220 

Table A7. Comparison of MOE induced fit docking poses and crystallographic ligand poses for receptors modeled using two 
templates when docked into approach A1 models. 
aTanimoto coefficient indicates the similarity between first-neighbors to the ligand in the residue interaction network calculated using 
the RING 2.0 server. bMetrics measured for lowest RMSD induced fit docked pose in the initial homology model without loop 
modeling. cMetrics measured for lowest RMSD induced fit docked pose across top ten scored loop modeled structures. dMetrics 
measured for lowest RMSD induced fit docked pose among top ten scored poses (using noted scoring method) across top ten scored 
loop modeled structures. 

Receptor (Ligand)  LRMSD Values (Å)/ Tanimoto Coefficienta 

Local 
Similarity 

Initial Modelb Bestc T10d  
(Dock Score) 

T10d 

(Comp Score) 

AT2R based on CXCR4 (7) 1.72 5.02 / 0.50 5.10 / 0.49 6.69 / 0.60 6.69 / 0.60 
AT2R based on DP2 (7) 2.21 5.23 / 0.46 5.65 / 0.48 5.65 / 0.48  5.65 / 0.48  
H1R based on OPRK (8) 1.93 6.43 / 0.36 9.44 / 0.33 11.01 / 0.25 10.82 / 0.30 
H1R based on M1 (8) 2.21 4.48 / 0.63 4.79 / 0.56 4.79 / 0.56  4.83 / 0.64 
M4R based on NOP (3) 1.23 11.15 / 0.33 5.70 / 0.59 9.02 / 0.43 6.88 / 0.40 
M4R based on H1R (3) 2.46 4.85 / 0.58 4.74 / 0.60 5.40 / 0.54 5.37 / 0.60 
P2Y12 based on FFAR1 (6) 1.42 11.89 / 0.19 4.87 / 0.38 7.40 / 0.31 7.61 / 0.29 
P2Y12 based on PAR1 (6) 1.78 7.69 / 0.27 4.24 / 0.59 8.53 / 0.30 5.06 / 0.39 
Low similarity template average 1.58 8.62 / 0.35 6.59 / 0.42 8.61 / 0.40 8.10 / 0.40 
High similarity template average 2.26 5.56 / 0.49 5.20 / 0.53 5.69 / 0.51 5.37 / 0.55 
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Appendix B  

Chapter 4: Structure-based Pharmacophore Modeling 1. Automated Random 

Pharmacophore Model Generation 

 

Figure B1. GPCR Ligands included in the internal test database. 
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Figure B1 (continued). GPCR Ligands included in the internal test database. 
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Figure B1 (continued). GPCR Ligands included in the internal test database. 
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Figure B1 (continued). GPCR Ligands included in the internal test database. 
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Figure B1 (continued). GPCR Ligands included in the internal test database. 
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Figure B1 (continued). GPCR Ligands included in the internal test database. 
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Figure B1 (continued). GPCR Ligands included in the internal test database. 
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Figure B1 (continued). GPCR Ligands included in the internal test database. 
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Figure B1 (continued). GPCR Ligands included in the internal test database. 
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Figure B1 (continued). GPCR Ligands included in the internal test database. 
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Figure B1 (continued). GPCR Ligands included in the internal test database. 

 



 

 232 

 

Figure B1 (continued). GPCR Ligands included in the internal test database. 
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Figure B1 (continued). GPCR Ligands included in the internal test database. 
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Table B8. Names of GPCR ligands used in the internal test database. 
Targets that each ligand has activity for are numbered with denoted with superscripts. 
Superscript numbering uses the following scheme: 
¹5HT1A, ²5HT1B, ³5HT1D, ⁴5HT1E, ⁵5HT1F, ⁶5HT2A, ⁷5HT2B, ⁸5HT2C, ⁹5HT4, ¹⁰5HT6, 
¹¹5HT7, ¹²A1A, ¹³A1D, ¹⁴A2A, ¹⁵A2B, ¹⁶A2C, ¹⁷Beta 1, ¹⁸Beta 2, ¹⁹Beta 3, ²⁰H1, ²¹H2, ²²H3, 
²³M1, ²⁴M2, ²⁵M3, ²⁶M4, ²⁷M5, ²⁸OPRD, ²⁹OPRK, ³⁰OPRM 
Ligand 
Number 

Ligand Name Ligand 
Number 

Ligand Name 

1 (+)-DOI⁶ ⁷ ⁸ 41 ML381²³ ²⁴ ²⁵ ²⁶ ²⁷ 
2 VU0255035²³ ²⁴ ²⁵ ²⁶ ²⁷ 42 silahexocyclium²³ ²⁴ ²⁵ ²⁶ ²⁷ 
3 VUF 8430 43 agomelatine⁶ ⁷ ⁸ 
4 A-349821²⁰ ²² 44 SCH221510²⁸ ²⁹ ³⁰ 
5 oleamide¹¹ 45 McN-A-343²³ ²⁵ ²⁶ ²⁷ 
6 furtrethonium²³ ²⁴ ²⁵ ²⁶ 46 LY593093²³ 
7 BQCA²³ 47 2-methylhistamine23 

8 RS-30199¹ 48 procaterol¹⁸ 
9 RS-127445⁶ ⁷ ⁸ 49 vortioxetine¹ ² ⁶ ¹⁰ ¹¹ 
10 LY334362⁸ 50 GSK 1521498³⁰ 
11 solabegron¹⁷ ¹⁸ ¹⁹ 51 PF-06767832²³ 
12 7-methoxy-1-naphthylpiperazine¹ ² ³ 52 GR 218  231¹ 
13 tiotropium²³ ²⁴ ²⁵ 53 WIN 62  577²³ ²⁵ ²⁶ 
14 2-pyridlethylamine²⁰ 54 (-)-YM796²³ 
15 all-trans-4-oxo-retinoic-acid¹⁶ 55 doxepin²⁰ 
16 tropicamide²⁵ 56 2-bromo-LSD¹⁰ ¹¹ 
17 BW723C86⁶ ⁷ ⁸ 57 normorphine²⁸ ²⁹ ³⁰ 
18 ephedrine¹⁸ 58 iperoxo²⁴ 
19 guanfacine¹⁴ ¹⁵ ¹⁶ 59 [125I]HEAT¹² ¹³ 
20 epinastine²⁰ 60 SB 204070⁹ 
21 nadolol¹⁷ ¹⁸ ¹⁹ 61 PZM21³⁰ 
22 fluparoxan¹ 62 alniditan² ³ 
23 alcuronium²³ ²⁵ ²⁶ 63 cyamemazine¹ ⁶ ⁸ ¹¹ 
24 norfluoxetine ⁶ ⁷ 64 loratadine²⁰ 
25 NS-49¹² ¹³ 65 phenylephrine¹² 
26 probe 2.1 [PMID: 24187130]²⁹ 66 ethylketocyclazocine²⁸ ²⁹ ³⁰ 
27 lofexidine¹⁴ ¹⁵ ¹⁶ 67 (-)-methadone²⁸ ²⁹ ³⁰ 
28 LY063518⁶ 68 etonitazene²⁸ ²⁹ ³⁰ 
29 probe 1.1 [PMID: 24187130]²⁹ 69 VU0119498²³ ²⁵ ²⁷ 
30 sabcomeline²³ ²⁵ ²⁶ ²⁷ 70 lithocholycholine²³ ²⁴ ²⁵ ²⁶ ²⁷ 
31 oxotremorine²³ ²⁴ ²⁵ ²⁶ 71 xylazine¹⁴ ¹⁵ ¹⁶ 
32 (+)-cis-H2-PAT²⁰ 72 pipamperone¹ ² ³ ⁶ ²⁰ 
33 frovatriptan¹ ² ³ 73 H4 antagonist 48 
34 5-methylurapidil¹² ¹³ 74 pentythio-TZTP²³ ²⁴ ²⁵ ²⁶ 
35 dicyclomine²³ ²⁴ ²⁵ 75 K-252a²³ 
36 (+)-norfenfluramine⁷ 76 Ro 60-0175⁶ ⁷ 
37 SB 204741⁷ ⁸ 77 EMD-386088¹⁰ 
38 tapentadol³⁰ 78 4-DAMP²³ ²⁴ ²⁵ ²⁶ ²⁷ 
39 salvinorin A²⁹ 79 JB 98064²² 
40 burimamide²² 80 TIPP-psi²⁸ 
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Table B1 (continued). Names of GPCR ligands used in the internal test database. 
Targets that each ligand has activity for are numbered with denoted with superscripts. 
Superscript numbering uses the following scheme: 
¹5HT1A, ²5HT1B, ³5HT1D, ⁴5HT1E, ⁵5HT1F, ⁶5HT2A, ⁷5HT2B, ⁸5HT2C, ⁹5HT4, ¹⁰5HT6, 
¹¹5HT7, ¹²A1A, ¹³A1D, ¹⁴A2A, ¹⁵A2B, ¹⁶A2C, ¹⁷Beta 1, ¹⁸Beta 2, ¹⁹Beta 3, ²⁰H1, ²¹H2, ²²H3, 
²³M1, ²⁴M2, ²⁵M3, ²⁶M4, ²⁷M5, ²⁸OPRD, ²⁹OPRK, ³⁰OPRM 
Ligand 
Number 

Ligand Name Ligand 
Number 

Ligand Name 

81 sumatriptan¹ ² ³ ⁴ ⁵ ¹⁰ ¹¹ 121 BF-1⁶ ⁷ 
82 AE9C90CB²³ ²⁴ ²⁵ ²⁶ ²⁷ 122 quinpirole¹ ⁶ ⁷ ⁸ 
83 tifluadom²⁹ 123 tegaserod⁷ ⁹ 
84 sarpogrelate⁶ ⁷ ⁸ 124 solifenacin²³ ²⁴ ²⁵ ²⁶ ²⁷ 
85 A61603¹² 125 Cy3B-telenzepine²³ ²⁴ 
86 (R)-flurocarazolol¹ ² 126 A-304121²² 
87 phenoxybenzamine¹⁵ 127 himbacine²³ ²⁴ ²⁵ ²⁶ ²⁷ 
88 LK 204-545¹⁷ ¹⁸ 128 zolmitriptan¹ ² ³ ⁴ ⁵ 
89 S(+)-niguldipine¹² ¹³ 129 AR-M1000390²⁸ ²⁹ ²⁸ ³⁰ 
90 NNC 11-1585²³ ²⁴ ²⁵ ²⁶ ²⁷ 130 (+)-cyclazosin¹² ¹³ 
91 YM348⁸ 131 pimavanserin⁶ 
92 duloxetine⁶ ⁸ ¹⁰ 132 GR 125487⁹ 
93 LY53857⁶ ⁷ 133 RS-17053¹² ¹³ 
94 trazodone⁶ ⁷ ⁸ 134 ML169²³ 
95 acetylcholine²³ ²⁴ ²⁵ ²⁶ ²⁷ 135 WAY-208466¹⁰ 
96 L-748337¹⁹ 136 Rec 15/3079¹ 
97 BRL 44408¹⁴ ¹⁵ ¹⁶ 137 conessine²⁰ ²² 
98 tripelennamine²⁰ 138 SB 221284⁶ ⁷ ⁸ 
99 arecaidine propargyl ester²³ ²⁴ ²⁵ ²⁶ 139 ipratropium²³ ²⁴ ²⁵ ²⁶ ²⁷ 
100 CL316243¹⁹ 140 (R)-UH 301¹ 
101 bethanechol²³ ²⁴ ²⁵ ²⁶ 141 phentolamine¹² ¹³ ¹⁴ ¹⁵ ¹⁶ 
102 N-1-isopropyl-5-MeOT⁶ 142 AZD6088²³ 
103 cebranopadol²⁸ ²⁹ ³⁰ 143 ocaperidone¹ ² ³ 
104 guanylpirenzepine²³ 144 asenapine¹ ² ³ ⁴ ⁶ ²⁰ 
105 labetalol¹³ ¹⁷ ¹⁸ 145 piribedil¹ ⁷ ¹² ¹⁴ ¹⁶ 
106 CP94253² 146 tolvaptan 
107 hexahydrodifenidol²³ ²⁴ ²⁵ ²⁶ ²⁷ 147 ST-1006²⁰ ²² 
108 RX821002¹⁴ ¹⁵ ¹⁶ 148 amibegron¹⁹ 
109 WAY-163909⁸ 149 SB 216641¹ ² ³ ⁶ ⁷ ⁸ 
110 robalzotan¹ 150 CGP 12177¹⁷ ¹⁹ 
111 alpha-methylnoradrenaline¹³ 151 aclidinium²³ ²⁴ ²⁵ 
112 H05⁶ 152 5-BODMT⁴ ⁵ 
113 raclopride¹ 153 ML375²⁷ 
114 mirabegron¹⁷ ¹⁸ ¹⁹ 154 SB 277011-A³ ⁷ 
115 sufentanil³⁰ 155 brimonidine¹⁴ ¹⁵ ¹⁶ 
116 naloxone benzoylhydrazone²⁹ ³⁰ 156 ICI 169369¹⁰ 
117 BIMU 8⁹ 157 SB269970¹¹ 
118 5-fluorotryptamine⁴ 158 GR-55562² ² 
119 ORG-37684⁶ ⁷ ⁸ 159 BRL-54443⁴ ⁵ 
120 JNJ-39758979²⁰ ²² 160 ergotamine³ ⁴ ⁵ ⁶ ⁷ ⁸ ¹⁰ ⁶ 
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Table B1 (continued). Names of GPCR ligands used in the internal test database. 
Targets that each ligand has activity for are numbered with denoted with superscripts. 
Superscript numbering uses the following scheme: 
¹5HT1A, ²5HT1B, ³5HT1D, ⁴5HT1E, ⁵5HT1F, ⁶5HT2A, ⁷5HT2B, ⁸5HT2C, ⁹5HT4, ¹⁰5HT6, 
¹¹5HT7, ¹²A1A, ¹³A1D, ¹⁴A2A, ¹⁵A2B, ¹⁶A2C, ¹⁷Beta 1, ¹⁸Beta 2, ¹⁹Beta 3, ²⁰H1, ²¹H2, ²²H3, 
²³M1, ²⁴M2, ²⁵M3, ²⁶M4, ²⁷M5, ²⁸OPRD, ²⁹OPRK, ³⁰OPRM 
Ligand 
Number 

Ligand Name Ligand 
Number 

Ligand Name 

161 terbutaline¹⁸ 201 (+)-WAY 100135² ³ 
162 VUF14862²² 202 ziprasidone¹ ² ³ ⁴ ⁶ ⁸ ¹¹ ²⁰ 
163 oxotremorine-M²³ ²⁴ ²⁵ ²⁶ 203 LY320954⁶ 
164 lumateperone⁶ 204 AZD7268²⁸ 
165 tolterodine²³ ²⁴ ²⁵ ²⁶ ²⁷ 205 LY2119620²⁶ 
166 salmeterol¹⁸ 206 VER-3323⁶ ⁷ ⁸ 
167 dimaprit²² 207 zotepine¹ ² ³ ⁴ ⁶ ⁸ ¹⁰ ¹¹ ¹⁵ ²⁰ 
168 renzapride⁹ 208 yohimbine¹ ² ³ ⁴ ⁵ ⁷ ¹¹ ¹⁴ ¹⁵ ¹⁶ 
169 Go 7874²³ ²⁵ ²⁶ 209 pizotifen¹ 
170 GR 89696²⁹ 210 terguride ¹ ² ³ ⁶ ⁷ ⁸ ¹² ¹⁴ ¹⁵ ¹⁶ 
171 L-772  405¹ ² ³ 211 S-14506¹ 
172 mesoridazine¹ ⁶ ⁸ 212 [125I]ICYP¹⁸ ¹⁹ 
173 oxybutynin²³ ²⁴ ²⁵ ²⁶ ²⁷ 213 scopolamine²³ ²⁴ ²⁵ ²⁶ 
174 PF-03654746²² 214 tolazoline¹⁴ ¹⁵ ¹⁶ 
175 practolol¹⁷ 215 WB 4101¹² ¹³ ¹⁴ ¹⁵ ¹⁶ 
176 2-(2-thiazolyl)ethanamine²⁰ 216 mianserin⁶ ⁷ ⁸ ¹⁰ ¹¹ ¹² ¹³ 
177 volinanserin⁶ ⁷ ⁸ 217 L-694  247¹ ² ³ 
178 timolol¹⁸ 218 AZD3778²⁰ 
179 2-methyl-5-HT² ³ ⁴ ⁵ ¹⁰ ⁷ 219 LY 165  163¹ ¹⁰ 
180 U69593²⁹ 220 tropisetron⁹ 
181 abediterol¹⁷ ¹⁸ ¹⁹ 221 lergotrile¹⁰ 
182 cerlapirdine¹⁰ 222 ketanserin¹ ³ ⁶ ⁷ ⁸ ¹¹ ¹² ¹³ ² 
183 INCB-38579²⁰ 223 idalopiridine⁸ ¹⁰ 
184 AC-42²³ 224 diphenhydramine²⁰ 
185 propantheline²⁴ ²⁵ ²⁶ 225 azelastine²⁰ 
186 lasmiditan⁵ 226 repinotan¹ 
187 loperamide³⁰ 227 milameline²³ ²⁵ ²⁶ ²⁷ 
188 GSK334429²² 228 tripolidine²⁰ 
189 SB 242084⁶ ⁷ ⁸ 229 NLX-101¹ 
190 EGIS-7625⁶ ⁷ ⁸ 230 guanabenz¹⁴ ¹⁵ ¹⁶ 
191 iloperidone¹ ¹⁰ ¹¹ 231 AL-37350A⁶ ⁷ ⁸ 
192 lysergol² ³ ⁴ 232 vinburnine²³ ²⁵ ²⁶ 
193 oxymetazoline² ³ ⁸ ¹² ¹³ ¹⁴ ¹⁵ ¹⁶ 233 (+)-chloropheniramine²⁰ 
194 cevimeline²³ ²⁴ ²⁵ ²⁶ 234 JDTic²⁹ 
195 SB236057² 235 olodaterol¹⁸ 
196 ADL5859²⁸ ²⁹ ³⁰ 236 methoctramine²³ ²⁴ ²⁵ ²⁶ ²⁷ 
197 clemastine²⁰ 237 ritanserin¹ ² ³ ⁶ ⁷ ⁸ ¹⁰ ¹¹ ¹² ¹³ 
198 (+)-aceclidine²³ ²⁴ ²⁵ ²⁶ ²⁷ 238 interpirdine¹⁰ 
199 dobutamine¹⁷ 239 tramadol²⁸ ²⁹ ³⁰ 
200 (-)-pentazocine²⁸ ²⁹ ³⁰ 240 2-MPP¹¹ 
 



 

 237 

Table B1 (continued). Names of GPCR ligands used in the internal test database. 
Targets that each ligand has activity for are numbered with denoted with superscripts. 
Superscript numbering uses the following scheme: 
¹5HT1A, ²5HT1B, ³5HT1D, ⁴5HT1E, ⁵5HT1F, ⁶5HT2A, ⁷5HT2B, ⁸5HT2C, ⁹5HT4, ¹⁰5HT6, 
¹¹5HT7, ¹²A1A, ¹³A1D, ¹⁴A2A, ¹⁵A2B, ¹⁶A2C, ¹⁷Beta 1, ¹⁸Beta 2, ¹⁹Beta 3, ²⁰H1, ²¹H2, ²²H3, 
²³M1, ²⁴M2, ²⁵M3, ²⁶M4, ²⁷M5, ²⁸OPRD, ²⁹OPRK, ³⁰OPRM 
Ligand 
Number 

Ligand Name Ligand 
Number 

Ligand Name 

241 betaxolol¹⁷ ¹⁸ 281 tripitramine²³ ²⁴ ²⁵ ²⁶ ²⁷ 
242 spiroxatrine¹ ⁷ ¹² ¹³ ¹⁴ ¹⁵ ¹⁶ 282 butorphanol²⁹ ³⁰ 
243 lorcaserin⁶ ⁷ ⁸ 283 MPDT¹ ³ ⁶ ¹⁰ ¹¹ 
244 HS665²⁹ ³⁰ 284 tamsulosin¹² ¹³ 
245 THRX160209²⁴ 285 TD-8954⁹ 
246 apomorphine¹ ⁶ ⁷ ⁸ ¹⁴ ¹⁵ ¹⁶ 286 SB 203186⁹ 
247 arformoterol¹⁷ ¹⁸ 287 VU0238429²⁷ 
248 mesulergine⁶ ⁷ ⁸ ¹⁰ ¹¹ 288 melatonin⁷ 
249 MK-0249²⁰ ²² 289 BMY-14802¹ 
250 capeserod¹ ² ³ ⁶ ⁷ ⁸ ⁹ ¹⁰ ¹¹ 290 ML380²⁷ 
251 fenoterol¹⁸ 291 SB 649915¹ ² ³ 
252 BMY-7378¹ ¹² ¹³ 292 MP1104²⁹ 
253 LY215840⁶ 293 LP-44¹ ⁶ ¹¹ 
254 p-F-HHSiD²³ ²⁴ ²⁵ ²⁶ ²⁷ 294 RU 24969¹ ² ³ ⁶ ⁷ ⁸ ¹⁰ 
255 imipramine²⁴ 295 dipropyl-5CT² ³ ⁵ ¹¹ 
256 (+)-butaclamol¹ ⁶ ¹¹ 296 SKF 105854¹³ 
257 CP 93129¹ 297 pethidine²⁸ ²⁹ ³⁰ 
258 (-)-noradrenaline¹² ¹³ ¹⁴ ¹⁵ ¹⁶ ¹⁷ ¹⁸ ¹⁹ 298 quipazine⁶ ⁷ ⁸ 
259 piboserod⁷ ⁹ 299 Ro 04-6790¹⁰ 
260 CGS-12066² ³ ⁶ ⁷ ⁸ ¹⁰ 300 flesinoxan¹ 
261 5-(nonyloxy)-tryptamine² 301 alvimopan²⁸ ²⁹ ³⁰ 
262 ICI 118551¹⁸ ¹⁹ 302 S 16924¹ ⁶ ⁷ ⁸ ¹⁰ 
263 ABT-239²⁰ ²² 303 filbanserin¹ ⁶ 
264 LY2456302²⁸ ²⁹ ³⁰ 304 bupranolol¹⁷ ¹⁸ ¹⁹ 
265 dexetimide²⁴ 305 fentanyl²⁸ ²⁹ ³⁰ 
266 molindone⁶ ²⁰ 306 T-0509¹⁷ 
267 JNJ 7777120²² 307 ethopropazine²³ 
268 xamoterol¹⁷ 308 pitolisant²⁰ ²² 
269 5'-guanidinonaltrindole²⁹ 309 silodosin¹² ¹³ 
270 metergoline² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ¹⁰ ¹¹ 310 dosulepin²⁰ ²³ ²⁴ ²⁵ ²⁷ ²⁶ 
271 5-CT¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ¹⁰ ¹¹ 311 SR59230A¹⁷ ¹⁸ ¹⁹ 
272 L-741  626⁶ ⁷ 312 U50488²⁹ 
273 glycopyrrolate²³ ²⁴ ²⁵ ²⁶ ²⁷ 313 BNTX²⁸ ²⁹ ³⁰ 
274 umeclidinium²³ ²⁴ ²⁵ ²⁶ ²⁷ 314 AC-260584²³ 
275 BMS 181  101² 315 esmolol¹⁷ 
276 LY344864¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ¹¹ 316 blonaserin⁶ 
277 eletriptan¹ ² ³ ⁴ ⁵ 317 SR16835²⁹ ³⁰ 
278 velusetrag⁹ 318 DAU 6285⁹ 
279 zinterol¹⁸ 319 dabuzalgron¹² 
280 A-119637¹² ¹³ 320 carvedilol¹⁷ ¹⁸ 
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Table B1 (continued). Names of GPCR ligands used in the internal test database. 
Targets that each ligand has activity for are numbered with denoted with superscripts. 
Superscript numbering uses the following scheme: 
¹5HT1A, ²5HT1B, ³5HT1D, ⁴5HT1E, ⁵5HT1F, ⁶5HT2A, ⁷5HT2B, ⁸5HT2C, ⁹5HT4, ¹⁰5HT6, 
¹¹5HT7, ¹²A1A, ¹³A1D, ¹⁴A2A, ¹⁵A2B, ¹⁶A2C, ¹⁷Beta 1, ¹⁸Beta 2, ¹⁹Beta 3, ²⁰H1, ²¹H2, ²²H3, 
²³M1, ²⁴M2, ²⁵M3, ²⁶M4, ²⁷M5, ²⁸OPRD, ²⁹OPRK, ³⁰OPRM 
Ligand 
Number 

Ligand Name Ligand 
Number 

Ligand Name 

321 indacaterol¹⁸ 361 SB 272183¹ ² ³ 
322 U92016A¹ 362 vincamine²³ ²⁵ ²⁶ 
323 xanomeline¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ¹⁰ ¹¹ ²³ ²⁴ ²⁵ ²⁶ ²⁷  363 Lysergic Acid³ 
324 GR 125  743¹ 364 ZPL-3893787²² 
325 (-)-tertatolol¹ 365 methylnaltrexone²⁸ ²⁹ ³⁰ 
326 vilazadone¹ ⁹ ²⁰ 366 clidinium²⁵ 
327 dapiprazole¹³ 367 morphine²⁸ ²⁹ ³⁰ 
328 fexofenadine²⁰ 368 haloperidol¹ ³ ⁶ ⁷ ¹¹ ²⁰ 
329 rizatriptan¹ ² ³ ⁴ ⁵ 369 WAY-100635¹ 
330 relenopride⁶ ⁷ ⁹ 370 (-)-propranolol¹ ¹⁷ 
331 RS-102221⁶ ⁷ ⁸ 371 atropine²³ ²⁴ ²⁵ ²⁶ ²⁷ 
332 levorphanol³⁰ 372 apraclonidine¹⁴ ¹⁵ 
333 ML 10375⁹ 373 AC-90179⁶ ⁸ 
334 darifenacin²³ ²⁴ ²⁵ ²⁶ ²⁷ 374 BRL-15572¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ¹⁰ 
335 alprenolol¹⁸ 375 DR-4004¹¹ 
336 UFP-512²⁸ ²⁹ ³⁰ 376 methacholine²³ 
337 nafadotride¹ 377 beta-FNA²⁸ ²⁹ ³⁰ 
338 BRL 37344¹⁹ 378 propafenone¹⁷ ¹⁸ 
339 alpha-methyl-5-HT³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ¹⁰ 379 amitriptyline⁶ ¹⁰ ¹¹ ²⁰ ²³ ²⁴ ²⁵ ²⁶ ²⁷ 
340 UH-AH-37²³ ²⁴ ²⁵ ²⁶ ²⁷ 380 SB656104¹¹ 
341 SB 271046¹⁰ 381 pirenperone¹¹ 
342 S-15535¹ 382 compound 3a [PMID: 18606542]²² 
343 N-1-isopropyltryptamine⁶ 383 SB 224289² ³ ⁶ ⁷ ⁸ 
344 UCL-2138²² 384 fluspirilene¹ ³ ⁴ ⁶ ²⁰ 
345 cabergoline¹ ² ³ ⁶ ⁸ ¹² ¹⁴ ¹⁵ ¹⁶  385 SB 206553⁶ ⁷ ⁸ 
346 FG-5893¹ 386 5-MeOT² ³ ⁴ ⁵ ⁶ ⁸ ⁹ ¹⁰ ¹¹ 
347 aripiprazole¹ ² ³ ⁶ ⁸ ¹⁰ ¹¹ ²⁰ 387 desloratadine²⁰ 
348 chlorpromazine¹ ⁶ ⁸ ¹⁰ ¹⁰ ¹¹ ¹⁴ ¹⁵ ¹⁶ ²⁰  388 naratriptan¹ ² ³ ⁴ ⁵ 
349 methoxamine¹² ¹³ 389 roxindole¹ ² ³ ⁶ ⁷ ⁸ ¹² ¹⁵ ¹⁶ 
350 dimethyltryptamine³ ¹⁰ 390 (-)-bremazocine²⁸ ²⁹ ³⁰ 
351 Org 12962⁶ ⁷ ⁸ 391 lurasidone⁶ ¹¹ ¹⁴ ¹⁶ 
352 PF-04995274⁹ 392 m-chlorophenylpiperazine³ ⁴ ⁶ ⁷ ⁸ ¹⁰ 

¹¹ 
353 methysergide³ ⁴ ⁵ ⁶ ⁷ ⁸ ¹⁰ ¹¹ 393 acebutolol¹⁷ 
354 S-14671¹ 394 sotalol¹⁷ ¹⁸ 
355 pergolide¹ ² ³ ⁶ ⁷ ⁸ ¹⁰ ¹¹ ¹⁴ ¹⁵ ¹⁶ 395 9-OH-risperidone¹ ² ³ ⁴ ⁶ ²⁰ 
356 nefazodone⁶ 396 carbachol²³  ²⁴ ²⁵ ²⁶ ²⁷ 
357 mosapride⁹ 397 SB 228357⁶ ⁷ ⁸ 
358 SB 215505⁶ ⁷ ⁸ 398 prucalopride⁹ 
359 SB 258719¹¹ 399 ipsapirone¹ 
360 JP1302¹⁶ 400 amesergide⁶ ⁷ 
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Table B1 (continued). Names of GPCR ligands used in the internal test database. 
Targets that each ligand has activity for are numbered with denoted with superscripts. 
Superscript numbering uses the following scheme: 
¹5HT1A, ²5HT1B, ³5HT1D, ⁴5HT1E, ⁵5HT1F, ⁶5HT2A, ⁷5HT2B, ⁸5HT2C, ⁹5HT4, ¹⁰5HT6, 
¹¹5HT7, ¹²A1A, ¹³A1D, ¹⁴A2A, ¹⁵A2B, ¹⁶A2C, ¹⁷Beta 1, ¹⁸Beta 2, ¹⁹Beta 3, ²⁰H1, ²¹H2, ²²H3, 
²³M1, ²⁴M2, ²⁵M3, ²⁶M4, ²⁷M5, ²⁸OPRD, ²⁹OPRK, ³⁰OPRM 
Ligand 
Number 

Ligand Name Ligand 
Number 

Ligand Name 

401 hexocyclium²³ ²⁴ ²⁵ ²⁶ ²⁷ 441 prenalterol¹⁷ 
402 upidosin¹² ¹³ 442 GR 127935¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ¹⁰ 
403 pindolol¹ ⁶ ⁷ ¹⁷ ¹⁸ 443 spiramide⁶ ⁷ ⁸ 
404 levallorphan³⁰ 444 (+)-adrenaline¹² ¹³ ¹⁵ ¹⁶ ¹⁷ ¹⁹ 
405 RS 67333⁹ 445 biperiden²³ ²⁴ ²⁵ ²⁶ ²⁷ 
406 promethazine²⁰ 446 SDZ SER-082⁶ ⁷ ⁸ 
407 Ro-70-0004¹² ¹³ 447 (-)-cyclazocine²⁸ ²⁹ ³⁰ 
408 ARC-239¹⁴ ¹⁵ ¹⁶ 448 donitriptan¹ ² ³ ⁴ ⁵ ⁶ ¹⁰ 
409 hydrocodone²⁹ ³⁰ 449 compund 3b [PMID;28943244]⁶ 
410 benzatropine²³ 450 arecoline²³ ²⁴ ²⁵ ²⁶ 
411 KT 5823²³ 451 RS 100235⁹ 
412 rho-MPPI¹ 452 buspirone¹ ¹¹ 
413 pyrilamine²⁰ 453 N-methyl scopolamine²³ ²⁵ 
414 quadazocine²⁸ ²⁹ ³⁰ 454 RS 39604⁹ 
415 isoprenaline¹⁷ ¹⁸ ¹⁹ 455 L755507¹⁹ 
416 levosalbutamol¹⁸ 456 5-hydroxytryptamine¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ¹⁰ 

¹¹ 
417 LP-211¹ ¹¹ 457 AT-076²⁸ ²⁹ ³⁰ 
418 S33084² ³ ⁶ ⁷ ⁸ 458 SB357134¹⁰ 
419 bufotenine³ ⁶ ¹⁰ 459 (-)-Ro 363¹⁷ 
420 fluoxetine⁷ ⁶ ¹⁰ 460 glemanserin⁶ ⁷ ⁸ 
421 KT 5720²³ ²⁶ 461 vilanterol¹⁸ 
422 thioridazine¹ ⁶ ⁸ ¹⁰ ¹¹ ²⁰  462 lisuride¹ ² ³ ⁶ ⁷ ⁸ ¹⁰ ¹¹ ¹² ¹⁴ ¹⁵ ¹⁶  
423 A-317920²⁰ ²² 463 ketoifen²⁰ 
424 sergolexole⁶ ⁶ 464 levobunolol¹⁷ ¹⁸ ¹⁹ 
425 cisapride⁹ 465 BIMU 1⁹ 
426 CP-122288² ³ 466 SB258585¹⁰ 
427 cyproheptadine¹⁰ ¹¹ ¹² ¹³ ²⁰ 467 NAN 190¹ ⁵ ¹² ¹³ 
428 metoprolol¹⁷ ¹⁸ 468 SNAP5089¹² 
429 5-benzyloxytryptamine¹⁰ 469 hexahydrosiladifenidol²³ ²⁴ ²⁵ ²⁶ ²⁷ 
430 GR 113808⁹ 470 UFP-505²⁸ ³⁰ 
431 L742791¹⁹ 471 dihydroergocryptine⁷ ¹¹ 
432 tryptamine² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ¹⁰ ¹¹ 472 buprenorphine²⁹ ³⁰ 
433 terfenadine²⁰ 473 atenolol¹⁷ ¹⁸ 
434 nalorphine²⁸ ²⁹ ³⁰ 474 8-OH-DPAT¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ¹¹ 
435 LY334370¹ ⁵ 475 bromocriptine¹ ² ³ ⁶ ⁷ ⁸ ¹⁰ ¹¹ ¹⁴ ¹⁵ ¹⁶ 
436 LY293284¹ 476 sertindole¹ ² ³ ⁴ ⁵ ⁶ ⁸ ²⁰ 
437 OPC 4392¹⁰ ¹¹ 477 ethyketazocine²⁹ 
438 DOM⁶ 478 dihydromorphine²⁸ ²⁹ ³⁰ 
439 indoramin¹² ¹³ 479 Lysergide¹ ⁶ ⁷ ⁸ ¹⁰ 
440 naltrindole²⁸ ²⁹ ³⁰ 480 nalbuphine²⁸ ²⁹ ³⁰ 
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Table B1 (continued). Names of GPCR ligands used in the internal test database. 
Targets that each ligand has activity for are numbered with denoted with superscripts. 
Superscript numbering uses the following scheme: 
¹5HT1A, ²5HT1B, ³5HT1D, ⁴5HT1E, ⁵5HT1F, ⁶5HT2A, ⁷5HT2B, ⁸5HT2C, ⁹5HT4, ¹⁰5HT6, 
¹¹5HT7, ¹²A1A, ¹³A1D, ¹⁴A2A, ¹⁵A2B, ¹⁶A2C, ¹⁷Beta 1, ¹⁸Beta 2, ¹⁹Beta 3, ²⁰H1, ²¹H2, ²²H3, 
²³M1, ²⁴M2, ²⁵M3, ²⁶M4, ²⁷M5, ²⁸OPRD, ²⁹OPRK, ³⁰OPRM 
Ligand 
Number 

Ligand Name Ligand 
Number 

Ligand Name 

481 orciprenaline¹⁸ 521 SB 207710⁹ ¹¹ 
482 zacopride⁹ 522 dihydroergotamine² ³ ⁴ ⁵ ¹⁰ ¹¹ 
483 risperidone¹ ² ³ ⁴ ⁵ ⁶ ⁸ ¹⁰ ¹¹ ¹² ¹³ ²⁰ 523 alpha-ergocryptine¹⁰ 
484 1-naphthylpiperazine¹ ² ³ ⁴ ⁵ ⁷ ¹⁰ ¹¹ 524 clonidine¹⁴ ¹⁵ ¹⁶ 
485 mirtazapine⁶ ⁸ ¹⁴ ¹⁵ ¹⁶ 525 alimemazine²⁰ 
486 JNJ-5207852²² 526 carazolol¹⁸ ¹⁹ 
487 MK-212⁶ ⁷ ⁸ 527 LY314228⁶ 
488 A-123189¹² ¹³ 528 LY108742⁶ 
489 nalfurafine²⁹ 529 hydromorphone²⁸ ²⁹ ³⁰ 
490 VUF14738²² 530 WIN 51  708²³ ²⁵ ²⁶ 
491 TFMPP² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ¹⁰ ¹¹ 531 ML 10302⁹ 
492 L748328¹⁹ 532 naltriben²⁸ ²⁹ ³⁰ 
493 SB 243213⁶ ⁷ ⁸ 533 methylergonovine⁴ ⁵ ⁶ ⁷ ⁸ 
494 5-MeO-DMT⁴ ⁵ ⁸ ¹⁰ ¹¹ 534 nor-binaltorphimine²⁸ ²⁹ ³⁰ 
495 naloxone²⁸ ²⁹ ³⁰ 535 perospirone⁶ 
496 ergometrine⁴ ⁶ 536 RS-100329¹² ¹³ 
497 spiperone¹ ³ ⁶ ⁷ ⁸ ¹⁰ ¹¹ ¹² ¹³ 537 levetimide²⁴ 
498 nalmefene²⁸ ²⁹ ³⁰ 538 DOI⁴ ⁵ ⁶ ⁷ ⁸ 
499 brolamfetamine⁶ ⁷ ⁸ 539 (+)-LSD⁶ ⁷ ⁸ ¹¹ 
500 tiospirone¹ ⁸ ¹⁰ ¹¹ 540 rauwolscine² ³ ⁴ ⁷ ¹⁴ ¹⁵ ¹⁶ 
501 compound 3 [PMID: 23134120]²⁹ ³⁰ 541 dihydroergocristine¹⁰ 
502 NIP¹⁷ ¹⁸ 542 [125I]BE-2254¹² ¹³ 
503 pimozide¹ ⁶ ¹¹ ¹⁰ ²⁰ 543 SB399885¹⁰ 
504 NIHP¹⁷ 544 (+)-trans-H2-PAT²⁰ 
505 trihexyphenidyl²³ 545 (-)-aceclidine²³ ²⁴ ²⁵ ²⁶ ²⁷ 
506 AQ-RA 741²³ ²⁴ ²⁵ ²⁶ ²⁷ 546 (-)-adrenaline¹² ¹³ ¹⁴ ¹⁵ ¹⁶ ¹⁷ ¹⁸ 
507 naltrexone²⁸ ²⁹ ³⁰ 547 (-)-chlorpheniramine²⁰ 
508 NNC 11-1314²³ ²⁴ ²⁵ ²⁶ ²⁷ 548 (-)-norfenfluramine⁷ 
509 H87/07¹⁷ 549 (-)-trans-H2-PAT²⁰ ²² 
510 cicloprolol¹⁷ ¹⁸ 550 (R)-DOI⁶ ⁷ ⁸ 
511 N-benzyl brucine²³ ²⁵ ²⁶ ²⁷ 551 (S)-UH 301¹ 
512 LP-12¹ ⁶ ¹¹ 552 (S)-flurocarazolol¹ ² 
513 LY86057⁶ ⁷ 553 NNC 11-1607²³ ²⁴ ²⁵ ²⁶ ²⁷ 
514 codeine³⁰ 554 WAY-100135¹ 
515 enadoline²⁹ 555 chlorpheniramine²⁰ 
516 methylfurmethide²³ ²⁴ ²⁵ ²⁶ 556 denopamine¹⁷ 
517 tandospirone¹ 557 diprenorphine²⁸ ²⁹ ³⁰ 
518 DM-1451¹⁰ ¹¹ 558 formoterol¹⁸ 
519 ADL5747²⁸ ²⁹ ³⁰ 559 levobetaxolol¹⁷ ¹⁸ 
520 BU08028²⁸ ²⁹ ³⁰ 560 methadone³⁰ 
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Table B1 (continued). Names of GPCR ligands used in the internal test database. 
Targets that each ligand has activity for are numbered with denoted with superscripts. 
Superscript numbering uses the following scheme: 
¹5HT1A, ²5HT1B, ³5HT1D, ⁴5HT1E, ⁵5HT1F, ⁶5HT2A, ⁷5HT2B, ⁸5HT2C, ⁹5HT4, ¹⁰5HT6, 
¹¹5HT7, ¹²A1A, ¹³A1D, ¹⁴A2A, ¹⁵A2B, ¹⁶A2C, ¹⁷Beta 1, ¹⁸Beta 2, ¹⁹Beta 3, ²⁰H1, ²¹H2, ²²H3, 
²³M1, ²⁴M2, ²⁵M3, ²⁶M4, ²⁷M5, ²⁸OPRD, ²⁹OPRK, ³⁰OPRM 
Ligand 
Number 

Ligand Name   

561 noradrenaline¹⁷ ¹⁸   
562 norfenfluramine⁷   
563 propranolol¹⁸ ¹⁹   
564 salbutamol¹⁸   
565 tertatolol¹⁹   
566 AS-19¹¹   
567 JNJ-18038683¹¹   
568 benzoquinazolinone 12²³   
569 E55888¹¹   
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Table B2. Fragments used during MCSS. 
aFragment features annotatable in MOE are marked by colored circles, with each color 
representing a different feature type. Hydrophobic features are denoted by a green circle, 
hydrogen bond acceptor features are denoted by a blue circle, hydrogen bond donor 
features are denoted by a magenta circle, aromatic features are denoted by an orange 
circle, and features that are both hydrogen bond acceptors and donors are denoted with 
a purple circle. 

Name Structurea Abbreviation Annotatable Features 
1,2-dimethylpyrrolidine  

  
MPR Acc, Hyd 

2-butene  
  

BTE Hyd 

2-butyne  
  

BTY Hyd 

3-methylindole  
 

 

MIN Aro, Don, Hyd 

5-methylimidazole  
 

 

IMC Acc, Aro, Don, Hyd 

N-methylformamide  
  

NMF Acc, Don, Hyd 

acetaldehyde  
  

ALD Acc, Hyd 

acetamide  
 

 

ACM Acc, Don, Hyd 

acetate ion  
 

 

COO Acc, Hyd 

acetonitrile  
  

CCN Acc, Hyd 

benzene  
  

BEN Aro, Hyd 

butane  
  

BTA Hyd 

cyclohexane  
  

CHX Hyd 

dimethylether  
  

COC Acc, Hyd 

dimethylsulfone  
  

DSP Acc, Hyd 

ethane  
  

ETH Hyd 
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Table B2 (continued). Fragments used during MCSS. 
aFragment features annotatable in MOE are marked by colored circles, with each color 
representing a different feature type. Hydrophobic features are denoted by a green circle, 
hydrogen bond acceptor features are denoted by a blue circle, hydrogen bond donor 
features are denoted by a magenta circle, aromatic features are denoted by an orange 
circle, and features that are both hydrogen bond acceptors and donors are denoted with 
a purple circle. 

Name Structurea Abbreviation Annotatable Features 
ethanol  

  

EOH Acc/Don, Hyd 

ethylthiol  
  

CCS Hyd 

isobutane  
  

BTI Hyd 

methane  
  

CH4 Hyd 

methanol  
  

COH Acc/Don, Hyd 

methylamidinium  
 

 

CNN Cat/Don, Hyd 

methylammonium  
  

MAM Cat/Don, Hyd 

methylchloride  
  

MCL Hyd 

methylguanidinium  
 

 

GDN Cat/Don, Hyd 

methylsulfonamide  

  

MSM Acc, Cat/Don, Hyd 

methylsulfonate  
 

 

MST Acc, Hyd 

methyltetrazolium  
 

 

MTR Ani/Acc, Aro, Hyd 

methylthiol  
  

CSH Acc/Don, Hyd 

n,n-dimethylacetamide  

 

 

C3M Acc, Hyd 

n-methylacetamide  

  

CMC Acc, Don, Hyd 
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Table B2 (continued). Fragments used during MCSS. 
aFragment features annotatable in MOE are marked by colored circles, with each color 
representing a different feature type. Hydrophobic features are denoted by a green circle, 
hydrogen bond acceptor features are denoted by a blue circle, hydrogen bond donor 
features are denoted by a magenta circle, aromatic features are denoted by an orange 
circle, and features that are both hydrogen bond acceptors and donors are denoted with 
a purple circle. 

Name Structurea Abbreviation Annotatable Features 
phenol  

  

PHE Acc, Aro, Don, Hyd 

piperidinium  

  

PPP Cat/Don, Hyd 

propane  
  

PRA Hyd 

propyne  
  

PRY Hyd 

thiazole  
 

 

THZ Acc, Aro, Hyd 

trifluoromethane  

  

CF3 Hyd 

trimethylammonium  
  

TMN Cat/Don, Hyd 

water   WAT 
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Table B3. Unique fragment placements for each target used in benchmarking our 
pharmacophore model generation protocol. 

 

  

 Unique Fragment Placements 

Target 

Experimentally 
Determined 
Structures Homology Models 

5HT2B 1,825 1,651 
A2A 1,466 2,110 
Beta 2 2,006 1,647 
H1 1,735 1,661 
M1 1,723 1,558 
OPRD 1,836 1,376 
OPRK 2,192 1,699 
OPRM 1,156 1,679 
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Table B4. Pharmacophore model scoring data when searching with 3 partial match 
features using pharmacophores generated in experimentally determined structures. 
aTheoretical maximum enrichment value calculated using 1/[A/D]. 
bGoodness of hit score for the enrichment value shown. 
cEnrichment value for the goodness of hit score shown. 

 Enrichment Factor (EF) Goodness of Hit (GH) 

Receptor 
(Max EFa) Min. Q1 Q2 Q3 Max. 

(GHb) Min. Q1 Q2 Q3 Max.  
(EFc) 

5HT2B 
(6.62) 0.00 0.77 0.91 0.99 6.62 

(0.01) 0.00 0.01 0.03 0.06 0.12 
(1.22) 

A2A 
(19.62) 0.00 0.19 0.73 0.90 11.77 

(0.07) 0.00 0.00 0.02 0.04 0.20 
(7.71) 

Beta 2 
(13.23) 0.00 0.46 1.03 1.32 13.23 

(0.02) 0.00 0.01 0.04 0.08 0.44 
(4.89) 

H1R 
(11.16) 0.00 0.46 0.80 0.98 3.72 

(0.01) 0.00 0.01 0.02 0.04 0.13 
(1.55) 

M1 
(8.25) 0.00 0.69 0.90 1.00 8.25 

(0.04) 0.00 0.01 0.03 0.05 0.13 
(3.88) 

OPRD 
(14.59) 0.00 1.03 1.18 1.69 14.59 

(0.08) 0.00 0.02 0.05 0.09 0.30 
(4.19) 

OPRK 
(10.16) 0.00 1.02 1.11 1.35 10.16 

(0.04) 0.00 0.02 0.05 0.08 0.27 
(3.24) 

OPRM 
(10.74) 0.00 1.01 1.04 1.16 10.74 

(0.04) 0.00 0.01 0.02 0.06 0.29 
(3.37) 

Averages 0.00 0.70 0.96 1.17 9.89 
(0.04) 0.00 0.01 0.03 0.03 0.24 

(3.76) 
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Table B5. Pharmacophore model scoring data when searching with 4 partial match 
features using pharmacophores generated in experimentally determined structures. 
aTheoretical maximum enrichment value calculated using 1/[A/D]. 
bGoodness of hit score for the enrichment value shown. 
cEnrichment value for the goodness of hit score shown. 

 Enrichment Factor (EF) Goodness of Hit (GH) 

Receptor 
(Max EFa) Min. Q1 Q2 Q3 Max. 

(GHb) Min. Q1 Q2 Q3 Max.  
(EFc) 

5HT2B 
(6.62) 0.00 0.42 0.75 0.95 6.62 

(0.03) 0.00 0.00 0.02 0.05 0.12 
(1.20) 

A2A 
(19.62) 0.00 0.00 0.00 0.75 12.61 

(0.23) 0.00 0.00 0.00 0.03 0.23 
(12.61) 

Beta 2 
(13.23) 0.00 0.00 0.00 1.26 13.23 

(0.02) 0.00 0.00 0.00 0.04 0.32 
(4.36) 

H1R 
(11.16) 0.00 0.00 0.33 0.79 11.16 

(0.02) 0.00 0.00 0.01 0.02 0.12 
(1.56) 

M1 
(8.25) 0.00 0.35 0.87 1.37 8.25 

(0.06) 0.00 0.00 0.02 0.04 0.16 
(2.21) 

OPRD 
(14.59) 0.00 0.00 1.04 1.62 14.59 

(0.05) 0.00 0.00 0.02 0.05 0.22 
(4.96) 

OPRK 
(10.16) 0.00 0.00 1.02 1.53 10.16 

(0.07) 0.00 0.00 0.01 0.05 0.27 
(4.12) 

OPRM 
(10.74) 0.00 0.84 1.10 1.40 10.74 

(0.04) 0.00 0.01 0.06 0.08 0.31 
(3.61) 

Averages 0.00 0.20 0.64 1.21 10.92 
(0.07) 0.00 0.00 0.02 0.05 0.22 

(4.33) 
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Table B6. Pharmacophore model scoring data when searching with 5 partial match 
features using pharmacophores generated in experimentally determined structures. 
aTheoretical maximum enrichment value calculated using 1/[A/D]. 
bGoodness of hit score for the enrichment value shown. 
cEnrichment value for the goodness of hit score shown. 

 Enrichment Factor (EF) Goodness of Hit (GH) 

Receptor 
(Max EFa) Min. Q1 Q2 Q3 Max. 

(GHb) Min. Q1 Q2 Q3 Max.  
(EFc) 

5HT2B 
(6.62) 0.00 0.00 0.58 1.32 6.62 

(0.01) 0.00 0.00 0.00 0.01 0.06 
(1.38) 

A2A 
(19.62) 0.00 0.00 0.00 0.00 19.62 

(0.03) 0.00 0.00 0.00 0.00 0.07 
(1.33) 

Beta 2 
(13.23) 0.00 0.00 0.00 0.00 13.23 

(0.05) 0.00 0.00 0.00 0.00 0.18 
(2.15) 

H1R 
(11.16) 0.00 0.00 0.00 0.00 11.16 

(0.02) 0.00 0.00 0.00 0.00 0.14 
(1.87) 

M1 
(8.25) 0.00 0.00 1.37 3.30 8.25 

(0.06) 0.00 0.00 0.01 0.02 0.09 
(1.06) 

OPRD 
(14.59) 0.00 0.00 0.00 1.04 14.59 

(0.05) 0.00 0.00 0.00 0.01 0.10 
(1.29) 

OPRK 
(10.16) 0.00 0.00 0.00 0.73 10.16 

(0.02) 0.00 0.00 0.00 0.01 0.21 
(3.87) 

OPRM 
(10.74) 0.00 0.00 0.61 1.64 10.74 

(0.06) 0.00 0.00 0.01 0.03 0.30 
(3.76) 

Averages 0.00 0.00 0.32 1.00 11.80 
(0.04) 0.00 0.00 0.00 0.01 0.14 

(2.09) 
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Table B7. Pharmacophore model scoring data when searching with 3 partial match 
features using pharmacophores generated in homology models. 
aTheoretical maximum enrichment value calculated using 1/[A/D]. 
bGoodness of hit score for the enrichment value shown. 
cEnrichment value for the goodness of hit score shown. 

 Enrichment Factor (EF) Goodness of Hit (GH) 

Receptor 
(Max EFa) Min. Q1 Q2 Q3 Max. 

(GHb) Min. Q1 Q2 Q3 Max.  
(EFc) 

5HT2B 
(6.62) 0.00 0.70 0.89 0.99 6.62 

(0.01) 0.00 0.01 0.04 0.06 0.12 
(1.21) 

A2A 
(19.62) 0.00 0.55 0.78 0.93 8.41 

(0.17) 0.00 0.01 0.02 0.04 0.20 
(7.71) 

Beta 2 
(13.23) 0.00 0.97 1.07 1.28 9.92 

(0.06) 0.00 0.01 0.03 0.08 0.43 
(4.52) 

H1R 
(11.16) 0.00 0.40 0.71 0.93 5.58 

(0.01) 0.00 0.01 0.02 0.03 0.11 
(1.27) 

M1 
(8.25) 0.00 0.68 0.90 1.02 8.25 

(0.07) 0.00 0.01 0.04 0.05 0.14 
(1.57) 

OPRD 
(14.59) 0.00 1.01 1.10 1.41 14.59 

(0.08) 0.00 0.01 0.04 0.07 0.26 
(3.46) 

OPRK 
(10.16) 0.00 1.03 1.12 1.35 10.16 

(0.04) 0.00 0.02 0.05 0.09 0.25 
(6.89) 

OPRM 
(10.74) 0.00 0.90 1.06 1.24 10.74 

(0.04) 0.00 0.02 0.05 0.08 0.25 
(3.03) 

Averages 0.00 0.78 0.95 1.14 9.28 
(0.06) 0.00 0.01 0.04 0.06 0.22 

(3.71) 

aTheoretical maximum enrichment value calculated using 1/[A/D]. 
bGoodness of hit score for the enrichment value shown. 
cEnrichment value for the goodness of hit score shown. 
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Table B8. Pharmacophore model scoring data when searching with 4 partial match 
features using pharmacophores generated in homology models. 
aTheoretical maximum enrichment value calculated using 1/[A/D]. 
bGoodness of hit score for the enrichment value shown. 
cEnrichment value for the goodness of hit score shown. 

 Enrichment Factor (EF) Goodness of Hit (GH) 

Receptor 
(Max EFa) Min. Q1 Q2 Q3 Max. 

(GHb) Min. Q1 Q2 Q3 Max.  
(EFc) 

5HT2B 
(6.62) 0.00 0.07 0.72 0.95 6.62 

(0.01) 0.00 0.00 0.01 0.04 0.11 
(1.17) 

A2A 
(19.62) 0.00 0.00 0.50 0.78 9.81 

(0.04) 0.00 0.00 0.01 0.03 0.18 
(7.54) 

Beta 2 
(13.23) 0.00 0.00 0.85 1.56 13.23 

(0.07) 0.00 0.00 0.01 0.09 0.52 
(6.99) 

H1R 
(11.16) 0.00 0.00 0.35 0.74 11.16 

(0.02) 0.00 0.00 0.01 0.02 0.12 
(1.34) 

M1 
(8.25) 0.00 0.00 0.88 1.65 8.25 

(0.06) 0.00 0.00 0.02 0.04 0.17 
(2.43) 

OPRD 
(14.59) 0.00 0.00 0.99 1.43 14.59 

(0.05) 0.00 0.00 0.02 0.06 0.30 
(4.49) 

OPRK 
(10.16) 0.00 0.53 1.13 1.61 10.16 

(0.04) 0.00 0.01 0.02 0.07 0.20 
(3.34) 

OPRM 
(10.74) 0.00 0.00 0.68 1.19 10.74 

(0.02) 0.00 0.00 0.01 0.04 0.23 
(2.53) 

Averages 0.00 0.08 0.76 1.24 10.57 
(0.04) 0.00 0.00 0.01 0.05 0.23 

(3.73) 
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Table B9. Pharmacophore model scoring data when searching with 5 partial match 
features using pharmacophores generated in homology models. 
aTheoretical maximum enrichment value calculated using 1/[A/D]. 
bGoodness of hit score for the enrichment value shown. 
cEnrichment value for the goodness of hit score shown. 

 Enrichment Factor (EF) Goodness of Hit (GH) 

Receptor 
(Max EFa) Min. Q1 Q2 Q3 Max. 

(GHb) Min. Q1 Q2 Q3 Max.  
(EFc) 

5HT2B 
(6.62) 0.00 0.00 0.00 1.32 6.62 

(0.01) 0.00 0.00 0.00 0.01 0.11 
(1.19) 

A2A 
(19.62) 0.00 0.00 0.00 0.33 10.90 

(0.11) 0.00 0.00 0.00 0.01 0.11 
(10.90) 

Beta 2 
(13.23) 0.00 0.00 0.00 1.20 13.23 

(0.07) 0.00 0.00 0.00 0.01 0.31 
(5.70) 

H1R 
(11.16) 0.00 0.00 0.00 0.00 11.16 

(0.02) 0.00 0.00 0.00 0.00 0.07 
(0.93) 

M1 
(8.25) 0.00 0.00 0.93 3.30 8.25 

(0.03) 0.00 0.00 0.01 0.01 0.08 
(2.83) 

OPRD 
(14.59) 0.00 0.00 0.00 1.22 14.59 

(0.03) 0.00 0.00 0.00 0.02 0.19 
(3.39) 

OPRK 
(10.16) 0.00 0.00 0.00 1.02 10.16 

(0.04) 0.00 0.00 0.00 0.01 0.12 
(3.31) 

OPRM 
(10.74) 0.00 0.00 0.00 0.00 10.74 

(0.04) 0.00 0.00 0.00 0.00 0.16 
(2.68) 

Averages 0.00 0.00 0.12 1.05 10.71 
(0.04) 0.00 0.00 0.00 0.01 0.14 

(3.87) 
 

 

  



 

 252 

Table B10. Average feature distances (in Å) between features/from feature to centroid for the sets of HE and LE 
pharmacophore models generated in experimentally determined structures for each receptor used in this study. 
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Table B11. Average feature distances (in Å) between features/from feature to centroid for the sets of HE and LE 
pharmacophore models generated in homology models for each receptor used in this study. 
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Appendix C  

Chapter 5: Structure-based Pharmacophore Modeling 2. Developing a Novel 

Framework for Structure-based Pharmacophore Model Generation and Selection 

Table C1. Fragments used during MCSS. 
aFragment features annotatable in MOE are marked by colored circles, with each color 
representing a different feature type. Hydrophobic features are denoted by a green circle, 
hydrogen bond acceptor features are denoted by a blue circle, hydrogen bond donor 
features are denoted by a magenta circle, aromatic features are denoted by an orange 
circle, and features that are both hydrogen bond acceptors and donors are denoted with 
a purple circle. 

Name Structurea Abbreviation Annotatable Features 
1,2-dimethylpyrrolidine  

  
MPR Acc, Hyd 

2-butene  
  

BTE Hyd 

2-butyne  
  

BTY Hyd 

3-methylindole  
 

 

MIN Aro, Don, Hyd 

5-methylimidazole  
 

 

IMC Acc, Aro, Don, Hyd 

N-methylformamide  
  

NMF Acc, Don, Hyd 

acetaldehyde  
  

ALD Acc, Hyd 

acetamide  
 

 

ACM Acc, Don, Hyd 

acetate ion  
 

 

COO Acc, Hyd 

acetonitrile  
  

CCN Acc, Hyd 

benzene  
  

BEN Aro, Hyd 
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Table C1 (continued). Fragments used during MCSS. 
aFragment features annotatable in MOE are marked by colored circles, with each color 
representing a different feature type. Hydrophobic features are denoted by a green circle, 
hydrogen bond acceptor features are denoted by a blue circle, hydrogen bond donor 
features are denoted by a magenta circle, aromatic features are denoted by an orange 
circle, and features that are both hydrogen bond acceptors and donors are denoted with 
a purple circle. 

Name Structurea Abbreviation Annotatable Features 
butane  

  

BTA Hyd 

cyclohexane  
  

CHX Hyd 

dimethylether  
  

COC Acc, Hyd 

dimethylsulfone  
  

DSP Acc, Hyd 

ethane  
  

ETH Hyd 

ethanol  
  

EOH Acc/Don, Hyd 

ethylthiol  
  

CCS Hyd 

isobutane  
  

BTI Hyd 

methane  
  

CH4 Hyd 

methanol  
  

COH Acc/Don, Hyd 

methylamidinium  
 

 

CNN Cat/Don, Hyd 

methylammonium  
  

MAM Cat/Don, Hyd 

methylchloride  
  

MCL Hyd 

methylguanidinium  
 

 

GDN Cat/Don, Hyd 

methylsulfonamide  

  

MSM Acc, Cat/Don, Hyd 
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Table C1 (continued). Fragments used during MCSS. 
aFragment features annotatable in MOE are marked by colored circles, with each color 
representing a different feature type. Hydrophobic features are denoted by a green circle, 
hydrogen bond acceptor features are denoted by a blue circle, hydrogen bond donor 
features are denoted by a magenta circle, aromatic features are denoted by an orange 
circle, and features that are both hydrogen bond acceptors and donors are denoted with 
a purple circle. 

Name Structurea Abbreviation Annotatable Features 
methylsulfonate  

 

 

MST Acc, Hyd 

methyltetrazolium  
 

 

MTR Ani/Acc, Aro, Hyd 

methylthiol  
  

CSH Acc/Don, Hyd 

n,n-dimethylacetamide  

 

 

C3M Acc, Hyd 

n-methylacetamide  

  

CMC Acc, Don, Hyd 

phenol  

  

PHE Acc, Aro, Don, Hyd 

piperidinium  

  

PPP Cat/Don, Hyd 

propane  
  

PRA Hyd 

propyne  
  

PRY Hyd 

thiazole  
 

 

THZ Acc, Aro, Hyd 

trifluoromethane  

  

CF3 Hyd 

trimethylammonium  
  

TMN Cat/Don, Hyd 

water   WAT 
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Table C2. Unique fragment placements for each target used in benchmarking our 
pharmacophore model generation protocol. 

 

 
  

Target Unique Fragment 
Placements in Experimental 
Structures 

Unique Fragment 
Placements in Homology 
Models 

5HT1B 1,929 1,651 
5HT2B 1,825 1,761 
5HT2C 1,770 1,954 
A2A 1,466 2,110 
A2C 1,443 2,111 
Beta 2 2,006 1,647 
H1 1,735 1,661 
M1 1,723 1,558 
M2 2,123 1,954 
M4 1,847 1,900 
OPRD 1,836 1,376 
OPRK 2,192 1,699 
OPRM 1,156 1,679 
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Table C3. Number of ligands, theoretical maximum enrichment factor (EF) values, 
percentages at which each target’s theoretical maximum EF is represented by our EF 
cutoff of 2, and search database percent actives for the 13 targets represented in our 
internal test database containing 569 class A GPCR ligands 
aTheoretical maximum enrichment values were calculated using 1/[A/D], where 1 is the 
maximum possible hit:active (A) ratio in the hitlist, and A/D is the proportion of actives of 
all compounds in the database (D). 
bPercentage of each target’s theoretical maximum enrichment value represented by our 
chosen EF value cutoff of 2. 
cPercentage of compounds in the search database possessing activity for a receptor. 

Receptor 

Number of  
Active 
Ligands 

Theoretical 
Maximum  
Enrichmenta 

EF Cutoff 
Percentage (%)b 

Search Database  
Percent Actives (%)c 

5HT1B 65 8.8 22.7 11.4 
5HT2B 86 6.6 30.3 15.1 
5HT2C 86 6.6 30.3 15.1 
A2A 29 19.6 10.2 5.1 
A2C 32 17.8 11.2 5.6 
Beta 2 43 13.2 15.2 7.6 
H1 51 11.2 17.9 9.0 
M1 69 8.3 24.1 12.1 
M2 53 10.7 18.7 9.3 
M4 57 10.0 20.0 10.0 
OPRD 39 14.6 13.7 6.9 
OPRK 56 10.2 19.6 9.8 
OPRM 53 10.7 18.7 9.3 
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Table C4. Names of GPCR ligands used in the internal test database. 
Targets that each ligand has activity for are numbered with denoted with superscripts. 
Superscript numbering uses the following scheme: 
¹5HT1A, ²5HT1B, ³5HT1D, ⁴5HT1E, ⁵5HT1F, ⁶5HT2A, ⁷5HT2B, ⁸5HT2C, ⁹5HT4, ¹⁰5HT6, 
¹¹5HT7, ¹²A1A, ¹³A1D, ¹⁴A2A, ¹⁵A2B, ¹⁶A2C, ¹⁷Beta 1, ¹⁸Beta 2, ¹⁹Beta 3, ²⁰H1, ²¹H2, ²²H3, 
²³M1, ²⁴M2, ²⁵M3, ²⁶M4, ²⁷M5, ²⁸OPRD, ²⁹OPRK, ³⁰OPRM 
Ligand 
Number 

Ligand Name Ligand 
Number 

Ligand Name 

1 (+)-DOI⁶ ⁷ ⁸ 41 ML381²³ ²⁴ ²⁵ ²⁶ ²⁷ 
2 VU0255035²³ ²⁴ ²⁵ ²⁶ ²⁷ 42 silahexocyclium²³ ²⁴ ²⁵ ²⁶ ²⁷ 
3 VUF 8430 43 agomelatine⁶ ⁷ ⁸ 
4 A-349821²⁰ ²² 44 SCH221510²⁸ ²⁹ ³⁰ 
5 oleamide¹¹ 45 McN-A-343²³ ²⁵ ²⁶ ²⁷ 
6 furtrethonium²³ ²⁴ ²⁵ ²⁶ 46 LY593093²³ 
7 BQCA²³ 47 2-methylhistamine23 

8 RS-30199¹ 48 procaterol¹⁸ 
9 RS-127445⁶ ⁷ ⁸ 49 vortioxetine¹ ² ⁶ ¹⁰ ¹¹ 
10 LY334362⁸ 50 GSK 1521498³⁰ 
11 solabegron¹⁷ ¹⁸ ¹⁹ 51 PF-06767832²³ 
12 7-methoxy-1-naphthylpiperazine¹ ² ³ 52 GR 218  231¹ 
13 tiotropium²³ ²⁴ ²⁵ 53 WIN 62  577²³ ²⁵ ²⁶ 
14 2-pyridlethylamine²⁰ 54 (-)-YM796²³ 
15 all-trans-4-oxo-retinoic-acid¹⁶ 55 doxepin²⁰ 
16 tropicamide²⁵ 56 2-bromo-LSD¹⁰ ¹¹ 
17 BW723C86⁶ ⁷ ⁸ 57 normorphine²⁸ ²⁹ ³⁰ 
18 ephedrine¹⁸ 58 iperoxo²⁴ 
19 guanfacine¹⁴ ¹⁵ ¹⁶ 59 [125I]HEAT¹² ¹³ 
20 epinastine²⁰ 60 SB 204070⁹ 
21 nadolol¹⁷ ¹⁸ ¹⁹ 61 PZM21³⁰ 
22 fluparoxan¹ 62 alniditan² ³ 
23 alcuronium²³ ²⁵ ²⁶ 63 cyamemazine¹ ⁶ ⁸ ¹¹ 
24 norfluoxetine ⁶ ⁷ 64 loratadine²⁰ 
25 NS-49¹² ¹³ 65 phenylephrine¹² 
26 probe 2.1 [PMID: 24187130]²⁹ 66 ethylketocyclazocine²⁸ ²⁹ ³⁰ 
27 lofexidine¹⁴ ¹⁵ ¹⁶ 67 (-)-methadone²⁸ ²⁹ ³⁰ 
28 LY063518⁶ 68 etonitazene²⁸ ²⁹ ³⁰ 
29 probe 1.1 [PMID: 24187130]²⁹ 69 VU0119498²³ ²⁵ ²⁷ 
30 sabcomeline²³ ²⁵ ²⁶ ²⁷ 70 lithocholycholine²³ ²⁴ ²⁵ ²⁶ ²⁷ 
31 oxotremorine²³ ²⁴ ²⁵ ²⁶ 71 xylazine¹⁴ ¹⁵ ¹⁶ 
32 (+)-cis-H2-PAT²⁰ 72 pipamperone¹ ² ³ ⁶ ²⁰ 
33 frovatriptan¹ ² ³ 73 H4 antagonist 48 
34 5-methylurapidil¹² ¹³ 74 pentythio-TZTP²³ ²⁴ ²⁵ ²⁶ 
35 dicyclomine²³ ²⁴ ²⁵ 75 K-252a²³ 
36 (+)-norfenfluramine⁷ 76 Ro 60-0175⁶ ⁷ 
37 SB 204741⁷ ⁸ 77 EMD-386088¹⁰ 
38 tapentadol³⁰ 78 4-DAMP²³ ²⁴ ²⁵ ²⁶ ²⁷ 
39 salvinorin A²⁹ 79 JB 98064²² 
40 burimamide²² 80 TIPP-psi²⁸ 
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Table C4 (continued). Names of GPCR ligands used in the internal test database. 
Targets that each ligand has activity for are numbered with denoted with superscripts. 
Superscript numbering uses the following scheme: 
¹5HT1A, ²5HT1B, ³5HT1D, ⁴5HT1E, ⁵5HT1F, ⁶5HT2A, ⁷5HT2B, ⁸5HT2C, ⁹5HT4, ¹⁰5HT6, 
¹¹5HT7, ¹²A1A, ¹³A1D, ¹⁴A2A, ¹⁵A2B, ¹⁶A2C, ¹⁷Beta 1, ¹⁸Beta 2, ¹⁹Beta 3, ²⁰H1, ²¹H2, ²²H3, 
²³M1, ²⁴M2, ²⁵M3, ²⁶M4, ²⁷M5, ²⁸OPRD, ²⁹OPRK, ³⁰OPRM 
Ligand 
Number 

Ligand Name Ligand 
Number 

Ligand Name 

81 sumatriptan¹ ² ³ ⁴ ⁵ ¹⁰ ¹¹ 121 BF-1⁶ ⁷ 
82 AE9C90CB²³ ²⁴ ²⁵ ²⁶ ²⁷ 122 quinpirole¹ ⁶ ⁷ ⁸ 
83 tifluadom²⁹ 123 tegaserod⁷ ⁹ 
84 sarpogrelate⁶ ⁷ ⁸ 124 solifenacin²³ ²⁴ ²⁵ ²⁶ ²⁷ 
85 A61603¹² 125 Cy3B-telenzepine²³ ²⁴ 
86 (R)-flurocarazolol¹ ² 126 A-304121²² 
87 phenoxybenzamine¹⁵ 127 himbacine²³ ²⁴ ²⁵ ²⁶ ²⁷ 
88 LK 204-545¹⁷ ¹⁸ 128 zolmitriptan¹ ² ³ ⁴ ⁵ 
89 S(+)-niguldipine¹² ¹³ 129 AR-M1000390²⁸ ²⁹ ²⁸ ³⁰ 
90 NNC 11-1585²³ ²⁴ ²⁵ ²⁶ ²⁷ 130 (+)-cyclazosin¹² ¹³ 
91 YM348⁸ 131 pimavanserin⁶ 
92 duloxetine⁶ ⁸ ¹⁰ 132 GR 125487⁹ 
93 LY53857⁶ ⁷ 133 RS-17053¹² ¹³ 
94 trazodone⁶ ⁷ ⁸ 134 ML169²³ 
95 acetylcholine²³ ²⁴ ²⁵ ²⁶ ²⁷ 135 WAY-208466¹⁰ 
96 L-748337¹⁹ 136 Rec 15/3079¹ 
97 BRL 44408¹⁴ ¹⁵ ¹⁶ 137 conessine²⁰ ²² 
98 tripelennamine²⁰ 138 SB 221284⁶ ⁷ ⁸ 
99 arecaidine propargyl ester²³ ²⁴ ²⁵ ²⁶ 139 ipratropium²³ ²⁴ ²⁵ ²⁶ ²⁷ 
100 CL316243¹⁹ 140 (R)-UH 301¹ 
101 bethanechol²³ ²⁴ ²⁵ ²⁶ 141 phentolamine¹² ¹³ ¹⁴ ¹⁵ ¹⁶ 
102 N-1-isopropyl-5-MeOT⁶ 142 AZD6088²³ 
103 cebranopadol²⁸ ²⁹ ³⁰ 143 ocaperidone¹ ² ³ 
104 guanylpirenzepine²³ 144 asenapine¹ ² ³ ⁴ ⁶ ²⁰ 
105 labetalol¹³ ¹⁷ ¹⁸ 145 piribedil¹ ⁷ ¹² ¹⁴ ¹⁶ 
106 CP94253² 146 tolvaptan 
107 hexahydrodifenidol²³ ²⁴ ²⁵ ²⁶ ²⁷ 147 ST-1006²⁰ ²² 
108 RX821002¹⁴ ¹⁵ ¹⁶ 148 amibegron¹⁹ 
109 WAY-163909⁸ 149 SB 216641¹ ² ³ ⁶ ⁷ ⁸ 
110 robalzotan¹ 150 CGP 12177¹⁷ ¹⁹ 
111 alpha-methylnoradrenaline¹³ 151 aclidinium²³ ²⁴ ²⁵ 
112 H05⁶ 152 5-BODMT⁴ ⁵ 
113 raclopride¹ 153 ML375²⁷ 
114 mirabegron¹⁷ ¹⁸ ¹⁹ 154 SB 277011-A³ ⁷ 
115 sufentanil³⁰ 155 brimonidine¹⁴ ¹⁵ ¹⁶ 
116 naloxone benzoylhydrazone²⁹ ³⁰ 156 ICI 169369¹⁰ 
117 BIMU 8⁹ 157 SB269970¹¹ 
118 5-fluorotryptamine⁴ 158 GR-55562² ² 
119 ORG-37684⁶ ⁷ ⁸ 159 BRL-54443⁴ ⁵ 
120 JNJ-39758979²⁰ ²² 160 ergotamine³ ⁴ ⁵ ⁶ ⁷ ⁸ ¹⁰ ⁶ 
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Table C4 (continued). Names of GPCR ligands used in the internal test database. 
Targets that each ligand has activity for are numbered with denoted with superscripts. 
Superscript numbering uses the following scheme: 
¹5HT1A, ²5HT1B, ³5HT1D, ⁴5HT1E, ⁵5HT1F, ⁶5HT2A, ⁷5HT2B, ⁸5HT2C, ⁹5HT4, ¹⁰5HT6, 
¹¹5HT7, ¹²A1A, ¹³A1D, ¹⁴A2A, ¹⁵A2B, ¹⁶A2C, ¹⁷Beta 1, ¹⁸Beta 2, ¹⁹Beta 3, ²⁰H1, ²¹H2, ²²H3, 
²³M1, ²⁴M2, ²⁵M3, ²⁶M4, ²⁷M5, ²⁸OPRD, ²⁹OPRK, ³⁰OPRM 
Ligand 
Number 

Ligand Name Ligand 
Number 

Ligand Name 

161 terbutaline¹⁸ 201 (+)-WAY 100135² ³ 
162 VUF14862²² 202 ziprasidone¹ ² ³ ⁴ ⁶ ⁸ ¹¹ ²⁰ 
163 oxotremorine-M²³ ²⁴ ²⁵ ²⁶ 203 LY320954⁶ 
164 lumateperone⁶ 204 AZD7268²⁸ 
165 tolterodine²³ ²⁴ ²⁵ ²⁶ ²⁷ 205 LY2119620²⁶ 
166 salmeterol¹⁸ 206 VER-3323⁶ ⁷ ⁸ 
167 dimaprit²² 207 zotepine¹ ² ³ ⁴ ⁶ ⁸ ¹⁰ ¹¹ ¹⁵ ²⁰ 
168 renzapride⁹ 208 yohimbine¹ ² ³ ⁴ ⁵ ⁷ ¹¹ ¹⁴ ¹⁵ ¹⁶ 
169 Go 7874²³ ²⁵ ²⁶ 209 pizotifen¹ 
170 GR 89696²⁹ 210 terguride ¹ ² ³ ⁶ ⁷ ⁸ ¹² ¹⁴ ¹⁵ ¹⁶ 
171 L-772  405¹ ² ³ 211 S-14506¹ 
172 mesoridazine¹ ⁶ ⁸ 212 [125I]ICYP¹⁸ ¹⁹ 
173 oxybutynin²³ ²⁴ ²⁵ ²⁶ ²⁷ 213 scopolamine²³ ²⁴ ²⁵ ²⁶ 
174 PF-03654746²² 214 tolazoline¹⁴ ¹⁵ ¹⁶ 
175 practolol¹⁷ 215 WB 4101¹² ¹³ ¹⁴ ¹⁵ ¹⁶ 
176 2-(2-thiazolyl)ethanamine²⁰ 216 mianserin⁶ ⁷ ⁸ ¹⁰ ¹¹ ¹² ¹³ 
177 volinanserin⁶ ⁷ ⁸ 217 L-694  247¹ ² ³ 
178 timolol¹⁸ 218 AZD3778²⁰ 
179 2-methyl-5-HT² ³ ⁴ ⁵ ¹⁰ ⁷ 219 LY 165  163¹ ¹⁰ 
180 U69593²⁹ 220 tropisetron⁹ 
181 abediterol¹⁷ ¹⁸ ¹⁹ 221 lergotrile¹⁰ 
182 cerlapirdine¹⁰ 222 ketanserin¹ ³ ⁶ ⁷ ⁸ ¹¹ ¹² ¹³ ² 
183 INCB-38579²⁰ 223 idalopiridine⁸ ¹⁰ 
184 AC-42²³ 224 diphenhydramine²⁰ 
185 propantheline²⁴ ²⁵ ²⁶ 225 azelastine²⁰ 
186 lasmiditan⁵ 226 repinotan¹ 
187 loperamide³⁰ 227 milameline²³ ²⁵ ²⁶ ²⁷ 
188 GSK334429²² 228 tripolidine²⁰ 
189 SB 242084⁶ ⁷ ⁸ 229 NLX-101¹ 
190 EGIS-7625⁶ ⁷ ⁸ 230 guanabenz¹⁴ ¹⁵ ¹⁶ 
191 iloperidone¹ ¹⁰ ¹¹ 231 AL-37350A⁶ ⁷ ⁸ 
192 lysergol² ³ ⁴ 232 vinburnine²³ ²⁵ ²⁶ 
193 oxymetazoline² ³ ⁸ ¹² ¹³ ¹⁴ ¹⁵ ¹⁶ 233 (+)-chloropheniramine²⁰ 
194 cevimeline²³ ²⁴ ²⁵ ²⁶ 234 JDTic²⁹ 
195 SB236057² 235 olodaterol¹⁸ 
196 ADL5859²⁸ ²⁹ ³⁰ 236 methoctramine²³ ²⁴ ²⁵ ²⁶ ²⁷ 
197 clemastine²⁰ 237 ritanserin¹ ² ³ ⁶ ⁷ ⁸ ¹⁰ ¹¹ ¹² ¹³ 
198 (+)-aceclidine²³ ²⁴ ²⁵ ²⁶ ²⁷ 238 interpirdine¹⁰ 
199 dobutamine¹⁷ 239 tramadol²⁸ ²⁹ ³⁰ 
200 (-)-pentazocine²⁸ ²⁹ ³⁰ 240 2-MPP¹¹ 
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Table C4 (continued). Names of GPCR ligands used in the internal test database. 
Targets that each ligand has activity for are numbered with denoted with superscripts. 
Superscript numbering uses the following scheme: 
¹5HT1A, ²5HT1B, ³5HT1D, ⁴5HT1E, ⁵5HT1F, ⁶5HT2A, ⁷5HT2B, ⁸5HT2C, ⁹5HT4, ¹⁰5HT6, 
¹¹5HT7, ¹²A1A, ¹³A1D, ¹⁴A2A, ¹⁵A2B, ¹⁶A2C, ¹⁷Beta 1, ¹⁸Beta 2, ¹⁹Beta 3, ²⁰H1, ²¹H2, ²²H3, 
²³M1, ²⁴M2, ²⁵M3, ²⁶M4, ²⁷M5, ²⁸OPRD, ²⁹OPRK, ³⁰OPRM 
Ligand 
Number 

Ligand Name Ligand 
Number 

Ligand Name 

241 betaxolol¹⁷ ¹⁸ 281 tripitramine²³ ²⁴ ²⁵ ²⁶ ²⁷ 
242 spiroxatrine¹ ⁷ ¹² ¹³ ¹⁴ ¹⁵ ¹⁶ 282 butorphanol²⁹ ³⁰ 
243 lorcaserin⁶ ⁷ ⁸ 283 MPDT¹ ³ ⁶ ¹⁰ ¹¹ 
244 HS665²⁹ ³⁰ 284 tamsulosin¹² ¹³ 
245 THRX160209²⁴ 285 TD-8954⁹ 
246 apomorphine¹ ⁶ ⁷ ⁸ ¹⁴ ¹⁵ ¹⁶ 286 SB 203186⁹ 
247 arformoterol¹⁷ ¹⁸ 287 VU0238429²⁷ 
248 mesulergine⁶ ⁷ ⁸ ¹⁰ ¹¹ 288 melatonin⁷ 
249 MK-0249²⁰ ²² 289 BMY-14802¹ 
250 capeserod¹ ² ³ ⁶ ⁷ ⁸ ⁹ ¹⁰ ¹¹ 290 ML380²⁷ 
251 fenoterol¹⁸ 291 SB 649915¹ ² ³ 
252 BMY-7378¹ ¹² ¹³ 292 MP1104²⁹ 
253 LY215840⁶ 293 LP-44¹ ⁶ ¹¹ 
254 p-F-HHSiD²³ ²⁴ ²⁵ ²⁶ ²⁷ 294 RU 24969¹ ² ³ ⁶ ⁷ ⁸ ¹⁰ 
255 imipramine²⁴ 295 dipropyl-5CT² ³ ⁵ ¹¹ 
256 (+)-butaclamol¹ ⁶ ¹¹ 296 SKF 105854¹³ 
257 CP 93129¹ 297 pethidine²⁸ ²⁹ ³⁰ 
258 (-)-noradrenaline¹² ¹³ ¹⁴ ¹⁵ ¹⁶ ¹⁷ ¹⁸ ¹⁹ 298 quipazine⁶ ⁷ ⁸ 
259 piboserod⁷ ⁹ 299 Ro 04-6790¹⁰ 
260 CGS-12066² ³ ⁶ ⁷ ⁸ ¹⁰ 300 flesinoxan¹ 
261 5-(nonyloxy)-tryptamine² 301 alvimopan²⁸ ²⁹ ³⁰ 
262 ICI 118551¹⁸ ¹⁹ 302 S 16924¹ ⁶ ⁷ ⁸ ¹⁰ 
263 ABT-239²⁰ ²² 303 filbanserin¹ ⁶ 
264 LY2456302²⁸ ²⁹ ³⁰ 304 bupranolol¹⁷ ¹⁸ ¹⁹ 
265 dexetimide²⁴ 305 fentanyl²⁸ ²⁹ ³⁰ 
266 molindone⁶ ²⁰ 306 T-0509¹⁷ 
267 JNJ 7777120²² 307 ethopropazine²³ 
268 xamoterol¹⁷ 308 pitolisant²⁰ ²² 
269 5'-guanidinonaltrindole²⁹ 309 silodosin¹² ¹³ 
270 metergoline² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ¹⁰ ¹¹ 310 dosulepin²⁰ ²³ ²⁴ ²⁵ ²⁷ ²⁶ 
271 5-CT¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ¹⁰ ¹¹ 311 SR59230A¹⁷ ¹⁸ ¹⁹ 
272 L-741  626⁶ ⁷ 312 U50488²⁹ 
273 glycopyrrolate²³ ²⁴ ²⁵ ²⁶ ²⁷ 313 BNTX²⁸ ²⁹ ³⁰ 
274 umeclidinium²³ ²⁴ ²⁵ ²⁶ ²⁷ 314 AC-260584²³ 
275 BMS 181  101² 315 esmolol¹⁷ 
276 LY344864¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ¹¹ 316 blonaserin⁶ 
277 eletriptan¹ ² ³ ⁴ ⁵ 317 SR16835²⁹ ³⁰ 
278 velusetrag⁹ 318 DAU 6285⁹ 
279 zinterol¹⁸ 319 dabuzalgron¹² 
280 A-119637¹² ¹³ 320 carvedilol¹⁷ ¹⁸ 
 



 

 263 

Table C4 (continued). Names of GPCR ligands used in the internal test database. 
Targets that each ligand has activity for are numbered with denoted with superscripts. 
Superscript numbering uses the following scheme: 
¹5HT1A, ²5HT1B, ³5HT1D, ⁴5HT1E, ⁵5HT1F, ⁶5HT2A, ⁷5HT2B, ⁸5HT2C, ⁹5HT4, ¹⁰5HT6, 
¹¹5HT7, ¹²A1A, ¹³A1D, ¹⁴A2A, ¹⁵A2B, ¹⁶A2C, ¹⁷Beta 1, ¹⁸Beta 2, ¹⁹Beta 3, ²⁰H1, ²¹H2, ²²H3, 
²³M1, ²⁴M2, ²⁵M3, ²⁶M4, ²⁷M5, ²⁸OPRD, ²⁹OPRK, ³⁰OPRM 
Ligand 
Number 

Ligand Name Ligand 
Number 

Ligand Name 

321 indacaterol¹⁸ 361 SB 272183¹ ² ³ 
322 U92016A¹ 362 vincamine²³ ²⁵ ²⁶ 
323 xanomeline¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ¹⁰ ¹¹ ²³ ²⁴ ²⁵ ²⁶ ²⁷  363 Lysergic Acid³ 
324 GR 125  743¹ 364 ZPL-3893787²² 
325 (-)-tertatolol¹ 365 methylnaltrexone²⁸ ²⁹ ³⁰ 
326 vilazadone¹ ⁹ ²⁰ 366 clidinium²⁵ 
327 dapiprazole¹³ 367 morphine²⁸ ²⁹ ³⁰ 
328 fexofenadine²⁰ 368 haloperidol¹ ³ ⁶ ⁷ ¹¹ ²⁰ 
329 rizatriptan¹ ² ³ ⁴ ⁵ 369 WAY-100635¹ 
330 relenopride⁶ ⁷ ⁹ 370 (-)-propranolol¹ ¹⁷ 
331 RS-102221⁶ ⁷ ⁸ 371 atropine²³ ²⁴ ²⁵ ²⁶ ²⁷ 
332 levorphanol³⁰ 372 apraclonidine¹⁴ ¹⁵ 
333 ML 10375⁹ 373 AC-90179⁶ ⁸ 
334 darifenacin²³ ²⁴ ²⁵ ²⁶ ²⁷ 374 BRL-15572¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ¹⁰ 
335 alprenolol¹⁸ 375 DR-4004¹¹ 
336 UFP-512²⁸ ²⁹ ³⁰ 376 methacholine²³ 
337 nafadotride¹ 377 beta-FNA²⁸ ²⁹ ³⁰ 
338 BRL 37344¹⁹ 378 propafenone¹⁷ ¹⁸ 
339 alpha-methyl-5-HT³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ¹⁰ 379 amitriptyline⁶ ¹⁰ ¹¹ ²⁰ ²³ ²⁴ ²⁵ ²⁶ ²⁷ 
340 UH-AH-37²³ ²⁴ ²⁵ ²⁶ ²⁷ 380 SB656104¹¹ 
341 SB 271046¹⁰ 381 pirenperone¹¹ 
342 S-15535¹ 382 compound 3a [PMID: 18606542]²² 
343 N-1-isopropyltryptamine⁶ 383 SB 224289² ³ ⁶ ⁷ ⁸ 
344 UCL-2138²² 384 fluspirilene¹ ³ ⁴ ⁶ ²⁰ 
345 cabergoline¹ ² ³ ⁶ ⁸ ¹² ¹⁴ ¹⁵ ¹⁶  385 SB 206553⁶ ⁷ ⁸ 
346 FG-5893¹ 386 5-MeOT² ³ ⁴ ⁵ ⁶ ⁸ ⁹ ¹⁰ ¹¹ 
347 aripiprazole¹ ² ³ ⁶ ⁸ ¹⁰ ¹¹ ²⁰ 387 desloratadine²⁰ 
348 chlorpromazine¹ ⁶ ⁸ ¹⁰ ¹⁰ ¹¹ ¹⁴ ¹⁵ ¹⁶ ²⁰  388 naratriptan¹ ² ³ ⁴ ⁵ 
349 methoxamine¹² ¹³ 389 roxindole¹ ² ³ ⁶ ⁷ ⁸ ¹² ¹⁵ ¹⁶ 
350 dimethyltryptamine³ ¹⁰ 390 (-)-bremazocine²⁸ ²⁹ ³⁰ 
351 Org 12962⁶ ⁷ ⁸ 391 lurasidone⁶ ¹¹ ¹⁴ ¹⁶ 
352 PF-04995274⁹ 392 m-chlorophenylpiperazine³ ⁴ ⁶ ⁷ ⁸ ¹⁰ 

¹¹ 
353 methysergide³ ⁴ ⁵ ⁶ ⁷ ⁸ ¹⁰ ¹¹ 393 acebutolol¹⁷ 
354 S-14671¹ 394 sotalol¹⁷ ¹⁸ 
355 pergolide¹ ² ³ ⁶ ⁷ ⁸ ¹⁰ ¹¹ ¹⁴ ¹⁵ ¹⁶ 395 9-OH-risperidone¹ ² ³ ⁴ ⁶ ²⁰ 
356 nefazodone⁶ 396 carbachol²³  ²⁴ ²⁵ ²⁶ ²⁷ 
357 mosapride⁹ 397 SB 228357⁶ ⁷ ⁸ 
358 SB 215505⁶ ⁷ ⁸ 398 prucalopride⁹ 
359 SB 258719¹¹ 399 ipsapirone¹ 
360 JP1302¹⁶ 400 amesergide⁶ ⁷ 
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Table C4 (continued). Names of GPCR ligands used in the internal test database. 
Targets that each ligand has activity for are numbered with denoted with superscripts. 
Superscript numbering uses the following scheme: 
¹5HT1A, ²5HT1B, ³5HT1D, ⁴5HT1E, ⁵5HT1F, ⁶5HT2A, ⁷5HT2B, ⁸5HT2C, ⁹5HT4, ¹⁰5HT6, 
¹¹5HT7, ¹²A1A, ¹³A1D, ¹⁴A2A, ¹⁵A2B, ¹⁶A2C, ¹⁷Beta 1, ¹⁸Beta 2, ¹⁹Beta 3, ²⁰H1, ²¹H2, ²²H3, 
²³M1, ²⁴M2, ²⁵M3, ²⁶M4, ²⁷M5, ²⁸OPRD, ²⁹OPRK, ³⁰OPRM 
Ligand 
Number 

Ligand Name Ligand 
Number 

Ligand Name 

401 hexocyclium²³ ²⁴ ²⁵ ²⁶ ²⁷ 441 prenalterol¹⁷ 
402 upidosin¹² ¹³ 442 GR 127935¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ¹⁰ 
403 pindolol¹ ⁶ ⁷ ¹⁷ ¹⁸ 443 spiramide⁶ ⁷ ⁸ 
404 levallorphan³⁰ 444 (+)-adrenaline¹² ¹³ ¹⁵ ¹⁶ ¹⁷ ¹⁹ 
405 RS 67333⁹ 445 biperiden²³ ²⁴ ²⁵ ²⁶ ²⁷ 
406 promethazine²⁰ 446 SDZ SER-082⁶ ⁷ ⁸ 
407 Ro-70-0004¹² ¹³ 447 (-)-cyclazocine²⁸ ²⁹ ³⁰ 
408 ARC-239¹⁴ ¹⁵ ¹⁶ 448 donitriptan¹ ² ³ ⁴ ⁵ ⁶ ¹⁰ 
409 hydrocodone²⁹ ³⁰ 449 compund 3b [PMID;28943244]⁶ 
410 benzatropine²³ 450 arecoline²³ ²⁴ ²⁵ ²⁶ 
411 KT 5823²³ 451 RS 100235⁹ 
412 rho-MPPI¹ 452 buspirone¹ ¹¹ 
413 pyrilamine²⁰ 453 N-methyl scopolamine²³ ²⁵ 
414 quadazocine²⁸ ²⁹ ³⁰ 454 RS 39604⁹ 
415 isoprenaline¹⁷ ¹⁸ ¹⁹ 455 L755507¹⁹ 
416 levosalbutamol¹⁸ 456 5-hydroxytryptamine¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ¹⁰ 

¹¹ 
417 LP-211¹ ¹¹ 457 AT-076²⁸ ²⁹ ³⁰ 
418 S33084² ³ ⁶ ⁷ ⁸ 458 SB357134¹⁰ 
419 bufotenine³ ⁶ ¹⁰ 459 (-)-Ro 363¹⁷ 
420 fluoxetine⁷ ⁶ ¹⁰ 460 glemanserin⁶ ⁷ ⁸ 
421 KT 5720²³ ²⁶ 461 vilanterol¹⁸ 
422 thioridazine¹ ⁶ ⁸ ¹⁰ ¹¹ ²⁰  462 lisuride¹ ² ³ ⁶ ⁷ ⁸ ¹⁰ ¹¹ ¹² ¹⁴ ¹⁵ ¹⁶  
423 A-317920²⁰ ²² 463 ketoifen²⁰ 
424 sergolexole⁶ ⁶ 464 levobunolol¹⁷ ¹⁸ ¹⁹ 
425 cisapride⁹ 465 BIMU 1⁹ 
426 CP-122288² ³ 466 SB258585¹⁰ 
427 cyproheptadine¹⁰ ¹¹ ¹² ¹³ ²⁰ 467 NAN 190¹ ⁵ ¹² ¹³ 
428 metoprolol¹⁷ ¹⁸ 468 SNAP5089¹² 
429 5-benzyloxytryptamine¹⁰ 469 hexahydrosiladifenidol²³ ²⁴ ²⁵ ²⁶ ²⁷ 
430 GR 113808⁹ 470 UFP-505²⁸ ³⁰ 
431 L742791¹⁹ 471 dihydroergocryptine⁷ ¹¹ 
432 tryptamine² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ¹⁰ ¹¹ 472 buprenorphine²⁹ ³⁰ 
433 terfenadine²⁰ 473 atenolol¹⁷ ¹⁸ 
434 nalorphine²⁸ ²⁹ ³⁰ 474 8-OH-DPAT¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ¹¹ 
435 LY334370¹ ⁵ 475 bromocriptine¹ ² ³ ⁶ ⁷ ⁸ ¹⁰ ¹¹ ¹⁴ ¹⁵ ¹⁶ 
436 LY293284¹ 476 sertindole¹ ² ³ ⁴ ⁵ ⁶ ⁸ ²⁰ 
437 OPC 4392¹⁰ ¹¹ 477 ethyketazocine²⁹ 
438 DOM⁶ 478 dihydromorphine²⁸ ²⁹ ³⁰ 
439 indoramin¹² ¹³ 479 Lysergide¹ ⁶ ⁷ ⁸ ¹⁰ 
440 naltrindole²⁸ ²⁹ ³⁰ 480 nalbuphine²⁸ ²⁹ ³⁰ 
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Table C4 (continued). Names of GPCR ligands used in the internal test database. 
Targets that each ligand has activity for are numbered with denoted with superscripts. 
Superscript numbering uses the following scheme: 
¹5HT1A, ²5HT1B, ³5HT1D, ⁴5HT1E, ⁵5HT1F, ⁶5HT2A, ⁷5HT2B, ⁸5HT2C, ⁹5HT4, ¹⁰5HT6, 
¹¹5HT7, ¹²A1A, ¹³A1D, ¹⁴A2A, ¹⁵A2B, ¹⁶A2C, ¹⁷Beta 1, ¹⁸Beta 2, ¹⁹Beta 3, ²⁰H1, ²¹H2, ²²H3, 
²³M1, ²⁴M2, ²⁵M3, ²⁶M4, ²⁷M5, ²⁸OPRD, ²⁹OPRK, ³⁰OPRM 
Ligand 
Number 

Ligand Name Ligand 
Number 

Ligand Name 

481 orciprenaline¹⁸ 521 SB 207710⁹ ¹¹ 
482 zacopride⁹ 522 dihydroergotamine² ³ ⁴ ⁵ ¹⁰ ¹¹ 
483 risperidone¹ ² ³ ⁴ ⁵ ⁶ ⁸ ¹⁰ ¹¹ ¹² ¹³ ²⁰ 523 alpha-ergocryptine¹⁰ 
484 1-naphthylpiperazine¹ ² ³ ⁴ ⁵ ⁷ ¹⁰ ¹¹ 524 clonidine¹⁴ ¹⁵ ¹⁶ 
485 mirtazapine⁶ ⁸ ¹⁴ ¹⁵ ¹⁶ 525 alimemazine²⁰ 
486 JNJ-5207852²² 526 carazolol¹⁸ ¹⁹ 
487 MK-212⁶ ⁷ ⁸ 527 LY314228⁶ 
488 A-123189¹² ¹³ 528 LY108742⁶ 
489 nalfurafine²⁹ 529 hydromorphone²⁸ ²⁹ ³⁰ 
490 VUF14738²² 530 WIN 51  708²³ ²⁵ ²⁶ 
491 TFMPP² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ¹⁰ ¹¹ 531 ML 10302⁹ 
492 L748328¹⁹ 532 naltriben²⁸ ²⁹ ³⁰ 
493 SB 243213⁶ ⁷ ⁸ 533 methylergonovine⁴ ⁵ ⁶ ⁷ ⁸ 
494 5-MeO-DMT⁴ ⁵ ⁸ ¹⁰ ¹¹ 534 nor-binaltorphimine²⁸ ²⁹ ³⁰ 
495 naloxone²⁸ ²⁹ ³⁰ 535 perospirone⁶ 
496 ergometrine⁴ ⁶ 536 RS-100329¹² ¹³ 
497 spiperone¹ ³ ⁶ ⁷ ⁸ ¹⁰ ¹¹ ¹² ¹³ 537 levetimide²⁴ 
498 nalmefene²⁸ ²⁹ ³⁰ 538 DOI⁴ ⁵ ⁶ ⁷ ⁸ 
499 brolamfetamine⁶ ⁷ ⁸ 539 (+)-LSD⁶ ⁷ ⁸ ¹¹ 
500 tiospirone¹ ⁸ ¹⁰ ¹¹ 540 rauwolscine² ³ ⁴ ⁷ ¹⁴ ¹⁵ ¹⁶ 
501 compound 3 [PMID: 23134120]²⁹ ³⁰ 541 dihydroergocristine¹⁰ 
502 NIP¹⁷ ¹⁸ 542 [125I]BE-2254¹² ¹³ 
503 pimozide¹ ⁶ ¹¹ ¹⁰ ²⁰ 543 SB399885¹⁰ 
504 NIHP¹⁷ 544 (+)-trans-H2-PAT²⁰ 
505 trihexyphenidyl²³ 545 (-)-aceclidine²³ ²⁴ ²⁵ ²⁶ ²⁷ 
506 AQ-RA 741²³ ²⁴ ²⁵ ²⁶ ²⁷ 546 (-)-adrenaline¹² ¹³ ¹⁴ ¹⁵ ¹⁶ ¹⁷ ¹⁸ 
507 naltrexone²⁸ ²⁹ ³⁰ 547 (-)-chlorpheniramine²⁰ 
508 NNC 11-1314²³ ²⁴ ²⁵ ²⁶ ²⁷ 548 (-)-norfenfluramine⁷ 
509 H87/07¹⁷ 549 (-)-trans-H2-PAT²⁰ ²² 
510 cicloprolol¹⁷ ¹⁸ 550 (R)-DOI⁶ ⁷ ⁸ 
511 N-benzyl brucine²³ ²⁵ ²⁶ ²⁷ 551 (S)-UH 301¹ 
512 LP-12¹ ⁶ ¹¹ 552 (S)-flurocarazolol¹ ² 
513 LY86057⁶ ⁷ 553 NNC 11-1607²³ ²⁴ ²⁵ ²⁶ ²⁷ 
514 codeine³⁰ 554 WAY-100135¹ 
515 enadoline²⁹ 555 chlorpheniramine²⁰ 
516 methylfurmethide²³ ²⁴ ²⁵ ²⁶ 556 denopamine¹⁷ 
517 tandospirone¹ 557 diprenorphine²⁸ ²⁹ ³⁰ 
518 DM-1451¹⁰ ¹¹ 558 formoterol¹⁸ 
519 ADL5747²⁸ ²⁹ ³⁰ 559 levobetaxolol¹⁷ ¹⁸ 
520 BU08028²⁸ ²⁹ ³⁰ 560 methadone³⁰ 
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Table C4 (continued). Names of GPCR ligands used in the internal test database. 
Targets that each ligand has activity for are numbered with denoted with superscripts. 
Superscript numbering uses the following scheme: 
¹5HT1A, ²5HT1B, ³5HT1D, ⁴5HT1E, ⁵5HT1F, ⁶5HT2A, ⁷5HT2B, ⁸5HT2C, ⁹5HT4, ¹⁰5HT6, 
¹¹5HT7, ¹²A1A, ¹³A1D, ¹⁴A2A, ¹⁵A2B, ¹⁶A2C, ¹⁷Beta 1, ¹⁸Beta 2, ¹⁹Beta 3, ²⁰H1, ²¹H2, ²²H3, 
²³M1, ²⁴M2, ²⁵M3, ²⁶M4, ²⁷M5, ²⁸OPRD, ²⁹OPRK, ³⁰OPRM 
Ligand 
Number 

Ligand Name   

561 noradrenaline¹⁷ ¹⁸   
562 norfenfluramine⁷   
563 propranolol¹⁸ ¹⁹   
564 salbutamol¹⁸   
565 tertatolol¹⁹   
566 AS-19¹¹   
567 JNJ-18038683¹¹   
568 benzoquinazolinone 12²³   
569 E55888¹¹   
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Table C5. Sampled EF and GH values for PED models with the GH fragment subset 
when searching our internal test database. 
aEntries marked as NA represent cases where a search was unable to be scored due to a 
lack of retrieved hits. 
 

 

  EF Value per Partial Match 
Feature Number 

GH Value per Partial Match 
Feature Number 

Receptor Score Type 3 4 5 6 7 3 4 5 6 7 
5HT1B dE(class) 1.01 1.85 0.00 NAa NA 0.00 0.22 0.00 NA NA 
 dE 1.10 2.02 0.00 NA NA 0.04 0.20 0.00 NA NA 
 dU(class) 1.00 1.19 0.00 NA NA 0.01 0.13 0.00 NA NA 
 dU 0.55 8.75 NA NA NA 0.05 0.75 NA NA NA 
5HT2B dE(class) 1.01 0.95 0.91 2.21 NA 0.00 0.05 0.12 0.25 NA 
 dE 0.64 0.51 NA NA NA 0.07 0.06 NA NA NA 
 dU(class) 1.01 0.85 0.74 2.21 NA 0.02 0.10 0.09 0.25 NA 
 dU 0.47 NA NA NA NA 0.05 NA NA NA NA 
5HT2C dE(class) 1.00 0.87 0.66 NA NA 0.01 0.10 0.08 NA NA 
 dE 0.99 0.80 2.21 NA NA 0.02 0.10 0.25 NA NA 
 dU(class) 0.99 0.85 0.44 NA NA 0.02 0.09 0.05 NA NA 
 dU 0.72 0.41 NA NA NA 0.09 0.05 NA NA NA 
A2A dE(class) 0.88 0.69 1.12 0.00 NA 0.00 0.04 0.07 0.00 NA 
 dE 1.00 0.93 0.62 0.00 NA 0.00 0.03 0.05 0.00 NA 
 dU(class) 0.98 0.70 0.00 0.00 NA 0.00 0.04 0.00 0.00 NA 
 dU 1.01 0.94 1.00 6.54 NA 0.00 0.04 0.08 0.26 NA 
A2C dE(class) 1.00 0.91 0.81 0.00 NA 0.00 0.02 0.06 0.00 NA 
 dE 1.33 0.00 0.00 NA NA 0.11 0.00 0.00 NA NA 
 dU(class) 0.98 0.71 0.86 2.54 NA 0.00 0.03 0.07 0.11 NA 
 dU 3.56 0.00 NA NA NA 0.18 0.00 NA NA NA 
Beta 2 dE(class) 1.03 1.65 10.59 NA NA 0.01 0.16 0.62 NA NA 
 dE 1.25 4.57 NA NA NA 0.07 0.38 NA NA NA 
 dU(class) 1.01 1.10 0.00 NA NA 0.00 0.10 0.00 NA NA 
 dU 0.35 0.00 NA NA NA 0.02 0.00 NA NA NA 
H1 dE(class) 1.00 0.90 0.15 NA NA 0.00 0.04 0.01 NA NA 
 dE 1.07 0.74 NA NA NA 0.04 0.06 NA NA NA 
 dU(class) 1.01 0.69 0.00 0.00 NA 0.00 0.07 0.00 0.00 NA 
 dU 1.00 1.10 2.79 NA NA 0.01 0.11 0.19 NA NA 
M1 dE(class) 1.01 1.57 4.95 NA NA 0.04 0.17 0.46 NA NA 
 dE 0.82 0.23 0.00 NA NA 0.01 0.03 0.00 NA NA 
 dU(class) 0.99 1.03 2.06 0.00 NA 0.01 0.12 0.20 0.00 NA 
 dU 0.00 0.00 NA NA NA 0.00 0.00 NA NA NA 
M2 dE(class) 0.81 1.00 10.74 NA NA 0.03 0.10 0.76 NA NA 
 dE 0.76 1.06 10.74 NA NA 0.01 0.10 0.75 NA NA 
 dU(class) 1.01 1.05 1.24 4.29 NA 0.00 0.05 0.12 0.32 NA 
 dU 0.68 0.00 NA NA NA 0.06 0.00 NA NA NA 
M4 dE(class) 0.97 0.82 0.91 2.00 NA 0.00 0.04 0.09 0.16 NA 
 dE 1.00 0.95 1.28 1.81 NA 0.00 0.03 0.13 0.14 NA 
 dU(class) 0.97 0.96 0.88 4.99 NA 0.01 0.07 0.08 0.38 NA 
 dU 0.70 0.94 0.00 NA NA 0.02 0.08 0.00 NA NA 
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Table C5 (continued). Sampled EF and GH values for PED models with the GH 
fragment subset when searching our internal test database. 
aEntries marked as NA represent cases where a search was unable to be scored due to a 
lack of retrieved hits. 
 

  

  EF Value per Partial Match 
Feature Number 

GH Value per Partial Match 
Feature Number 

OPRD dE(class) 1.00 1.03 1.29 NA NA 0.00 0.02 0.11 NA NA 
 dE 1.01 1.25 0.00 NA NA 0.00 0.10 0.00 NA NA 
 dU(class) 1.00 1.03 1.12 5.84 NA 0.00 0.02 0.10 0.31 NA 
 dU 0.00 NA NA NA NA 0.00 NA NA NA NA 
OPRK dE(class) 1.00 1.12 2.99 NA NA 0.00 0.09 0.25 NA NA 
 dE 1.17 2.90 NA NA NA 0.09 0.22 NA NA NA 
 dU(class) 1.02 1.13 0.00 NA NA 0.01 0.11 0.00 NA NA 
 dU 0.53 10.16 NA NA NA 0.04 0.75 NA NA NA 
OPRM dE(class) 1.00 1.00 1.25 1.79 NA 0.00 0.01 0.11 0.14 NA 
 dE 0.00 0.00 NA NA NA 0.00 0.00 NA NA NA 
 dU(class) 1.00 1.03 0.90 0.28 NA 0.00 0.01 0.08 0.02 NA 
 dU 0.00 0.00 NA NA NA 0.00 0.00 NA NA NA 
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Table C6. Sampled EF and GH values for PHM models with the receptor EF 
fragment subset when searching our internal test database. 
aEntries marked as NA represent cases where a search was unable to be scored due to a 
lack of retrieved hits. 
 

  

  EF Value per Partial Match 
Feature Number 

GH Value per Partial Match 
Feature Number 

Receptor Score Type 3 4 5 6 7 3 4 5 6 7 
5HT1B dE(class) 1.02 1.14 0.00 0.00 NAa 0.01 0.13 0.00 0.00 NA 
 dE 1.08 0.45 0.00 NA NA 0.06 0.05 0.00 NA NA 
 dU(class) 0.99 0.89 1.09 0.00 NA 0.04 0.09 0.10 0.00 NA 
 dU 0.78 0.51 2.92 NA NA 0.08 0.05 0.25 NA NA 
5HT2B dE(class) 1.03 0.69 0.66 NA NA 0.03 0.09 0.08 NA NA 
 dE 0.41 0.00 NA NA NA 0.05 0.00 NA NA NA 
 dU(class) 1.02 0.84 0.92 2.21 NA 0.01 0.07 0.11 0.25 NA 
 dU 0.35 0.00 NA NA NA 0.04 0.00 NA NA NA 
5HT2C dE(class) 0.99 0.78 0.96 0.00 NA 0.02 0.08 0.12 0.00 NA 
 dE 0.44 0.00 NA NA NA 0.05 0.00 NA NA NA 
 dU(class) 0.96 0.87 1.01 0.00 NA 0.01 0.09 0.12 0.00 NA 
 dU 0.70 0.00 NA NA NA 0.08 0.00 NA NA NA 
A2A dE(class) 1.08 1.77 3.92 NA NA 0.05 0.13 0.16 NA NA 
 dE 6.36 0.00 NA NA NA 0.33 0.00 NA NA NA 
 dU(class) 0.95 0.61 0.00 0.00 NA 0.02 0.05 0.00 0.00 NA 
 dU 4.91 0.00 NA NA NA 0.22 0.00 NA NA NA 
A2C dE(class) 1.01 0.82 0.00 0.00 NA 0.00 0.06 0.00 0.00 NA 
 dE 2.60 0.00 NA NA NA 0.18 0.00 NA NA NA 
 dU(class) 0.93 0.77 1.48 NA NA 0.01 0.06 0.07 NA NA 
 dU 1.11 2.16 0.00 NA NA 0.03 0.14 0.00 NA NA 
Beta 2 dE(class) 1.01 1.54 2.53 0.00 NA 0.01 0.15 0.18 0.00 NA 
 dE 0.44 0.00 NA NA NA 0.03 0.00 NA NA NA 
 dU(class) 1.00 0.45 0.95 NA NA 0.02 0.04 0.06 NA NA 
 dU 0.32 0.00 NA NA NA 0.02 0.00 NA NA NA 
H1 dE(class) 1.00 1.04 0.00 NA NA 0.00 0.10 0.00 NA NA 
 dE 0.82 0.35 5.58 NA NA 0.03 0.03 0.38 NA NA 
 dU(class) 0.98 0.73 0.59 NA NA 0.02 0.07 0.04 NA NA 
 dU 0.37 0.00 NA NA NA 0.03 0.00 NA NA NA 
M1 dE(class) 0.94 0.59 0.69 NA NA 0.00 0.06 0.06 NA NA 
 dE 0.99 1.83 NA NA NA 0.10 0.17 NA NA NA 
 dU(class) 1.00 0.98 0.73 0.00 NA 0.00 0.02 0.08 0.00 NA 
 dU 0.49 0.00 NA NA NA 0.05 0.00 NA NA NA 
M2 dE(class) 0.98 2.18 10.74 NA NA 0.04 0.20 0.75 NA NA 
 dE 1.40 3.07 NA NA NA 0.12 0.22 NA NA NA 
 dU(class) 0.94 0.84 6.13 NA NA 0.02 0.08 0.44 NA NA 
 dU 1.12 2.68 NA NA NA 0.09 0.19 NA NA NA 
M4 dE(class) 0.35 0.00 0.00 NA NA 0.04 0.00 0.00 NA NA 
 dE 0.63 0.32 1.43 NA NA 0.04 0.03 0.11 NA NA 
 dU(class) 0.40 0.33 NA NA NA 0.04 0.03 NA NA NA 
 dU 0.57 0.16 0.00 NA NA 0.05 0.01 0.00 NA NA 
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Table C6 (continued). Sampled EF and GH values for PHM models with the receptor 
EF fragment subset when searching our internal test database. 
aEntries marked as NA represent cases where a search was unable to be scored due to a 
lack of retrieved hits. 

 

 

  

  EF Value per Partial Match 
Feature Number 

GH Value per Partial Match 
Feature Number 

OPRD dE(class) 1.01 1.02 1.12 0.00 NA 0.00 0.03 0.09 0.00 NA 
 dE 1.02 0.98 0.00 NA NA 0.01 0.08 0.00 NA NA 
 dU(class) 1.01 1.09 1.14 0.00 NA 0.00 0.03 0.10 0.00 NA 
 dU 1.01 1.19 2.92 NA NA 0.00 0.08 0.16 NA NA 
OPRK dE(class) 0.99 1.44 0.68 0.00 NA 0.01 0.14 0.05 0.00 NA 
 dE 0.64 0.00 NA NA NA 0.05 0.00 NA NA NA 
 dU(class) 1.04 0.96 0.48 0.00 NA 0.02 0.07 0.04 0.00 NA 
 dU 0.53 5.08 NA NA NA 0.04 0.38 NA NA NA 
OPRM dE(class) 1.06 0.76 0.00 NA NA 0.02 0.08 0.00 NA NA 
 dE 0.00 0.00 NA NA NA 0.00 0.00 NA NA NA 
 dU(class) 1.03 0.98 1.01 NA NA 0.01 0.08 0.08 NA NA 
 dU 0.00 NA NA NA NA 0.00 NA NA NA NA 
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Table C7. Anchor residues used in ECL2 modeling for each target studied. 
aAnchor residues are numbered to match the numbering scheme present on GPCRdb.19 

Receptor 
Anchor Residue 
1a 

Anchor Residue 
2a 

5HT1B F186 L207 
5HT2B E196 G215 
5HT2C V191 N213 
A2A L137 N175 
A2C I182 W209 
Beta 2 I169 Q197 
H1 G164 W189 
M1 A160 P186 
M2 L160 A185 
M4 V174 A194 
OPRD M186 S206 
OPRK S192 L224 
OPRM M207 T227 
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Figure C2. Venn diagram denoting training set overlap between cluster I for k = 4 
and cluster I for k = 5. 
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Appendix D  

Scripts 

Scripts detailed in the following appendix have been made available at  

https://github.com/gszwabowski/. 

Scripts used in Chapter 2 

cleanpdbs.bash 

Description: This script will clean every .pdb file in a directory using Rosetta. Use the 

command chmod u+x cleanpdbs.bash to obtain ownership of the file and then 

use ./cleanpdbs.bash to run the script. 

file <- file.endswith ".pdb" 
for file in * 
    do 
/public/apps/rosetta/2017.29.59598/tools/protein_tools/scripts/clean_pd
b.py $file 1 
     
done 
  

https://github.com/gszwabowski/
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hm_filegen.bash 

Description: This script is used to create files used for loop modeling in Rosetta. Use the 

command chmod u+x hm_filegen.bash to obtain ownership of the file and then 

use ./hm_filegen.bash to run the script. As this script runs, it will ask for residue 

numbers and filenames. Residue numbers should be entered as integers filenames should 

be suffixed with their filetype (e.g. frags.txt). 

#loop parameters 
read -p "$(tput setaf 5)Enter receptor name: $(tput sgr 0)" NAME 
read -p "$(tput setaf 5)Enter loop start residue number: $(tput sgr 0)" 
START 
read -p "$(tput setaf 5)Enter loop end residue number: $(tput sgr 0)" 
END    
echo 
 
# hm.loops File Template 
echo -e "$(tput setaf 3)Generating loops file...$(tput sgr 0)" 
cat << EOF > hm.loops 
# rosetta loops file 
# columns: 
 
# "LOOP"  
# start_residue   
# end_residue  
# cutpoint (0: let LoopRebuild choose cutpoint randomly.)  
# Skip rate (default - never skip) 
# Extend loop. Default false 
 
LOOP   $START  $END    0  0.0  1 
EOF 
 
echo -e "$(tput setaf 2)Loops file generated.\n$(tput sgr 0)" 
 
#disulf prompt 
read -p "$(tput setaf 5)Does the receptor have a 3.25-45.50 disulfide 
bond (y/n)?: $(tput sgr 0)" ANSWER 
 
# disulf.cst File Template 
if [ "$ANSWER" != "${ANSWER#[Yy]}" ] ;then 
read -p "$(tput setaf 5)Enter Cys 3.25 residue number: $(tput sgr 0)" 
CYS1 
read -p "$(tput setaf 5)Enter Cys 45.50 residue number: $(tput sgr 0)" 
CYS2  
echo -e "$(tput setaf 3)Generating disulf.cst...$(tput sgr 0)" 
cat <<EOF > disulf.cst 
AtomPair SG $CYS1 SG $CYS2 HARMONIC 0 5.1 
EOF 
 
echo -e "$(tput setaf 2)disulf.cst generated.\n$(tput sgr 0)" 
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fi 
 
#kic parameters 
read -p "$(tput setaf 5)Enter .pdb filename: $(tput sgr 0)" PDB 
read -p "$(tput setaf 5)Enter 9 frag filename: $(tput sgr 0)" FRAG9 
read -p "$(tput setaf 5)Enter 3 frag filename: $(tput sgr 0)" FRAG3 
read -p "$(tput setaf 5)Enter ligand filename: $(tput sgr 0)" LIGFILE 
read -p "$(tput setaf 5)Enter ligand abbreviation (3 letters): $(tput 
sgr 0)" LIG 
 
#.params generation 
read -p "$(tput setaf 5)Do you have a set of ligand conformers to use 
during parameter file generation (y/n)?: $(tput sgr 0)" ANSWER 
if [ "$ANSWER" != "${ANSWER#[Yy]}" ] ;then 
    read -p "$(tput setaf 5)Enter conformers .sdf filename: $(tput sgr 
0)" CONFORMERS 
    
/public/apps/rosetta/2017.29.59598/main/source/scripts/python/public/mo
lfile_to_params.py -n $LIG -p $LIG --conformers-in-one-file $CONFORMERS 
else 
    
/public/apps/rosetta/2017.29.59598/main/source/scripts/python/public/mo
lfile_to_params.py -n $LIG -p $LIG $LIGFILE 
echo -e "\n\n\n$(tput setaf 2)Ligand parameters generated.\n$(tput sgr 
0)" 
fi 
 
# kic_with_frags.flags Template 
echo -e "$(tput setaf 3)Generating kic_with_frags.flags...$(tput sgr 
0)" 
cat <<EOF > kic_with_frags.flags 
#io flags: 
-in:file:fullatom 
-in:file:s $PDB 
-in:file:extra_res_fa $LIG.params 
-cst_fa_file disulf.cst 
-cst_fa_weight 1000 
-loops:loop_file hm.loops 
-loops:frag_sizes 9 3 1 
-loops:frag_files $FRAG9 $FRAG3 none  
 
-loops:remodel perturb_kic_with_fragments 
-loops:refine refine_kic_with_fragments 
 
-out:nstruct 50 
-out:pdb 
-out:suffix _ 
 
#-run:test_cycles 
#-loops:fast 
 
#packing flags 
-ex1 
-ex2  
 
-mute core.io.database 
-mute protocols.looprelax.FragmentPerturber 
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-mute core.fragments.ConstantLengthFragSet 
 
#RosettaEnergyFunction2015 
-beta_nov16 true 
EOF 
echo -e "$(tput setaf 2)kic_with_frags.flags generated.\n$(tput sgr 0)" 
 
#KICfragsub.sh Template 
echo -e "$(tput setaf 3)Generating KICfragsub.sh...$(tput sgr 0)" 
cat <<EOF > KICfragsub.sh 
#! /bin/csh 
#SBATCH --ntasks=4 
#SBATCH --partition=computeq 
#SBATCH --job-name=loopmodel 
#SBATCH --time=14400 
 
module load gcc/8.2.0 
 
/public/apps/rosetta/2017.29.59598/main/source/bin/loopmodel.static.lin
uxgccrelease @kic_with_frags.flags >loops.log 
EOF 
 
#update KICfragsub.sh job name 
sed -i "s/#SBATCH --job-name=loopmodel/#SBATCH --job-
name=${NAME}_loopmodel/g" KICfragsub.sh 
 
echo -e "$(tput setaf 2)KICfragsub.sh generated.\n$(tput sgr 0)" 
 
mkdir A  
mkdir B 
mkdir C 
mkdir D 
mkdir E 
 
cp * A > /dev/null 2>&1 
cp * B > /dev/null 2>&1 
cp * C > /dev/null 2>&1 
cp * D > /dev/null 2>&1 
cp * E > /dev/null 2>&1 
 
sed -i "s/-out:suffix _/-out:suffix _A/g" A/kic_with_frags.flags 
sed -i "s/-out:suffix _/-out:suffix _B/g" B/kic_with_frags.flags 
sed -i "s/-out:suffix _/-out:suffix _C/g" C/kic_with_frags.flags 
sed -i "s/-out:suffix _/-out:suffix _D/g" D/kic_with_frags.flags 
sed -i "s/-out:suffix _/-out:suffix _E/g" E/kic_with_frags.flags 
 
#jobname suffixes 
for D in *; do 
    if [ -d "${D}" ]; then 
        cd $D 
        newname=_loopmodel_$D 
        sed -i "s/_loopmodel/$newname/g" KICfragsub.sh 
        cd .. 
    fi 
done  
 
echo -e "$(tput setaf 2)All job files created.$(tput sgr 0)" 
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ligandrmsd.svl 

Description: This script calculates the RMSD between two chains (ideally chains 

containing ligands) based on two ligand-receptor complexes that have been aligned and 

superposed based using MOE's built-in tools. 

Arguments 

reference_file: .pdb or .moe file containing your crystal structure 

database_file: database file with docked ligand poses 

database_field1: .mdb column containing your ligand poses, most likely 'mol' 

database_field2: .mdb column containing you receptor poses, most likely 'receptor' 

#svl 
function Close;        
function pro_Superpose; 
function pro_Align; 
global function ligandRMSD [reference_file, database_file, 
database_field1, database_field2]; 
 
Close [force:1, viewreset:1, delgobj:1];  // close any open structures 
local mdb_key = db_Open [database_file, 'read-write']; 
local entry_key, ligand, receptor, atoms2, ligand_chain, ligand_name, 
receptor_chain, receptor_name, ref_chains, mask, ref_residues, 
rec_residues, ref_ligand, ligand_heavy, ref_heavy;      
local entries = db_Entries mdb_key; 
local atoms, mask2; 
local heavy_atoms, heavy_atoms2; 
//  create field for Ligand RMSD 
db_CreateField [mdb_key,'Ligand RMSD','float']; 
         
//  open reference file 
Open reference_file; 
ref_chains = Chains[]; 
[ref_residues] = cResidues ref_chains; 
[ref_ligand] = ref_chains(2); 
 
         
         
         
//  loop through the database to make measurements for each ligand 
for entry_key in entries loop 
    [ligand] =db_ReadFields [mdb_key, entry_key,[database_field1]]; 
//get structure from fieldname 
    [receptor] =db_ReadFields [mdb_key, entry_key, [database_field2]]; 
    [receptor_chain, receptor_name] =db_CreateMolecule receptor; 
    [ligand_chain, ligand_name] =db_CreateMolecule ligand; 
    [rec_residues] = cResidues receptor_chain; 
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    //  align & superpose chains with ligands 
    pro_Align[Chains[]]; 
    pro_Superpose[[Chains[]], [auto_associate:1, accent_conserved: 1]]; 
         
 
    //  mask heavy atoms and create heavy reference 
    [atoms] = cAtoms ref_ligand; 
    [atoms2] = cAtoms ligand_chain; 
    mask = aElement atoms <> 'H' ; 
    ref_heavy = atoms | mask; 
    mask2 = aElement atoms2 <> 'H'; 
    ligand_heavy = atoms2 | mask2; 
 
    //   measure and take square root of distances 
    local dist_sq = sqr (aDist[ligand_heavy, ref_heavy]); 
 
    //   find RMSD 
    local RMSD = sqrt(add dist_sq/length dist_sq); 
 
    //   write ligand RMSD to the database 
    db_Write [mdb_key, entry_key, tagpoke[[],'Ligand RMSD', RMSD[1]]]; 
         
    //   destroy one ligand before reading in the next 
    oDestroy [ligand_chain]; 
    oDestroy [receptor_chain]; 
endloop 
print 'done'; 
endfunction 
 
  



 

 279 

pdbgen.svl 

Description: This script is used prior to rosetta docking to generate .pdb files used as 

input. This script extracts a receptor from a database, superposes the receptor onto a 

reference structure (as to correct for coordinate differences, same coordinates help with 

RMSD calculations), and then pulls up a prompt in MOE to save your structure. If I 

wanted to name a structure "receptor" and have it save as a .pdb, in the prompt box I'd 

save it named as "receptor.pdb" even with pdb selected as the "save as" filetype. 

Arguments 

reference_file: crystal structure with ligand and receptor 

database_file: database containing receptor structures to use as inputs for Rosetta 

docking 

database_field1: database column containing receptor structures, most likely ‘S-S 

bonded’ or ‘receptor’ 

#svl 
function Close;        
function pro_Superpose; 
function pro_Align; 
global function pdbgen [reference_file, database_file, database_field1] 
Close [force:1, viewreset:1, delgobj:1];  // close any open structures 
local mdb_key = db_Open [database_file, 'read-write']; 
local entry_key, receptor, receptor_chain, receptor_name, ref_chains, 
id, a, idfield;        
local entries = db_Entries mdb_key; 
         
//  loop through the database to read each receptor 
for entry_key in entries loop 
    Open reference_file; 
    print Chains[]; 
    [receptor] =db_ReadFields [mdb_key, entry_key, [database_field1]]; 
    [receptor_chain, receptor_name] =db_CreateMolecule receptor; 
 
    //  align & superpose chains 
    pro_Align[Chains[]]; 
    pro_Superpose[[Chains[]], [auto_associate:1, accent_conserved: 1]]; 
 
    //delete reference file & ligand 
    oDestroy (get [(Chains[]), 1]); 
    oDestroy (get [(Chains[]), 1]); 
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    //save .pdb 
    print Chains[];  
    WritePDB []; 
 
    ///delete receptor 
    oDestroy receptor_chain; 
endloop 
endfunction 
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Scripts used in Chapter 3 

batch_ph4search.svl 

Description: This script is used to perform pharmacophore searches within a directory o 

previously generate pharmacophore (.ph4) files on the HPC. Use a .sh file to run this 

script formatted like so: 

#! /bin/csh 
#SBATCH --ntasks=4 
#SBATCH --partition=computeq 
#SBATCH --job-name=ph4_search 
 
 
/public/apps/moe/moe2018/bin/moebatch -load 
../../../batch_ph4search.svl \ 
-exec "random_ph4search ['lig_mdb', 'receptor_name', 
partial_features, db_active, db_active_mols]" 
 
Arguments 

lig_mdb: name of the compound database to be searched (ex. pbd_conf_10 database) 

receptor_name: name of receptor in double quotes (e.g. "M1") 

partial_features: # of features to match during ph4 search (3, 4, or 5) 

db_active: percentage of compounds in lig_mdb possessing activity for a receptor of 

interest (this should be a whole number percentage, e.g. 15.9) 

db_active_mols: # of compounds possessing activity for a target receptor 

db_mols: # of unique molecules in lig_mdb 

global function random_ph4search [lig_mdb, receptor_name, 
partial_features, db_active_mols, db_mols] 
 
local output = db_Open [tok_cat['ph4_search_output_', totok 
partial_features,'feats.mdb'], 'create']; 
db_CreateField [ output, 'Enrichment', 'float']; 
db_CreateField [ output, 'GH', 'float']; 
db_CreateField [ output, 'Active_Rate', 'float']; 
db_CreateField [ output, 'Hits', 'int']; 
db_CreateField [ output, 'Actives', 'int']; 
db_CreateField [ output, 'filename', 'char']; 
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local ph4_files = flist[[],'*.ph4']; 
local ph4; 
local e_vals = []; 
local towrite; 
local towrite2; 
receptor_name = string [receptor_name]; 
for ph4 in ph4_files loop 
 
    logfile 'log.txt'; 
    ph4_Search [lig_mdb, ph4, 
        [ 
            abspos                : 0, 
            action                : 0, 
            descexpr              : '', 
            esel                  : 0, 
        matchsize             : partial_features, //tweak feature # 
            maxconfhits           : 0, 
            maxmolhits            : 0, 
            molfield              : 'mol', 
            o_molfield            : 'mol', 
            o_mseqfield           : 'mseq', 
            o_rmsdxfield          : 'rmsdx', 
            o_rscore_colfield     : 'rscore[F#]', 
            o_rscore_sumfield     : 'rscore', 
            out_append            : 0, 
            out_dbfile            : tok_cat [fbase ph4,'.mdb'], 
            out_dbv               : 0, 
            out_type_molecules    : 1, 
            sortby                : 'rmsdx', 
            use_mname             : 0, 
            use_mseqfield         : 0, 
            use_o_fileIdxField    : 0, 
            use_o_fileNameField   : 0, 
            use_o_hitmapfield     : 0, 
            use_o_hitmapfieldC    : 0, 
            use_o_hitsizefield    : 0, 
            use_o_hitsizefieldC   : 0, 
            use_o_molfield        : 1, 
            use_o_mseqfield       : 1, 
            use_o_rmsdfield       : 0, 
            use_o_rmsdxfield      : 1, 
            use_o_rowfield        : 0, 
            use_o_rscore_colfield : 1, 
            use_o_rscore_sumfield : 1, 
            use_o_rscore_vecfield : 0, 
            use_out_dbfile        : 1, 
            usepsilo              : 0 
            ] 
]; 
 
    logfile 0; 
    logfile[]; 
 
    //obtain hits from log file 
    local hitline = last droplast droplast freadb ['log.txt', 'line', 
INT_MAX]; 
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    local ws = wordsplit [hitline, " "]; 
    local hits = ws(3); 
    hits = atoi token hits; 
     
 
    //search for actives 
     
    local function pharm_count_all [receptor_name] 
     
 
    local entry_key, entry_record, values, index; 
    local mdb_key = db_Open [tok_cat [fbase ph4,'.mdb'], 'read']; 
    local entries = db_Entries mdb_key; 
    local count = 0; 
    local prior_mseq = 0; 
    local i=0; 
    local sum = []; 
     
    for entry_key in entries loop // for each entry, untag and compare 
prior_mseq to mseq in entry 
 
        entry_record = db_Read [mdb_key, entry_key];  
        values = last untag entry_record; // removes tags from tagged 
vector, just values        
 
        if prior_mseq <> values(2) then // if prior_mseq isn't equal to 
current mseq (molecule sequence number) 
            prior_mseq = values(2); 
            for index in values loop // for each mseq in all mseqs 
                i=i+1; 
                if eqL [receptor_name, index] then // if the top level 
arguments are identical AND  
                if values(i-1)  then 
                    count = count+1; 
                endif 
            endif 
            endloop 
        i=0; 
        endif 
 
        endloop 
 
        //print_count; // print how many  
        sum = cat[sum,count]; 
        count = 0; 
        prior_mseq= 0; 
        i=0; 
 
    for entry_key in entries loop // for each entry, untag and compare 
prior_mseq to mseq in entry 
 
        entry_record = db_Read [mdb_key, entry_key];  
        values = last untag entry_record; // removes tags from tagged 
vector, just values        
 
        if prior_mseq <> values(2) then // if prior_mseq isn't equal to 
current mseq (molecule sequence number) 
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            prior_mseq = values(2); 
            for index in values loop // for each mseq in all mseqs 
                i=i+1; 
                if eqL [receptor_name, index] then // if the top level 
arguments are identical AND  
                if values(i-2)  then 
                    count = count+1; 
                endif 
            endif 
            endloop 
        i=0; 
        endif 
 
        endloop 
 
        //print_count; // print how many  
        sum = cat[sum,count]; 
        count = 0; 
        prior_mseq= 0; 
        i=0; 
 
    for entry_key in entries loop // for each entry, untag and compare 
prior_mseq to mseq in entry 
 
        entry_record = db_Read [mdb_key, entry_key];  
        values = last untag entry_record; // removes tags from tagged 
vector, just values        
 
        if prior_mseq <> values(2) then // if prior_mseq isn't equal to 
current mseq (molecule sequence number) 
            prior_mseq = values(2); 
            for index in values loop // for each mseq in all mseqs 
                i=i+1; 
                if eqL [receptor_name, index] then // if the top level 
arguments are identical AND  
                if values(i-3)  then 
                    count = count+1; 
                endif 
            endif 
            endloop 
        i=0; 
        endif 
 
        endloop 
 
        //print_count; // print how many  
        sum = cat[sum,count]; 
        count = 0; 
        prior_mseq= 0; 
        i=0; 
 
    for entry_key in entries loop // for each entry, untag and compare 
prior_mseq to mseq in entry 
 
        entry_record = db_Read [mdb_key, entry_key];  
        values = last untag entry_record; // removes tags from tagged 
vector, just values        
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        if prior_mseq <> values(2) then // if prior_mseq isn't equal to 
current mseq (molecule sequence number) 
            prior_mseq = values(2); 
            for index in values loop // for each mseq in all mseqs 
                i=i+1; 
                if eqL [receptor_name, index] then // if the top level 
arguments are identical AND  
                if values(i-4)  then 
                    count = count+1; 
                endif 
            endif 
            endloop 
        i=0; 
        endif 
 
        endloop 
 
        //print_count; // print how many  
        sum = cat[sum,count]; 
        count = 0; 
        prior_mseq= 0; 
        i=0; 
 
    for entry_key in entries loop // for each entry, untag and compare 
prior_mseq to mseq in entry 
 
        entry_record = db_Read [mdb_key, entry_key];  
        values = last untag entry_record; // removes tags from tagged 
vector, just values        
 
        if prior_mseq <> values(2) then // if prior_mseq isn't equal to 
current mseq (molecule sequence number) 
            prior_mseq = values(2); 
            for index in values loop // for each mseq in all mseqs 
                i=i+1; 
                if eqL [receptor_name, index] then // if the top level 
arguments are identical AND  
                if values(i-5)  then 
                    count = count+1; 
                endif 
            endif 
            endloop 
        i=0; 
        endif 
 
        endloop 
 
        //print_count; // print how many  
        sum = cat[sum,count]; 
        count = 0; 
        prior_mseq= 0; 
        i=0; 
 
         
 
////print_count; // print how many  
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    sum = cat[sum,count]; 
 
    local actives = add sum; 
    return actives; 
    count = 0; 
    prior_mseq= 0; 
    i=0; 
 
    endfunction 
     
    local actives = pharm_count_all [receptor_name]; 
    local active_rate = (actives/hits);  
 
    //print active_rate; 
    local enrichment = active_rate/(db_active_mols/db_mols); 
    local goodness = 
((actives*((3*actives)+hits))/(4*hits*db_active_mols)) * (1 -(hits-
actives)/(db_mols-db_active_mols)); 
    //if enrichment == NaN then 
        //enrichment = 0; 
    //endif 
    print enrichment; 
    //print type enrichment; 
    //print type fdata.names; 
    //print type fdata.number; 
    //print fdata.mol(1); 
    //print length fdata.mol(1); 
 
    db_Write [ 
    output, 0, [ 
    Enrichment: enrichment, 
    GH: goodness, 
    Hits: hits, 
    Actives: actives, 
    Active_Rate: active_rate, 
    filename: swrite ['{G}', ph4] 
        ] 
    ]; 
     
     
         
    e_vals = cat [e_vals, enrichment]; 
    local enr = tok_cat [totok enrichment,'\n']; 
    towrite = cat[towrite, enr]; 
     
     
    if enrichment < 1 or enrichment == NaN or enrichment == 0 then 
        fdelete tok_cat [fbase ph4,'.mdb']; 
    endif 
    print cat['iteration:', fbase ph4]; 
endloop  
 
//print e_vals;  
print 'done creating database'; 
 
fwrite['enrichments.txt', '{}', towrite]; 
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//Open 'ph4_search_output.mdb'; 
//print fdata; 
endfunction 
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frag_count.svl 

Description: This script is meant to count the frequency at which fragments (from the 

MOE fragment database) appear in randomly generated pharmacophores. 

Arguments 

mdb: .mdb file containing MCSS output 

global function frag_count [mdb] 
 
local mdb_key = db_Open [mdb, 'read-write']; 
local ent; 
local entries = db_Entries mdb_key; 
local frag_names = [ "1,2-dimethylpyrrolidine", "2-butene", "2-butyne", 
"3-methylindole", "5-methylimidazole", "N-methylformamide", 
"acetaldehyde", "acetamide", "acetate ion", "acetonitrile", "benzene", 
"butane", "cyclohexane", "dimethylether", "dimethylsulfone", "ethane", 
"ethanol", "ethylthiol", "isobutane", "methane", "methanol", 
"methylamidinium", "methylammonium", "methylchloride", 
"methylguanidinium", "methylsulfonamide", "methylsulfonate", 
"methyltetrazolium", "methylthiol", "n,n-dimethylacetamide", "n-
methylacetamide", "phenol", "piperidinium", "propane", "propyne", 
"thiazole", "trifluoromethane", "trimethylammonium", "water" ]; 
local molnum_prev = 0; 
local [fn, ft] = db_Fields mdb_key; 
fn = drop [fn, 7]; 
fn = keep [fn, 10]; 
local fieldname; 
local frag_name; 
local x; 
local count = 0; 
for frag_name in frag_names loop; 
    for ent in entries loop 
        for fieldname in fn loop 
            [x] = db_ReadFields [mdb_key, ent, fieldname]; 
            if x === frag_name then count = count + 1; 
            endif 
        endloop 
    endloop 
 
print count; 
count = 0; 
endloop 
endfunction 
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random_ph4gen.svl 

Description: This script is used to create pharmacophores based on a MultiFragment 

search output. Pharmacophores are capped at 5 features. Prior to using this script, entries 

representing fragments in the MultiFragment search output database must be numbered 

using loopnumber.svl. 

Arguments 

receptor: minimized receptor resulting from a MultiFragment search, suffixed 

‘minrec.moe’ 

database_file: MultiFragment search output, suffixed ‘_output.moe’ 

samp_num: number of fragments to sample per pharmacophore model 

iter: number of pharmacophore models to generate 

n: only used if a crash occurs during pharmacophore model generation. If a crash occurs, 

n will be the last entry number in the ‘output.mdb’ file created when generating 

pharmacophore models. 

function Close; 
function Open; 
function prolig_Calculate; 
function pro_Contacts; 
function db_ImportASCII; 
function ph4_aType; 
function ph4_EditorWkeyList; 
function ph4_EditorGetData; 
function fwrite_PH4; 
function ph4_Search; 
 
global function random_ph4gen [receptor, database_file, samp_num, iter, 
n] 
 
if isnull flist [[], 'output.mdb'] then 
    local output = db_Open ['output.mdb', 'create']; 
    db_CreateField [ output, 'Fragment1', 'char']; 
    db_CreateField [ output, 'Fragment1_mol', 'molecule']; 
    db_CreateField [ output, 'Fragment2', 'char']; 
    db_CreateField [ output, 'Fragment2_mol', 'molecule']; 
    db_CreateField [ output, 'Fragment3', 'char']; 
    db_CreateField [ output, 'Fragment3_mol', 'molecule']; 
    db_CreateField [ output, 'Fragment4', 'char']; 
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    db_CreateField [ output, 'Fragment4_mol', 'molecule']; 
    db_CreateField [ output, 'Fragment5', 'char']; 
    db_CreateField [ output, 'Fragment5_mol', 'molecule']; 
    db_CreateField [ output, 'Fragment1_num', 'int']; 
    db_CreateField [ output, 'Fragment2_num', 'int']; 
    db_CreateField [ output, 'Fragment3_num', 'int']; 
    db_CreateField [ output, 'Fragment4_num', 'int']; 
    db_CreateField [ output, 'Fragment5_num', 'int']; 
    db_CreateField [ output, 'filename', 'char']; 
else  
    output = 'output.mdb'; //just in case job crashes, don't overwrite 
output 
endif 
 
local iterations = 0; 
//local n=0; 
local e_vals = []; 
local towrite; 
local towrite2; 
loop  
    Close [force:1, viewreset:1, delgobj:1];  // close any open 
structures 
    Open receptor; 
    local entry_key, entry, x; 
    local mdb_key = db_Open [database_file, 'read-write']; //open 
database with fragments 
    local entries = db_Entries database_file; 
    local sample = sample [entries, samp_num]; 
    print sample; 
    local centroids = []; 
    local dummies = []; 
    local i=0; 
    local fragdata = [mol: [], name: [], number: []];  
    local fdata = [names: [], number: [], mol: []]; 
 
    //number all fragments in database_file with an index # 
    local counter = 1; 
    db_EnsureField [mdb_key, 'index','int']; 
    for entry_key in entries loop 
        db_Write [mdb_key, entry_key, tagpoke[[],'index', counter]]; 
        counter = counter + 1; 
    endloop 
    //end fragment numbering 
 
    for entry in sample loop // create all fragments 
        local [ligand] = db_ReadFields [mdb_key, entry,'mol']; //get 
structure from fieldname 
        fragdata.name = cat [fragdata.name, db_ReadFields [mdb_key, 
entry, 'name']]; 
        fragdata.number = cat [fragdata.number, db_ReadFields [mdb_key, 
entry, 'index']]; 
         
        local [ligand_chain, ligand_name] =db_CreateMolecule ligand; 
        fragdata.mol = cat [fragdata.mol, ligand_chain]; 
        local num = indexof [ligand_chain, fragdata.mol]; 
         
        fdata.number = cat [fdata.number, num]; 
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        fdata.names = cat [fdata.names, cName ligand_chain]; 
        fdata.mol = cat [fdata.mol, [mol_Extract oChildren 
ligand_chain]]; 
    endloop 
     
    local chains = Chains[]; 
    local [rec_atoms] = cAtoms chains(1); // get receptor atoms 
    local frags = dropfirst Chains[]; // create subset of just 
fragments 
    local frag_chain; 
    local ligkeys = cat cAtoms frags; 
    local use_frags = []; 
    local sel_atoms = []; // empty vector for fragment atoms that are 
to be selected 
     
    local itypes = ['Hbond', 'Metal', 'Ionic', 'Covalent', 'Arene', 
'Distance']; 
        local iopt = [ 
    emin_hb:        minE[-0.1, 0.10], 
    emin_hpi:       minE[-0.1, 0.10], 
    emin_ion:       0.10, 
    distance_threshold: 4.5, 
    layoutrechb:        1   // incl. rec-rec hbond in layout 
    ]; 
 
    //from prolig2d.svl 
    local iract = prolig_Calculate [itypes, ligkeys, rec_atoms, iopt]; 
    local [iract_2, iract_3] = [iract(2), iract(3)]; 
    local lrmask = indexof [iract_2, ligkeys] and indexof [iract_3, 
rec_atoms]; 
    local rlmask = indexof [iract_3, ligkeys] and indexof [iract_2, 
rec_atoms]; 
    local mask = andE [indexof [iract(1), ['Hbond', 'Metal', 'Ionic', 
'Covalent']],lrmask or rlmask]; 
    local s_lim = select [iract(2), iract(3), lrmask] | mask;   // 
multi atom 
    local s_rim = select [iract(3), iract(2), lrmask] | mask;   // for 
arene 
    local s_score = iract(4) | mask; 
    local s_frag_atoms = cat rAtoms oParent s_lim; 
    local sel_atom = diff [ligkeys, s_frag_atoms]; 
 
    frags = dropfirst Chains[]; //re-assign fragments 
    local atom; 
    local frag_atoms = cat cAtoms frags; 
    local ring_atoms =[]; 
    aSetSelected [s_lim,1]; 
    for atom in s_lim loop // for atoms with strong interactions 
        if [aIn6Ring atom] == 1 then 
            rSetSelected [oParent atom, 1]; 
            ring_atoms = cat [ring_atoms, atom]; 
            local centroid = oCentroid [oParent atom]; 
            local mol = mol_Create [ '', [ '', '', '', 1 ],  
            [ '*', 1, " ", 'none', 1 ],  
            [ 'LP', 0, 'sp', 0, 0, [ [] ], 0, 'DU', 0, 
centroid(1),centroid(2),centroid(3) ] ]; 
            centroids = cat[centroids, cAtoms last Chains[]]; 
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            aSetSelected [atom, 0]; 
        endif 
    endloop 
     
    aSetSelected [centroids,1]; //select centroids 
     
    local atoms = SelectedAtoms[]; 
    local atoms_type = ph4_aType atoms; 
    local info = [atoms: atoms, atype: atoms_type]; 
    i=1; 
 
     
    //run ph4 editor 
    run '$HOME/ph4_edit_2.svl'; 
    local wkey = ph4_EditorWkeyList []; 
    WindowShow wkey; 
    WindowTrigger [wkey, [create_F:1024]]; 
        loop  
            chains = Chains[]; 
            local [features] = cAtoms last droplast chains; 
            until notnull features 
        endloop 
 
    chains = Chains[]; 
 
    [features] = cAtoms last droplast Chains[]; 
     
    local data = ph4_EditorGetData wkey; 
    local feat = [atoms: features, names: data.F.expr]; 
     
    local feat_name; 
    local feat_delete = []; 
    i=0; 
    for feat_name in feat.names loop 
        i=i+1; 
        if alltrue [feat.names == 'AtomQ'] then break; 
        elseif feat_name == 'AtomQ' then 
            feat_delete = cat [feat_delete,feat.atoms(i)]; 
        endif 
    endloop 
     
    oDestroy oParent oParent ring_atoms; 
     
    aSetSelected [Atoms[],0]; //deselect all features 
    aSetSelected [feat_delete,1]; //select AtomQ features to be deleted 
     
    local nvp = WindowValues wkey; 
    local mainlist = nvp.mainlist(1); 
     
    loop 
        if  length mainlist == length feat.atoms then 
        nvp = WindowValues wkey; 
        mainlist = nvp.mainlist(1); 
        elseif length mainlist < length feat.atoms then 
        WindowTrigger [wkey, [button_delete:1024]]; 
        break; 
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        endif 
    endloop 
 
    loop 
    [features] = cAtoms last droplast chains; 
 
    local nums; 
 
    if length features == 13 then 
        nums = [6,7,8,9,10,11,12,13]; 
    elseif length features == 12 then 
        nums = [6,7,8,9,10,11,12]; 
    elseif length features == 11 then 
        nums = [6,7,8,9,10,11]; 
    elseif length features == 10 then 
        nums = [6,7,8,9,10]; 
    elseif length features == 9 then 
        nums = [6,7,8,9]; 
    elseif length features == 8 then 
        nums = [6,7,8]; 
    elseif length features == 7 then 
        nums = [6,7]; 
    elseif length features == 6 then 
        nums = [6]; 
    endif 
 
 
    if length features > 5 then 
        WindowTrigger [wkey, [mainlist:nums]]; 
        if length SelectedAtoms[] < length features then 
            WindowTrigger [wkey, [button_delete:1024]]; 
        endif 
    endif 
    nvp = WindowValues wkey; 
    mainlist = nvp.mainlist(1); 
    if length features <= 5 then break; 
    endif 
    endloop 
 
    n=n+1; 
     
    data = ph4_EditorGetData wkey; 
    fwrite_PH4 [tok_cat [totok n,'.ph4'], data, [header:1]]; 
    WindowDestroy wkey; 
     
    iterations= iterations+1; 
     
 
    db_Write [ 
    output, 0, [ 
    Fragment1: swrite ['{G}', fdata.names(1)], 
    Fragment1_mol:  fdata.mol(1), 
    Fragment2: swrite ['{G}', fdata.names(2)], 
    Fragment2_mol: fdata.mol(2), 
    Fragment3: swrite ['{G}', fdata.names(3)], 
    Fragment3_mol: fdata.mol(3), 
    Fragment4: swrite ['{G}', fdata.names(4)], 
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    Fragment4_mol: fdata.mol(4), 
    Fragment5: swrite ['{G}', fdata.names(5)], 
    Fragment5_mol: fdata.mol(5), 
    Fragment1_num: fragdata.number(1), 
    Fragment2_num: fragdata.number(2), 
    Fragment3_num: fragdata.number(3), 
    Fragment4_num: fragdata.number(4), 
    Fragment5_num: fragdata.number(5), 
    filename: swrite ['{G}', tok_cat [totok n,'.ph4']] 
        ] 
    ]; 
     
     
    print cat['iteration:', n]; 
    until iterations==iter 
endloop  
 
print 'done creating database'; 
 
entries = db_Entries output; 
counter = 1; 
 
db_CreateField [output, 'index','int']; 
for entry_key in entries loop 
    db_Write [output, entry_key, tagpoke[[],'index', counter]]; 
    counter = counter + 1; 
endloop 
 
print 'done numbering database'; 
 
Open 'output.mdb'; 
//print fdata; 
endfunction 
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random_ph4search.svl 

Description: This script is used to perform pharmacophore searches within a directory of 

pharmacophore (.ph4) files generated with random_ph4gen.svl. 

Arguments 

lig_mdb: filename of compound database to be searched 

receptor_name: name of receptor formatted as a string 

partial_features: number of matching features required for a prospective compound to be 

considered a hit against the pharmacophore model 

db_active: percentage of compounds in lig_mdb possessing activity for a receptor of 

interest (ex. 15.9, *not* 0.159) 

db_active_mols: number of compounds in lig_mdb possessing activity for a target 

receptor 

db_mols: number of unique molecules in lig_mdb 

function Close; 
function Open; 
function prolig_Calculate; 
function pro_Contacts; 
function db_ImportASCII; 
function ph4_aType; 
function ph4_EditorWkeyList; 
function ph4_EditorGetData; 
function fwrite_PH4; 
function ph4_Search; 
 
global function random_ph4search [lig_mdb, ph4_dir, receptor_name, 
partial_features, db_active_mols, db_mols] 
 
local output = db_Open ['ph4_search_output_5feats.mdb', 'create']; 
db_CreateField [ output, 'Enrichment', 'float']; 
db_CreateField [ output, 'GH', 'float']; 
db_CreateField [ output, 'Active_Rate', 'float']; 
db_CreateField [ output, 'Hits', 'int']; 
db_CreateField [ output, 'Actives', 'int']; 
db_CreateField [ output, 'filename', 'char']; 
 
local ph4_files = flist[[ph4_dir],'*.ph4']; 
local ph4; 
local e_vals = []; 



 

 296 

local towrite; 
local towrite2; 
 
for ph4 in ph4_files loop 
 
    logfile 'log.txt'; 
    ph4_Search [lig_mdb, ph4, 
        [ 
            abspos                : 0, 
            action                : 0, 
            descexpr              : '', 
            esel                  : 0, 
            matchsize             : partial_features, //tweak feature # 
            maxconfhits           : 0, 
            maxmolhits            : 0, 
            molfield              : 'mol', 
            o_molfield            : 'mol', 
            o_mseqfield           : 'mseq', 
            o_rmsdxfield          : 'rmsdx', 
            o_rscore_colfield     : 'rscore[F#]', 
            o_rscore_sumfield     : 'rscore', 
            out_append            : 0, 
            out_dbfile            : tok_cat [fbase ph4,'.mdb'], 
            out_dbv               : 0, 
            out_type_molecules    : 1, 
            sortby                : 'rmsdx', 
            use_mname             : 0, 
            use_mseqfield         : 0, 
            use_o_fileIdxField    : 0, 
            use_o_fileNameField   : 0, 
            use_o_hitmapfield     : 0, 
            use_o_hitmapfieldC    : 0, 
            use_o_hitsizefield    : 0, 
            use_o_hitsizefieldC   : 0, 
            use_o_molfield        : 1, 
            use_o_mseqfield       : 1, 
            use_o_rmsdfield       : 0, 
            use_o_rmsdxfield      : 1, 
            use_o_rowfield        : 0, 
            use_o_rscore_colfield : 1, 
            use_o_rscore_sumfield : 1, 
            use_o_rscore_vecfield : 0, 
            use_out_dbfile        : 1, 
            usepsilo              : 0 
            ] 
]; 
 
    logfile 0; 
    logfile[]; 
 
    //obtain hits from log file 
    local hitline = last droplast droplast freadb ['log.txt', 'line', 
INT_MAX]; 
     
    local ws = wordsplit [hitline, " "]; 
    local hits = ws(3); 
    hits = atoi token hits; 
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    //search for actives 
     
    local function pharm_count_all [receptor_name] 
     
 
    local entry_key, entry_record, values, index; 
    local mdb_key = db_Open [tok_cat [fbase ph4,'.mdb'], 'read']; 
    local entries = db_Entries mdb_key; 
    local count = 0; 
    local prior_mseq = 0; 
    local i=0; 
    local sum = []; 
     
    for entry_key in entries loop // for each entry, untag and compare 
prior_mseq to mseq in entry 
 
        entry_record = db_Read [mdb_key, entry_key];  
        values = last untag entry_record; // removes tags from tagged 
vector, just values        
 
        if prior_mseq <> values(2) then // if prior_mseq isn't equal to 
current mseq (molecule sequence number) 
            prior_mseq = values(2); 
            for index in values loop // for each mseq in all mseqs 
                i=i+1; 
                if eqL [receptor_name, index] then // if the top level 
arguments are identical AND  
                if values(i-1)  then 
                    count = count+1; 
                endif 
            endif 
            endloop 
        i=0; 
        endif 
 
        endloop 
 
        //print_count; // print how many  
        sum = cat[sum,count]; 
        count = 0; 
        prior_mseq= 0; 
        i=0; 
 
    for entry_key in entries loop // for each entry, untag and compare 
prior_mseq to mseq in entry 
 
        entry_record = db_Read [mdb_key, entry_key];  
        values = last untag entry_record; // removes tags from tagged 
vector, just values        
 
        if prior_mseq <> values(2) then // if prior_mseq isn't equal to 
current mseq (molecule sequence number) 
            prior_mseq = values(2); 
            for index in values loop // for each mseq in all mseqs 
                i=i+1; 
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                if eqL [receptor_name, index] then // if the top level 
arguments are identical AND  
                if values(i-2)  then 
                    count = count+1; 
                endif 
            endif 
            endloop 
        i=0; 
        endif 
 
        endloop 
 
        //print_count; // print how many  
        sum = cat[sum,count]; 
        count = 0; 
        prior_mseq= 0; 
        i=0; 
 
    for entry_key in entries loop // for each entry, untag and compare 
prior_mseq to mseq in entry 
 
        entry_record = db_Read [mdb_key, entry_key];  
        values = last untag entry_record; // removes tags from tagged 
vector, just values        
 
        if prior_mseq <> values(2) then // if prior_mseq isn't equal to 
current mseq (molecule sequence number) 
            prior_mseq = values(2); 
            for index in values loop // for each mseq in all mseqs 
                i=i+1; 
                if eqL [receptor_name, index] then // if the top level 
arguments are identical AND  
                if values(i-3)  then 
                    count = count+1; 
                endif 
            endif 
            endloop 
        i=0; 
        endif 
 
        endloop 
 
        //print_count; // print how many  
        sum = cat[sum,count]; 
        count = 0; 
        prior_mseq= 0; 
        i=0; 
 
    for entry_key in entries loop // for each entry, untag and compare 
prior_mseq to mseq in entry 
 
        entry_record = db_Read [mdb_key, entry_key];  
        values = last untag entry_record; // removes tags from tagged 
vector, just values        
 
        if prior_mseq <> values(2) then // if prior_mseq isn't equal to 
current mseq (molecule sequence number) 
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            prior_mseq = values(2); 
            for index in values loop // for each mseq in all mseqs 
                i=i+1; 
                if eqL [receptor_name, index] then // if the top level 
arguments are identical AND  
                if values(i-4)  then 
                    count = count+1; 
                endif 
            endif 
            endloop 
        i=0; 
        endif 
 
        endloop 
 
        //print_count; // print how many  
        sum = cat[sum,count]; 
        count = 0; 
        prior_mseq= 0; 
        i=0; 
 
    for entry_key in entries loop // for each entry, untag and compare 
prior_mseq to mseq in entry 
 
        entry_record = db_Read [mdb_key, entry_key];  
        values = last untag entry_record; // removes tags from tagged 
vector, just values        
 
        if prior_mseq <> values(2) then // if prior_mseq isn't equal to 
current mseq (molecule sequence number) 
            prior_mseq = values(2); 
            for index in values loop // for each mseq in all mseqs 
                i=i+1; 
                if eqL [receptor_name, index] then // if the top level 
arguments are identical AND  
                if values(i-5)  then 
                    count = count+1; 
                endif 
            endif 
            endloop 
        i=0; 
        endif 
 
        endloop 
 
        //print_count; // print how many  
        sum = cat[sum,count]; 
        count = 0; 
        prior_mseq= 0; 
        i=0; 
 
         
 
////print_count; // print how many  
    sum = cat[sum,count]; 
 
    local actives = add sum; 
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    return actives; 
    count = 0; 
    prior_mseq= 0; 
    i=0; 
 
    endfunction 
     
    local actives = pharm_count_all [receptor_name]; 
    local active_rate = (actives/hits);  
    local enrichment = active_rate/(db_active_mols/db_mols); 
    local goodness = 
((actives*((3*actives)+hits))/(4*hits*db_active_mols)) * (1 -(hits-
actives)/(db_mols-db_active_mols)); 
    print enrichment; 
    db_Write [ 
    output, 0, [ 
    Enrichment: enrichment, 
    GH: goodness, 
    Hits: hits, 
    Actives: actives, 
    Active_Rate: active_rate, 
    filename: swrite ['{G}', ph4] 
        ] 
    ]; 
      
    e_vals = cat [e_vals, enrichment]; 
    local enr = tok_cat [totok enrichment,'\n']; 
    towrite = cat[towrite, enr]; 
     
    db_Close [tok_cat [fbase ph4,'.mdb']]; 
    fdelete tok_cat [fbase ph4,'.mdb']; 
    print cat['iteration:', fbase ph4]; 
endloop  
 
print 'done creating database'; 
 
fwrite['enrichments.txt', '{}', towrite]; 
 
Open 'ph4_search_output.mdb'; 
endfunction 
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Scripts used in Chapter 4 

feature_search_dir_7_feats.svl 

Description: This function is used to search a compound database with all pharmacophore 

models containing 7 features that are present in a directory at 3, 4, 5, 6, and 7 features. 

Arguments 

compound_db: compound database to be searched 

mseq_field: field in compound_db containing the mseq numbers 

function ph4_Search; 
global function feature_search_dir_7feats [compound_db, mseq_field]; 
// sort type is the score type 
local files = flist[[],'*.ph4']; 
local ph4fname; 
local hits = []; 
//local i = 1; 
 
 
for ph4fname in files loop 
print ph4fname; 
local score_type = fbase ph4fname; 
logfile tok_cat['log1.txt']; 
ph4_Search [compound_db, ph4fname,  
        [ 
            abspos                : 0, 
            action                : 0, 
            descexpr              : '', 
            esel                  : 0, 
         matchsize             : 3, 
            maxconfhits           : 0, 
            maxmolhits            : 0, 
            molfield              : 'mol', 
         mseqfield             :mseq_field, 
            o_molfield            : 'mol', 
            o_mseqfield           : 'mseq', 
            o_rmsdxfield          : 'rmsdx', 
            o_rscore_colfield     : 'rscore[F#]', 
            o_rscore_sumfield     : 'rscore', 
            out_append            : 0, 
            out_dbfile            : tok_cat [score_type, '_3.mdb'], 
            out_dbv               : 0, 
            out_type_molecules    : 1, 
            sortby                : 'rmsdx', 
            use_mname             : 0, 
            use_mseqfield         : 1, 
            use_o_fileIdxField    : 0, 
            use_o_fileNameField   : 0, 
            use_o_hitmapfield     : 0, 
            use_o_hitmapfieldC    : 0, 
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            use_o_hitsizefield    : 0, 
            use_o_hitsizefieldC   : 0, 
            use_o_molfield        : 1, 
            use_o_mseqfield       : 1, 
            use_o_rmsdfield       : 0, 
            use_o_rmsdxfield      : 1, 
            use_o_rowfield        : 0, 
            use_o_rscore_colfield : 1, 
            use_o_rscore_sumfield : 1, 
            use_o_rscore_vecfield : 0, 
            use_out_dbfile        : 1, 
            usepsilo              : 0 
        ] 
]; 
 
    logfile 0; 
    logfile[]; 
 
    //obtain hits from log file 
    local hitline = last freadb ['log1.txt', 'line', INT_MAX]; 
    local ws = wordsplit [hitline, " "]; 
    local hits1 = ws(3); 
    hits1 = atoi token hits1; 
    hits1 = cat[tok_cat [score_type, '_3'], hits1]; 
 
logfile 'log2.txt'; 
ph4_Search [compound_db, ph4fname,  
        [ 
            abspos                : 0, 
            action                : 0, 
            descexpr              : '', 
            esel                  : 0, 
         matchsize             : 4, 
            maxconfhits           : 0, 
            maxmolhits            : 0, 
            molfield              : 'mol', 
         mseqfield         : mseq_field, 
            o_molfield            : 'mol', 
            o_mseqfield           : 'mseq', 
            o_rmsdxfield          : 'rmsdx', 
            o_rscore_colfield     : 'rscore[F#]', 
            o_rscore_sumfield     : 'rscore', 
            out_append            : 0, 
            out_dbfile            : tok_cat [score_type, '_4.mdb'], 
            out_dbv               : 0, 
            out_type_molecules    : 1, 
            sortby                : 'rmsdx', 
            use_mname             : 0, 
            use_mseqfield         : 1, 
            use_o_fileIdxField    : 0, 
            use_o_fileNameField   : 0, 
            use_o_hitmapfield     : 0, 
            use_o_hitmapfieldC    : 0, 
            use_o_hitsizefield    : 0, 
            use_o_hitsizefieldC   : 0, 
            use_o_molfield        : 1, 
            use_o_mseqfield       : 1, 
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            use_o_rmsdfield       : 0, 
            use_o_rmsdxfield      : 1, 
            use_o_rowfield        : 0, 
            use_o_rscore_colfield : 1, 
            use_o_rscore_sumfield : 1, 
            use_o_rscore_vecfield : 0, 
            use_out_dbfile        : 1, 
            usepsilo              : 0 
        ] 
]; 
 
logfile 0; 
logfile[]; 
 
    //obtain hits from log file 
    hitline = last freadb ['log2.txt', 'line', INT_MAX]; 
    ws = wordsplit [hitline, " "]; 
    local hits2 = ws(3); 
    hits2 = atoi token hits2; 
    hits2 = cat[tok_cat [score_type, '_4'], hits2]; 
 
logfile 'log3.txt'; 
ph4_Search [compound_db, ph4fname,  
        [ 
            abspos                : 0, 
            action                : 0, 
            descexpr              : '', 
            esel                  : 0, 
         matchsize             : 5, 
            maxconfhits           : 0, 
            maxmolhits            : 0, 
            molfield              : 'mol', 
         mseqfield             : mseq_field, 
            o_molfield            : 'mol', 
            o_mseqfield           : 'mseq', 
            o_rmsdxfield          : 'rmsdx', 
            o_rscore_colfield     : 'rscore[F#]', 
            o_rscore_sumfield     : 'rscore', 
            out_append            : 0, 
            out_dbfile            : tok_cat [score_type, '_5.mdb'], 
            out_dbv               : 0, 
            out_type_molecules    : 1, 
            sortby                : 'rmsdx', 
            use_mname             : 0, 
            use_mseqfield         : 1, 
            use_o_fileIdxField    : 0, 
            use_o_fileNameField   : 0, 
            use_o_hitmapfield     : 0, 
            use_o_hitmapfieldC    : 0, 
            use_o_hitsizefield    : 0, 
            use_o_hitsizefieldC   : 0, 
            use_o_molfield        : 1, 
            use_o_mseqfield       : 1, 
            use_o_rmsdfield       : 0, 
            use_o_rmsdxfield      : 1, 
            use_o_rowfield        : 0, 
            use_o_rscore_colfield : 1, 
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            use_o_rscore_sumfield : 1, 
            use_o_rscore_vecfield : 0, 
            use_out_dbfile        : 1, 
            usepsilo              : 0 
        ] 
]; 
 
logfile 0; 
logfile[]; 
 
    //obtain hits from log file 
    hitline = last freadb ['log3.txt', 'line', INT_MAX]; 
    ws = wordsplit [hitline, " "]; 
    local hits3 = ws(3); 
    hits3 = atoi token hits3; 
    hits3 = cat[tok_cat [score_type, '_5'], hits3]; 
 
logfile 'log4.txt'; 
ph4_Search [compound_db, ph4fname,  
        [ 
            abspos                : 0, 
            action                : 0, 
            descexpr              : '', 
            esel                  : 0, 
         matchsize             : 6, 
            maxconfhits           : 0, 
            maxmolhits            : 0, 
            molfield              : 'mol', 
         mseqfield             : mseq_field, 
            o_molfield            : 'mol', 
            o_mseqfield           : 'mseq', 
            o_rmsdxfield          : 'rmsdx', 
            o_rscore_colfield     : 'rscore[F#]', 
            o_rscore_sumfield     : 'rscore', 
            out_append            : 0, 
            out_dbfile            : tok_cat [score_type, '_6.mdb'], 
            out_dbv               : 0, 
            out_type_molecules    : 1, 
            sortby                : 'rmsdx', 
            use_mname             : 0, 
            use_mseqfield         : 1, 
            use_o_fileIdxField    : 0, 
            use_o_fileNameField   : 0, 
            use_o_hitmapfield     : 0, 
            use_o_hitmapfieldC    : 0, 
            use_o_hitsizefield    : 0, 
            use_o_hitsizefieldC   : 0, 
            use_o_molfield        : 1, 
            use_o_mseqfield       : 1, 
            use_o_rmsdfield       : 0, 
            use_o_rmsdxfield      : 1, 
            use_o_rowfield        : 0, 
            use_o_rscore_colfield : 1, 
            use_o_rscore_sumfield : 1, 
            use_o_rscore_vecfield : 0, 
            use_out_dbfile        : 1, 
            usepsilo              : 0 
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        ] 
]; 
 
logfile 0; 
    logfile[]; 
 
    //obtain hits from log file 
    hitline = last freadb ['log4.txt', 'line', INT_MAX]; 
    ws = wordsplit [hitline, " "]; 
    local hits4 = ws(3); 
    hits4 = atoi token hits4; 
    hits4 = cat[tok_cat [score_type, '_6'], hits4]; 
 
logfile 'log5.txt'; 
ph4_Search [compound_db, ph4fname,  
        [ 
            abspos                : 0, 
            action                : 0, 
            descexpr              : '', 
            esel                  : 0, 
            matchsize             : 7, 
            maxconfhits           : 0, 
            maxmolhits            : 0, 
            molfield              : 'mol', 
         mseqfield             : mseq_field, 
            o_molfield            : 'mol', 
            o_mseqfield           : 'mseq', 
            o_rmsdxfield          : 'rmsdx', 
            o_rscore_colfield     : 'rscore[F#]', 
            o_rscore_sumfield     : 'rscore', 
            out_append            : 0, 
            out_dbfile            : tok_cat [score_type, '_7.mdb'], 
            out_dbv               : 0, 
            out_type_molecules    : 1, 
            sortby                : 'rmsdx', 
            use_mname             : 0, 
            use_mseqfield         : 1, 
            use_o_fileIdxField    : 0, 
            use_o_fileNameField   : 0, 
            use_o_hitmapfield     : 0, 
            use_o_hitmapfieldC    : 0, 
            use_o_hitsizefield    : 0, 
            use_o_hitsizefieldC   : 0, 
            use_o_molfield        : 1, 
            use_o_mseqfield       : 1, 
            use_o_rmsdfield       : 0, 
            use_o_rmsdxfield      : 1, 
            use_o_rowfield        : 0, 
            use_o_rscore_colfield : 1, 
            use_o_rscore_sumfield : 1, 
            use_o_rscore_vecfield : 0, 
            use_out_dbfile        : 1, 
            usepsilo              : 0 
        ] 
]; 
 
logfile 0; 
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logfile[]; 
 
    //obtain hits from log file 
    hitline = last freadb ['log5.txt', 'line', INT_MAX]; 
    ws = wordsplit [hitline, " "]; 
    local hits5 = ws(3); 
    hits5 = atoi token hits5; 
    hits5 = cat[tok_cat [score_type, '_7'], hits5]; 
 
    local hitv = cat [hits1,hits2,hits3,hits4,hits5]; 
    hits = cat [hits, hitv]; 
 
 
endloop 
 
logfile 'ph4_searchlog.txt'; 
 
write ['Hits:\n']; 
write ['{} : {}\n', hits(1),hits(2)]; //dE(class) 3 
write ['{} : {}\n', hits(3),hits(4)]; //dE(class) 4 
write ['{} : {}\n', hits(5),hits(6)]; //dE(class) 5 
write ['{} : {}\n', hits(7),hits(8)]; //dE(class) 6 
write ['{} : {}\n', hits(9),hits(10)]; //dE(class) 7 
write ['{} : {}\n', hits(11),hits(12)]; //dE 3 
write ['{} : {}\n', hits(13),hits(14)]; //dE 4 
write ['{} : {}\n', hits(15),hits(16)]; //dE 5 
write ['{} : {}\n', hits(17),hits(18)]; //dE 6 
write ['{} : {}\n', hits(19),hits(20)]; //dE 7 
write ['{} : {}\n', hits(21),hits(22)]; //du class 3 
write ['{} : {}\n', hits(23),hits(24)]; // du class 4 
write ['{} : {}\n', hits(25),hits(26)]; //du class 5 
write ['{} : {}\n', hits(27),hits(28)]; //du class 6 
write ['{} : {}\n', hits(29),hits(30)]; // du class 7 
write ['{} : {}\n', hits(31),hits(32)]; // dU 3 
write ['{} : {}\n', hits(33),hits(34)]; // dU 4 
write ['{} : {}\n', hits(35),hits(36)]; // dU 5 
write ['{} : {}\n', hits(37),hits(38)]; // dU 6 
write ['{} : {}\n', hits(39),hits(40)]; // dU 7 
 
logfile[]; 
endfunction 
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mfss_subset.svl 

Description: This script will create a database containing a subset of placed MCSS 

fragments from a MCSS output performed using all fragments. This is meant to save 

time, since performing additional fragment searches for each subset is time-consuming. 

Arguments 

mfss_output: filename of MCSS output performed with all fragments 

receptor: receptor file resulting from MCSS suffixed ‘_minrec.moe’ 

frag_db: filename of database containing a subset of fragments contained in the default 

MOE fragment database 

prefix: desired name prefix for subset files 

global function mfss_subset [mfss_output, receptor, frag_db, prefix]; 
 
local new_db = tok_cat [prefix, '_output.mdb']; 
db_Open [new_db, 'create']; 
local [fn, ft] = db_Fields [mfss_output]; 
local length_fn = length fn; 
length_fn = length_fn+1; 
local i = 1; 
 
while  i < length_fn loop  
    db_EnsureField [new_db, fn(i), ft(i)]; 
    i=i+1; 
endloop 
 
 
local names = db_ReadColumn [frag_db, 'name']; 
local entries = db_Entries mfss_output; 
local entry, fragname; 
 
for entry in entries loop 
    local [name] = db_ReadFields [mfss_output, entry, 'name']; 
    for fragname in names loop 
        if name === fragname then 
        db_Write [new_db, 0, db_Read [mfss_output, entry]]; 
        endif 
    endloop 
endloop 
 
local new_receptor = tok_cat [prefix, '_minrec.moe']; 
fcopy [receptor, new_receptor]; 
write 'Done.\n'; 
endfunction 
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PH4_classifier.py 

Description: This script is used to classify pharmacophore models that have been 

generated with our research group's score-based pharmacophore modeling protocol. The 

kmeans_5clusters.pkl and clusterI_regression_model.pkl files must be present in the 

same directory as this script for it to run. Input for this script is a .csv file resulting from 

use of the scorebased_datacollection.svl MOE script. The following command can be 

used to run the script with a csv file (where file.csv is the output of the 

scorebased_datacollection.svl script): python PH4_classifier.py file.csv 

Arguments 

Input: .csv file 

#module imports/exception handling 
try: 
    import sklearn 
    from sklearn import preprocessing, neighbors 
    from sklearn import model_selection 
    from sklearn.model_selection import train_test_split 
    from sklearn.preprocessing import StandardScaler 
    from sklearn.cluster import KMeans 
    from sklearn import model_selection 
    from sklearn.linear_model import SGDClassifier 
    from sklearn.model_selection import train_test_split 
    from sklearn.preprocessing import scale 
except: 
    msg = "PH4_classifier.py requires the sklearn module." 
    print(msg) 
    raise Exception(msg) 
 
try: 
    import pickle 
except: 
    msg = "PH4_classifier.py requires the pickle module." 
    print(msg) 
    raise Exception(msg) 
     
try: 
    import pandas as pd 
except: 
    msg = "PH4_classifier.py requires the pandas module." 
    print(msg) 
    raise Exception(msg) 
 
try: 
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    import numpy as np 
except: 
    msg = "PH4_classifier.py requires the numpy module." 
    print(msg) 
    raise Exception(msg) 
 
import random, os 
import csv 
import sys 
from typing import Tuple 
 
#open pickled machine learning models, handle exception if they are not 
present in the same directory as this file 
try: 
    with open('kmeans_5clusters.pkl', 'rb') as f: 
        clustering = pickle.load(f) 
except: 
    msg = "Make sure that the 'kmeans_5clusters.pkl' is located in the 
same directory as this Python script." 
    print(msg) 
    raise Exception(msg) 
    
try:    
    with open('clusterI_regression_model.pkl', 'rb') as f: 
        sgdc0 = pickle.load(f) 
except: 
    msg = "Make sure that the 'clusterI_regression_model.pkl' is 
located in the same directory as this Python script." 
    print(msg) 
    raise Exception(msg) 
 
def scale_features_single(X: pd.DataFrame) -> Tuple[pd.DataFrame, 
pd.DataFrame]: 
    """ 
    applies standard scaler (z-scores) to training data and predicts z-
scores for the test set 
    """ 
    scaler = StandardScaler() 
    to_scale = [col for col in X.columns.values] 
    scaler.fit(X[to_scale]) 
    X[to_scale] = scaler.transform(X[to_scale]) 
     
    return X 
       
def main(): 
    #read the input file, handle exception if no file is given 
    try: 
        ext_df = pd.read_csv(sys.argv[1]) 
    except: 
        msg = "PH4_classifier requires a .csv file input." 
        print(msg) 
        raise Exception(msg) 
     
    #if filename is not .csv, inform the user 
    split_tup = os.path.splitext(sys.argv[1]) 
    file_extension = split_tup[1] 
    if file_extension != '.csv': 
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        raise Exception('Input filetype must be .csv.') 
     
    #fill NA values in input with -99999 
    ext_df.fillna(-99999) 
     
    #extract columns with text and columns with data that needs to be 
non-scaled when returned to the user 
    receptors = ext_df.Receptor 
    hits_actual = ext_df.Hits 
    score_types = ext_df['score_type'] 
    subsets = ext_df.subset 
    match_features = ext_df.match_features 
     
    #extract predictor columns from input csv 
    ext_df = ext_df[['s_score','Hits', 'max_feat', 'avg_feat', 
'max_centr', 'min_centr', 'avg_centr', 'features', 'all_same', 
'hyd_prop', 'don_prop', 'catdon_prop', 'hydaro_prop', 'aniacc_prop']] 
    x = ext_df 
     
    # predict cluster labels for the data 
    ext_labels = clustering.predict(x) 
    X_clstrs = x.copy() 
     
    X_scaled = scale_features_single(X_clstrs) 
    ext_clusters = X_scaled.copy() 
     
    #add receptors, hits_actual, score_type, and subset columns back 
prior to 0/1/2/3 split 
    ext_clusters['Receptor'] = receptors 
    ext_clusters['hits_actual'] = hits_actual 
    ext_clusters['score_type'] = score_types 
    ext_clusters['subset'] = subsets 
    ext_clusters['match_features'] = match_features 
    ext_clusters['clusters'] = ext_labels 
     
    #get cluster values to match to input pharmacophore model 
clustering results 
    uniq_clusters = ext_clusters['clusters'].unique() 
    uniqs = uniq_clusters.tolist() 
    uniqs.sort() 
     
    #locate the "0" cluster 
    ext_0 = ext_clusters.loc[ext_clusters.clusters == 0] 
    ext_0_receptors = ext_0.Receptor 
    ext_0_hits_actual = ext_0.hits_actual 
    ext_0_score_types = ext_0['score_type'] 
    ext_0_subsets = ext_0.subset 
    ext_0_match_features = ext_0.match_features 
 
    #drop columns from the dataframe that are not used as predictors 
    X_ext_0 = ext_0.drop(columns=['Receptor', 'hits_actual', 
'score_type', 'subset', 'match_features']) 
     
    #predict quality classes for input pharmacophore models segregated 
into the first cluster 
    print('\nPharmacophore models predicted as quality:\n') 
    y_pred = (sgdc0.predict(X_ext_0)) 
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    #add columns that were dropped prior to classification 
    X_ext_0['Receptor'] = ext_0_receptors 
    X_ext_0['hits_actual'] = ext_0_hits_actual 
    X_ext_0['score_type'] = ext_0_score_types 
    X_ext_0['subset'] = ext_0_subsets 
    X_ext_0['match_features'] = ext_0_match_features 
    X_ext_0['quality_pred'] = y_pred 
 
    #print the ph4s classified as quality and write them to .csv 
    selected_ph4s = X_ext_0.loc[X_ext_0['quality_pred'] == 1] 
    selected_ph4s = selected_ph4s[['Receptor','hits_actual', 
'score_type', 'subset', 'match_features', 'quality_pred']] 
    print(selected_ph4s) 
    ph4_preds = X_ext_0.loc[X_ext_0['quality_pred'] == 1] 
    ph4_preds.to_csv(os.path.splitext(sys.argv[1])[0] + 
'_clusterI_ph4_preds.csv', index = False) 
    print('\nResults written to', os.path.splitext(sys.argv[1])[0] + 
'clusterI_ph4_preds.csv.\n') 
             
if __name__ == '__main__': 
   main() 
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ph4_search_specify_features.svl 

Description: This function is used to perform searches of a compound database 

(compound_db) at a range of specified partial match feature values (start, end) using all 

pharmacophore models in a directory. This script is an improved version of the 

feature_search_dir_7feats.svl script. 

Arguments 

compound_db: database you wish to search 

mseq_field: field in compound_db containing the mseq numbers 

start: partial match feature value to start searches with 

end: partial match feature value to end searches with 

db_outname: name of the database to be included in the pharmacophore search output 

database name 

function ph4_Search; 
global function ph4_search_specify_features [compound_db, mseq_field, 
start, end, db_outname]; 
local files = flist[[],'*.ph4']; 
local ph4fname, pmf_value, output_mdb; 
local output_mdbs = []; 
 
for ph4fname in files loop 
    print ph4fname; 
    for pmf_value = start, end, 1 loop 
 
        // perform ph4_Search 
        ph4_Search [compound_db, ph4fname, [ 
            abspos                : 0, 
            action                : 0, 
            descexpr              : '', 
            esel                  : 0, 
            matchsize             : pmf_value, 
            maxconfhits           : 0, 
            maxmolhits            : 0, 
            molfield              : 'mol', 
            mseqfield         : mseq_field, 
            o_molfield            : 'mol', 
            o_mseqfield           : 'mseq', 
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            o_rmsdxfield          : 'rmsdx', 
            o_rscore_colfield     : 'rscore[F#]', 
            o_rscore_sumfield     : 'rscore', 
            out_append            : 0, 
            out_dbfile            : tok_cat [fbase ph4fname, '_', 
db_outname, '_', totok pmf_value, '.mdb'], 
            out_dbv               : 0, 
            out_type_molecules    : 1, 
            sortby                : 'rmsdx', 
            use_mname             : 0, 
            use_mseqfield         : 1, 
            use_o_fileIdxField    : 0, 
            use_o_fileNameField   : 0, 
            use_o_hitmapfield     : 0, 
            use_o_hitmapfieldC    : 0, 
            use_o_hitsizefield    : 0, 
            use_o_hitsizefieldC   : 0, 
            use_o_molfield        : 1, 
            use_o_mseqfield       : 1, 
            use_o_rmsdfield       : 0, 
            use_o_rmsdxfield      : 1, 
            use_o_rowfield        : 0, 
            use_o_rscore_colfield : 1, 
            use_o_rscore_sumfield : 1, 
            use_o_rscore_vecfield : 0, 
            use_out_dbfile        : 1, 
            usepsilo              : 0] 
             
        ]; 
         
        output_mdbs = cat [output_mdbs, tok_cat [fbase ph4fname, '_', 
db_outname, '_', totok pmf_value, '.mdb']]; 
        endloop 
    endloop 
 
write '\nHits\n'; 
 
// loop through ph4_Search output mdbs and get unique hit totals 
for output_mdb in output_mdbs loop 
    local hits = length uniq db_ReadColumn [output_mdb, mseq_field]; 
    write ['{} : {}\n', output_mdb, hits]; 
endloop 
 
write ['Done.\n']; 
 
endfunction 
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pharmcount.svl 

Description: This script will determine the number of active compounds for a receptor in 

a pharmacophore search output database resulting from searching the internal test 

database used in chapter 4.  

Arguments 

mdb: filename of pharmacophore search output database 

receptor: name of the target, entered as a string 

offset1: 1 

offset2: 2 

offset3: 3 

offset4: 4 

offset5: 5 

global function pharmcount [mdb, receptor, 
offset1,offset2,offset3,offset4,offset5] 
Close [force:1, viewreset:1, delgobj:1];        // close any open 
structures 
 
local entry_key, entry_record, values, index, output_token; 
local files = flist [[],'*.mdb']; 
local output = flist [[],'*_output.mdb']; 
files = diff[files,output]; 
local count = 0; 
local prior_mseq = 0; 
local i=0; 
 
logfile 'pharmcount_log.txt'; 
 
 
    local mdb_key = db_Open [mdb, 'read']; 
    local entries = db_Entries mdb_key; 
    local report_file = tok_cat[fbase mdb, '_pharmcount.txt'];   
    local sum = []; 
     
for entry_key in entries loop // for each entry, untag and compare 
prior_mseq to mseq in entry 
 
    entry_record = db_Read [mdb_key, entry_key];  
    values = last untag entry_record; // removes tags from tagged 
vector, just values 
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    if prior_mseq <> values(2) then // if prior_mseq isn't equal to 
current mseq (molecule sequence number) 
        prior_mseq = values(2); 
        for index in values loop // for each mseq in all mseqs 
            i=i+1; 
            if eqL [receptor, index] then // if the top level arguments 
are identical AND  
                if values(i-offset1)  then 
                    count = count+1; 
                endif 
                 
                if values(i-offset2)  then 
                    count = count+1; 
                endif 
 
                if values(i-offset3)  then 
                    //print i; 
                    count = count+1; 
                endif 
 
                if values(i-offset4)  then 
                    //print i; 
                    count = count+1; 
                endif 
 
                if values(i-offset5)  then 
                    //print i; 
                    count = count+1; 
                endif 
            endif 
 
        endloop 
        i=0; 
    endif 
 
endloop 
 
db_Close mdb_key;  
 
sum = cat[sum,count]; 
prior_mseq= 0; 
i=0; 
 
//write number of actives 
write['{} : {}\n', mdb, add sum]; 
count = 0; 
prior_mseq= 0; 
i=0; 
 
 
//print count; // print how many  
local fnum = fopenw report_file; 
output_token = tok_cat ['\nOffset5:',totok count]; 
fwrite[fnum, '{}', output_token]; 
fclose fnum; 
count = 0; 
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prior_mseq= 0; 
i=0; 
 
print 'done'; 
logfile[]; 
endfunction 
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results2excel_7feats_dir.svl 

Description: This script is to be used after performing database searches with score-based 

pharmacophore models. This script will format search results into a text file that is more 

easily transferrable to Excel. 

global function results2excel_7feats_dir[] 
 
local text_files = flist[[],'*.txt']; 
local folders = flist[]; 
folders = diff [folders, text_files]; 
local folder; 
 
logfile 'results_cat.txt'; 
 
for folder in folders loop 
     
 
    cd folder; 
    local line_count = 1; 
    local feat_count = 1; 
    local score_count = 1; 
 
    local score_types = ['dE_class', 'dE', 'dU_class', 'dU']; 
    local score; 
     
    if folder <> first folders then  
        write '\n'; 
    endif 
 
    write ['{}\n',tok_cat [folder]]; 
    write ['{}\n',tok_cat ['Hits', ':']]; 
 
 
    loop 
        line_count = line_count + 1; 
        local hits1 = token last fieldsplit [last freadb 
['results.txt', 'line', line_count], ": "]; 
        feat_count = feat_count + 1; 
 
        line_count = line_count + 1; 
        local hits2 = token last fieldsplit [last freadb 
['results.txt', 'line', line_count], ": "]; 
        feat_count = feat_count + 1; 
 
        line_count = line_count + 1; 
        local hits3 = token last fieldsplit [last freadb 
['results.txt', 'line', line_count], ": "]; 
        feat_count = feat_count + 1; 
         
        line_count = line_count + 1; 
        local hits4 = token last fieldsplit [last freadb 
['results.txt', 'line', line_count], ": "]; 
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        feat_count = feat_count + 1; 
         
        line_count = line_count + 1; 
        local hits5 = token last fieldsplit [last freadb 
['results.txt', 'line', line_count], ": "]; 
        feat_count = feat_count + 1; 
         
        write [tok_cat[hits1, '\t', hits2, '\t', hits3, '\t', hits4, 
'\t', hits5, '\n']]; 
     
        score_count = score_count + 1; 
     
    until score_count == 5 
    endloop 
 
//print cat ['line_count', line_count]; 
//return; 
 
    line_count = line_count + 1; 
    score_count = 1; 
    write ['{}\n',tok_cat ['Actives', ':']]; 
 
    loop 
        line_count = line_count + 1; 
        local actives1 = token last fieldsplit [last freadb 
['results.txt', 'line', line_count], ": "]; 
        feat_count = feat_count + 1; 
 
        line_count = line_count + 1; 
        local actives2 = token last fieldsplit [last freadb 
['results.txt', 'line', line_count], ": "]; 
        feat_count = feat_count + 1; 
 
        line_count = line_count + 1; 
        local actives3 = token last fieldsplit [last freadb 
['results.txt', 'line', line_count], ": "]; 
        feat_count = feat_count + 1; 
     
        line_count = line_count + 1; 
        local actives4 = token last fieldsplit [last freadb 
['results.txt', 'line', line_count], ": "]; 
        feat_count = feat_count + 1; 
         
        line_count = line_count + 1; 
        local actives5 = token last fieldsplit [last freadb 
['results.txt', 'line', line_count], ": "]; 
        feat_count = feat_count + 1; 
         
        write [tok_cat[actives1, '\t', actives2, '\t', actives3, '\t', 
actives4, '\t', actives5, '\n']]; 
     
        score_count = score_count + 1; 
     
    until score_count == 5 
    endloop 
     
    cd '..'; 
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endloop 
 
logfile[]; 
endfunction 
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scorebased_datacollection.svl 

Description: This script is used to extract the information necessary for pharmacophore 

model classification from score-based pharmacophore models. For each pharmacophore 

model in a directory, the following attributes are calculated: 

• Maximum/minimum/mean distances between pharmacophore features 

• Maximum/minimum/mean distances pharmacophore features and binding site 

centroid 

• Fragment-receptor interaction scores for the set of fragments used to annotate 

features in the pharmacophore model 

• Counts for each feature type (Hyd, Don, Acc, etc.) comprising the model 

• Feature type proportions (X of 7 features are of Type Y) 

Once calculations are complete, attributes for pharmacophore models are stored on an 

entry-by-entry basis in a database titled 'ph4_data.mdb'. The 'match_features' and 'Hits' 

fields are left empty for each entry and will need to be filled in manually. 

Arguments 

rec_name: name of the target, entered as a token (e.g. 'GPR37') 

receptor: receptor structure filename 

function ph4_EditorWkeyList; 
function ph4_EditorGetData; 
function prolig_Calculate; 
 
//CALCULATE DISTANCES BETWEEN FEATURES 
local function feat_dist_calc [receptor, mdb] 
 
write 'Calculating feature distances...\n'; 
Open receptor; 
local ph4; 
local ph4_files = flist [[],'*.ph4']; 
 
// open sitefinder 
loop 
    Open '$MOE/svl/run/sitefind.svl'; 
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    local wkey2 = WindowKeyList[]; 
    WindowTrigger [wkey2, [panel:'Apply']]; 
    WindowTrigger [wkey2, [disp_aselect:1]]; 
    sleep 0.2; 
    if notnull SelectedAtoms[] then break; 
    endif 
endloop; 
 
    sleep 5; 
    WindowDestroy wkey2; 
    local site_center = oCentroid SelectedAtoms[]; 
    local site_dum = mol_Create [ '', [ '', '', '', 1 ],  
            [ '*', 1, " ", 'none', 1 ],  
            [ 'LP', 0, 'sp', 0, 0, [ [] ], 0, 'DU', 0, 
site_center(1),site_center(2),site_center(3) ] ]; 
    aSetSelected [SelectedAtoms[], 0]; 
    site_dum = cAtoms site_dum; 
 
local entry; 
 
for ph4 in ph4_files loop 
    Open ph4; 
    local wkey = ph4_EditorWkeyList []; 
    local [fatoms] = cAtoms last droplast Chains[]; 
    local mtx = aDist [tr fatoms, fatoms]; 
    mtx = cat mtx; 
    mtx = pack mtx; 
    local max = max mtx; 
    local min = min mtx; 
    local mean = (add mtx)/(length mtx); 
    local mtx2 = aDist [site_dum, fatoms]; 
    local mean_2 = (add mtx2)/(length mtx2); 
    local min_2 = first sort mtx2; 
    local max_2 = last sort mtx2; 
 
    local value = [ 
        score_type: swrite ['{G}', fbase ph4],  
        max_feat: max,  
        min_feat: min,  
        avg_feat: mean,  
        max_centr: max_2,  
        min_centr: min_2,  
        avg_centr: mean_2]; 
     
    db_Write [mdb, 0, value]; 
    sleep 2; 
    WindowDestroy wkey; 
endloop 
 
write 'Done calculating feature distances.\n'; 
 
endfunction 
 
//CALCULATE FEATURE COMPOSITION// 
local function featcomp_calc [receptor_name, mdb]; 
local ph4, feature, feat_name, entry; 
local ph4s = flist[[], '*.ph4']; 
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local hyd_count = 0; 
local don_count = 0; 
local acc_count = 0; 
local donhyd_count = 0; 
local catdon_count = 0; 
local hydaro_count = 0; 
local aniacc_count = 0; 
local donacc_count = 0; 
local i = 1; 
local feat_types = [ 
            'Hyd',  
            'Don',  
            'Acc',  
            'Don|Hyd', 
            'Cat&Don', 
            'Hyd|Aro', 
            'Ani&Acc', 
            'Don&Acc' 
            ]; 
 
local entry_count = 0; 
local entries = db_Entries mdb; 
 
write 'Calculating feature compositions...\n'; 
 
for ph4 in ph4s loop 
    Open ph4; 
    local data = ph4_EditorGetData first ph4_EditorWkeyList []; 
    local features = data.F.expr; 
    for feat_name in feat_types loop 
        local tf = feat_name == features; 
        tf = add tf; 
        if feat_name == 'Hyd' then 
            hyd_count = hyd_count + tf; 
        elseif feat_name == 'Don' then 
            don_count = don_count + tf; 
        elseif feat_name == 'Acc' then 
            acc_count = acc_count + tf; 
        elseif feat_name == 'Don|Hyd' then 
            donhyd_count = donhyd_count + tf; 
        elseif feat_name == 'Cat&Don' then 
            catdon_count = catdon_count + tf; 
        elseif feat_name == 'Hyd|Aro' then 
            hydaro_count = hydaro_count + tf; 
        elseif feat_name == 'Ani&Acc' then 
            aniacc_count = aniacc_count + tf; 
        else  
            donacc_count = donacc_count + tf; 
        endif 
 
        i = inc i; 
        tf = 0; 
    endloop 
 
    local feat_count = hyd_count + don_count + acc_count + donhyd_count 
+ catdon_count + hydaro_count + aniacc_count + donacc_count; 
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    entry_count = inc entry_count; 
    db_Write [mdb, entries(entry_count), tagpoke[[],'hyd', hyd_count]]; 
    db_Write [mdb, entries(entry_count), tagpoke[[],'don', don_count]]; 
    db_Write [mdb, entries(entry_count), tagpoke[[],'acc', acc_count]]; 
    db_Write [mdb, entries(entry_count), tagpoke[[],'donhyd', 
donhyd_count]]; 
    db_Write [mdb, entries(entry_count), tagpoke[[],'catdon', 
catdon_count]]; 
    db_Write [mdb, entries(entry_count), tagpoke[[],'hydaro', 
hydaro_count]]; 
    db_Write [mdb, entries(entry_count), tagpoke[[],'aniacc', 
aniacc_count]]; 
    db_Write [mdb, entries(entry_count), tagpoke[[],'donacc', 
donacc_count]]; 
    db_Write [mdb, entries(entry_count), tagpoke[[],'features', 
feat_count]]; 
    db_Write [mdb, entries(entry_count), tagpoke[[],'hyd_prop', 
hyd_count/feat_count]]; 
    db_Write [mdb, entries(entry_count), tagpoke[[],'don_prop', 
don_count/feat_count]]; 
    db_Write [mdb, entries(entry_count), tagpoke[[],'acc_prop', 
acc_count/feat_count]]; 
    db_Write [mdb, entries(entry_count), tagpoke[[],'donhyd_prop', 
donhyd_count/feat_count]]; 
    db_Write [mdb, entries(entry_count), tagpoke[[],'catdon_prop', 
catdon_count/feat_count]]; 
    db_Write [mdb, entries(entry_count), tagpoke[[],'hydaro_prop', 
hydaro_count/feat_count]]; 
    db_Write [mdb, entries(entry_count), tagpoke[[],'aniacc_prop', 
aniacc_count/feat_count]]; 
    db_Write [mdb, entries(entry_count), tagpoke[[],'donacc_prop', 
donacc_count/feat_count]]; 
 
    if anytrue 
[[hyd_count,don_count,acc_count,donhyd_count,catdon_count,hydaro_count,
aniacc_count,donacc_count] == feat_count] then 
        db_Write [mdb, entries(entry_count), tagpoke[[],'all_same', 
1]]; 
    else 
        db_Write [mdb, entries(entry_count), tagpoke[[],'all_same', 
0]]; 
    endif 
 
    sleep 0.5; 
    WindowDestroy last WindowKeyList[]; 
 
    hyd_count=0;  
    don_count=0; 
    acc_count=0; 
    donhyd_count=0; 
    catdon_count=0; 
    hydaro_count=0; 
    aniacc_count=0; 
    donacc_count=0; 
     
endloop 
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WindowDestroy ph4_EditorWkeyList []; 
write 'Done calculating feature compositions.\n'; 
endfunction 
 
//CALCULATE S_SCORE// 
 
local function s_score_calc [mdb] 
local frag1_chain, frag2_chain, frag3_chain, frag4_chain, frag5_chain; 
local frag1_name, frag2_name, frag3_name, frag4_name, frag5_name; 
local fragfiles = flist[[], '*_fragments.moe']; 
local fragfile; 
local entries = db_Entries mdb; 
local i = 0; 
 
write 'Calculating s_scores...\n'; 
 
for fragfile in fragfiles loop 
    Close [force:1, viewreset:1, delgobj:1];  // close any open 
structures; 
    Open fragfile; 
    local chains = Chains[]; 
    local [rec_atoms] = cAtoms chains(1); // get receptor atoms 
    local frags = dropfirst chains; // create subset of just fragments 
    local frag_chain; 
    local ligkeys = cat cAtoms frags; 
    local dummy_mask = aElement ligkeys <> 'LP'; 
    ligkeys = ligkeys | dummy_mask; 
    local use_frags = []; 
    local sel_atoms = []; // empty vector for fragment atoms that are 
to be selected 
         
    local itypes = ['Hbond', 'Metal', 'Ionic', 'Covalent', 'Arene', 
'Distance']; 
        local iopt = [ 
            emin_hb:        minE[-0.1, 0.10], 
            emin_hpi:       minE[-0.1, 0.10], 
            emin_ion:       0.10, 
            distance_threshold: 4.5, //4.5 default 
            layoutrechb:        1   // incl. rec-rec hbond in layout 
            ]; 
     
    //from prolig2d.svl, calculates fragments with strong interactions 
    local iract = prolig_Calculate [itypes, ligkeys, rec_atoms, iopt]; 
    aSetSelected [ligkeys, 1]; 
    local [iract_2, iract_3] = [iract(2), iract(3)]; 
    local lrmask = indexof [iract_2, ligkeys] and indexof [iract_3, 
rec_atoms]; 
    local rlmask = indexof [iract_3, ligkeys] and indexof [iract_2, 
rec_atoms]; 
    local mask = andE [indexof [iract(1), ['Hbond', 'Metal', 'Ionic', 
'Covalent']],lrmask or rlmask]; 
    local s_lim = select [iract(2), iract(3), lrmask] | mask;   // 
multi atom 
    local s_rim = select [iract(3), iract(2), lrmask] | mask;   // for 
arene 
    local s_score = iract(4) | mask; 
    local mean_score = (add s_score)/(length s_score); 



 

 326 

     
    //write s_score to mdb 
    i = inc i; 
    db_Write [mdb, entries(i), tagpoke[[],'s_score', mean_score]]; 
endloop 
 
write 'Done calculating s_scores.\n';    
  
endfunction 
 
//GLOBAL FUNCTION// 
 
global function scorebased_datacollection [rec_name, receptor] 
Close [force:1, viewreset:1, delgobj:1];  // close any open structures 
 
//create database that ph4 data will be filled in to 
local mdb_key = db_Open ['ph4_data.mdb', 'create']; 
 
//ensure fields for data to be collected in ph4_data.mdb 
db_EnsureField [mdb_key, 'Receptor', 'char' ]; 
db_EnsureField [mdb_key, 'subset', 'char' ]; 
db_EnsureField [mdb_key, 'match_features', 'int' ]; 
db_EnsureField [mdb_key, 'score_type', 'char' ]; 
db_EnsureField [mdb_key, 's_score', 'float' ]; 
db_EnsureField [mdb_key, 'Hits', 'int' ]; 
db_EnsureField [mdb_key, 'max_feat', 'float' ]; 
db_EnsureField [mdb_key, 'min_feat', 'float' ]; 
db_EnsureField [mdb_key, 'avg_feat', 'float' ]; 
db_EnsureField [mdb_key, 'max_centr', 'float' ]; 
db_EnsureField [mdb_key, 'min_centr', 'float' ]; 
db_EnsureField [mdb_key, 'avg_centr', 'float' ]; 
db_EnsureField [mdb_key, 'hyd', 'int' ]; 
db_EnsureField [mdb_key, 'don', 'int' ]; 
db_EnsureField [mdb_key, 'acc', 'int' ]; 
db_EnsureField [mdb_key, 'donhyd', 'int' ]; 
db_EnsureField [mdb_key, 'catdon', 'int' ]; 
db_EnsureField [mdb_key, 'hydaro', 'int' ]; 
db_EnsureField [mdb_key, 'aniacc', 'int' ]; 
db_EnsureField [mdb_key, 'donacc', 'int' ]; 
db_EnsureField [mdb_key, 'features', 'int' ]; 
db_EnsureField [mdb_key, 'all_same', 'int' ]; 
db_EnsureField [mdb_key, 'hyd_prop', 'float' ]; 
db_EnsureField [mdb_key, 'don_prop', 'float' ]; 
db_EnsureField [mdb_key, 'acc_prop', 'float' ]; 
db_EnsureField [mdb_key, 'donhyd_prop', 'float' ]; 
db_EnsureField [mdb_key, 'catdon_prop', 'float' ]; 
db_EnsureField [mdb_key, 'hydaro_prop', 'float' ]; 
db_EnsureField [mdb_key, 'aniacc_prop', 'float' ]; 
db_EnsureField [mdb_key, 'donacc_prop', 'float' ]; 
 
Open 'ph4_data.mdb'; 
 
feat_dist_calc [receptor, mdb_key]; 
s_score_calc [mdb_key]; 
featcomp_calc[receptor, mdb_key]; 
 
local entries = db_Entries mdb_key; 



 

 327 

local entry; 
 
for entry in entries loop 
    db_Write [mdb_key, entry, tagpoke[[],'subset', string ftail cd 
[]]]; 
    db_Write [mdb_key, entry, tagpoke[[],'Receptor', string rec_name]]; 
endloop 
 
write 'Done.\n'; 
 
endfunction 
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scorebased_ph4gen.svl 

Description: This script is used to generate pharmacophore models using fragments 

placed with the MultiFragment Search tool. Each MFSS output is sorted by 4 different 

scores: 

1. dE(class) 

2. dE 

3. dU(class) 

4. dU 

For each iteration of this script, the MFSS output database will be sorted by 1 of the 4 

scores and pharmacophore models will be created. For each loop of pharmacophore 

model generation, n+1 fragments will be created (starting with n = 0) in the system and 

pharmacophore feature distances will be compared. Fragments that do not fit the 

specified distance cutoffs will be removed from the system. Any remaining fragment 

atoms possessing interactions with the receptor will then be annotated as pharmacophore 

model features. This process repeats until 7 features are present in the pharmacophore 

model. 

Arguments 

fragment_sets: 0 if using a single output .mdb and receptor, 1 if generating 

pharmacophore models in a directory containing subdirectories with differing MFSS 

outputs. 

function ph4_Search; 
function Close; 
function Open; 
function prolig_Calculate; 
function pro_Contacts; 
function db_ImportASCII; 
function ph4_aType; 
function ph4_EditorWkeyList; 
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function ph4_EditorGetData; 
function fwrite_PH4; 
function QuaSAR_DescriptorMDB; 
function feature_search_dir_7feats; 
function pharmacount_dir; 
 
///////////////////PHARMACOPHORE GENERATION//////////////////////// 
    local function SBP_7feats [receptor, database_file, sortfield] 
    local features_length = 0; 
    local max_i = 0; //change starting fragments, default = 0 
 
    QuaSAR_DescriptorMDB [database_file, 'mol' , 'ASA_H']; 
 
    Close [force:1, viewreset:1, delgobj:1];  // close any open 
structures 
    Open receptor; 
 
    logfile tok_cat [receptor, '_', sortfield, '.txt']; 
    // open sitefinder 
    local tcount = 0; 
    local tatoms = []; 
    loop 
        tcount = tcount + 1; 
        Open '$MOE/svl/run/sitefind.svl'; 
        local wkey2 = WindowKeyList[]; 
        if tcount = 1 then  
            WindowTrigger [wkey2, [panel:'Apply']]; 
        endif 
         
        WindowTrigger [wkey2, [disp_aselect:1]]; 
        sleep 0.5; 
    if notnull SelectedAtoms[] then break; 
    endif 
    endloop; 
     
    sleep 1; 
    WindowDestroy wkey2; 
 
 
    local site_center = oCentroid SelectedAtoms[]; 
    local site_dum = mol_Create [ 'BP Centroid', [ 'centroid', '', '', 
1 ], // create a dummy atom representing the centroid of the BP 
            [ '*', 1, " ", 'none', 1 ],  
            [ 'LP', 0, 'sp', 0, 0, [ [] ], 0, 'DU', 0, 
site_center(1),site_center(2),site_center(3) ] ]; 
    aSetSelected [Atoms[], 0]; 
    site_dum = cAtoms site_dum; 
     
    //BP Centroid has been created 
 
    while features_length < 7 loop // change minimum feature number, 
default is 7 
        max_i = max_i + 1; 
        local entry_key, entry, x; 
        local mdb_key = db_Open [database_file, 'read-write']; //open 
database with fragments 
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        db_Sort [mdb_key, [sortfield, 'ASA_H'], [0,1]]; //sort fields 
by score (ascending) then ASA_H (descending) 
        local entries = db_Entries database_file; 
        local scores = []; 
        local centroids = []; 
        local dummies = []; 
        local i=0; 
        for entry in entries while i < max_i loop // loop creates max_i 
number of fragments 
            local [ligand] =db_ReadFields [mdb_key, entry,'mol']; //get 
structure from fieldname 
            local [ligand_chain, ligand_name] =db_CreateMolecule 
ligand; 
            local centroid = oCentroid ligand_chain; 
            local dum = mol_Create [ '', [ 'frag. centroid', '', '', 1 
], // create a centroid dummy atom for each fragment 
                [ '*', 1, " ", 'none', 1 ],  
                [ 'LP', 0, 'sp', 0, 0, [ [] ], 0, 'DU', 0, 
centroid(1),centroid(2),centroid(3) ] ]; 
            scores = append[scores, db_ReadFields [mdb_key, entry, 
sortfield]]; 
            dummies = cat [dummies, cAtoms dum]; 
            i = i+1; 
         
        endloop 
         
        //frag dummies have been created 
         
        aSetSelected [dummies,1]; 
        local matrix = aDist [tr dummies, dummies]; 
        local matrix2 = aDist [site_dum, dummies]; // distance matrix 
with distance from BP centroid to fragments 
        i=0; 
        local cnums = cNumber oParent oParent dummies; 
        local chains = Chains[]; 
        local dummydist; 
        local frag_delete = []; 
        local dum_delete = []; 
        local scores2 = scores;  
 
 
        // FRAGMENT TO CENTROID CHECK 
        for dummydist in matrix2 loop // find fragments that are far 
(>10 A) from the center of the binding site 
            i=i+1; 
            local fnum = cNumber chains(cnums(i)-1); 
            if dummydist > 10 and scores(i) == 0 and freq [0, scores2] 
> 1 then // if the dummy atom is 10 Ang. from the BP, delete it and its 
corresponding dummy atom 
                print cat['dummydist:', dummydist]; 
                oDestroy [cAtoms chains(cnums(i)-1)]; 
                oDestroy [cAtoms chains(cnums(i))]; 
                scores2 = dropfirst scores2; // drop 0 score 
                write ['Deleted {} because of distance from 
centroid.\n', cat [cName chains(cnums(i)-1), (fnum-1)/2]];  
            elseif dummydist > 10 and scores(i) == 0 then 
                print cat['dummydist:', dummydist]; 
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                oDestroy [cAtoms chains(cnums(i)-1)]; 
                oDestroy [cAtoms chains(cnums(i))]; 
                scores2 = dropfirst scores2; // drop 0 score 
                write ['Deleted {} because of distance from 
centroid.\n', cat [cName chains(cnums(i)-1), (fnum-1)/2]];  
            elseif dummydist > 10 then 
                print cat['dummydist:', dummydist]; 
                oDestroy [cAtoms chains(cnums(i)-1)]; 
                oDestroy [cAtoms chains(cnums(i))]; 
                scores2 = diff[scores2, scores(i)]; // remove deleted 
fragment's score from score matrix 
                write ['Deleted {} because of distance from 
centroid.\n', cat [cName chains(cnums(i)-1), (fnum-1)/2]];  
            endif 
        endloop 
         
         
        fnum = []; 
        dummies = SelectedAtoms[]; // assign new dummy vector WITHOUT 
dummies that were too far from the centroid 
        aSetSelected [Atoms[], 0]; // deselect dummies 
         
        // END FRAGMENT TO CENTROID CHECK 
 
         
        aSetSelected [dummies, 1]; 
        local dum_chains = oParent oParent dummies; // create vector of 
dummy atoms chains so they can be deleted if they don't fit the 
distance cutoff 
        matrix = aDist [tr dummies, dummies]; // new distance matrix 
based on refreshed dummy vector 
         
        local mat_scored = [scores: scores2, dist: matrix]; // assign 
mat_scored.scores as scores2, the vector containing scores of fragments 
that haven't been deleted. Scores and dist matrix should be the same 
size 
        print mat_scored; 
        chains = Chains[]; 
        local d, r; 
        frag_delete = []; 
        i=0;    // reset count for new loop 
        cnums = cNumber oParent oParent dummies; 
 
        print mat_scored.dist; 
        print length mat_scored.dist; 
 
        for d in mat_scored.dist loop // loop through remainining 
fragments to see which overlap or are too far from other fragments.  
                          // scores2 remains the same and is checked, 
while mat_scored.scores is changed 
            if length d > 1 then 
                d = pack d; 
            endif 
            local fragtypes = rName cResidues dropfirst Chains[]; 
            local ft = fragtypes <> '*'; 
            print cat['d:', d]; 
            i = i+1; 
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            local s = scores2(i); 
            fnum = cNumber chains(cnums(i)-1); 
 
            if length pack (d < 0.5) > 0 and scores2(i) == 0 and freq 
[0, mat_scored.scores] > 1 and (fnum-1)/2 <> 1 then // fragments that 
overlap and have the same score 
                oDestroy cAtoms chains(cnums(i)-1); // destroy fragment 
atoms (doesn't destroy fragment chain which ensures correct numbering 
((fragment is before dummy chain, hence i-1))) 
                dummies = diff[dummies, cAtoms dum_chains(i)]; // 
reassign new dummy vector by dropping deleted dummy for new distance 
calc. 
                oDestroy cAtoms dum_chains(i); // destroy the dummy 
atom associated with the deleted fragment, necessary for new distance 
calculation 
                write ['Deleted {} because of overlap.\n', cat [cName 
chains(cnums(i)-1), (fnum-1)/2]];  
                print cat['d:', d]; 
                mat_scored.scores = dropfirst mat_scored.scores; 
                mat_scored.dist = aDist [tr dummies, dummies]; 
                 
            elseif length pack (d < 0.5) > 0 and anytrue (scores2(i) > 
mat_scored.scores) and (fnum-1)/2 <> 1 and length pack ft <> 1 then   
                oDestroy cAtoms chains(cnums(i)-1); // destroy fragment 
atoms (doesn't destroy fragment chain which ensures correct numbering 
((fragment is before dummy chain, hence i-1))) 
                dummies = diff[dummies, cAtoms dum_chains(i)];  // 
reassign new dummy vector by dropping deleted dummy for new distance 
calc. 
                oDestroy cAtoms dum_chains(i); 
                write ['Deleted {} because of overlap and score.\n', 
cat [cName chains(cnums(i)-1), (fnum-1)/2]];  
                print cat['d:', d]; 
                mat_scored.scores = diff[mat_scored.scores, 
mat_scored.scores(indexof[s, mat_scored.scores])]; 
                mat_scored.dist = aDist [tr dummies, dummies]; 
 
 
            elseif length pack (d < 15) <= 1 and scores2(i) == 0 and 
length pack ft > 2  and (fnum-1)/2 <> 1 and length pack ft <> 1 then 
//and anytrue (mat_scored.scores(i) > mat_scored.scores) then 
                oDestroy cAtoms chains(cnums(i)-1); // destroy fragment 
atoms (doesn't destroy fragment chain which ensures correct numbering 
((fragment is before dummy chain, hence i-1))) 
                dummies = diff[dummies, cAtoms dum_chains(i)];  // 
reassign new dummy vector by dropping deleted dummy for new distance 
calc. 
                oDestroy cAtoms dum_chains(i); 
                write ['Deleted {} because of distance from other 
fragments.\n', cat [cName chains(cnums(i)-1), (fnum-1)/2]];  
                print cat['d:', d]; 
                mat_scored.scores = dropfirst mat_scored.scores; 
                mat_scored.dist = aDist [tr dummies, dummies]; 
         
 
            elseif length pack (d < 15) <= 1 and length pack ft > 2  
and (fnum-1)/2 <> 1 then 
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                oDestroy cAtoms chains(cnums(i)-1); // destroy fragment 
atoms (doesn't destroy fragment chain which ensures correct numbering 
((fragment is before dummy chain, hence i-1))) 
                dummies = diff[dummies, cAtoms dum_chains(i)];  // 
reassign new dummy vector by dropping deleted dummy for new distance 
calc. 
                oDestroy cAtoms dum_chains(i); 
                write ['Deleted {} because of distance from other 
fragments.\n', cat [cName chains(cnums(i)-1), (fnum-1)/2]];  
                print cat['d:', d]; 
                mat_scored.scores = diff[mat_scored.scores, 
mat_scored.scores(indexof[s, mat_scored.scores])]; 
                mat_scored.dist = aDist [tr dummies, dummies]; 
 
 
            endif 
        endloop 
         
        aSetSelected [Atoms[], 0]; 
             
        chains = Chains[]; 
        local [rec_atoms] = cAtoms chains(1); // get receptor atoms 
        local frags = dropfirst chains; // create subset of just 
fragments 
        local frag_chain; 
        local ligkeys = cat cAtoms frags; 
        local dummy_mask = aElement ligkeys <> 'LP'; 
        ligkeys = ligkeys | dummy_mask; 
        local use_frags = []; 
        local sel_atoms = []; // empty vector for fragment atoms that 
are to be selected 
         
        local itypes = ['Hbond', 'Metal', 'Ionic', 'Covalent', 'Arene', 
'Distance']; 
            local iopt = [ 
        emin_hb:        minE[-0.1, 0.10], 
        emin_hpi:       minE[-0.1, 0.10], 
        emin_ion:       0.10, 
        distance_threshold: 4.5, //4.5 default 
        layoutrechb:        1   // incl. rec-rec hbond in layout 
        ]; 
 
         
        //from prolig2d.svl, calculates fragments with strong 
interactions 
        local iract = prolig_Calculate [itypes, ligkeys, rec_atoms, 
iopt]; 
        local [iract_2, iract_3] = [iract(2), iract(3)]; 
        local lrmask = indexof [iract_2, ligkeys] and indexof [iract_3, 
rec_atoms]; 
        local rlmask = indexof [iract_3, ligkeys] and indexof [iract_2, 
rec_atoms]; 
        local mask = andE [indexof [iract(1), ['Hbond', 'Metal', 
'Ionic', 'Covalent']],lrmask or rlmask]; 
        local s_lim = select [iract(2), iract(3), lrmask] | mask;   // 
multi atom 
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        local s_rim = select [iract(3), iract(2), lrmask] | mask;   // 
for arene 
        local s_score = iract(4) | mask; 
        local s_score_sorted = sort s_score; 
        local score; 
        local s_lim_sorted = []; 
        aSetSelected [s_lim,1]; //select atoms that have strong 
interactions 
        write ['Fragments with strong interactions: {} \n', uniq cat 
[cName oParent oParent s_lim]];  
        local atom; 
        local ring_centroids = []; 
        for score in s_score_sorted loop 
            s_lim_sorted = cat [s_lim_sorted, get [s_lim, indexof 
[score, s_score]]]; 
        endloop; 
         
        for atom in s_lim_sorted loop // for atoms with strong 
interactions 
            print aElement atom; 
            if [aIn6Ring atom] == 1 then // 6-ring fragments have 
hydrophobic centers, making a dummy atom conserves the Hyd center while 
allowing for removal of the AtomQ queries which are unnecessary 
                rSetSelected [oParent atom, 1]; 
                centroid = oCentroid [oParent atom]; 
                local mol = mol_Create [ '', [ '', '', '', 1 ],  
                [ '*', 1, " ", 'none', 1 ],  
                [ 'LP', 0, 'sp', 0, 0, [ [] ], 0, 'DU', 0, 
centroid(1),centroid(2),centroid(3) ] ]; 
                ring_centroids = cat[ring_centroids, cAtoms last 
Chains[]]; 
            endif 
             
             
            local [parent_atoms] = rAtoms oParent atom; 
            local ox_mask = aElement parent_atoms == 'O'; 
            local n_mask = aElement parent_atoms == 'N'; 
            local ox_atoms = parent_atoms | ox_mask; 
            local n_atoms = parent_atoms | n_mask; 
            local [selected_ox] = aSelected [ox_atoms]; 
            local [selected_n] = aSelected [n_atoms]; 
            if cName oParent oParent atom == 'methylsulfonate' and 
aElement atom == 'O' and geE [add selected_ox, 2] == 1 then 
                aSetSelected [atom, 0]; 
            endif 
             
            if cName oParent oParent atom == 'acetate ion' and aElement 
atom == 'O' and geE [add selected_ox, 2] == 1 then 
                aSetSelected [atom, 0]; 
            endif 
             
            if cName oParent oParent atom == 'methyltetrazolium' and 
aElement atom == 'N' and geE [add selected_n, 2] == 1 then 
                aSetSelected [atom, 0]; 
            endif 
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            if cName oParent oParent atom == 'methylguanidinium' and 
aElement atom == 'N' and geE [add selected_n, 2] == 1 then 
                aSetSelected [atom, 0]; 
            endif 
             
            if cName oParent oParent atom == 'methylamidinium' and 
aElement atom == 'N' and geE [add selected_n, 2] == 1 then 
                aSetSelected [atom, 0]; 
            endif 
        endloop 
         
        local hyd_atom; 
        local chain;     
        for chain in Chains[] loop   
            if cName chain == '3-methylindole' then // create 
hydrophobic annotation point for 3-MI hydrophobic 5-membered ring 
                local [MIN_atoms] = cAtoms chain; 
                if anytrue freq [MIN_atoms, s_lim] == 1 then // ensure 
that 3-MI atoms are in s_lim 
                    local fivering_mask = aIn5Ring MIN_atoms; 
                    local fivering_atoms = MIN_atoms | fivering_mask; 
                    centroid = oCentroid fivering_atoms; 
                    hyd_atom = mol_Create [ '', [ '', '', '', 1 ],  
                    [ '*', 1, " ", 'none', 1 ],  
                    [ 'C', 0, 'sp3', 0, 0, [ [] ], 0, 'C', 0, 
centroid(1),centroid(2),centroid(3) ] ]; 
                    ring_centroids = cat[ring_centroids, cAtoms last 
Chains[]]; 
                endif 
            endif 
        endloop 
        aSetSelected [ring_centroids,1]; //select centroids to annotate 
rings as Hyd 
         
         
 
        local atoms = SelectedAtoms[]; 
        local atoms_type = ph4_aType atoms; 
        local info = [atoms: atoms, atype: atoms_type]; 
        i=1; 
 
         
        //run ph4 editor 
        run '$MOE/svl/run/ph4_edit_2.svl'; 
        local wkey = ph4_EditorWkeyList []; 
        WindowShow wkey; 
        if notnull SelectedAtoms[] == 1 then 
            WindowTrigger [wkey, [create_F:1024]]; 
                loop  
                    chains = Chains[]; 
                    local [features] = cAtoms last droplast chains; 
                    until notnull features 
                endloop 
        endif 
 
        chains = Chains[]; 
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        local data = ph4_EditorGetData wkey; 
        local feat = [atoms: features, names: data.F.expr]; 
         
        local feat_name; 
        local feat_delete = []; 
        i=0; 
        for feat_name in feat.names loop 
            i=i+1; 
            if feat_name == 'AtomQ' then 
                feat_delete = cat [feat_delete,feat.atoms(i)]; 
            endif 
        endloop 
         
         
        aSetSelected [Atoms[],0]; //deselect all features 
        aSetSelected [feat_delete,1]; //select AtomQ features to be 
deleted 
        sleep 2; 
        local nvp = WindowValues wkey; 
        local mainlist = nvp.mainlist(1); 
        local tf = feat.names == 'AtomQ'; 
        loop 
            if alltrue tf == 1 then 
                WindowTrigger [wkey, [button_delete:1024]]; 
                break; 
            elseif  length mainlist == length feat.atoms then // if 
selected atoms are all AtomQ then 
                nvp = WindowValues wkey; 
                mainlist = nvp.mainlist(1); 
                break; 
            elseif length mainlist < length feat.atoms then // if the 
mainlist length is less than the length of the feature atoms 
                WindowTrigger [wkey, [button_delete:1024]]; 
                break; 
            elseif length mainlist == 1 then 
                WindowDestroy wkey; 
                break; 
            endif 
        endloop 
         
        sleep 1; 
        [features] = cAtoms last droplast Chains[]; 
        features_length = length features; 
 
        // from random_ph4gen.svl // 
        loop 
            [features] = cAtoms last droplast chains;    
     
            local nums; 
 
            if length features == 13 then 
                nums = [8,9,10,11,12,13]; 
            elseif length features == 12 then 
                nums = [8,9,10,11,12]; 
            elseif length features == 11 then 
                nums = [8,9,10,11]; 
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            elseif length features == 10 then 
                nums = [8,9,10]; 
            elseif length features == 9 then 
                nums = [8,9]; 
            elseif length features == 8 then 
                nums = [8]; 
            endif 
 
 
            if length features > 7 then 
                WindowTrigger [wkey, [mainlist:nums]]; 
                if length SelectedAtoms[] < length features then 
                    WindowTrigger [wkey, [button_delete:1024]]; 
                endif 
            endif 
            sleep 0.1; 
            nvp = WindowValues wkey; 
            mainlist = nvp.mainlist(1); 
            if length features <= 7 then break; 
            endif 
        endloop 
        // end from random_ph4gen.svl // 
     
        [features] = cAtoms last droplast Chains[]; 
        features_length = length features; 
     
        SaveAs tok_cat [sortfield, '_ph4_fragments.moe']; 
        data = ph4_EditorGetData wkey; 
        fwrite_PH4 [tok_cat [sortfield,'.ph4'], data, [header:1]]; 
 
        print cat['features:',features_length]; 
        sleep 2; 
        if wkey == ph4_EditorWkeyList [] then 
            WindowDestroy wkey; 
        endif; 
         
        if features_length < 7 then 
            oDestroy dropfirst dropfirst Chains[]; // destroy 
everything except the receptor 
        endif 
    endloop; 
         
    write ['Done.\n']; 
    logfile[];   
    endfunction 
///////////////////END PHARMACOPHORE GENERATION//////////////////////// 
 
///////////////////RUN SBP 7 FEATS//////////////////////// 
//function to generate ph4s for each score type present in  
//the MCSS output database 
 
    local function run_SBP_7feats [receptor, database_file] 
 
    fdelete ['dE(class).ph4','dE.ph4','dU(class).ph4','dU.ph4']; 
 
    write 'Old ph4 files deleted.\n'; 
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    //number entries in _output.mdb 
    local entry_key; 
    local entries = db_Entries database_file; 
    local counter = 1; 
 
    db_EnsureField [database_file, 'index','int']; 
    for entry_key in entries loop 
        db_Write [database_file, entry_key, tagpoke[[],'index', 
counter]]; 
        counter = counter + 1; 
    endloop 
 
    write 'Index created in output DB.\n'; 
    logfile tok_cat [receptor, '_ph4log.txt']; 
 
    SBP_7feats [receptor, database_file, 'dE(class)']; 
 
    write 'dE(class) ph4 generated.\n'; 
 
    if length flist[[], '*.ph4'] == 1 then 
        SBP_7feats [receptor, database_file, 'dE']; 
        write 'dE ph4 generated.\n'; 
    endif 
 
    if length flist[[], '*.ph4'] == 2 then 
        SBP_7feats [receptor, database_file, 'dU(class)']; 
        write 'dU(class) ph4 generated.\n'; 
    endif 
 
 
    if length flist[[], '*.ph4'] == 3 then 
        SBP_7feats [receptor, database_file, 'dU']; 
        write 'dU(class) ph4 generated.\n'; 
    endif 
 
    write ['\n']; 
 
    logfile[]; 
 
    //Warning 'Done, click OK.'; 
 
    endfunction 
 
///////////////////END RUN SBP 7 FEATS//////////////////////// 
 
global function scorebased_ph4gen [fragment_sets]; //fragment_sets: 0 
or 1, depending on whether ph4s are being generated for each fragment 
set or not 
local folders = flist[]; 
local f_mask = ftype flist[] == 'dir'; 
folders = folders | f_mask; 
local folder, receptor, database_file; 
 
if fragment_sets == 0 then 
    receptor = FilePrompt ['Input Structure Selection', 'open', []]; 
    database_file = FilePrompt ['MultiFragment Search Output 
Selection', 'open', []]; 
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    run_SBP_7feats [receptor, database_file]; 
elseif fragment_sets == 1 then 
    for folder in folders loop 
        cd folder; 
        receptor = flist[[], '*_minrec.moe']; 
        database_file = flist[[], '*_output.mdb']; 
        run_SBP_7feats [receptor, database_file]; 
        cd '..'; 
    endloop 
endif  
 
Warning 'Done, click OK.'; 
 
endfunction 
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Alignment Scripts 

align_new_chains.svl 

Description: This function is used to align a database of receptors to a reference 

alignment that is contained in a .moe file. First, the reference file is opened and its chains 

are selected to be frozen during the alignment. For each entry in the database, the 

structure contained in 'mol_field' is then imported and aligned to the frozen reference 

chains. The newly aligned chain is then frozen in the same block as the reference chains 

prior to importing/aligning any new structure sequences. 

Arguments 

ref_alignment: .moe file containing a reference alignment 

mdb: database containing structures to align 

mol_field: field in mdb containing structures (e.g. 'mol_Refined') 

output_file: desired name for output file ending in .moe (e.g. 'output.moe') 

function pro_Align; 
global function align_new_chains [ref_alignment, mdb, mol_field, 
output_file] 
 
Close [force:1, viewreset:1, delgobj:1]; 
Open ref_alignment; 
local ref_chains = Chains[]; 
 
//generate vector for chain_blocks argument 
local i; 
 
local entries = db_Entries mdb; 
local entry, mol, mol_chain, mol_name, chain; 
//local j = 1; 
 
for entry in entries loop 
    local blocks = []; 
    for i = 1, length Chains[], 1 loop 
        blocks = cat [blocks, 1]; 
    endloop 
    [mol] = db_ReadFields[mdb, entry, mol_field]; 
    [mol_chain, mol_name] =db_CreateMolecule mol; 
    //j = inc j; 
    for chain in diff [Chains[], ref_chains] loop 
        //blocks = cat[blocks, j]; 
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        blocks = cat[blocks, 2]; 
    endloop 
    //print length Chains[]; 
    //print blocks; 
     
    //add new chain to ref_chains prior to next loop 
    ref_chains = Chains[]; 
 
    pro_Align [Chains[], [  
        mda:'blosum62', 
        mda2:'nuc', 
        method:'progressive', 
        gapstart:10, 
        gapextend:2, 
        gapstart_structural:1, 
        gapextend_structural:0.1, 
        max_iterations:100, 
        failure_count:10, 
        print_table:0, 
        multi_chain:0, 
        retain_frozen_gaps:1, 
        enable_structural:0, 
        realign_only:0, 
        superpose:1, 
        endgap_penalties:0, 
        round_robin:0, 
        shuffle:0, 
        selected_res_only:0, 
        restrict:'All Residues', 
        chain_blocks: blocks, 
        split_by_subunit:0, 
        optimize_gap_penalties:1, 
        verbose:1 ]]; 
 
    write ['Done aligning {} to the reference alignment.\n', cName last 
Chains[]]; 
 
    //sleep 100; 
endloop 
 
SaveAs output_file; 
 
endfunction 
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check_gap_positions.svl 

Description: This script is used to find gap positions in an alignment that is open in MOE. 

global function check_gap_positions [] 
 
local chains = Chains[]; 
local chain; 
local cMask = []; 
 
//loop through chains to delete null chains 
for chain in chains loop 
    if isnull cat oChildren chain then 
        oDestroy chain; 
    endif 
endloop 
 
//reset chains variable after deletion 
chains = Chains[]; 
 
//loop through chains to determine which chains are ligand chains 
//so they can be removed with cMask 
for chain in chains loop 
    local r_type = uniq rType cat oChildren chain; 
    if isnull r_type == 1 or r_type <> 'amino' then 
        cMask = cat [cMask, 0]; 
    else 
        cMask = cat [cMask, 1]; 
    endif 
endloop 
 
//remove ligand chains from chains 
chains = chains | cMask; 
 
//find max residue position in sequence editor 
local rposns = sort uniq cat rPos oChildren chains; 
print rposns; 
local max_rposn = max rposns; 
local rposn; 
 
local i; 
 
logfile 'log.txt'; 
 
write ['residue positions with no residue\n']; 
write['---------------------------------\n']; 
 
//loop through each chain position and chain to determine 
//which residue positions are empty 
for i = 1, max_rposn, 1 loop 
    local pos_count = 0; 
    for chain in chains loop 
    if anytrue [i == cat rPos oChildren chain] then 
        pos_count = inc pos_count; 
    endif 
    endloop 
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    if pos_count == 0 then 
        //write ['{}:{}\n', i, pos_count]; 
        write ['{}\n', i]; 
    endif 
    pos_count = 0; 
endloop 
     
logfile[]; 
 
endfunction 
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pairwise_alignment.svl 

Description: To use this script, save and load this file (SVL menu) and then load a .moe 

file containing the sequences you want aligned on a pairwise basis. Once the sequences 

are loaded, use the command pairwise_alignment [] to calculate sequence 

similarities. A similarity matrix will be written to ‘sequence_similarity_report.txt’. 

function pro_Align; 
function pro_ReadMDA; 
function _pro_Align_Residues; 
global function pairwise_alignment [] 
 
 
// Helper function to get aligned residue letter matrix from residue 
keys. 
// It returns the one-letter alignment and mask of gaps and unknown 
// residues (X). 
local function get_letter_matrix res 
    local pos   = app x_pack res; 
    local maxrp = maxR pos; 
    local sym   = apt put [[rep [".", maxrp]], pos, rLetter2 app pack 
res]; 
    local R = sym <> "."; 
    local X = sym <> "X" and R; 
    local mask = not andE not R; 
    sym = sym || [mask];        // pack alignment (subunit offset gaps) 
    R = R   || [mask]; 
    X = X   || [mask]; 
    return [sym, R, X]; 
endfunction 
 
// Return identity matrix for residues from atoms. 
local function get_identity_matrix [residues, opt] 
    local [seq, res, X] = get_letter_matrix residues; 
 
    local i, idx = x_id res, S = matid length res; 
    for i = 1, length seq loop 
    S(i) = put [S(i), idx, app add ((seq[i] == seq[idx]) and X[i])]; 
    idx = dropfirst idx; 
    endloop 
 
    S = 100 * (S + tr S) * invz app add res; 
    S = apt poke [S, x_id S, 100]; 
 
    return tr S; 
endfunction 
 
// Return similarity matrix for residues. This is here used for the 
// alignment check only! 
local function get_similarity_matrix [residues, opt] 
    local [seq, res, X] = get_letter_matrix residues; 
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    local [mat,sym] = pro_ReadMDA [opt.mda,opt.mda2]; //!!! for align 
check only 
 
    seq = apt indexof [seq, [sym]]; 
    seq = apt mput [seq, not seq, indexof ["X", sym]]; 
 
    local i, V, x = tr seq; 
    for i = 1, length seq loop; 
    V(i) = add (0 < apt get [mat[seq(i)], x] and X(i)); 
    endloop; 
 
    return tr (100 * V * invz app add res); 
endfunction 
 
////////END LOCAL FUNCTIONS///////////////// 
///////START GS CODE//////////////////////// 
//////////////////////////////////////////// 
 
local chains = Chains[]; 
local chain; 
local diff_chain; 
local similarities = []; 
local table_mat = []; 
local i; 
local prev_cnum = 0; 
 
//MATRIX GENERATION 
//create a "fluff" matrix containing the same number of rows/cols as 
there are chains 
for i = 1, length chains, 1 loop 
    table_mat = cat [table_mat, [igen length chains]]; 
endloop 
 
//CHAIN ALIGNMENT 
//for each chain loaded into the system, compare it to itself and every 
other chain 
//in the system on a pairwise basis. 
for chain in chains loop 
    for diff_chain in chains loop //using default pro_Align settings 
        pro_Align [ 
            [chain, diff_chain], 
            [ 
                mda: 'blosum62', 
                gapstart: 10.0, 
                gapextend: 2.0, 
                method: 'tree-based', 
                round_robin: 0, 
                shuffle: 0, 
                max_iterations: 100, 
                failure_count: 10, 
                enable_structural: 0, //sequence only alignment 
                gapstart_structural: 1.0, 
                gapextend_structural: 0.1, 
                realign_only: 0, 
                multi_chain: 0, 
                retain_frozen_gaps: 0, 
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                restrict: 'All Residues', 
                chain_blocks: [], 
                split_by_subunit: 1, 
                superpose: 0, 
                optimize_gap_penalties:0, 
                print_table: 0] 
            ]; 
    local compared_chains = cat [chain, diff_chain]; 
    local chain_number = first cNumber compared_chains; 
    //print cNumber compared_chains; DEBUG 
    local res = _pro_Align_Residues [compared_chains]; 
    local mat = get_identity_matrix [res]; 
    local chain_numbers = cNumber compared_chains; 
    local C1 = first chain_numbers; 
    local C2 = second chain_numbers; 
    local sim = last first mat; 
    local rev_sim = first last mat; 
    //since the output returned into the mat variable is odd, need to 
make sure that 
    //we don't overwrite a value in a row or column that has already 
been written. 
    // 
    //i.e. table writes row 1 and column 1 starting at [1,1], row 2 and 
column 2 
    //starting at [2,2], etc. 
    if C1 > prev_cnum and C2 > prev_cnum then 
        table_mat(C1) = poke [table_mat(C1), C2, sim]; 
        chain_numbers = reverse chain_numbers; 
        C1 = first chain_numbers; 
        C2 = second chain_numbers; 
        table_mat(C1) = poke [table_mat(C1), C2, rev_sim]; 
    endif 
 
    //print mat; DEBUG 
    endloop 
write ['Comparing chain {} to all other chains...\n', chain_number]; 
 
//update previous chain number for comparison in the next loop 
prev_cnum = inc prev_cnum; 
endloop 
 
//write table to svl commands window and save as .txt file 
logfile ['sequence_similarity_report.txt']; 
local chain_num; 
write ['\t\t']; 
for chain_num = 1, length chains, 1 loop 
    write ['{}\t', chain_num]; 
endloop 
 
write '\n'; 
 
local row; 
local counter = 0; 
local row_counter = 1; 
write ['{}:{}|', row_counter, tok_keep [cName chains(row_counter), 6]]; 
for row in table_mat loop 
    for sim in row loop 
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        write ['\t{f.1}', sim]; 
    endloop 
    row_counter = inc row_counter; 
    if row_counter <= length chains then 
        write ['\n{}:{}|', row_counter, tok_keep [cName 
chains(row_counter), 6]]; 
    else 
        write ['\n']; 
    endif 
endloop 
 
logfile[]; 
 
ted_Open 'sequence_similarity_report.txt'; 
endfunction 
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Docking Scripts 

create_docking_jobs.sh 

Description: This script will create a job file for docking on the HPC based on .svl 

docking scripts located in a directory. Use the command chmod u+x 

dock_job_create.sh to obtain ownership of the file and then use 

./dock_job_create.sh jobname to run the script, where jobname is the 

desired prefix for each numbered job file. 

jobname=$1 
i=1 
path='/public/apps/moe/moe_2019.0102/bin/moebatch -run' 
for file in *.svl 
 
do  
    {    
        echo '#!/bin/csh' 
        echo '#SBATCH --ntasks=4' 
        echo '#SBATCH --partition=computeq' 
        echo '#SBATCH --job-name='$jobname 
        echo $path $file 
    } > dock$i.sh 
 
    let i=i+1 
 
done 
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docking_figuregen_mdb.svl 

Description: This script will allow a user to generate .PNG images of every ligand-

receptor complex contained in a database. Receptor ribbon color, ligand atom color and 

residue atom color (if desired) can be set using the color arguments. 

Arguments 

mdb: database containing docked poses 

ribbon_type: type of backbone to be rendered 

ligand_color: desired ligand atom color. Available colors are listed below in the 

PLOT_COLORS section. 

rec_color: desired receptor ribbon color. 'default' will be the default MOE color scheme, 

otherwise use a color listed in PLOT_COLORS 

res_nums: UID numbers of residues whose atoms are to be displayed entered as a vector 

of integers ex. [34, 65, 144] 

//PLOT_COLORS: 
//['black','red','green','blue','yellow','cyan','magenta','orange','bro
wn','pink','gray','darkRed','darkGreen','darkBlue','darkYellow','darkCy
an','darkMagenta','darkOrange','darkBrown','darkPink'] 
 
//RIBBON TYPES: 
//['none', 'line', 'trace', 'flat', 'tube', 'slab', 'auto'] 
 
//EXAMPLE COMMAND W/ RESIDUES DISPLAYED: 
//docking_figuregen ['output.mdb', 'tube', 'green', 'red', 'blue', 
[100, 110, 114]] 
 
//EXAMPLE COMMAND W/ NO RESIDUES DISPLAYED: 
//docking_figuregen ['output.mdb', 'tube', 'green', 'red', 'blue', []] 
 
//close any open structures 
Close [force:1, viewreset:1, delgobj:1];   
 
local chain, entry, ligand_chain, receptor_chain, receptor_name, 
ligand_name, res_num; 
 
local entries = db_Entries [mdb]; 
local i = 1; 
 
for entry in entries loop 
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    local [receptor] = db_ReadFields [mdb, entry, 'receptor']; 
    local [ligand] = db_ReadFields [mdb, entry, 'mol']; 
    [receptor_chain, receptor_name] =db_CreateMolecule receptor; 
    [ligand_chain, ligand_name] =db_CreateMolecule ligand; 
 
    //hide all receptor ribbons/atoms 
    rSetRibbonEnable [oChildren receptor_chain, 0]; 
    aSetHidden [oChildren oChildren Chains[], 1]; 
 
    //render receptor and ligand atoms 
    rSetRibbonMode [oChildren receptor_chain, ribbon_type]; 
    if rec_color == 'default' then 
        rSetRibbonColorBy [oChildren receptor_chain, 'r:aseg']; 
    else 
        rSetRibbonRGB [oChildren receptor_chain, icolor rec_color]; 
        rSetRibbonColorBy [oChildren receptor_chain, 'rgb']; 
    endif 
    rSetRibbonEnable [oChildren receptor_chain, 1]; //render receptor 
    aSetHidden [cat oChildren oChildren ligand_chain, 0]; //render 
ligand atoms 
    aSetRGB [cat oChildren oChildren ligand_chain, icolor 
ligand_color]; 
    aSetColorBy [cat oChildren oChildren ligand_chain, 'a:rgb']; 
 
    //render specific residues if res_nums argument is entered 
    if notnull res_nums then 
        local [residues] = oChildren receptor_chain; 
        aSetRGB [cat oChildren residues, icolor res_color]; //set rgb 
color for residue atoms 
        aSetColorBy [cat oChildren residues, 'a:rgb']; // change 
residue atom color 
        for res_num in res_nums loop 
            local rindex = indexof [res_num, rUID residues]; 
            aSetHidden [cat oChildren residues(rindex), 0]; //render 
residue atoms 
        endloop 
    endif 
 
    //prompt user to adjust view when first receptor is rendered 
    if i == 1 then 
            local wkey = WindowCreate [ 
            name : 'ViewPrompt', 
        location: 'MOE', 
        title : 'Adjust the view and visualization settings to your 
liking.', 
        Button: [ 
                    name : 'button', 
                    text : 'OK' 
                ]        
        ]; 
        local v = WindowWait [wkey]; 
        WindowDestroy wkey; 
    endif 
 
    //export current view of system as a .png image 
    local image = ViewGetImage []; 
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    fwrite_PNG [tok_cat[fbase mdb, '_entry_', totok i, '.png'], image, 
[ 
        transparent_background: 1, 
        dpi: 600 
        ] 
    ]; 
 
    sleep 1; 
 
    //re-hide receptor and ligand atoms 
    rSetRibbonEnable [oChildren receptor_chain, 0]; //render receptor 
    aSetHidden [oChildren oChildren ligand_chain, 1]; //render ligand 
atoms 
     
    //hide residues 
    if notnull res_nums then 
        for res_num in res_nums loop 
            rindex = indexof [res_num, rUID residues]; 
            aSetHidden [cat oChildren residues(rindex), 1]; //render 
residue atoms 
        endloop 
    endif 
    //destroy ligand/receptor before reading in the next entry 
        oDestroy [ligand_chain]; 
    oDestroy [receptor_chain]; 
 
    i = inc i; 
endloop  
 
endfunction 
  



 

 352 

gen_tm_database.svl 

Description: This script is used to add fields representing Ballesteros-Weinstein residue 

numbers to a database based on given maximum start (max_start) and maximum end 

(max_end) values for a set of GPCR with indexed positions. For example, our work with 

391 GPCR structures determined that the earliest start point for TM1 across all studied 

structures was 29 residues behind TM1 residue 1.50. This work also identified that the 

latest end point for TM1 was 10 residues ahead of TM1 residue 1.50. Given the 

command: 

 gen_TM_database['../gpcr db tm evaluation 

050322_gs.mdb', ['index','PDBID'], 

'364_interaction_energies.mdb', 1, 29, 10] 

this script will fill a database with fields meant to be filled with interaction types and 

energies for residues 1.21 (50 - max_start) to 1.60 (50 + max_end). If the database does 

not already exist, it will be created. 

Arguments 

idx_mdb: database containing a field numbering each entry as well as a field containing 

PDBid codes 

fields: names of the fields containing entry numbers/PDBid codes in idx_mdb (ex. 

['index', 'PDBID']) 

mdb: desired filename of database to be created 

TM_num: TM domain (1, 2, 3, 4, 5, 6 or 7) to create fields for 

max_start: absolute value of the maximum difference in residue position between TM 

X.50 and the first residue of TM X across all structures 
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max_end: absolute value of the maximum difference in residue position between TM 

X.50 and the last residue of TM X across all structures 

function db_ImportDB; 
global function gen_TM_database [idx_mdb, fields, mdb, TM_num, 
max_start, max_end] 
 
// create a database to fill with fields representing TM residue 
if notnull flist[[], mdb] == 0 then 
    local mdb_key = db_Open [mdb, 'create']; 
endif 
 
local TM_50 = TM_num + 0.50; 
local min_res_num = 50 - max_start; 
local max_res_num = 50 + max_end; 
local i, tok_res; 
 
// import fields from idx_mdb if they are not present in the database 
if isnull join [fields, first db_Fields[mdb]] then 
    db_ImportDB [mdb, idx_mdb, fields, fields, ['int', 'char'], []]; 
endif 
 
// create fields for the minimum TM residue to TM X.50 - 0.01 
for i = min_res_num, 50, 1 loop 
    tok_res = totok i; 
    db_EnsureField [mdb, tok_cat[totok TM_num, '.',  tok_res, 
'_intenergysum'], 'float']; 
    db_EnsureField [mdb, tok_cat[totok TM_num, '.',  tok_res, 
'_inttype1'], 'char']; 
    db_EnsureField [mdb, tok_cat[totok TM_num, '.', tok_res,  
'_intenergy1'], 'float']; 
    db_EnsureField [mdb, tok_cat[totok TM_num, '.',  tok_res, 
'_inttype2'], 'char']; 
    db_EnsureField [mdb, tok_cat[totok TM_num, '.', tok_res,  
'_intenergy2'], 'float']; 
endloop 
 
// create fields for the x.50 residue 
db_EnsureField [mdb, tok_cat[tok_cat[totok TM_50, '0'], 
'_intenergysum'], 'float']; 
db_EnsureField [mdb, tok_cat[tok_cat[totok TM_50, '0'], '_inttype1'], 
'char']; 
db_EnsureField [mdb, tok_cat[tok_cat[totok TM_50, '0'], '_intenergy1'], 
'float']; 
db_EnsureField [mdb, tok_cat[tok_cat[totok TM_50, '0'], '_inttype2'], 
'char']; 
db_EnsureField [mdb, tok_cat[tok_cat[totok TM_50, '0'], '_intenergy2'], 
'float']; 
 
// create fields for TM X.50 - 0.01 to the maximum TM residue 
for i = 51, max_res_num, 1 loop 
    tok_res = totok i; 
    db_EnsureField [mdb, tok_cat[totok TM_num, '.', tok_res,  
'_intenergysum'], 'float']; 
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    db_EnsureField [mdb, tok_cat[totok TM_num, '.',  tok_res, 
'_inttype1'], 'char']; 
    db_EnsureField [mdb, tok_cat[totok TM_num, '.', tok_res,  
'_intenergy1'], 'float']; 
    db_EnsureField [mdb, tok_cat[totok TM_num, '.',  tok_res, 
'_inttype2'], 'char']; 
    db_EnsureField [mdb, tok_cat[totok TM_num, '.', tok_res,  
'_intenergy2'], 'float']; 
endloop 
 
write 'Done.\n'; 
 
endfunction 
  



 

 355 

get_gpcr_interactions.svl 

Description: This script is used to calculate interaction energies for all ligand-receptor 

pairings within a .moe alignment. Prior to using this script, the gen_tm_database.svl 

script must first be used to generate a database containing 5 fields for each Ballesteros-

Weinstein (BW) numbered residue in transmembrane domains 1-7. This database serves 

as the output_mdb argument for this script. The ordering of the PDBid entries in this 

database must match the ordering of the structures in the alignment. For each ligand-

receptor pairing in the alignment, this script will first identify the receptor chain. For each 

residue in TM domains 1-7 of the receptor chain (denoted by the indices in indices_mdb), 

5 cells are filled in the database that denote: 

1. Overall interaction energy between the residue and its receptor's ligand 

2. The type of the 1st interaction made between the residue and ligand 

3. The interaction energy of the 1st interaction 

4. The type of the 2nd interaction made between the residue and ligand 

5. The interaction energy of the 2nd interaction 

Interaction scoring follows these rules: 

1. Overall interaction energies are summed. 

2. If a residue has no interaction energy and no interaction type, its interactions are 

scored as 0. 

3. If a residue has an interaction type but no interaction energy, it is scored as 0. 

4. If a residue does not exist in a structure, its interaction is scored as NaN. 

Since residue numbering varies from structure to structure, most structures will not have 

all TM residues scored. Once initial residue scoring is complete, empty cells in 'float' 
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type fields (representing score fields) will be filled with NaN values. Additionally, empty 

cells in 'char' type fields (representing interaction types) will be filled with NA values. 

Arguments 

alignment: .moe file containing ligand-receptor pairings. The ordering of the structures in 

this alignment must match the ordering of the PDBids in output_mdb 

indices_mdb: database containing indices for the start/X.50/end residues of each 

structure's TM domains 

output_mdb: database generated using gen_tm_database.svl. Calculations using this script 

will be written to this database 

function prolig_Calculate; 
global function get_GPCR_interactions[alignment, indices_mdb, 
output_mdb] 
 
// from prolig2d.svl 
const COLLAPSE_MULT_ATOM_TO_NEAREST = 1; 
local itypes = ['Hbond', 'Metal', 'Ionic', 'Covalent', 'Arene', 
'Distance']; 
local iopt = [ 
    emin_hb:        minE[-0.1, 0.10], 
    emin_hpi:       minE[-0.1, 0.10], 
    emin_ion:       0.10, 
    distance_threshold: 4.5, //4.5 default 
    layoutrechb:        0   // incl. rec-rec hbond in layout 
    ]; 
 
//from prolig2d.svl, calculates strong interactions 
local function collapse_mult_atom_interactions [a1, a2] 
 
        local function getnearatoms [a, b] 
    a = stretch [a, length b]; 
    b = resize  [b, length a]; 
    local min = x_min add sqr sub [aPos a, aPos b]; 
    return [a(min), b(min)]; 
    endfunction 
 
        if COLLAPSE_MULT_ATOM_TO_NEAREST then 
        local am_mask = gtE [app length a1, 1] or gtE [app length a2, 
1]; 
        local am1 = a1 | am_mask; 
        local am2 = a2 | am_mask; 
        [am1, am2] = tr app getnearatoms tr [am1, am2]; 
        a1 | am_mask = am1; 
        a2 | am_mask = am2; 
        else 
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        a1 = app first a1; 
        a2 = app first a2; 
        endif 
        return [a1, a2]; 
endfunction 
 
// end from prolig2d.svl 
 
// close open structures 
Close [force:1, viewreset:1, delgobj:1]; 
 
// open alignment 
Open alignment; 
 
local chains = Chains[]; 
local i, chain, entry, a; 
local TM_start, TM_x50, TM_end, TM_num; 
 
// determine chain lengths 
local chain_lengths = []; 
for i = 1, length chains, 1 loop 
    local chain_length = length cat cResidues chains(i); 
    chain_lengths = cat [chain_lengths, chain_length]; 
endloop 
 
// get receptor chains 
local rmask = chain_lengths > 1; 
local rchains = chains | rmask; 
 
// get ligand chains 
local lmask = chain_lengths == 1; 
local lchains = chains | lmask; 
 
// get entries of indices_mdb 
local idx_entries = db_Entries[indices_mdb]; 
 
//get entries of output_mdb 
local output_entries = db_Entries[output_mdb]; 
 
// loop through the 7 TM domains 
for TM_num = 1, 7, 1 loop 
    //start entry count 
    local entry_count = 1; 
 
    // loop through chains and calculate interaction energies 
    for chain in rchains loop 
        write ['Writing information for entry {} for TM {} ...\n', 
entry_count, TM_num]; 
        write['\nresidue\tE(kcal/mol)\ttype\n']; 
        write['-------\t-----------\t----\n']; 
         
        // increase entry count for next loop 
        entry_count = inc entry_count; 
 
        // get residues and rUID of chain 
        local [residues] = cResidues chain; 
        local res_ids = rUID residues; 
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        // get ligand atoms 
        local l_atoms = cat cAtoms chains(indexof[chain, chains] + 1); 
 
        // info read from indices_mdb 
        TM_start = db_ReadFields[indices_mdb, 
idx_entries(indexof[chain, rchains]), tok_cat['TM', totok TM_num, 
'_start']]; 
        TM_x50 = db_ReadFields[indices_mdb, idx_entries(indexof[chain, 
rchains]), tok_cat['TM_', totok TM_num, '.50']]; 
        TM_end = db_ReadFields[indices_mdb, idx_entries(indexof[chain, 
rchains]), tok_cat ['TM', totok TM_num, '_end']]; 
        //print [indexof[chain, rchains], TM_start, TM_x50, TM_end]; 
 
        // loop through residues from start of TM to end of TM and 
calculate interaction energies 
        for a = TM_start, TM_end, 1 loop 
             
            // determine BW number of current residue based on current 
residue number 
            if a <= 50 then 
                local BW_resnum = 50 - (TM_x50 - a); 
            elseif a == TM_x50 then 
                BW_resnum = 50; 
            elseif a > 50 then 
                BW_resnum = 50 + (a - TM_x50); 
            endif 
            //write ['Calculating interactions for residue {} (BW #: 
{})',  
            //print tok_cat [totok TM_num, '.', totok BW_resnum]; // 
check BW residue number of current residue 
            //print[a, res_ids]; 
            // handle cases where residues are not in the structure 
            if isnull join[a, res_ids] then 
                local s_score = []; 
                local int_types = []; 
            else 
                local residue = residues(indexof[a, res_ids]); 
                local r_atoms = cat oChildren residue; 
                //aSetSelected[r_atoms, 1]; 
                local r_name = rName residue; 
                local r_UID = rUID residue; 
                //rSetSelected[residue, 1]; // check if residue is 
being selected 
                local iract = prolig_Calculate [itypes, l_atoms, 
r_atoms, iopt]; 
                local [iract_2, iract_3] = [iract(2), iract(3)]; 
                [iract_2,iract_3] = collapse_mult_atom_interactions 
[iract(2),iract(3)]; 
                local lrmask = indexof [iract_2, l_atoms] and indexof 
[iract_3, r_atoms]; 
                local rlmask = indexof [iract_3, l_atoms] and indexof 
[iract_2, r_atoms]; 
                local mask = andE [indexof [iract(1), ['Hbond', 
'Metal', 'Ionic', 'Covalent']],lrmask or rlmask]; 
                local arene_mask = andE [iract(1) == 'Arene', lrmask or 
rlmask]; 
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                mask = mask or arene_mask; 
                local s_lim = select [iract(2), iract(3), lrmask] | 
mask;   // multi atom 
                local s_rim = select [iract(3), iract(2), lrmask] | 
mask;   // for arene 
                s_lim = split [indexof [cat s_lim, l_atoms], app length 
s_lim]; 
                s_rim = split [indexof [cat s_rim, r_atoms], app length 
s_rim]; 
                local s_mask = pack mask; 
                local s_li = indexof [select [iract_2, iract_3, lrmask] 
| mask, l_atoms]; 
                local s_ri = indexof [select [iract_3, iract_2, lrmask] 
| mask, r_atoms]; 
                local s_ui = uniq[s_ri];     
                local s_type = rep ['', l_length iract]; 
                s_type | iract(1) == 'Hbond' and lrmask = 'hbdon'; 
                s_type | iract(1) == 'Hbond' and rlmask = 'hbacc'; 
                s_type | iract(1) == 'Metal' = 'ion'; 
                s_type | iract(1) == 'Ionic' = 'ion'; 
                s_type | iract(1) == 'Covalent' = 'cov'; 
                s_type | iract(1) == 'Arene' = 'arene'; 
                s_type = s_type | mask; 
                s_score = iract(4) | mask; 
                [s_mask, s_li, s_ri, s_ui, s_type, s_score] = [s_mask, 
s_li, s_ri, s_ui, s_type, s_score] || [s_li and s_ri]; 
                int_types = iract(1); 
                local int_score = first s_score; 
                //print ['residue:', tok_cat [totok TM_num, '.', totok 
BW_resnum], iract(1), s_score]; 
 
                // deselect current residue atoms 
                //aSetSelected[r_atoms, 0]; 
 
            endif 
 
            // calculate sum of interaction energies. if s_score is 
null, then interaction energy is written as 0 
            if notnull s_score then 
                local s_score_sum = add s_score; 
            else 
                s_score_sum = 0; 
            endif 
             
            //print['s_score:', s_score, 'sum:', s_score_sum]; 
 
            // write sum of interaction energies to the database 
            db_Write [output_mdb, output_entries(indexof[chain, 
rchains]), tagpoke[[], tok_cat [totok TM_num, '.', totok BW_resnum, 
'_intenergysum'], s_score_sum]]; 
 
            // loop through s_scores and int_types and determine which 
information to write to the database 
            for i = 1, 2, 1 loop // i <= 3 keeps loop from writing more 
than 2 interaction energies 
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                if isnull s_score(i) and isnull int_types(i) and i <= 2 
then // interactions with no interaction score nor interaction type get 
scored as 0, NA for interaction type 
                    //print[s_score(i), int_types(i), tok_cat [totok 
TM_num, '.', totok BW_resnum], iract(1)]; 
                    db_Write [output_mdb, output_entries(indexof[chain, 
rchains]), tagpoke[[], tok_cat [totok TM_num, '.', totok BW_resnum, 
'_intenergy', totok i], 0]]; 
                    db_Write [output_mdb, output_entries(indexof[chain, 
rchains]), tagpoke[[], tok_cat [totok TM_num, '.', totok BW_resnum, 
'_inttype', totok i], string 'None']]; 
                    //write['{}\t{f.1}\t\t{}\n',tok_cat [totok TM_num, 
'.', totok BW_resnum] , s_score(i), int_types(i)]; 
                elseif isnull s_score(i) and notnull int_types(i) and i 
<= 2 then // interactions with no interaction score but an interaction 
type get scored as 0 
                    //print[s_score(i), int_types(i), tok_cat [totok 
TM_num, '.', totok BW_resnum], iract(1)]; 
                    db_Write [output_mdb, output_entries(indexof[chain, 
rchains]), tagpoke[[], tok_cat [totok TM_num, '.', totok BW_resnum, 
'_intenergy', totok i], 0]]; 
                    db_Write [output_mdb, output_entries(indexof[chain, 
rchains]), tagpoke[[], tok_cat [totok TM_num, '.', totok BW_resnum, 
'_inttype', totok i], string int_types(i)]]; 
                    //write['{}\t{f.1}\t\t{}\n',tok_cat [totok TM_num, 
'.', totok BW_resnum] , s_score(i), int_types(i)]; 
                elseif i <= 2 then 
                    //print[s_score(i), int_types(i), tok_cat [totok 
TM_num, '.', totok BW_resnum], iract(1)]; 
                    db_Write [output_mdb, output_entries(indexof[chain, 
rchains]), tagpoke[[], tok_cat [totok TM_num, '.', totok BW_resnum, 
'_intenergy', totok i], s_score(i)]]; 
                    db_Write [output_mdb, output_entries(indexof[chain, 
rchains]), tagpoke[[], tok_cat [totok TM_num, '.', totok BW_resnum, 
'_inttype', totok i], string int_types(i)]]; 
                    write['{}\t{f.1}\t\t{}\n',tok_cat [totok TM_num, 
'.', totok BW_resnum] , s_score(i), int_types(i)]; 
                endif 
            endloop 
        endloop 
    write '\n'; 
    endloop 
endloop 
 
write 'Done calculating interaction scores. Filling all other fields 
with NA values...\n'; 
 
// fill all other inttype fields with NA, all other intenergy fields 
with NaN 
local output_fields = dropfirst dropfirst first db_Fields output_mdb; 
local field; 
for field in output_fields loop 
    for entry in output_entries loop 
        local [record] = db_ReadFields [output_mdb, entry, field]; 
        print [record, field, indexof[entry, output_entries]]; 
        if isnull record and db_FieldType [output_mdb, field] == 'char' 
then 
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            db_Write [output_mdb, entry, tagpoke[[], field, string 
'NA']]; 
        elseif isnull record and db_FieldType [output_mdb, field] == 
'float' then 
            db_Write [output_mdb, entry, tagpoke[[], field, NaN]]; 
        endif 
    endloop 
endloop 
 
write 'Done.\n'; 
 
endfunction 
  



 

 362 

get_gpcr_interactions_docked.svl 

Description: This script is used to calculate interaction energies for all entries 

within a docking output database (mdb). Prior to using this script, the 

gen_tm_database.svl script must first be used to generate a database (output_mdb) 

containing 5 fields for each Ballesteros-Weinstein (BW) numbered residue in 

transmembrane domains 1-7. This database serves as the output_mdb argument for this 

script. The ordering of the entries in output_mdb must match the ordering of the entries in 

your docking output database. For each entry in the database, the docked molecule as 

well as receptor are loaded into the system. This script will then identify the receptor 

chain. For each residue in TM domains 1-7 of the receptor chain (denoted by the indices 

in indices_mdb), 5 cells are filled in the database that denote: 

1. Overall interaction energy between the residue and its receptor's ligand 

2. The type of the 1st interaction made between the residue and ligand 

3. The interaction energy of the 1st interaction 

4. The type of the 2nd interaction made between the residue and ligand 

5. The interaction energy of the 2nd interaction 

Interaction scoring follows these rules: 

1. Overall interaction energies are summed. 

2. If a residue has no interaction energy and no interaction type, its interactions are 

scored as 0. 

3. If a residue has an interaction type but no interaction energy, it is scored as 0. 

4. If a residue does not exist in a structure, its interaction is scored as NaN. 
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Since residue numbering varies from structure to structure, most structures will not have 

all TM residues scored. Once initial residue scoring is complete, empty cells in 'float' 

type fields (representing score fields) will be filled with NaN values. Additionally, empty 

cells in 'char' type fields (representing interaction types) will be filled with NA values. 

Arguments 

mdb: database file with top scoring docked poses. This database must have a field 

denoting the name of each target matching target_name 

indices_mdb: database containing indices for the start/x.50/end residues of each 

structure's TM domains. Target fields between mdb and indices_mdb will be compared 

during the calculation 

output_mdb:  database generated using gen_tm_database.svl. Calculations using this 

script will be written to this database. The number entries in this database must 

correspond to the number of entries in mdb 

database_field1: .mdb field containing ligand poses, most likely 'mol' 

database_field2: .mdb field containing receptor poses, most likely 'receptor' 

target_field: field in indices_mdb with a token identifying each entry (e.g. 'Target', 

'PDBID') 

function prolig_Calculate; 
function pro_Join; 
global function get_GPCR_interactions_docked [mdb, indices_mdb, 
output_mdb, database_field1, database_field2, target_field] 
 
// from prolig2d.svl 
const COLLAPSE_MULT_ATOM_TO_NEAREST = 1; 
local itypes = ['Hbond', 'Metal', 'Ionic', 'Covalent', 'Arene', 
'Distance']; 
local iopt = [ 
    emin_hb:        minE[-0.1, 0.10], 
    emin_hpi:       minE[-0.1, 0.10], 
    emin_ion:       0.10, 
    distance_threshold: 4.5, //4.5 default 
    layoutrechb:        0   // incl. rec-rec hbond in layout 
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    ]; 
 
//from prolig2d.svl, calculates strong interactions 
local function collapse_mult_atom_interactions [a1, a2] 
 
        local function getnearatoms [a, b] 
    a = stretch [a, length b]; 
    b = resize  [b, length a]; 
    local min = x_min add sqr sub [aPos a, aPos b]; 
    return [a(min), b(min)]; 
    endfunction 
 
        if COLLAPSE_MULT_ATOM_TO_NEAREST then 
        local am_mask = gtE [app length a1, 1] or gtE [app length a2, 
1]; 
        local am1 = a1 | am_mask; 
        local am2 = a2 | am_mask; 
        [am1, am2] = tr app getnearatoms tr [am1, am2]; 
        a1 | am_mask = am1; 
        a2 | am_mask = am2; 
        else 
        a1 = app first a1; 
        a2 = app first a2; 
        endif 
        return [a1, a2]; 
endfunction 
 
// end from prolig2d.svl 
 
// close open structures 
Close [force:1, viewreset:1, delgobj:1]; 
 
// get entries of docking mdb 
local entries = db_Entries mdb; 
local entry, ligand, receptor, receptor_chain, receptor_name, 
ligand_chain, ligand_name, pro_chain; 
 
// get entries of indices_mdb 
local idx_entries = db_Entries[indices_mdb]; 
local idx_entry; 
 
// get Target names from indices_mdb 
local target_names = []; 
for idx_entry in idx_entries loop 
    local [name] = db_ReadFields [indices_mdb, idx_entry, 
target_field]; 
    name = token name; 
    target_names = cat[target_names, name]; 
endloop 
 
//print target_names; 
 
// loop through docking mdb 
for entry in entries loop 
    [ligand] =db_ReadFields [mdb, entry,[database_field1]]; //get 
structure from fieldname 
    [receptor] =db_ReadFields [mdb, entry, [database_field2]]; 
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    [receptor_chain, receptor_name] =db_CreateMolecule receptor; 
     
    // check if receptor exists in multiple chains rather than a single 
chain. 
    // (example of this is Beta 2 structure 3NY8) 
    // if so, move all residues to a single chain and delete empty 
chains. 
    if length Chains[] > 1 then 
        for pro_chain in dropfirst Chains[] loop 
            local [pro_residues] = cResidues pro_chain; 
            oReparent[pro_residues, first Chains[]]; 
            oDestroy pro_chain; 
        endloop 
    endif 
 
    [ligand_chain, ligand_name] =db_CreateMolecule ligand; 
 
    // get name of Target 
    local [target_name] = db_ReadFields [mdb, entry, target_field]; 
    target_name = token target_name; 
    //print target_name; 
 
 
    local chains = Chains[]; 
    local i, chain, a; 
    local TM_start, TM_x50, TM_end, TM_num; 
 
    // determine chain lengths 
    local chain_lengths = []; 
    for i = 1, length chains, 1 loop 
        local chain_length = length cat cResidues chains(i); 
        chain_lengths = cat [chain_lengths, chain_length]; 
    endloop 
 
    // get receptor chains 
    local rmask = chain_lengths > 1; 
    local rchains = chains | rmask; 
 
    // get ligand chains 
    local lmask = chain_lengths == 1; 
    local lchains = chains | lmask; 
 
    //get entries of output_mdb 
    local output_entries = db_Entries[output_mdb]; 
 
    // loop through the 7 TM domains 
    for TM_num = 1, 7, 1 loop 
        //start entry count 
        local entry_count = 1; 
 
        // loop through chains and calculate interaction energies 
        for chain in rchains loop 
            write ['Writing information for entry {} for TM {} ...\n', 
indexof[entry, entries], TM_num]; 
            write['\nresidue\tE(kcal/mol)\ttype\n']; 
            write['-------\t-----------\t----\n']; 
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            // increase entry count for next loop 
            entry_count = inc entry_count; 
 
            // get residues and rUID of chain 
            local [residues] = cResidues chain; 
            local res_ids = rUID residues; 
 
            // get ligand atoms 
            local l_atoms = cat cAtoms chains(indexof[chain, chains] + 
1); 
 
            // info read from indices_mdb 
            TM_start = db_ReadFields[indices_mdb, 
idx_entries(indexof[target_name, target_names]), tok_cat['TM', totok 
TM_num, '_start']]; 
            TM_x50 = db_ReadFields[indices_mdb, 
idx_entries(indexof[target_name, target_names]), tok_cat['TM_', totok 
TM_num, '.50']]; 
            TM_end = db_ReadFields[indices_mdb, 
idx_entries(indexof[target_name, target_names]), tok_cat ['TM', totok 
TM_num, '_end']]; 
            //print [indexof[chain, rchains], TM_start, TM_x50, 
TM_end]; 
 
            // loop through residues from start of TM to end of TM and 
calculate interaction energies 
            for a = TM_start, TM_end, 1 loop 
                 
                // determine BW number of current residue based on 
current residue number 
                if a <= 50 then 
                    local BW_resnum = 50 - (TM_x50 - a); 
                elseif a == TM_x50 then 
                    BW_resnum = 50; 
                elseif a > 50 then 
                    BW_resnum = 50 + (a - TM_x50); 
                endif 
                //write ['Calculating interactions for residue {} (BW 
#: {})',  
                //print tok_cat [totok TM_num, '.', totok BW_resnum]; 
// check BW residue number of current residue 
                //print[a, res_ids]; 
                // handle cases where residues are not in the structure 
                if isnull join[a, res_ids] then 
                    local s_score = []; 
                    local int_types = []; 
                else 
                    local residue = residues(indexof[a, res_ids]); 
                    local r_atoms = cat oChildren residue; 
                    //aSetSelected[r_atoms, 1]; 
                    local r_name = rName residue; 
                    local r_UID = rUID residue; 
                    //rSetSelected[residue, 1]; // check if residue is 
being selected 
                    local iract = prolig_Calculate [itypes, l_atoms, 
r_atoms, iopt]; 
                    local [iract_2, iract_3] = [iract(2), iract(3)]; 
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                    [iract_2,iract_3] = collapse_mult_atom_interactions 
[iract(2),iract(3)]; 
                    local lrmask = indexof [iract_2, l_atoms] and 
indexof [iract_3, r_atoms]; 
                    local rlmask = indexof [iract_3, l_atoms] and 
indexof [iract_2, r_atoms]; 
                    local mask = andE [indexof [iract(1), ['Hbond', 
'Metal', 'Ionic', 'Covalent']],lrmask or rlmask]; 
                    local arene_mask = andE [iract(1) == 'Arene', 
lrmask or rlmask]; 
                    mask = mask or arene_mask; 
                    local s_lim = select [iract(2), iract(3), lrmask] | 
mask;   // multi atom 
                    local s_rim = select [iract(3), iract(2), lrmask] | 
mask;   // for arene 
                    s_lim = split [indexof [cat s_lim, l_atoms], app 
length s_lim]; 
                    s_rim = split [indexof [cat s_rim, r_atoms], app 
length s_rim]; 
                    local s_mask = pack mask; 
                    local s_li = indexof [select [iract_2, iract_3, 
lrmask] | mask, l_atoms]; 
                    local s_ri = indexof [select [iract_3, iract_2, 
lrmask] | mask, r_atoms]; 
                    local s_ui = uniq[s_ri];     
                    local s_type = rep ['', l_length iract]; 
                    s_type | iract(1) == 'Hbond' and lrmask = 'hbdon'; 
                    s_type | iract(1) == 'Hbond' and rlmask = 'hbacc'; 
                    s_type | iract(1) == 'Metal' = 'ion'; 
                    s_type | iract(1) == 'Ionic' = 'ion'; 
                    s_type | iract(1) == 'Covalent' = 'cov'; 
                    s_type | iract(1) == 'Arene' = 'arene'; 
                    s_type = s_type | mask; 
                    s_score = iract(4) | mask; 
                    [s_mask, s_li, s_ri, s_ui, s_type, s_score] = 
[s_mask, s_li, s_ri, s_ui, s_type, s_score] || [s_li and s_ri]; 
                    int_types = iract(1); 
                    local int_score = first s_score; 
                    //print ['residue:', tok_cat [totok TM_num, '.', 
totok BW_resnum], iract(1), s_score]; 
 
                    // deselect current residue atoms 
                    //aSetSelected[r_atoms, 0]; 
 
                endif 
 
                // calculate sum of interaction energies. if s_score is 
null, then interaction energy is written as 0 
                if notnull s_score then 
                    local s_score_sum = add s_score; 
                else 
                    s_score_sum = 0; 
                endif 
                 
                //print[a, tok_cat [totok TM_num, '.', totok 
BW_resnum], 's_score:', s_score, 'sum:', s_score_sum]; 
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                // write sum of interaction energies to the database 
                print tok_cat [totok TM_num, '.', totok BW_resnum, 
'_intenergysum']; 
                db_Write [output_mdb, output_entries(indexof[entry, 
entries]), tagpoke[[], tok_cat [totok TM_num, '.', totok BW_resnum, 
'_intenergysum'], s_score_sum]]; 
 
                // loop through s_scores and int_types and determine 
which information to write to the database 
                for i = 1, 2, 1 loop // i <= 3 keeps loop from writing 
more than 2 interaction energies 
                    if isnull s_score(i) and isnull int_types(i) and i 
<= 2 then // interactions for existing residues with no interaction 
score nor interaction type get scored as 0, None for interaction type 
                        //print[s_score(i), int_types(i), tok_cat 
[totok TM_num, '.', totok BW_resnum], iract(1)]; 
                        db_Write [output_mdb, 
output_entries(indexof[entry, entries]), tagpoke[[], tok_cat [totok 
TM_num, '.', totok BW_resnum, '_intenergy', totok i], 0]]; 
                        db_Write [output_mdb, 
output_entries(indexof[entry, entries]), tagpoke[[], tok_cat [totok 
TM_num, '.', totok BW_resnum, '_inttype', totok i], string 'None']]; 
                        //write['{}\t{f.1}\t\t{}\n',tok_cat [totok 
TM_num, '.', totok BW_resnum] , 0, 'None']; 
                    elseif isnull s_score(i) and notnull int_types(i) 
and i <= 2 then // interactions for existing residues with no 
interaction score but an interaction type get scored as 0 
                        //print[s_score(i), int_types(i), tok_cat 
[totok TM_num, '.', totok BW_resnum], iract(1)]; 
                        db_Write [output_mdb, 
output_entries(indexof[entry, entries]), tagpoke[[], tok_cat [totok 
TM_num, '.', totok BW_resnum, '_intenergy', totok i], 0]]; 
                        db_Write [output_mdb, 
output_entries(indexof[entry, entries]), tagpoke[[], tok_cat [totok 
TM_num, '.', totok BW_resnum, '_inttype', totok i], string 
int_types(i)]]; 
                        //write['{}\t{f.1}\t\t{}\n',tok_cat [totok 
TM_num, '.', totok BW_resnum] , 0, int_types(i)]; 
                    elseif i <= 2 then // otherwise, write interaction 
data 
                        //print[s_score(i), int_types(i), tok_cat 
[totok TM_num, '.', totok BW_resnum], iract(1)]; 
                        db_Write [output_mdb, 
output_entries(indexof[entry, entries]), tagpoke[[], tok_cat [totok 
TM_num, '.', totok BW_resnum, '_intenergy', totok i], s_score(i)]]; 
                        db_Write [output_mdb, 
output_entries(indexof[entry, entries]), tagpoke[[], tok_cat [totok 
TM_num, '.', totok BW_resnum, '_inttype', totok i], string 
int_types(i)]]; 
                        write['{}\t{f.1}\t\t{}\n',tok_cat [totok 
TM_num, '.', totok BW_resnum] , s_score(i), int_types(i)]; 
                    endif 
                endloop 
            endloop 
        write '\n'; 
        endloop 
    endloop 
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// close open structures 
Close [force:1, viewreset:1, delgobj:1]; 
 
endloop 
 
 
write 'Done calculating interaction scores. Filling all other fields 
with NA values...\n'; 
 
// fill all other inttype fields with NA, all other intenergy fields 
with NaN 
local output_fields = dropfirst dropfirst first db_Fields output_mdb; 
local field; 
for field in output_fields loop 
    for entry in output_entries loop 
        local [record] = db_ReadFields [output_mdb, entry, field]; 
        print [record, field, indexof[entry, output_entries]]; 
        if isnull record and db_FieldType [output_mdb, field] == 'char' 
then 
            db_Write [output_mdb, entry, tagpoke[[], field, string 
'NA']]; 
        elseif isnull record and db_FieldType [output_mdb, field] == 
'float' then 
            db_Write [output_mdb, entry, tagpoke[[], field, NaN]]; 
        endif 
    endloop 
endloop 
 
    write 'Done.\n'; 
 
endfunction 
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get_topscored_pose_by_mseq.svl 

Description: This script is used to go through each docking database in a directory, get 

the best scoring pose for each mseq number in each docking database, and write each best 

scoring pose to an output database. 

Arguments 

output_prefix: desired prefix of output database filename 

global function get_topscored_pose_by_mseq [output_prefix] 
 
local mseq, mdb, entry, mseq_entry; 
local field_names, field_types; 
 
// create mdb to put top scoring entries in 
 
// get list of mdbs in directory 
local mdbs = flist[[],'*.mdb']; 
 
// create output_mdb and get fieldnames from first mdbs 
local namebase = tok_drop [fbase first mdbs, -2]; 
local output_mdb = db_Open [tok_cat[output_prefix, 
'_topscored_poses.mdb'],'create']; 
[field_names, field_types] = db_Fields first mdbs; 
 
//create fields from first mdbs in output_mdb 
local i; 
for i = 1, length field_names, 1 loop 
    db_EnsureField [output_mdb, field_names(i), field_types(i)]; 
endloop 
 
// loop through each mdb file 
for mdb in mdbs loop 
    write ['Getting top scored pose from {}.\n', mdb]; 
    local entries = db_Entries mdb; 
    local mseqs = uniq db_ReadColumn [mdb, 'mseq']; 
    // loop through each mseq 
    for mseq in mseqs loop 
        local mseq_entries = []; 
        // loop through each entry 
        for entry in entries loop 
            // get entries matching mseq 
            if db_ReadFields [mdb, entry, 'mseq'] == mseq then 
                mseq_entries = cat[mseq_entries, entry]; 
            endif 
        endloop 
             
        //get the first entry matching the mseq's entry record, write 
it to output_mdb 
        local top_entry = first mseq_entries; 
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        local entry_record = db_Read [mdb, top_entry]; 
        db_Write [output_mdb, 0, entry_record ]; 
    endloop 
endloop 
 
write ['Done. Poses written to {}\n', tok_cat[output_prefix, 
'_topscored_poses.mdb']]; 
     
endfunction 
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ligand_rmsd_symm.svl 

Description: This script calculates two RMSD values between two ligand chains (each 

containing symmetrical functional groups) based on two ligand-receptor complexes that 

have been aligned and superposed based using MOE's built-in tools. 

Arguments 

reference_file: .pdb or .moe file containing your crystal structure 

database_file: .mdb with docked ligand poses 

database_field1: name of the field in database_file containing docked ligands 

database_field2: name of the field in database_file containing receptor structures 

ref_groups/pose_groups: should be a nested vector containing indices of atoms (e.g. 

[[3,5,6,7,14], [4,8,9,10,15]]) 

function Close;        
function pro_Superpose; 
function pro_Align; 
global function ligandRMSD_symmetry [reference_file, database_file, 
database_field1, database_field2, ref_groups, pose_groups]; 
 
    Close [force:1, viewreset:1, delgobj:1];  // close any open 
structures 
    local mdb_key = db_Open [database_file, 'read-write']; 
    local entries = db_Entries mdb_key; 
    local entry_key, ligand, receptor, atoms2, ligand_chain, 
ligand_name, receptor_chain, receptor_name, ref_chains, mask, 
ref_residues, rec_residues, ref_ligand, ligand_heavy, ref_heavy;      
 
//  create field for Ligand RMSD 
    db_EnsureField [mdb_key,'Ligand RMSD','float']; 
    db_EnsureField [mdb_key,'Ligand RMSD (symmetry)','float']; 
 
//  open reference file 
    Open reference_file; 
    ref_chains = Chains[]; 
    [ref_ligand] = ref_chains(2); 
 
//  loop through the database to make measurements for each ligand 
        for entry_key in entries loop 
            [ligand] =db_ReadFields [mdb_key, 
entry_key,[database_field1]]; //get structure from fieldname 
        [receptor] =db_ReadFields [mdb_key, entry_key, 
[database_field2]]; 
        [receptor_chain, receptor_name] =db_CreateMolecule receptor; 
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        local [rec_atoms] = cAtoms receptor_chain; 
        aSetHidden [rec_atoms, 1]; 
        [ligand_chain, ligand_name] =db_CreateMolecule ligand; 
 
//  align & superpose chains with ligands 
    pro_Align[Chains[]]; 
    pro_Superpose[[Chains[]], [auto_associate:1, accent_conserved: 1]]; 
         
 
     
 
//local function prompter_example [ref_groups, pose_groups] 
 
    local i=0; 
    local p1, p2, p3, p4, p5; 
    local r1, r2, r3, r4, r5; 
    local posegroups = [p1, p2, p3, p4, p5]; 
    local refgroups = [r1, r2, r3, r4, r5]; 
    local chains = Chains[]; 
    local [ref] = cAtoms ref_ligand; 
    aSetColorBy [ref, 'chain']; 
    local [pose] = cAtoms ligand_chain; 
    mask = aElement ref <> 'H'; 
    ref_heavy = ref | mask; 
    local mask2 = aElement pose <> 'H'; 
    local pose_heavy = pose | mask2; 
  
    while i < length ref_groups loop 
        i = i+1; 
        refgroups(i) = get [ref_heavy, ref_groups(i)]; 
        //aSetSelected [Atoms[], 0]; 
        //WindowDestroy wkey; 
        print cat ['refgroups:', refgroups(i)]; 
    endloop 
 
    i = 0; 
    while i < length pose_groups loop 
        i = i+1; 
        posegroups(i) = get [pose_heavy, pose_groups(i)]; 
        //aSetSelected [Atoms[], 0]; 
        //WindowDestroy wkey; 
        print cat ['posegroups:', posegroups(i)]; 
    endloop 
 
    local ref_unsym = diff [ref_heavy, cat refgroups]; 
    local pose_unsym = diff [pose_heavy, cat posegroups]; 
     
    aSetSelected [ref_unsym, 1]; 
    local dist_sq = sqr (aDist [pose_unsym, ref_unsym]); 
    local dist_sq2 = cat [dist_sq, sqr (aDist [refgroups(1), 
posegroups(1)])]; 
    dist_sq2 = cat [dist_sq2, sqr (aDist [refgroups(2), 
posegroups(2)])]; 
    local RMSD1 = sqrt(add dist_sq2/length dist_sq2); 
    print RMSD1; 
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    dist_sq2 = cat [dist_sq, sqr (aDist [refgroups(1), 
posegroups(2)])]; 
    dist_sq2 = cat [dist_sq, sqr (aDist [refgroups(2), 
posegroups(1)])]; 
    local RMSD2 = sqrt(add dist_sq2/length dist_sq2); 
    print RMSD2; 
    
    db_Write [mdb_key, entry_key, tagpoke[[],'Ligand RMSD', RMSD1[1]]]; 
    db_Write [mdb_key, entry_key, tagpoke[[],'Ligand RMSD (symmetry)', 
RMSD2[1]]]; 
 
//   destroy one ligand before reading in the next 
            oDestroy [ligand_chain]; 
        oDestroy [receptor_chain]; 
endloop 
 
endfunction 
  



 

 375 

ligandrmsdrigid.svl 

Description: This script calculates the RMSD between two chains (ideally containing 

ligands) based on two ligand-receptor complexes resulting from rigid docking runs that 

have been aligned and superposed based using MOE's built in tools. Receptor structures 

will be pulled from a database. 

Arguments 

reference_file: filename of a reference structure to compare docked poses to 

database_file: database with ligand poses 

database_field1: name of the field in database_file containing docked ligands 

database_file2: database containing receptor models that ligands were docked into 

database_field2: name of the field in database_file2 containing receptor structures 

entry_number: entry number corresponding to an entry in database_file2, determines 

which receptor structure will be loaded 

function Close;        
function pro_Superpose; 
function pro_Align; 
global function ligandRMSDrigid [reference_file, database_file, 
database_field1, database_file2, database_field2, entry_number]; 
 
Close [force:1, viewreset:1, delgobj:1];  // close any open structures 
local mdb_key = db_Open [database_file, 'read-write']; 
local mdb_key2 = db_Open [database_file2, 'read-write']; 
local entry_key, rec_entries, ligand, receptor, atoms2, ligand_chain, 
ligand_name, receptor_chain, receptor_name, ref_chains, mask, 
ref_residues, rec_residues, ref_ligand, ligand_heavy, ref_heavy;     
local entries = db_Entries mdb_key; 
local atoms; 
//  create field for Ligand RMSD 
db_CreateField [mdb_key,'Ligand RMSD','float']; 
         
//  open reference file 
Open reference_file; 
ref_chains = Chains[]; 
[ref_residues] = cResidues ref_chains; 
[ref_ligand] = ref_chains(2); 
 
//  open receptor 
rec_entries = dbv_Entries [database_file2]; 
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[receptor] =db_ReadFields [mdb_key2, rec_entries(entry_number), 
[database_field2]]; 
      
//  mask heavy atoms and create heavy reference 
[atoms] = cAtoms ref_ligand; 
mask = aElement atoms <> 'H' ; 
ref_heavy = atoms | mask; 
         
         
//  loop through the database to make measurements for each ligand 
for entry_key in entries loop 

[ligand] =db_ReadFields [mdb_key, entry_key,[database_field1]];  
 
//get structure from fieldname 
[receptor_chain, receptor_name] =db_CreateMolecule receptor; 
[ligand_chain, ligand_name] =db_CreateMolecule ligand; 
[rec_residues] = cResidues receptor_chain; 
[atoms2] = cAtoms ligand_chain; 
mask = aElement atoms2 <> 'H'; 
ligand_heavy = atoms2 | mask; 

         
 
 

//  align & superpose chains with ligands 
pro_Align[Chains[]]; 
pro_Superpose[[Chains[]], [auto_associate:1, accent_conserved: 

1]]; 
         
         

//   measure distances 
local [dist] = aDist[ref_heavy, ligand_heavy]; 

             
//   square root of distances 

      local dist_sq = sqr dist; 
 

//   find RMSD 
      local RMSD = sqrt(add dist_sq/length dist_sq); 
 

//   write ligand RMSD to the database 
      db_Write [mdb_key, entry_key, tagpoke[[],'Ligand RMSD', 
RMSD[1]]]; 
         

//   destroy one ligand before reading in the next 
      oDestroy [ligand_chain]; 
      oDestroy [receptor_chain]; 
 
endloop 
 
endfunction 
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pli_gen.svl 

Description: This script will allow you to generate .png images of protein-ligand 

interactions for all docked poses inside a database.  

Arguments 

mdb: filename of the database containing docked poses 

function DrawLigandInteractions; 
global function pli_gen [mdb]; 
 
Close [force:1, viewreset:1, delgobj:1];  // close any open structures 
local entry; 
local entries = db_Entries mdb; 
 
for entry in entries loop 
        local entry_num = indexof [entry, entries]; 
        local mseq = db_ReadFields [mdb, entry, 'mseq']; 
        local [ligand] =db_ReadFields [mdb, entry, 'mol']; //get 
structure from fieldname 
        local [receptor] =db_ReadFields [mdb, entry, 'receptor']; 
        local [receptor_chain, receptor_name] =db_CreateMolecule 
receptor; 
        local [ligand_chain, ligand_name] =db_CreateMolecule ligand; 
         
        local [rec_atoms] = cAtoms receptor_chain; // get receptor 
atoms 
        local [lig_atoms] = cAtoms ligand_chain; 
        gr_fwrite [  
            tok_cat [fbase mdb, '_', 'entry_', totok entry_num, '_', 
'mseq_', totok mseq, '_', totok ligand_name, '.png'],  
            DrawLigandInteractions [[lig_atoms], [rec_atoms], []],  
            'image/png',  
            [],  
            []  
        ]; 
         
        oDestroy receptor_chain; 
        oDestroy ligand_chain; 
endloop 
 
write 'Done.\n'; 
 
endfunction 
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res_select.svl 

Description: This script allows a user to select sequence editor residues in the first loaded 

chain based on residue number/position values. 

Arguments 

resnums: a vector of integers representing the indexed positions of each residue to select 

global function res_select [resnums] 
local x; 
local residues = cat oChildren first Chains[]; 
rSetSelected[residues, 0]; //clear selected residues prior to residue 
selection 
for x in resnums loop 
    rSetSelected[residues(x), 1]; 
endloop 
 
endfunction 
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self_dock_from_database.svl 

Description: This script is used to generate batch files that will allow for self-docking of 

ligand-receptor complexes in a database. 

Arguments 

mdb: database containing a field with ligand-receptor complexes 

receptor_field: name of the field in mdb containing ligand-receptor complexes 

function Protonate3D; 
function ViewCenter; 
global function self_dock_from_database [mdb, receptor_field] 
 
Close [force:1, viewreset:1, delgobj:1];  // close any open structures 
 
local entries = db_Entries mdb; 
local entry, rec_chain, lig_chain, rec_name; 
 
for entry in entries loop 
    // get receptor in complex with ligand from database and open it 
    local [receptor] =db_ReadFields [mdb, entry, [receptor_field]]; 
    [[rec_chain, lig_chain], rec_name] = db_CreateMolecule receptor; 
 
    // center view, show ribbons instead of atoms for receptor chain 
    ViewCenter[]; 
    local [rec_residues] = oChildren rec_chain; 
    rSetRibbonMode [rec_residues, 'line']; 
    rSetRibbonEnable [rec_residues, 1]; 
    aSetHidden[oChildren rec_residues, 1]; 
     
    // protonate system 
    local chains = Chains[]; 
    local atoms = Atoms[]; 
    Protonate3D [atoms,atoms,atoms,[],[],[]]; 
 
    print rec_name; 
 
    // run Site Finder, click Apply, check 'select contact atoms' 
    local tcount = 0; 
    local tatoms = []; 
    loop 
        tcount = tcount + 1; 
        Open '$MOE/svl/run/sitefind.svl'; 
        local wkey2 = WindowKeyList[]; 
        if tcount = 1 then  
            WindowTrigger [wkey2, [panel:'Apply']]; 
        endif 
         
        WindowTrigger [wkey2, [disp_aselect:1]]; 
        sleep 0.5; 
    if notnull SelectedAtoms[] then break; 
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    endif 
    endloop; 
 
    sleep 1; 
    WindowDestroy wkey2; 
 
    // extend selection to residues 
    local atom_set = Atoms[]; 
    local sel_atoms = Atoms [] | aSelected Atoms []; 
    local residues = uniq oParent sel_atoms; 
    local new_atoms = cat oChildren residues; 
    local select_atoms = join [atom_set, new_atoms]; 
    aSetSelected [select_atoms, 1]; 
 
    // open dock UI 
    run '$MOE/svl/run/dock_ui.svl'; // uses edited dock_ui.svl to 
prevent asking for overwrites 
    local wkey = WindowKeyList[]; 
    WindowSetData [wkey, ['siteset': 6]]; // set docking site as 
selected atoms 
    WindowSetData [wkey, ['maxpose': 400]]; // set max placement poses 
to 400 
    WindowSetData [wkey, ['refine': 1]]; // set refinement to induced 
fit 
    WindowSetData [wkey, ['remaxpose': 5]]; // set max refined poses to 
5 
    //WindowSetData [wkey, ['outfile': tok_cat[rec_name, 
'_selfdock.mdb']]]; 
    local jobname = tok_cat [rec_name, '_selfdock.mdb']; 
    WindowSetData [wkey, ['outfile': jobname]]; 
 
    // click Batch... and then create batch file 
    WindowTrigger [wkey, ['panel': 'Batch...']]; 
    sleep 1; 
    WindowTrigger[first WindowKeyList[], ['Create':1]]; 
    sleep 1; 
    WindowDestroy wkey; 
 
    loop 
    until isnull WindowNameList[] == 1 
    endloop 
     
    Close [force:1, viewreset:1, delgobj:1];  // close any open 
structures 
endloop 
 
endfunction 
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symm_groupselect.svl 

Description: This function will allow a user to identify atom numbers for atoms 

comprising symmetrical functional groups of interest. 

Arguments 

num_groups: number of groups of atoms that are symmetrical in a functional group of 

interest 

global function symm_groupselect [num_groups]; 
local atom_indices = []; 
 
local i = 0; 
while i < num_groups loop 
    i = i+1; 
    aSetSelected [Atoms[], 0]; 
    local chains = Chains[]; 
    local [atoms] = cAtoms chains(1); 
    local mask = aElement atoms <> 'H'; 
    atoms = atoms | mask; 
    local title = tok_cat ['Pick group',' ', totok i, ' ', 'atoms']; 
        aSetSelected [Atoms[], 0]; 
            local wkey = WindowCreate [ 
            name : 'AtomPrompt', 
        mode : 'pickNone', 
        location: 'MOE', 
        title : title, 
        Button: [ 
                    name : 'button', 
                    text : 'OK' 
                ]        
        ]; 
        local v = WindowWait [wkey]; 
        WindowDestroy wkey; 
    print indexof [SelectedAtoms[], atoms]; 
    atom_indices = cat [atom_indices, [indexof [SelectedAtoms[], 
atoms]]]; 
endloop 
 
print atom_indices; 
endfunction 
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Pharmacophore Scripts 

feat_dist_dir.svl 

Description: This script can be used to calculate interfeature and feature to centroid 

distances for all .ph4 files in a directory. Results will be written to output_mdb. 

Arguments 

output_mdb: desired filename of output database 

receptor: receptor structure filename 

global function feat_dist_dir [output_mdb, receptor] 
 
Close [force:1, viewreset:1, delgobj:1];  // close any open structures 
Open receptor; 
 
local mdb_key = db_Open [output_mdb, 'create']; 
 
db_EnsureField [mdb_key, 'ph4_name', 'char' ]; 
 
db_EnsureField [mdb_key, 'max_feat', 'float' ]; 
db_EnsureField [mdb_key, 'min_feat', 'float' ]; 
db_EnsureField [mdb_key, 'avg_feat', 'float' ]; 
 
db_EnsureField [mdb_key, 'max_centr', 'float' ]; 
db_EnsureField [mdb_key, 'min_centr', 'float' ]; 
db_EnsureField [mdb_key, 'avg_centr', 'float' ]; 
 
local entries = db_Entries output_mdb; 
local ph4; 
local ph4_files = flist [[],'*.ph4']; 
 
// open sitefinder 
     
    loop 
        Open '$MOE/svl/run/sitefind.svl'; 
        local wkey2 = WindowKeyList[]; 
     
     
     
        WindowTrigger [wkey2, [panel:'Apply']]; 
        WindowTrigger [wkey2, [disp_aselect:1]]; 
        sleep 0.2; 
    if notnull SelectedAtoms[] then break; 
    endif 
    endloop; 
     
    sleep 5; 
    WindowDestroy wkey2; 
 
    local site_center = oCentroid SelectedAtoms[]; 
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    local site_dum = mol_Create [ '', [ '', '', '', 1 ],  
            [ '*', 1, " ", 'none', 1 ],  
            [ 'LP', 0, 'sp', 0, 0, [ [] ], 0, 'DU', 0, 
site_center(1),site_center(2),site_center(3) ] ]; 
    aSetSelected [SelectedAtoms[], 0]; 
    //print oType site_dum; 
    site_dum = cAtoms site_dum; 
 
local count = 1; 
 
for ph4 in ph4_files loop 
 
    Open ph4; 
     
    //print 'Features to Features'; 
    local [fatoms] = cAtoms last droplast Chains[]; 
    local mtx = aDist [tr fatoms, fatoms]; 
    mtx = cat mtx; 
    mtx = pack mtx; 
    //print mtx; 
    local max = max mtx; 
    local min = min mtx; 
    local mean = (add mtx)/(length mtx); 
    //print cat ['Mean:', mean]; 
     
    //print 'Centroid to Features'; 
    local mtx2 = aDist [site_dum, fatoms]; 
    mtx2 = cat mtx2; 
    mtx2 = pack mtx2; 
    local mean_2 = (add mtx2)/(length mtx2); 
    local min_2 = first sort mtx2; 
    local max_2 = last sort mtx2; 
     
    local value = [ 
        ph4_name: swrite ['{G}', fbase ph4],  
        max_feat: max,  
        min_feat: min,  
        avg_feat: mean,  
        max_centr: max_2,  
        min_centr: min_2,  
        avg_centr: mean_2]; 
     
    db_Write [output_mdb, 0, value]; 
 
    WindowDestroy last WindowKeyList[]; 
 
endloop 
 
dbv_Open output_mdb; 
write 'Done.\n'; 
 
endfunction 
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feature_composition_dir.svl 

Description: This script is used to obtain the feature composition of all pharmacophore 

files in a directory and then print the total count of each feature type in all 

pharmacophores. 

function ph4_EditorGetData; 
function ph4_EditorWkeyList; 
global function feature_composition_dir []; 
 
local ph4, feature, feat_name; 
local ph4s = flist[[], '*.ph4']; 
local hyd_count = 0; 
local don_count = 0; 
local acc_count = 0; 
local ani_count = 0; 
local cat_count = 0; 
local aro_count = 0; 
local donhyd_count = 0; 
local catdon_count = 0; 
local hydaro_count = 0; 
local aniacc_count = 0; 
local donacc_count = 0; 
local i = 1; 
local feat_types = [ 
            'Hyd',  
            'Don',  
            'Acc',  
            'Ani',  
            'Cat',  
            'Aro',  
            'Don|Hyd', 
            'Cat&Don', 
            'Hyd|Aro', 
            'Ani&Acc', 
            'Don&Acc' 
            ]; 
             
              
 
for ph4 in ph4s loop 
    Open ph4; 
    local data = ph4_EditorGetData first ph4_EditorWkeyList []; 
    local features = data.F.expr; 
    for feat_name in feat_types loop 
        local tf = feat_name == features; 
        tf = add tf; 
        if feat_name == 'Hyd' then 
            hyd_count = hyd_count + tf; 
        elseif feat_name == 'Don' then 
            don_count = don_count + tf; 
        elseif feat_name == 'Acc' then 
            acc_count = acc_count + tf; 
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        elseif feat_name == 'Ani' then 
            ani_count = ani_count + tf; 
        elseif feat_name == 'Cat' then 
            cat_count = cat_count + tf; 
        elseif feat_name == 'Aro' then 
            aro_count = aro_count + tf; 
        elseif feat_name == 'Don|Hyd' then 
            donhyd_count = donhyd_count + tf; 
        elseif feat_name == 'Cat&Don' then 
            catdon_count = catdon_count + tf; 
        elseif feat_name == 'Hyd|Aro' then 
            hydaro_count = hydaro_count + tf; 
        elseif feat_name == 'Ani&Acc' then 
            aniacc_count = aniacc_count + tf; 
        else donacc_count = donacc_count + tf; 
        endif 
 
        //count = count + (add tf); 
        //print cat [feat_name, ':', count]; 
        //count = 0; 
        i = i + 1; 
        tf = 0; 
    endloop 
 
     
    sleep 1; 
    WindowDestroy last WindowKeyList[]; 
endloop 
 
print cat ['Hyd:', hyd_count]; 
    print cat ['Don:', don_count]; 
    print cat ['Acc:', acc_count]; 
    print cat ['Ani:', ani_count]; 
    print cat ['Cat:', cat_count]; 
    print cat ['Aro:', aro_count]; 
    print cat ['Don|Hyd:', donhyd_count]; 
    print cat ['Cat&Don:', catdon_count]; 
    print cat ['Hyd|Aro:', hydaro_count]; 
    print cat ['Ani&Acc:', aniacc_count]; 
    print cat ['Don&Acc:', donacc_count]; 
 
endfunction 
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multiple_ph4_search.svl 

Description: This script will allow you to perform pharmacophores searches on a 

database (mdb) using all .ph4 files in a directory. Output databases will be named after 

the pharmacophore used for searching. 

Arguments 

mdb: database to search 

local ph4s = flist [[], '*.ph4']; 
local ph4; 
local ph4_hits; 
local hitv = []; 
 
for ph4 in ph4s loop 
    logfile 'log.txt'; 
    ph4_Search [mdb, ph4,  
            [ 
            abspos                : 0, 
            action                : 0, 
            descexpr              : '', 
            esel                  : 0, 
            maxconfhits           : 0, 
            maxmolhits            : 0, 
            molfield              : 'mol', 
            mseqfield             :'mseq', 
            o_molfield            : 'mol', 
            o_mseqfield           : 'mseq', 
            o_rmsdxfield          : 'rmsdx', 
            o_rscore_colfield     : 'rscore[F#]', 
            o_rscore_sumfield     : 'rscore', 
            out_append            : 0, 
            out_dbfile            : tok_cat [fbase ph4, '.mdb'], 
            out_dbv               : 0, 
            out_type_molecules    : 1, 
            sortby                : 'rmsdx', 
            use_mname             : 0, 
            use_mseqfield         : 1, 
            use_o_fileIdxField    : 0, 
            use_o_fileNameField   : 0, 
            use_o_hitmapfield     : 0, 
            use_o_hitmapfieldC    : 0, 
            use_o_hitsizefield    : 0, 
            use_o_hitsizefieldC   : 0, 
            use_o_molfield        : 1, 
            use_o_mseqfield       : 1, 
            use_o_rmsdfield       : 0, 
            use_o_rmsdxfield      : 1, 
            use_o_rowfield        : 0, 
            use_o_rscore_colfield : 1, 
            use_o_rscore_sumfield : 1, 
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            use_o_rscore_vecfield : 0, 
            use_out_dbfile        : 1, 
            usepsilo              : 0 
        ] 
]; 
 
logfile 0; 
logfile[]; 
 
//obtain hit molecules from log file 
local hitline = last droplast droplast freadb ['log.txt', 'line', 
INT_MAX]; 
local ws = wordsplit [hitline, " "]; 
local hits = ws(3); 
hits = atoi token hits; 
sleep 0.1; 
hitv = cat [hitv, hits]; 
ph4_hits = 0; 
 
endloop 
 
//loop to print results 
local i = 0; 
write ['\n']; 
for ph4 in ph4s loop 
    i = inc i; 
    write [tok_cat [ph4, ' hits: {}\n'], hitv(i)]; 
endloop 
 
write 'Done.\n'; 
 
endfunction 
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partial_ph4_gen_nminus1.svl 

Description: This script will create a directory, set it to the current directory, then create 

"partial" pharmacophore models by sampling combinations of n-1 pharmacophore 

features. For example, using this in a directory containing 7 feature pharmacophore 

models will create 7 partial pharmacophore models each possessing 6 features. 

Arguments 

features: number of features possessed each pharmacophore models in a directory. 

Pharmacophore models in a directory must each have the same number of features. 

Close [force:1, viewreset:1, delgobj:1];  // close any open structures 
fmkdir 'partial_ph4s'; 
cd 'partial_ph4s/'; 
local ph4, i; 
local ph4_files = flist [['..'],'*.ph4']; 
 
for ph4 in ph4_files loop 
    for i = 1, features, 1 loop 
        //print i; 
        run ['$MOE/svl/run/ph4_edit_2.svl', ph4]; 
        local wkey = ph4_EditorWkeyList []; 
        local data = ph4_EditorGetData wkey; 
        local feature_types = data.F.expr; 
        local nvp = WindowValues wkey; 
        local mainlist = nvp.mainlist(1); 
        WindowTrigger [wkey, [mainlist:i]]; 
        WindowTrigger [wkey, [button_delete:1024]]; 
        data = ph4_EditorGetData wkey; 
        fwrite_PH4 [tok_cat [tok_drop [fbase ph4, 3], '_', totok i, 
'.ph4'], data, [header:1]]; 
        sleep 1.5; 
        if wkey == ph4_EditorWkeyList [] then 
            WindowDestroy wkey; 
        endif;   
    endloop 
endloop 
 
cd '..'; 
write 'Done.\n'; 
 
endfunction 
  



 

 389 

ph4_distcalc.svl 

Description: This script is used to obtain:  

• A matrix of distances from pharmacophore feature centroids to a binding pocket 

centroid 

• A matrix of distances from pharmacophore feature centroids to other 

pharmacophore feature centroids 

• The averages, minimums, and maximums of the above values 

Arguments 

ph4: filename of pharmacophore model to be to analyzed 

receptor: .pdb or .moe file containing a receptor structure 

function ph4_EditorWkeyList; 
global function ph4_distcalc [ph4, receptor] 
 
Close [force:1, viewreset:1, delgobj:1];  // close any open structures 
loop 
    Open receptor; 
    if notnull Atoms[] == 1 then break; 
    endif 
endloop 
 
local chains = Chains[]; 
chains = droplast chains; 
 
// open sitefinder and create dummy atom at the centroid of residues 
//comprising first elucidated site in SiteFinder 
    loop 
        Open '$MOE/svl/run/sitefind.svl'; 
        sleep 1; 
        local wkey2 = WindowKeyList[]; 
     
     
     
        WindowTrigger [wkey2, [panel:'Apply']]; 
        WindowTrigger [wkey2, [disp_aselect:1]]; 
        sleep 0.2; 
        if notnull SelectedAtoms[] then  
            break; 
        endif 
    endloop; 
sleep 5; 
WindowDestroy wkey2; 
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local site_center = oCentroid SelectedAtoms[]; 
local site_dum = mol_Create [ '', [ '', '', '', 1 ],  
        [ '*', 1, " ", 'none', 1 ],  
        [ 'LP', 0, 'sp', 0, 0, [ [] ], 0, 'DU', 0, 
site_center(1),site_center(2),site_center(3) ] ]; 
aSetSelected [SelectedAtoms[], 0]; 
 
//get dummy atom from dummy chain 
site_dum = cAtoms site_dum; 
 
//open pharmacophore file 
Open ph4; 
 
//write interfeature distance header 
write '\n'; 
write 'Interfeature Distances (Å)\n'; 
write '----------------------------\n'; 
 
local i, vector, distance; 
local [fatoms] = cAtoms last droplast Chains[]; 
local mtx = aDist [tr fatoms, fatoms]; 
 
//write matrix of feature to feature distances 
write ['\t']; 
for i = 1, length fatoms, 1 loop 
    write ['{}\t', tok_cat['F', totok i]]; 
endloop 
 
write '\n'; 
write ['F1']; 
i = 1; 
 
for vector in mtx loop 
    for distance in vector loop 
        if distance == 0 then 
            write ['\t-', distance]; 
        else 
            write ['\t{f.2}', distance]; 
        endif; 
    endloop 
    write['\n']; 
    i = inc i; 
    if i <= length fatoms then 
        write [tok_cat['F', totok i]]; 
    else 
        write ['\n']; 
    endif 
endloop 
 
//reshape mtx so all values can be compared 
mtx = cat mtx; 
mtx = pack mtx; 
 
//write max/min/mean values 
write ['Maximum: {f.2}\n', max mtx]; 
write ['Minimum: {f.2}\n', min mtx]; 
local mean = (add mtx)/(length mtx); 
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write ['Mean: {f.2}\n\n', mean]; 
 
//write feature to BP centroid distance header 
write '\n'; 
write 'Feature to Centroid Distances (Å)\n'; 
write '-----------------------------------\n'; 
 
//calculate centroid to feature distances 
local mtx2 = aDist [site_dum, fatoms]; 
 
//write matrix of feature to centroid distances 
write ['\t']; 
for i = 1, length fatoms, 1 loop 
    write ['{}\t', tok_cat['F', totok i]]; 
endloop 
 
write ['\nDU']; 
i = 1; 
 
for distance in mtx2 loop 
    write ['\t{f.2}', distance]; 
endloop 
 
write['\n\n']; 
 
//write feature to BP centroid distances 
write ['Maximum: {f.2}\n', max mtx2]; 
write ['Minimum: {f.2}\n', min mtx2]; 
mean = (add mtx2)/(length mtx2); 
write ['Mean: {f.2}\n', mean]; 
 
//Destroy the ph4 editor window 
WindowDestroy ph4_EditorWkeyList []; 
 
endfunction 
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ph4_near_residue_dist.svl 

Description: This script will calculate the distance from binding pocket residue centroids 

(found with the Site Finder tool) to each annotation point in a given pharmacophore 

model. 

Arguments 

receptor: file containing a receptor structure 

function ph4_EditorWkeyList; 
global function ph4_near_residues [receptor]; 
 
 
Close [force:1, viewreset:1, delgobj:1];  // close any open structures 
Open receptor; 
local res_dummies = []; 
local mdb_key = db_Open ['ph4_dist_to_residues.mdb', 'create']; 
 
db_EnsureField [mdb_key, 'filename', 'char' ]; 
db_EnsureField [mdb_key, 'max_res', 'float' ]; 
db_EnsureField [mdb_key, 'min_res', 'float' ]; 
db_EnsureField [mdb_key, 'avg_res', 'float' ]; 
// open sitefinder 
     
    loop 
        Open '$MOE/svl/run/sitefind.svl'; 
        local wkey2 = WindowKeyList[]; 
     
     
     
        WindowTrigger [wkey2, [panel:'Apply']]; 
        WindowTrigger [wkey2, [disp_aselect:1]]; 
        sleep 0.2; 
    if notnull SelectedAtoms[] then break; 
    endif 
    endloop; 
     
    sleep 5; 
    WindowDestroy wkey2; 
 
local residues = oParent SelectedAtoms[]; 
local residue; 
aSetSelected [Atoms[], 0]; 
for residue in residues loop 
    local [res_atoms] = oChildren residue; 
    local site_center = oCentroid res_atoms; 
    local site_dum = mol_Create [ '', [ '', '', '', 1 ],  
            [ '*', 1, " ", 'none', 1 ],  
            [ 'LP', 0, 'sp', 0, 0, [ [] ], 0, 'DU', 0, 
site_center(1),site_center(2),site_center(3) ] ]; 
    res_dummies = cat [res_dummies, cAtoms site_dum]; 
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endloop  
 
local ph4; 
local ph4_files = flist [[],'*.ph4']; 
 
for ph4 in ph4_files loop 
Open ph4; 
 
local [fatoms] = cAtoms last droplast Chains[]; 
local fatom; 
local distv = []; 
 
//print oType fatoms; 
//print oType res_dummies; 
for fatom in fatoms loop 
    local distance = min aDist [fatom, res_dummies]; 
    distv = cat[distv, distance]; 
endloop 
 
local max = max distv; 
local min = min distv; 
local mean = (add distv)/(length distv); 
 
print cat ['Max:', max]; 
print cat ['Min:', min]; 
print cat ['Mean:', mean]; 
 
local value = [ 
        filename: swrite ['{G}', fbase ph4],  
        max_res: max,  
        min_res: min,  
        avg_res: mean]; 
 
db_Write [mdb_key, 0, value]; 
sleep 2; 
WindowDestroy ph4_EditorWkeyList []; 
endloop 
 
endfunction 
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s_score_calc.svl 

Description: This script is used to calculate the mean interaction score of each set of 

fragments used to annotate randomly generated pharmacophore model features. Each 

score is written to the output database that results from random pharmacophore model 

generation. 

Arguments 

receptor: receptor model, should end in ‘minrec.moe’ (receptor structure written to file 

during MCSS) 

mdb: database containing fragments used to annotate each pharmacophore model's 

features 

function prolig_Calculate; 
global function s_score_calc [receptor, mdb]; 
local frag1_chain, frag2_chain, frag3_chain, frag4_chain, frag5_chain; 
local frag1_name, frag2_name, frag3_name, frag4_name, frag5_name; 
 
Close [force:1, viewreset:1, delgobj:1];  // close any open structures 
 
Open receptor; 
 
local entries = db_Entries mdb; 
local entry; 
db_EnsureField [ mdb, 's_score', 'float']; 
//db_EnsureField [ mdb, 's_score_all', 'float']; 
 
for entry in entries loop 
    local [frag1] = db_ReadFields [mdb, entry, 'Fragment1_mol']; 
    local [frag2] = db_ReadFields [mdb, entry, 'Fragment2_mol']; 
    local [frag3] = db_ReadFields [mdb, entry, 'Fragment3_mol']; 
    local [frag4] = db_ReadFields [mdb, entry, 'Fragment4_mol']; 
    local [frag5] = db_ReadFields [mdb, entry, 'Fragment5_mol']; 
     
    [frag1_chain, frag1_name] =db_CreateMolecule frag1; 
    [frag2_chain, frag2_name] =db_CreateMolecule frag2; 
    [frag3_chain, frag3_name] =db_CreateMolecule frag3; 
    [frag4_chain, frag4_name] =db_CreateMolecule frag4; 
    [frag5_chain, frag5_name] =db_CreateMolecule frag5; 
     
    local chains = Chains[]; 
    local [rec_atoms] = cAtoms chains(1); // get receptor atoms 
    local frags = dropfirst chains; // create subset of just fragments 
    local frag_chain; 
    local ligkeys = cat cAtoms frags; 
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    local dummy_mask = aElement ligkeys <> 'LP'; 
    ligkeys = ligkeys | dummy_mask; 
    //aSetSelected [ligkeys, 1]; 
    local use_frags = []; 
    local sel_atoms = []; // empty vector for fragment atoms that are 
to be selected 
         
    local itypes = ['Hbond', 'Metal', 'Ionic', 'Covalent', 'Arene', 
'Distance']; 
        local iopt = [ 
            emin_hb:        minE[-0.1, 0.10], 
            emin_hpi:       minE[-0.1, 0.10], 
            emin_ion:       0.10, 
            distance_threshold: 4.5, //4.5 default 
            layoutrechb:        1   // incl. rec-rec hbond in layout 
            ]; 
     
    //from prolig2d.svl, calculates fragments with strong interactions 
    local iract = prolig_Calculate [itypes, ligkeys, rec_atoms, iopt]; 
    aSetSelected [ligkeys, 1]; 
    local [iract_2, iract_3] = [iract(2), iract(3)]; 
    local lrmask = indexof [iract_2, ligkeys] and indexof [iract_3, 
rec_atoms]; 
    local rlmask = indexof [iract_3, ligkeys] and indexof [iract_2, 
rec_atoms]; 
    local mask = andE [indexof [iract(1), ['Hbond', 'Metal', 'Ionic', 
'Covalent']],lrmask or rlmask]; 
    //local arene_mask = andE [iract(1) == 'Arene', lrmask or rlmask]; 
    //mask = mask or arene_mask; 
    local s_lim = select [iract(2), iract(3), lrmask] | mask;   // 
multi atom 
    local s_rim = select [iract(3), iract(2), lrmask] | mask;   // for 
arene 
    local s_score = iract(4) | mask; 
    local mean_score = (add s_score)/(length s_score); 
    //local mean_scoreall = (add iract(4)/(length iract(4))); 
    write ['Mean score: {}\n', (add s_score)/(length s_score)]; 
 
    db_Write [mdb, entry, tagpoke[[],'s_score', mean_score]]; 
    //db_Write [mdb, entry, tagpoke[[],'s_score_all', mean_scoreall]]; 
    oDestroy frags; 
endloop 
 
write 'Done.\n';     
Open mdb;  
endfunction; 
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Miscellaneous Scripts 

db_2_dockmdb.svl 

Description: This script will allow a user to convert a MOE database to a docking 

database so both receptor structures and docked ligand poses within the database can be 

viewed together with the MOE database browser. 

Arguments 

mdb: database to be converted 

global function db_2_dockmdb [mdb] 
 
db_SetEnv [mdb, '{mol}dbvbrowse_Dock', 'ligand']; 
db_SetEnv [mdb, '{receptor}dbvbrowse_Dock', 'receptor']; 
db_SetEnv [mdb, '{S}dbvbrowse_Dock', 'score']; 
 
endfunction 
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db_conf_range.svl 

Description: This script will allow a user to calculate the number of conformations per 

mseq value (molecule) in a database. After the calculation, the minimum and maximum 

number of conformations are returned. 

Arguments 

mdb: database to be analyzed 

global function db_conf_range [mdb] 
local entry; 
local entries = db_Entries mdb; 
local mseqs = uniq db_ReadColumn [mdb, 'mseq']; 
 
local prev_mseq = db_ReadFields [mdb, first entries, 'mseq']; 
local prev_chi = db_ReadFields [mdb, first entries, 'chi']; 
local count = 0; 
local count_vector = []; 
local chi_count_vector = []; 
local chi_count = 1; //set chi_count at 1 for first entry (if all chi 
values for first entry's mseq value are the same, chi_count wouldn't be 
updated without setting chi_count to 1) 
 
write 'mseq\t# confs.\tchiral configurations\n'; 
write '----\t--------\t----------------------\n'; 
 
for entry in entries loop 
    local mseq = db_ReadFields [mdb, entry, 'mseq']; 
    local chi = db_ReadFields [mdb, entry, 'chi']; 
    if mseq == prev_mseq then //if the current mseq value matches the 
previous mseq value, molecule is the same. increase count 
        count = inc count; 
        if chi <> prev_chi then //if the current chi value does not 
match the previous chi value, it is a new chiral config. increase 
chi_count 
            chi_count = inc chi_count; 
            prev_chi = chi; 
        endif 
    elseif mseq <> prev_mseq and count <> 0 then //if the current mseq 
value is different from the previous mseq value, write counts for 
previous mseq 
        write ['{}\t{}\t\t{}\n', prev_mseq, count, chi_count]; 
        count_vector = cat[count_vector, count]; 
        chi_count_vector = cat[chi_count_vector, chi_count]; 
        prev_mseq = mseq; 
        count = 1; //set count at 1 since mseq after prev_mseq should 
be counted 
        prev_chi = chi; 
        chi_count = 1; 
    endif 
endloop 
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write ['{}\t{}\t\t{}\n', mseq, count, chi_count]; 
 
local min_mseq_index = indexof[min count_vector, count_vector]; 
local max_mseq_index = indexof[max count_vector, count_vector]; 
 
write ['\nMinimum # of confs: {}\tmseq: {}\tchiral configurations: 
{}\n', min count_vector, mseqs(min_mseq_index), 
chi_count_vector(min_mseq_index)]; 
write ['Maximum # of confs: {}\tmseq: {}\tchiral configurations: {}\n', 
max count_vector, mseqs(max_mseq_index), 
chi_count_vector(max_mseq_index)]; 
 
endfunction 
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db_refine_pdb.svl 

Description: This script is used to refine each structure in a database containing 

structures downloaded from the PDB. Most GPCR structures downloaded from the PDB 

typically contain extraneous chains, solvent molecules, and ions that need to be removed. 

For each entry in a database, this function first opens the structure in the 'mol' field and 

deletes protein chains that are shorter than the longest chain present in the system (the 

receptor). Next, the Site Finder function is used to determine a binding pocket (BP) 

centroid. If more than 1 non-amino acid (ligand/solvent/ion) residue is present in the 

system, the mean distance of all atoms comprising the residue to the BP centroid atom is 

calculated and the residue with the shortest mean distance to the center of the binding 

pocket is kept. To ensure that ions/solvent atoms do not interfere with this distance 

comparison, any residues comprised of only 1 atom are deleted. Refined structures 

(containing only a GPCR structure and its orthosteric ligand) are then imported into the 

newly created 'mol_Refined' category in the database. Visual inspection is still 

recommended after using this function on a database. Once this function is used, the 

database browser can be used to view the 'mol_refined' database field for visual 

inspection. 

Arguments 

mdb: database with a field containing structures to refine 

mol_field: name of the field containing the structures to refine 

function Protonate3D; 
global function db_refine_pdb [mdb, mol_field]; 
Close [force:1, viewreset:1, delgobj:1]; 
local entries = db_Entries[mdb]; 
local entry, mol, mol_chain, mol_name, chain; 
 
//ensure mdb has a mol field to import to 
db_EnsureField [mdb, 'mol_Refined', 'molecule']; 
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for entry in entries loop 
    [mol] = db_ReadFields[mdb, entry, mol_field]; 
    [mol_chain, mol_name] =db_CreateMolecule mol; 
    View[]; 
    local chains = Chains[]; 
    local i; 
    local chain_lengths = []; 
    local helix_props = []; 
    //find chain lengths, then find chain name suffixed ".R". if ".R" 
chain is not present, 
    //use the chain with the highest proportion of helical residues. 
Else, GPCR will be the  
    //longest chain. 
    for i = 1, length chains, 1 loop 
        local chain_length = length cat cResidues chains(i); 
        chain_lengths = cat [chain_lengths, chain_length]; 
        if length cat oChildren chains(i) < 100 then //if the chain has 
less than 100 residues 
            local helix_prop = 0.00; 
        else 
            helix_prop = add(rActualSegment cat oChildren chains(i) == 
'helix') / length cat oChildren chains(i); 
        endif 
        helix_props = cat [helix_props, helix_prop]; 
    endloop 
 
    local chain_names = cName chains; 
    local rmask = fext cName chains == 'R'; 
    if anytrue rmask and add rmask > 1 then //if there's more than 1 .R 
chain 
        local rchain = chains | rmask; 
        local rchain_lengths = chain_lengths | rmask; 
        local length_mask = rchain_lengths == max rchain_lengths; 
        rchain = rchain | length_mask; 
    elseif anytrue rmask then //if there's only 1 .R chain 
        rchain = chains | rmask; 
    else //if there's no .R chain 
        local hprop_mask = helix_props == max helix_props; 
        rchain = chains | hprop_mask; 
        //rmask = chain_lengths == max chain_lengths; 
        //rchain = chains | rmask; 
        //if length rchain > 1 then 
            //rchain = first rchain; 
        //endif 
    endif 
 
    //check to ensure that only 1 rchain is selected 
    if length rchain > 1 then 
        rchain = first rchain; 
    endif 
 
    write ['Receptor chain: {}\n', cName rchain]; 
    aSetHidden [cAtoms rchain, 1]; 
    rSetRibbonMode [Residues[], 'tube']; 
     
    //remove fusion partners 
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    local [rchain_residues] = cResidues rchain; 
    local rUID_resmask = rUID rchain_residues < 900; 
    local rUID_fusionmask = rUID rchain_residues > 900; 
 
    local rchain_residues1 = rchain_residues | rUID_resmask; 
    local rchain_residues2 = rchain_residues | rUID_fusionmask; 
     
    if max rUID rchain_residues1 < 500 and alltrue[rUID rchain_residues 
> 900] == 0 then //check numbering for cases where fusion partners are 
not numbered differently 
        oDestroy rchain_residues2; 
    endif 
 
    //remove receptor chain from chains being considered in next loop 
    local chain_mask = chains <> rchain; 
    chains = chains | chain_mask; 
 
    //determine ligand chains 
    for chain in chains loop 
        //get residue letters for each chain. '?' denotes ligand, ion, 
or solvent 
        local letter_vector = totok rLetter cat oChildren chain == '?'; 
        //if no ?'s are present in letter_vector and the chain isn't 
the ligand chain, delete the chain 
        if add letter_vector == 0 and chain <> rchain then 
            oDestroy chain; 
        endif 
    endloop 
 
    // open sitefinder (from SBP script) (move this so structures with 
only 1 ligand residue don't use this code?) 
    local tcount = 0; 
    local tatoms = []; 
    loop 
        tcount = tcount + 1; 
        Open '$MOE/svl/run/sitefind.svl'; 
        local wkey2 = WindowKeyList[]; 
        if tcount = 1 then  
            WindowTrigger [wkey2, [panel:'Apply']]; 
        endif 
         
        WindowTrigger [wkey2, [disp_aselect:1]]; 
        sleep 0.5; 
        if notnull SelectedAtoms[] then  
            break; 
        endif 
    endloop; 
     
    sleep 1; 
    WindowDestroy wkey2; 
 
    local site_center = oCentroid SelectedAtoms[]; 
    local site_dum = mol_Create [ 'BP Centroid', [ 'centroid', '', '', 
1 ], // create a dummy atom representing the centroid of the BP 
            [ '*', 1, " ", 'none', 1 ],  
            [ 'LP', 0, 'sp', 0, 0, [ [] ], 0, 'DU', 0, 
site_center(1),site_center(2),site_center(3) ] ]; 
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    aSetSelected [Atoms[], 0]; 
    site_dum = cAtoms site_dum; 
 
    //create empty vectors for ligand distances, residues to delete 
    local dists = []; 
    local res_delete = []; 
 
    //find the non-receptor residue with the shortest distance to the 
binding pocket 
    local residues = droplast Residues[]; //don't want to consider 
dummy atom 
    local resmask = rType residues == 'none'; 
    local lig_residues = residues | resmask; 
    local lig_res; 
 
 
    if length lig_residues > 1 then 
        for lig_res in lig_residues loop 
            local [res_atoms] = rAtoms lig_res; 
            aSetSelected [res_atoms,1]; 
            sleep 0.5; 
            aSetSelected [res_atoms,0]; 
            if length res_atoms == 1 then 
                res_delete = cat [res_delete, lig_res]; 
                local avg_dist = 99999; 
            elseif add aMass res_atoms < 100 then 
                res_delete = cat [res_delete, lig_res]; 
                avg_dist = 99999; 
            else 
                avg_dist = add aDist [res_atoms, site_dum] / length 
res_atoms; 
            endif 
            dists = cat [dists, avg_dist]; 
        endloop 
 
        local dist_mask = dists <> min dists; 
        res_delete = cat[res_delete, lig_residues | dist_mask]; 
        local res; 
        for res in res_delete loop 
            oDestroy res; 
        endloop 
    endif 
 
    //destroy site dummy atom prior to database addition 
    oDestroy oParent oParent site_dum; 
 
    //protonate 3D 
    local atoms = Atoms[]; 
    Protonate3D [atoms,atoms,atoms,[],[],[pH: 7.4]]; 
 
    //extract refined receptor, add to entry under the "mol_Refined" 
field 
    local mol_refined = mol_Extract Chains[]; 
    db_Write[mdb, entry, [mol_Refined: mol_refined]]; 
    Close [force:1, viewreset:1, delgobj:1]; 
endloop 
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write['Done.\n']; 
 
endfunction 
  



 

 404 

db_subset_entries.svl 

Description: This script allows the user to select a subset of entries from a MOE database 

and put them into a newly created database. 

Arguments 

mdb: filename of the database to select a subset of entries from 

output_mdb: name of the database to be created that will contain the subset of entries 

from mdb 

entry_numbers: mdb entry numbers to subset, entered as a vector (e.g. [33, 56, 72]) 

global function db_subset_entries [mdb, output_mdb, entry_numbers]; 
 
local field_names, field_types; 
local entries = db_Entries mdb; 
entries = get [entries, entry_numbers]; 
[field_names, field_types] = db_Fields mdb; 
 
local subset_mdb = db_Open [ output_mdb,'create']; 
[field_names, field_types] = db_Fields 'output.mdb'; 
 
//create fields from mdb in output_mdb 
local i; 
for i = 1, length field_names, 1 loop 
    db_EnsureField [output_mdb, field_names(i), field_types(i)]; 
endloop 
 
//read each entry from mdb and write it to output_mdb 
local entry; 
for entry in entries loop 
    local entry_record = db_Read [mdb, entry]; 
    db_Write [output_mdb, 0, entry_record ]; 
endloop 
 
endfunction 
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db_subset_generation.svl 

Description: This function is used to split a database into a specified number of subset 

databases, ideally for use prior to conformational searches. Each subset database will 

contain an equal number of entries except the last, which will contain the equal number 

plus the remainder of entries. 

Arguments 

mdb: database to create subsets of 

num_dbs: desired number of subset databases 

global function db_subset_generation [mdb, num_dbs] 
 
local entries = db_Entries mdb; 
local entry; 
local num_entries = length entries; 
local subset_num = round (num_entries / num_dbs); 
local field_names, field_types; 
[field_names, field_types] = db_Fields mdb; 
local i = 1; //subset database counter 
local entry_counter = 1; 
 
for entry in entries loop 
    //if the database counter (i) is equal to the desired number of 
    //databases and the current entry is the first to be written to 
    //a new subset database, create a final subset database. 
    if i == num_dbs and entry_counter == 1 then 
        local dst_mdb = tok_cat [fbase mdb, '_', totok i, '.mdb']; 
        db_Open [dst_mdb, 'create']; 
        write ['Created subset database #{}.\n', i]; 
        local j = 0;  
        while j < length field_names loop 
            j = inc(j); 
            db_EnsureField [dst_mdb, field_names(j), field_types(j)];; 
        endloop 
        i = 0; //reset i so no further databases are created 
 
    //if the entry is the first to be written to the subset database 
    //and i does not equal the desired number of databases, create 
    //a new subset database. 
    elseif entry_counter == 1 and i <> num_dbs and i >= 1 then 
        dst_mdb = tok_cat [fbase mdb, '_', totok i, '.mdb']; 
        db_Open [dst_mdb, 'create']; 
        write ['Created subset database #{}.\n', i]; 
        j = 0;  
        while j < length field_names loop 
            j = inc(j); 
            db_EnsureField [dst_mdb, field_names(j), field_types(j)];; 
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        endloop 
        i = inc i; 
    endif 
     
    //write entry to created database (dst_mdb) 
    local entry_record = db_Read [mdb, entry]; 
    db_Write [dst_mdb, 0, entry_record]; 
    entry_counter = inc entry_counter; 
    if entry_counter > subset_num then 
        entry_counter = 1; 
    endif 
endloop 
 
write 'Done.\n'; 
 
endfunction 
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db_tanimoto_calc.svl 

Description: This script is used to calculate a Tanimoto Similarity coefficient between a 

molecule loaded into the first chain and molecules in a database. Make sure to load the 

molecule you wish to compare to into the system prior to running this script. 

Arguments 

mdb: database containing molecules in a field titled 'mol' 

function ph4_MACCSBIT_Fingerprint; 
function ph4_MACCSBIT_Tanimoto; 
function ph4_Tanimoto_idx; 
 
global function db_Tanimoto_calc [mdb] 
 
local entries = db_Entries mdb; 
local entry, ent_mol, ent_mol_chain, ent_mol_name, ent_atoms; 
 
//ensure new field in mdb to write Tanimoto coefficients to 
db_EnsureField [mdb, 'Tanimoto Similarity', 'float']; 
 
//calculate fingerprint for molecule loaded into system 
local [lig_atoms] = cAtoms first Chains[]; 
local FP = ph4_MACCSBIT_Fingerprint lig_atoms; 
 
//loop through database and calculate a Tanimoto coefficient between 
each entry 
//and the molecule loaded into the first chain 
for entry in entries loop 
    [ent_mol] = db_ReadFields [mdb, entry, 'mol']; 
    [ent_mol_chain, ent_mol_name] = db_CreateMolecule ent_mol; 
    [ent_atoms] = cAtoms [ent_mol_chain]; 
    local FP2 = ph4_MACCSBIT_Fingerprint ent_atoms; 
    local sim = ph4_MACCSBIT_Tanimoto [FP, FP2]; 
    db_Write [mdb, entry, tagpoke[[],'Tanimoto Similarity', sim]]; 
    oDestroy [ent_mol_chain]; 
endloop 
 
write 'Done.\n'; 
 
endfunction 
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dbmol2smiles.svl 

Description: This script is used to extract SMILES strings from each molecule present in 

a database. The user can choose to write each entry's SMILES string to a field in the 

database. 

Arguments 

mdb: database containing molecules 

database_field: database field containing molecules ('mol') 

db_write: 1 to write entries to database, otherwise use 0 

function Close; 
global function dbmol2smiles [mdb, database_field, db_write]; 
 
Close [force:1, viewreset:1, delgobj:1]; 
local entries = db_Entries mdb; 
local entry; 
 
if db_write == 1 then 
    db_EnsureField [mdb, 'SMILES', 'char']; 
endif 
 
for entry in entries loop 
        local [ligand] =db_ReadFields [mdb, entry,[database_field]]; 
//get structure from fieldname 
    local [ligand_chain, ligand_name] =db_CreateMolecule ligand; 
    local smiles = sm_ExtractUnique Atoms[]; 
    ligand_name = tok_keep [ligand_name, 16]; 
    if db_write == 1 then 
        db_Write [mdb, entry, tagpoke[[],'SMILES', string smiles]]; 
    endif 
    write ['{}\n', smiles]; 
    oDestroy [ligand_chain];             
 
endloop 
 
write 'Done.\n'; 
 
endfunction 
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dock_rescore.svl 

Description: This function allows for the rescoring of molecules in any database using 

MOE GBVI scoring. 

Arguments 

database_file: database file to rescore 

database_field1: database field containing ligand structures 

database_field2: database field containing receptor structures 

output_mdb: name of output for each molecule's rescoring (use ‘temp.mdb’) 

cat_mdb: desired name of output database containing all rescored molecules 

function Close; 
function DockAtoms; 
function db_ImportDB; 
global function dock_rescore [database_file, database_field1, 
database_field2, output_mdb, cat_mdb]; 
 
    Close [force:1, viewreset:1, delgobj:1];  // close any open 
structures 
    local mdb_key = db_Open [database_file, 'read-write']; 
    local entry_key, ligand, receptor, atoms2, ligand_chain, 
ligand_name, receptor_chain, receptor_name, ref_chains, mask, 
ref_residues, rec_residues, ref_ligand, ligand_heavy, ref_heavy;      
    local entries = db_Entries mdb_key; 
    local atoms, receptor_atoms, ligand_atoms; 
local opt = [ 
    outrmsd: 0, 
    sel_ent_only_rec: 0, 
    sel_ent_only: 0, 
    wall: [ '', 0, [ 0, 0, 0 ], [ 1000000, 1000000, 1000000 ], 0 ], 
    csearch: 0, 
    confGenMethod: 'None', 
    ignoreMseq: 0, 
    retainData: [ 0, 1 ], 
    placement: 'None', 
    placement_opt: [  ], 
    scoring: 'London dG', 
    scoring_opt: [  ], 
    dup_placement: 1, 
    maxpose: 30, 
    refine: 'None', 
    refine_opt: [ fixrec : '' ], 
    rescoring: 'GBVI/WSA dG', 
    rescoring_opt: [  ], 
    dup_refine: 1, 
    remaxpose: 30, 
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    descexpr: '', 
    descexpr: '', 
    receptor_mfield: '', 
    ligand_mfield: 'mol', 
    rxnFile: '', 
    rxsite: [  ], 
    edsupport: 1, 
    ed_data: [ ed_dockpath : '' ], 
    check_pose_geom: [  ], 
    multiLigand: 0, 
    need_dmat: 1, 
    gen_plif: 1, 
    BatchFile: 'dock_batch.svl' 
    ]; 
//  loop through the database to create receptor and ligand pairs and 
then 'dock' them to rescore 
        for entry_key in entries loop 
        [ligand] =db_ReadFields [mdb_key, entry_key,[database_field1]]; 
//get structure from fieldname 
        [receptor] =db_ReadFields [mdb_key, entry_key, 
[database_field2]]; 
        [receptor_chain, receptor_name] =db_CreateMolecule receptor; 
        [ligand_chain, ligand_name] =db_CreateMolecule ligand; 
        [rec_residues] = cResidues receptor_chain; 
        receptor_atoms = cat cAtoms receptor_chain; 
        ligand_atoms = cat cAtoms ligand_chain; 
        DockAtoms [receptor_atoms, [], ligand_atoms, output_mdb, opt]; 
 
//   destroy one ligand before reading in the next 
        oDestroy [ligand_chain]; 
        oDestroy [receptor_chain]; 
 //  import .mdb output into one large database 
        db_ImportDB [cat_mdb,output_mdb, []]; 
 
endloop 
endfunction 
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get_compound_vendors.py 

Description: This script is used to determine the commercial availablity (via PubChem) 

of compounds in a .txt file exported from a MOE database. For each smiles string in the 

.txt file, this script uses PubChemPy to obtain a compound ID number from the smiles 

string. Each ID number is then used with BeautifulSoup to obtain XML data containing 

vendor information for each compound from PubChem. The .csv file resulting from this 

script can be imported into a MOE database and merged with the compound database 

based on smiles keys. 

Arguments 

Inputs: a .txt file obtained by saving a MOE .mdb file as .txt, name of the field in the 

.mdb file containing smiles strings 

# imports 
import pubchempy as pcp 
from bs4 import BeautifulSoup 
import re 
import urllib.request 
from urllib.error import HTTPError 
import sys 
import time 
import os 
 
# pandas import/options 
import pandas as pd 
pd.set_option('display.max_columns', None) 
pd.set_option('display.max_rows', None) 
 
def get_compound_vendors(): 
    # args from CMD 
    txt_file = str(sys.argv[1]) 
    smiles_field = str(sys.argv[2]) 
     
    # read in MOE database .txt file, get smiles strings 
    input_df = pd.read_csv(txt_file) 
    smiles_strings = input_df[smiles_field] 
    i = 1 
     
    # create empty dataframe to fill with compound vendor information 
    output_df = pd.DataFrame(columns = ['smiles', 'name', 
'commercially_available', 'num_vendors', 'vendors']) 
 
    for string in smiles_strings: 
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        print('Getting information for compound', i, '(' + string + 
')') 
        i += 1 
        # get compound with pubchempy 
        compound = pcp.get_compounds(string, 'smiles') 
        # get compound number to use in BeautifulSoup URL 
        num = '' 
        for c in str(compound): 
            if c.isdigit(): 
                num = num + c 
 
        # if there is no compound ID (length of 0), name is NA. else, 
name is the compound's IUPAC name. 
        if len(num) == 0: 
            name = 'NA' 
        else: 
            name = compound[0].iupac_name 
             
        # get XML with vendor information using the compound number 
        BASE_URL = 
'https://pubchem.ncbi.nlm.nih.gov/rest/pug_view/categories/compound/' 
        URL = BASE_URL + num + '/XML/' 
        try: 
            source = urllib.request.urlopen(URL) 
            soup = BeautifulSoup(source,'lxml') 
        # exception handling for cases where no vendor info exists 
        except HTTPError as err: 
            if err.code == 400: 
                #print('N') 
                CA = 'N' 
                num_vendors = 0 
                dict = {'smiles': [string], 'name': [name], 
'commercially_available': [CA], 'num_vendors': [num_vendors], 
'vendors': ['NA']} 
                df = pd.DataFrame(dict) 
                output_df = pd.concat([output_df, df], 
ignore_index=True) 
        else: 
            # find vendor names, strip XML tags, store vendors 
            vendors_xml = soup.find_all('sourcename') 
            xml_stripped = re.sub('<[^>]*>', '', str(vendors_xml)) 
            vendors = xml_stripped.split(',') 
            CA = 'Y' 
            num_vendors = len(vendors) 
            if num_vendors > 0: 
                dict = {'smiles': [string], 'name': [name], 
'commercially_available': [CA], 'num_vendors': [num_vendors], 'vendors' 
: [vendors]} 
                df = pd.DataFrame(dict) 
                output_df = pd.concat([output_df, df], 
ignore_index=True) 
                 
    # print table to user     
    print(output_df) 
     
    #write table to csv 
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    output_df.to_csv(os.path.splitext(txt_file)[0] + '_CA.csv', index = 
False) 
    print('Results written to', os.path.splitext(txt_file)[0] + 
'_CA.csv.\n') 
  
#call main function 
get_compound_vendors() 
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get_missing_mols.svl 

Description: This function is used to obtain molecules that might be missing from a 

database after performing a conformational search. 

Arguments 

mdb1: database used as input for a conformational search 

mdb2: database containing conformations 

global function get_missing_mols [mdb1, mdb2, fieldname] 
 
local names_1 = db_ReadColumn [mdb1, fieldname]; 
local names_2 = uniq db_ReadColumn [mdb2, fieldname]; 
 
local diff_names = diff [names_1, names_2]; 
 
local entries = db_Entries mdb1; 
local diff_name, entry; 
 
Open mdb1; 
 
for diff_name in diff_names loop 
    //print diff_name; 
    for entry in entries loop 
        local [entry_name] = db_ReadFields [mdb1, entry, fieldname]; 
        //print entry_name; 
        if token entry_name == token diff_name then 
            dbv_EntrySetSelected [ mdb1, entry, 1 ];  
        endif 
    endloop 
endloop 
 
write 'Done.\n'; 
 
endfunction 
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get_molnames.svl 

Description: This script is used to obtain a text file containing the names of every 

molecule in a database containing the field 'name'. 

Arguments 

mdb: database to get names from 

global function get_molnames [mdb] 
 
local entries = db_Entries [mdb]; 
local entry; 
 
logfile 'names.txt'; 
 
for entry in entries loop 
    local [name] = db_ReadFields [mdb, entry, 'name']; 
    print name; 
endloop 
 
logfile[]; 
 
endfunction 
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get_selected_poses.svl 

Description: This script is used to import certain entries from a database containing 

docked poses (mdb) into another database containing selected docked poses (pose_mdb). 

Arguments 

mdb: database containing poses to import to pose_mdb 

pose_mdb: name of desired/existing selected pose database 

entry_numbers: vector of integers containing entries to import 

global function get_selected_poses [mdb, pose_mdb, entry_numbers]; 
 
local field_names, field_types; 
[field_names, field_types] = db_Fields mdb; 
 
//check if pose_mdb exists. if not, create the database and create 
fields 
//from mdb within pose_mdb 
if notnull flist[[], pose_mdb] == 0 then 
    local mdb_key = db_Open [pose_mdb,'create']; 
 
    //create fields from mdb in output_mdb 
    local i; 
    for i = 1, length field_names, 1 loop 
        db_EnsureField [pose_mdb, field_names(i), field_types(i)]; 
    endloop 
else 
    //create fields from mdb in output_mdb 
    for i = 1, length field_names, 1 loop 
        db_EnsureField [pose_mdb, field_names(i), field_types(i)]; 
    endloop 
endif 
 
//create field that denotes the source mdb of each entry 
db_EnsureField [pose_mdb, 'source_mdb', 'char']; 
 
//create tagged vector with source mdb name 
local value = [source_mdb: string mdb]; 
 
//read each entry from mdb and write it to output_mdb 
local entries = db_Entries mdb; 
entries = get [entries, entry_numbers]; 
 
local entry; 
for entry in entries loop 
    local entry_record = db_Read [mdb, entry]; 
    entry_record = tagcat [entry_record, value]; 
    db_Write [pose_mdb, 0, entry_record]; 
endloop 
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//convert database to docking database 
db_SetEnv [pose_mdb, '{mol}dbvbrowse_Dock', 'ligand']; 
db_SetEnv [pose_mdb, '{receptor}dbvbrowse_Dock', 'receptor']; 
db_SetEnv [pose_mdb, '{S}dbvbrowse_Dock', 'score']; 
 
//only open output_mdb if it is not currently open 
//if no databases are open, open pose_mdb 
if notnull dbv_KeyList[] == 0 then 
    dbv_Open pose_mdb; 
//else if the open databases aren't pose_mdb, open pose_mdb 
elseif anytrue dbv_KeyList[] <> db_Open[pose_mdb, 'read-write'] then 
    dbv_Open pose_mdb; 
endif 
 
endfunction 
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get_uniq_mols.svl 

Description: This script is used to get unique molecules (i.e. 1 molecule per mseq) from a 

database containing many entries per mseq. 

Arguments 

dst_mdb: desired name of output database 

src_mdb: database containing molecules with many entries per mseq 

method: 'mseq' or 'token' to determine unique molecules based on mseq or token 

fieldname: token name of the field to use to determine unique molecules 

global function get_uniq_mols [src_mdb, dst_mdb, method, fieldname]; 
local field_names, field_types; 
 
local entry, mseq, db_mseq, string; 
db_Open [dst_mdb, 'create']; 
[field_names, field_types] = db_Fields src_mdb; 
local i = 0; 
 
// ensure that dst_mdb has the same fields as src_mdb 
while i < length field_names loop 
    i = i + 1; 
    db_EnsureField [dst_mdb, field_names(i), field_types(i)];; 
endloop 
 
// mseq method 
if method == 'mseq' then 
    // get mseqs and entries from src_mdb 
    local mseqs = uniq db_ReadColumn [src_mdb, fieldname]; 
    local entries = db_Entries src_mdb; 
 
    // for each entry in src_mdb, determine if it is a unique entry 
based on mseq value 
    for entry in entries loop 
        db_mseq = db_ReadFields [src_mdb, entry, fieldname]; 
        print cat ['db_mseq:', db_mseq]; 
        if isnull mseqs then // for first entry 
            break; 
        elseif db_mseq == first mseqs then 
            local entry_record = db_Read [ src_mdb, entry ]; 
            db_Write [ dst_mdb, 0, entry_record ]; 
            mseqs = dropfirst mseqs; 
        endif 
    endloop 
 
// token method. works for 'char' field types 
elseif method == 'token' then 
    // get strings from specified fieldname 
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    local strings = uniq db_ReadColumn [src_mdb, fieldname]; 
    local tokens = []; 
 
    // convert each string to a token for later comparison 
    for string in strings loop 
        local tokname = tok_cat totok string; 
        tokens = cat [tokens, tokname]; 
    endloop 
 
    // get entries from src_mdb 
    entries = db_Entries src_mdb; 
     
    // for each entry in src_mdb, determine if it is a unique entry 
based on token value 
    for entry in entries loop 
        [tokname] = db_ReadFields [src_mdb, entry, fieldname]; 
        tokname = token tokname; 
        print cat ['token:', tokname]; 
        if isnull tokens then // for first entry 
            break; 
        elseif tokname == first tokens then 
            entry_record = db_Read [ src_mdb, entry ]; 
            db_Write [ dst_mdb, 0, entry_record ]; 
            tokens = dropfirst tokens; 
        endif 
    endloop 
endif 
 
Open dst_mdb; 
 
write 'Done.\n'; 
endfunction 
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ism_to_txt.py 

Description: This script will allow a user to import convert an inactives_nM.ism file 

downloaded from a target's folder on DUD-E to .txt for use within MOE. 

Arguments 

Inputs: .ism file 

#import pandas, sys, and time modules 
import pandas as pd 
import sys 
import time 
 
#main function 
def main(): 
    ism_file = sys.argv[1] 
    df = pd.read_csv(ism_file, sep=" ", header=None) 
     
    # drop columns that do not contain smiles, dat, activity, or 
uniprot code 
    df.drop(list(set(df.columns) - set([0,1,2,3,4,5,8])), axis = 1, 
inplace = True) 
    df.columns = ['smiles', 'dat', 'act1', 'act2', 'act3', 'act4', 
'uniprot'] 
    df.insert(2, 'activity', df['act1'] + df['act2'] + 
df['act3'].astype('str') + df['act4']) 
    df.drop(['act1', 'act2', 'act3', 'act4'], axis = 1, inplace = True) 
     
    # write table to .txt 
    ism_filename = ism_file.split('/')[-1] 
    filename = ism_filename[:-4] + '_for_moe_import.txt' 
    df.to_csv(filename, header=list(df.columns), index=None, sep=' ') 
     
    print('\nDone.', ism_file, 'has been converted to', filename + '.') 
#call main function 
main() 
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ligand_similarity.svl 

Description: This script allows a user to calculate ligand similarity between molecules in 

a database (mdb) and a molecule that is loaded into MOE. 

Arguments 

mdb: database containing molecules in a field titled ‘mol’ 

refmol_name: name of the molecule loaded into the system, enter as a token (e.g. 

'risperidone') 

function ph4_MACCSBIT_Fingerprint; 
function ph4_MACCSBIT_Tanimoto; 
function ph4_Tanimoto_idx; 
 
global function ligand_similarity [mdb, refmol_name] 
 
//Close [force:1, viewreset:1, delgobj:1];  // close any open 
structures 
 
local entries = db_Entries mdb; 
local ent, ligand_chain, ligand_name, ligand, lig_atoms; 
 
db_EnsureField [mdb, tok_cat[refmol_name, '_similarity'], 'float']; 
 
local [ref_atoms] = cAtoms [first Chains[]]; 
local ref_FP = ph4_MACCSBIT_Fingerprint ref_atoms; 
 
for ent in entries loop 
    [ligand] = db_ReadFields [mdb, ent, 'mol']; 
    [ligand_chain, ligand_name] =db_CreateMolecule ligand; 
    [lig_atoms] = cAtoms [ligand_chain]; 
    sleep 0.5; 
    local FP = ph4_MACCSBIT_Fingerprint lig_atoms; 
    print FP; 
    local sim = ph4_MACCSBIT_Tanimoto [ref_FP, FP]; 
    db_Write [mdb, ent, tagpoke[[], tok_cat[refmol_name, 
'_similarity'], sim]]; 
    oDestroy [ligand_chain]; 
endloop 
 
endfunction 
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ligand_similarity_mdb.svl 

Description: This script allows a user to calculate ligand similarity between molecules in 

2 separate databases. 

Arguments 

mdb: database containing molecules in the 'mol' field 

refmdb: database to compare molecules in mdb to 

function ph4_MACCSBIT_Fingerprint; 
function ph4_MACCSBIT_Tanimoto; 
function ph4_Tanimoto_idx; 
 
global function ligand_similarity_mdb [mdb, ref_mdb] 
 
Close [force:1, viewreset:1, delgobj:1];  // close any open structures 
local entries = db_Entries mdb; 
local ref_entries = db_Entries ref_mdb; 
local ent, ref_ent, ligand_chain, ligand_name, refligand_chain, 
refligand_name, ligand, lig_atoms; 
 
for ref_ent in ref_entries loop 
    local [ref_ligand] = db_ReadFields [ref_mdb, ref_ent, 'mol'];  
    [refligand_name] = first ref_ligand; 
    db_EnsureField [mdb, tok_cat[refligand_name, '_similarity'], 
'float']; 
    [refligand_chain, refligand_name] =db_CreateMolecule ref_ligand; 
    local [ref_atoms] = cAtoms [refligand_chain]; 
    local ref_FP = ph4_MACCSBIT_Fingerprint ref_atoms; 
    local i = 1; 
 
    for ent in entries loop 
        [ligand] = db_ReadFields [mdb, ent, 'mol']; 
        [ligand_chain, ligand_name] =db_CreateMolecule ligand; 
        [lig_atoms] = cAtoms [ligand_chain]; 
        sleep 0.1; 
        local FP = ph4_MACCSBIT_Fingerprint lig_atoms; 
        local sim = ph4_MACCSBIT_Tanimoto [ref_FP, FP]; 
        db_Write [mdb, ent, tagpoke[[], tok_cat[refligand_name, 
'_similarity'], sim]]; 
        oDestroy [ligand_chain]; 
        if sim >= 0.5 then 
            write [tok_cat['entry ', totok i, '/', refligand_name, 
'_similarity: {}\n'], sim]; 
        endif 
        i = inc i; 
    endloop 
oDestroy [refligand_chain]; 
endloop 
 
endfunction 
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loopnumber.svl 

Description: This script is used to loop through a database and number each entry in a 

new field titled 'index'. 

Arguments 

database_file: database whose entries will be numbered 

global function loopnum [database_file] 
                local entry_key; 
local mdb_key = db_Open [database_file, 'read-write']; 
local entries = db_Entries mdb_key; 
local counter = 1; 
 
db_CreateField [mdb_key, 'index','int']; 
for entry_key in entries loop 
    db_Write [mdb_key, entry_key, tagpoke[[],'index', counter]]; 
    counter = counter + 1; 
endloop 
endfunction 
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mseq_renum.svl 

Description: This script is used to renumber the molecules in a database with an identifier 

other than ‘mseq’. This script is useful when multiple databases containing similar mseq 

numbers are joined. 

Arguments 

mdb: database whose molecules will be renumbered 

method: 'mseq' or 'name' 

fieldname: token name of mseq or name field 

global function mseq_renum [mdb, method, fieldname] 
 
db_EnsureField [mdb, 'mseq_renum', 'int']; 
 
local entries = db_Entries mdb; 
local mseq_counter = 1; 
local entry; 
 
if method == 'mseq' then 
    for entry in entries loop 
        local mseq = db_ReadFields [mdb, entry, fieldname]; 
        if entry == first entries then 
            db_Write [mdb, entry, tagpoke[[],'mseq_renum', 
mseq_counter]]; 
            local prev_mseq = mseq; 
        elseif mseq == prev_mseq then 
            db_Write [mdb, entry, tagpoke[[],'mseq_renum', 
mseq_counter]]; 
        elseif mseq <> prev_mseq then 
            mseq_counter = inc mseq_counter; 
            db_Write [mdb, entry, tagpoke[[],'mseq_renum', 
mseq_counter]]; 
            prev_mseq = mseq; 
        endif        
    endloop 
elseif method == 'name' then 
    for entry in entries loop 
        local [name] = mseq = db_ReadFields [mdb, entry, fieldname]; 
        print name; 
        name = token name; 
        if entry == first entries then 
            db_Write [mdb, entry, tagpoke[[],'mseq_renum', 
mseq_counter]]; 
            local prev_name = name; 
        elseif name == prev_name then 
            db_Write [mdb, entry, tagpoke[[],'mseq_renum', 
mseq_counter]]; 
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        elseif name <> prev_name then 
            mseq_counter = inc mseq_counter; 
            db_Write [mdb, entry, tagpoke[[],'mseq_renum', 
mseq_counter]]; 
            prev_name = name; 
        endif        
    endloop 
endif 
 
write 'Done.\n'; 
 
endfunction 
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name_to_smiles.py 

Description: Using a text file containing a list of compound names copied and pasted 

from a MOE database as input, this script will allow a user to get SMILES keys for each 

compound outputted to a text file. 

Arguments 

Inputs: .txt file 

#import pubchempy, sys, and time modules 
import pubchempy as pcp 
import sys 
import time 
 
#main function 
def main(): 
    i=1 
    file = sys.argv[1] 
 
    #spacing 
    print('\n') 
     
    #strip quotes from line 
    with open(file, 'r') as f, open('names.txt', 'w') as fo: 
        for line in f: 
            #line = line.lstrip('\"') 
            #line = line.rstrip('\"') 
            fo.write(line.replace('"', '').replace("'", "")) 
 
    #get length of names list 
    with open('names.txt', 'r') as f: 
        namelist = list(f) 
        l = len(namelist) 
 
 
    #create empty list for compounds unable to be found 
    c_list = [] 
     
    #write each compound's name and corresponding SMILES string to file 
    with open('names.txt', 'r') as f, open('SMILES_strings.txt', 'w') 
as fo: 
        for line in f: 
            result = pcp.get_compounds(line, 'name') 
            print('Getting ' + line.rstrip() + ' SMILES string (' + 
str(i) + ' of ' + str(l) + ')') 
            i=i+1 
            if len(result) > 1: 
                result = result[0] 
                fo.write(line.rstrip()) 
                fo.write('\t') 
                fo.write(result.isomeric_smiles + '\n') 
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            elif result == []: 
                c_list.append(line) 
            else: 
                for compound in result: 
                    #only write 1 SMILES string if multiple are listed 
since MOE will 
                    #take care of stereochemistry sampling during the 
conf. search 
                    fo.write(line.rstrip()) 
                    fo.write('\t') 
                    fo.write(compound.isomeric_smiles + '\n') 
 
    print("Done.\n") 
    if len(c_list) > 0: 
        print('SMILES strings could not be found for the following', 
str(len(c_list)), 'compounds:\n') 
        for name in c_list: 
            print(name.rstrip()) 
#call main 
main() 
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nearby.svl 

Description: Given two sets of atoms, this script will find atoms in the first set that are 

within a given distance to atoms in the second set. 

Arguments 

Aatoms: first set of atom objects, entered as a vector 

Batoms: second set of atom objects, entered as a vector 

dist: distance threshold in Å 

global function Nearby [Aatoms, Batoms, dist] 
    local i, seg, idx, r2, prox; 
    local nmask = zero Aatoms; 
    const PACKET = 100; 
 
    if length Aatoms > length Batoms then 
    prox = prox_open [dist, aPos Aatoms, dist]; 
 
    for i in split [x_id Batoms, PACKET] loop 
        [seg, idx, r2] = prox_find [prox, aPos Batoms[i], 0]; 
        nmask[idx] = 1; 
    endloop 
 
    prox_close prox; 
    else 
    prox = prox_open [dist, aPos Batoms, dist]; 
 
    for i in split [x_id Aatoms, PACKET] loop 
        [seg, idx, r2] = prox_find [prox, aPos Aatoms[i], 0]; 
        nmask[i] = notnot seg; 
    endloop 
 
    prox_close prox; 
    endif 
     
    local near_atoms = Aatoms | nmask; 
    local near_residues = oParent near_atoms; 
 
    return near_atoms; // this prints protein atoms near ligand/water 
atoms (whatever you put as Batoms) 
                  // change "print" to "return" and comment out the 
next line if atoms are wanted 
    //return near_residues; // return residues near ligand/water atoms 
endfunction 
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pdb_db_import.svl 

Description: This script is used to import PDB structures into a database, provided there 

is a "PDB" field in the database that lists the 4-letter PDBid for each entry. 

Arguments 

mdb: database to import structures to that contains a field with PDBids 

pdb_field: token name of the field containing PDBid codes 

function rcsb_download; 
 
global function pdb_db_import [mdb, pdb_field]; 
local entries = db_Entries[mdb]; 
local entry; 
 
//ensure mdb has a mol field to import to 
db_EnsureField [mdb, 'mol', 'molecule']; 
 
//create temp directory to download pdb files into 
fmkdir ['temp']; 
 
//for each entry, use PDBid to download structure and import 
//into mol field 
for entry in entries loop 
    local [PDBid] = db_ReadFields [mdb, entry, pdb_field]; 
    print PDBid; 
    PDBid = token PDBid; 
    print PDBid; 
    rcsb_download [PDBid, [directory: 'temp/', readPDB:1, 
showPanel:0]]; 
    local mol = mol_Extract Chains[]; 
    db_Write[mdb, entry, [mol: mol]]; 
    Close [force:1, viewreset:1, delgobj:1]; 
endloop 
 
//temp file cleanup 
local tempfiles = flist['temp']; 
local file; 
for file in tempfiles loop 
    fdelete file; 
endloop 
 
//delete temp folder 
frmdir 'temp'; 
 
write['Done.\n']; 
 
endfunction 
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pdb_dockprep.svl 

Description: This script is used to take a database containing structures downloaded from 

the PDB using pdb_db_import.svl and modify each structure so that only the receptor 

chain is kept. This script basically cleans each PDB structure of all ligands, ions, waters, 

etc. so that it can be used for docking. No protonation is performed with this script. 

Arguments 

mdb: database with a field containing PDB structures downloaded with 

pdb_db_import.svl 

mol_field: name of the field containing the structures 

global function pdb_dockprep [mdb, mol_field]; 
Close [force:1, viewreset:1, delgobj:1]; 
local entries = db_Entries[mdb]; 
local entry, mol, mol_chain, mol_name, chain; 
 
//ensure mdb has a mol field to import to 
db_EnsureField [mdb, 'mol_receptor', 'molecule']; 
 
for entry in entries loop 
    [mol] = db_ReadFields[mdb, entry, mol_field]; 
    [mol_chain, mol_name] =db_CreateMolecule mol; 
    View[]; 
    local chains = Chains[]; 
    local i; 
    local chain_lengths = []; 
    local helix_props = []; 
    //find chain lengths, then find chain name suffixed ".R". if ".R" 
chain is not present, 
    //use the chain with the highest proportion of helical residues. 
Else, GPCR will be the  
    //longest chain. 
    for i = 1, length chains, 1 loop 
        local chain_length = length cat cResidues chains(i); 
        chain_lengths = cat [chain_lengths, chain_length]; 
        if length cat oChildren chains(i) < 100 then //if the chain has 
less than 100 residues 
            local helix_prop = 0.00; 
        else 
            helix_prop = add(rActualSegment cat oChildren chains(i) == 
'helix') / length cat oChildren chains(i); 
        endif 
        helix_props = cat [helix_props, helix_prop]; 
    endloop 
 
    local chain_names = cName chains; 
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    local rmask = fext cName chains == 'R'; 
    if anytrue rmask and add rmask > 1 then //if there's more than 1 .R 
chain 
        local rchain = chains | rmask; 
        local rchain_lengths = chain_lengths | rmask; 
        local length_mask = rchain_lengths == max rchain_lengths; 
        rchain = rchain | length_mask; 
    elseif anytrue rmask then //if there's only 1 .R chain 
        rchain = chains | rmask; 
    else //if there's no .R chain 
        local hprop_mask = helix_props == max helix_props; 
        rchain = chains | hprop_mask; 
    endif 
 
 
    //check to ensure that only 1 rchain is selected 
    if length rchain > 1 then 
        rchain = first rchain; 
    endif 
 
    write ['Receptor chain: {}\n', cName rchain]; 
    aSetHidden [cAtoms rchain, 1]; 
    rSetRibbonMode [Residues[], 'tube']; 
     
    //remove fusion partners 
    local [rchain_residues] = cResidues rchain; 
    local rUID_resmask = rUID rchain_residues < 900; 
    local rUID_fusionmask = rUID rchain_residues > 900; 
 
    local rchain_residues1 = rchain_residues | rUID_resmask; 
    local rchain_residues2 = rchain_residues | rUID_fusionmask; 
     
    if max rUID rchain_residues1 < 500 and alltrue[rUID rchain_residues 
> 900] == 0 then //check numbering for cases where fusion partners are 
not numbered differently 
        oDestroy rchain_residues2; 
    endif 
 
    //remove receptor chain from chains being considered in next loop 
    local chain_mask = chains <> rchain; 
    chains = chains | chain_mask; 
 
    //delete other chains 
    for chain in chains loop 
        if chain <> rchain then 
            oDestroy chain; 
        endif 
    endloop 
 
 
    //extract refined receptor, add to entry under the "mol_Refined" 
field 
    local mol_receptor = mol_Extract Chains[]; 
    db_Write[mdb, entry, [mol_receptor: mol_receptor]]; 
    Close [force:1, viewreset:1, delgobj:1]; 
endloop 
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write['Done.\n']; 
 
endfunction 
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remove_chiconstraint.svl 

Description: This script is used to remove chirality constraints from molecules in a 

database. 

Arguments 

mdb: database containing molecules 

field1: database field containing molecules 

field2: desired name of new database field containing molecules stripped of chirality 

constraints 

global function remove_chiconstraint [mdb, field1, field2] 
 
local mdb_key = db_Open [mdb, 'read-write']; 
local entries = db_Entries mdb; 
local ent; 
db_EnsureField [mdb, field2,'molecule']; 
 
for ent in entries loop 
    local [ligand] =db_ReadFields [mdb_key, ent,field1]; //get 
structure from fieldname 
    local [ligand_chain, ligand_name] =db_CreateMolecule ligand; 
    local akeys = Atoms[]; 
    akeys = akeys | aAtomicNumber akeys > 1; 
        akeys = akeys | aHeavyValence akeys >= 2; 
        akeys = akeys | not aInHRing akeys; 
        akeys = akeys | aHCount akeys < 2; 
 
        akeys = akeys | ( 
       aHeavyValence akeys >= 3 and aGeometry akeys == 'sp3' 
    or aHeavyValence akeys >= 2 and aGeometry akeys == 'sp2' 
    ); 
     
    aSetForceRS [akeys, 0]; // remove chirality constraint 
    local name = tok_drop [ligand_name, -4]; 
    cSetName [ligand_chain, name]; 
 
 
    db_Write [mdb, ent, [mol: mol_Extract oChildren ligand_chain]]; 
    oDestroy [ligand_chain]; //destroy one ligand before reading in the 
next 
endloop 
 
print 'done'; 
endfunction 
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remove_empty_chains.svl 

Description: This script will allow a user to delete all empty chains (i.e. chains with no 

residues) from an opened system. 

global function remove_empty_chains [] 
 
local chains = Chains[]; 
local chain; 
 
for chain in chains loop 
    local [residues] = cResidues chain; 
    if isnull residues then 
        oDestroy chain; 
        write ['Destroyed chain {}.\n', indexof[chain, chains]]; 
    endif 
endloop 
 
endfunction 
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remove_ligandless_chains.svl 

Description: This script will allow a user to delete all chain tags that lack a ligand (i.e. 

chain tags with only one chain) from an opened system. 

global function remove_ligandless_chains [] 
 
local chains = Chains[]; 
local tag_id_numbers = cTagId chains; 
local uniq_tags = uniq tag_id_numbers; 
local ctag; 
 
for ctag in uniq_tags loop 
    local test = tag_id_numbers == ctag; 
    if add test < 2 then // <2 chains means no ligand chain 
        local chain = chains(indexof [ctag, tag_id_numbers]); 
        write ['Destroyed chain {}.\n', indexof[chain, chains]]; 
        oDestroy chain; 
    endif 
endloop 
 
write 'Done.\n'; 
 
endfunction 
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select_db_entries_from_token.svl 

Description: This script is used to select all entries in a database (mdb) that possess a 

certain value or values (tokens) for a certain database field (field). For example, running 

the command 

select_db_entries_from_token ['test.mdb', 'function', 

'agonist'] 

would select all entries in 'test.mdb' that possess the value 'agonist' in their 'function' 

field. 

Arguments 

mdb: database to select entries from 

field: field to check for tokens 

tokens: values to check each entry for, entered as a token 

global function select_db_entries_from_token [mdb, field, tokens] 
 
// open database, get entries 
Open mdb; 
local mdb_key = db_Open mdb; 
local entries = db_Entries mdb_key; 
local entry; 
 
// loop through entries and select those whose values match the 
// specified token in the specified field 
for entry in entries loop 
    local [entry_record] = db_ReadFields [mdb_key, entry, field]; 
    local entry_token = token entry_record; 
    //print entry_token; 
    if anytrue [entry_token == tokens] then 
        dbv_EntrySetSelected [mdb_key, entry, 1]; 
    endif 
endloop 
 
endfunction 
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similarity_matrix_db.svl 

Description: This script will allow a user to calculate a similarity matrix between all 

molecules in a database that will be printed to the SVL commands window. 

Arguments 

mdb: database containing molecules 

molecule_field: database field containing molecules to compare 

function ph4_MACCSBIT_Fingerprint; 
function ph4_MACCSBIT_Tanimoto; 
function ph4_Tanimoto_idx; 
 
global function similarity_matrix_db [mdb, molecule_field] 
 
Close [force:1, viewreset:1, delgobj:1];  // close any open structures 
 
local entries = db_Entries mdb; 
local ent, ligand_chain, ligand_name, ligand, lig_atoms, i, j; 
local other_ent, ligand_chain2, ligand_name2, ligand2, lig_atoms2; 
 
//start logfile 
logfile 'similarity_matrix_output.txt'; 
 
//print header of similarity matrix with entry numbers 
write ['\t']; 
for i = 1, length entries, 1 loop 
    write ['{}\t', i]; 
endloop 
write ['\n']; 
 
//loop to obtain molecular fingerprints for each entry as well as the 6 
other entries so similiarities can be calculated 
i=1; 
 
for ent in entries loop 
    [ligand] = db_ReadFields [mdb, ent, molecule_field]; 
    [ligand_chain, ligand_name] =mol_Create ligand; 
    [lig_atoms] = cAtoms [ligand_chain]; 
    //sleep 0.0001; 
    local FP = ph4_MACCSBIT_Fingerprint lig_atoms; 
    local ent_mask = ent <> entries; 
    local other_ents = entries | ent_mask; //only calculate 
similarities to other molecules 
    local sim_v = []; 
    for ent in entries loop 
        [ligand2] = db_ReadFields [mdb, ent, molecule_field]; 
        [ligand_chain2, ligand_name2] = mol_Create ligand2; 
        [lig_atoms2] = cAtoms [ligand_chain2]; 
        //sleep 0.0001; 
        local FP2 = ph4_MACCSBIT_Fingerprint lig_atoms2; 
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        local sim = ph4_MACCSBIT_Tanimoto [FP, FP2]; 
        sim_v = cat[sim_v, sim]; 
        oDestroy [ligand_chain2]; 
    endloop 
     
    //print row number 
    write ['{}\t', i]; 
 
    //print similarities in row while ensuring that comparisons of the 
same molecule are not given a value 
    j=1; 
    for sim in sim_v loop 
        if sim == 1 and j == length entries then 
            write ['{}\n', '-']; 
        elseif j == length entries then 
            write ['{f.2}\n', sim]; 
        elseif sim == 1 then 
            write ['{}\t', '-']; 
        else 
            write ['{f.2}\t', sim]; 
        endif; 
        j = inc j; 
    endloop 
    oDestroy [ligand_chain]; 
    i = inc i; 
endloop 
 
logfile []; 
 
write ['\nDone.\n']; 
 
endfunction 
 


	Benchmarking and Developing Novel Methods for G Protein-coupled Receptor Ligand Discovery
	Recommended Citation

	BENCHMARKING AND DEVELOPING NOVEL METHODS FOR G PROTEIN-COUPLED RECEPTOR LIGAND DISCOVERY
	Dedication
	Acknowledgments
	Preface
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1  Review of Computational Methods Utilized for Class A GPCR Ligand Discovery
	Introduction
	GPCR Structure Prediction
	Receptor Modeling
	Loop Modeling

	Ligand-based Approaches to GPCR Ligand Discovery
	Similarity Searching
	Ligand-based Pharmacophore Modeling

	Structure-based Approaches to GPCR Ligand Discovery
	In silico Fragment-based Methods
	Structure-based Pharmacophore Modeling

	Hit List Generation and Refinement
	Database Searching
	Hit List Refinement by Ligand Docking

	Conclusions

	Chapter 2  Benchmarking GPCR homology model template selection in combination with de novo loop generation
	Introduction
	Results and Discussion
	Homology Model Template Selection
	Protein Model Development and Analysis
	Ligand Docking and Analysis

	Conclusions
	Methodology
	Target/Template Selection and Preparation:
	Homology Model Construction and Analysis:
	De Novo Extracellular Loop 2 (ECL2) Modeling:
	Ligand Docking:


	Chapter 3  Structure-based Pharmacophore Modeling 1. Automated Random Pharmacophore Model Generation
	Introduction
	Results and Discussion
	Database Creation/Target Selection
	Homology/Loop Modeling
	Multiple Copy Simultaneous Search (MCSS)
	Automated Pharmacophore Model Generation
	Internal Test Database Searching/Scoring

	Conclusions
	Methodology
	Homology/Loop Modeling
	Multiple Copy Simultaneous Search (MCSS)
	Automated Pharmacophore Model Generation
	Internal Test Database Searching/Scoring


	Chapter 4  Structure-based Pharmacophore Modeling 2. Developing a Novel Framework for Structure-based Pharmacophore Model Generation and Selection
	Introduction
	G Protein-Coupled Receptors
	Pharmacophore Modeling
	Pharmacophore Model Selection
	Research Aims and Outcomes

	Results and Discussion
	Homology/Loop Modeling
	Multiple Copy Simultaneous Search (MCSS)
	Score-based Pharmacophore Model Generation
	Internal Test Database Searching/Scoring
	Pharmacophore Model Classification

	Conclusions
	Methodology
	Homology/Loop Modeling
	Multiple Copy Simultaneous Search (MCSS)
	Score-based Pharmacophore Model Generation
	Internal Test Database Searching/Scoring
	Pharmacophore Model Classification
	Data Preprocessing
	K-Means Clustering Analysis
	Logistic Regression with SGDClassifier



	Chapter 5  Conclusions and Future Directions
	Conclusions
	Future Directions

	References
	Appendix A  Chapter 3: Benchmarking GPCR homology model template selection in combination with de novo loop generation
	Appendix B  Chapter 4: Structure-based Pharmacophore Modeling 1. Automated Random Pharmacophore Model Generation
	Appendix C  Chapter 5: Structure-based Pharmacophore Modeling 2. Developing a Novel Framework for Structure-based Pharmacophore Model Generation and Selection
	Appendix D  Scripts
	Scripts used in Chapter 2
	cleanpdbs.bash
	hm_filegen.bash
	ligandrmsd.svl
	pdbgen.svl

	Scripts used in Chapter 3
	batch_ph4search.svl
	frag_count.svl
	random_ph4gen.svl
	random_ph4search.svl

	Scripts used in Chapter 4
	feature_search_dir_7_feats.svl
	mfss_subset.svl
	PH4_classifier.py
	ph4_search_specify_features.svl
	pharmcount.svl
	results2excel_7feats_dir.svl
	scorebased_datacollection.svl
	scorebased_ph4gen.svl

	Alignment Scripts
	align_new_chains.svl
	check_gap_positions.svl
	pairwise_alignment.svl

	Docking Scripts
	create_docking_jobs.sh
	docking_figuregen_mdb.svl
	gen_tm_database.svl
	get_gpcr_interactions.svl
	get_gpcr_interactions_docked.svl
	get_topscored_pose_by_mseq.svl
	ligand_rmsd_symm.svl
	ligandrmsdrigid.svl
	pli_gen.svl
	res_select.svl
	self_dock_from_database.svl
	symm_groupselect.svl

	Pharmacophore Scripts
	feat_dist_dir.svl
	feature_composition_dir.svl
	multiple_ph4_search.svl
	partial_ph4_gen_nminus1.svl
	ph4_distcalc.svl
	ph4_near_residue_dist.svl
	s_score_calc.svl

	Miscellaneous Scripts
	db_2_dockmdb.svl
	db_conf_range.svl
	db_refine_pdb.svl
	db_subset_entries.svl
	db_subset_generation.svl
	db_tanimoto_calc.svl
	dbmol2smiles.svl
	dock_rescore.svl
	get_compound_vendors.py
	get_missing_mols.svl
	get_molnames.svl
	get_selected_poses.svl
	get_uniq_mols.svl
	ism_to_txt.py
	ligand_similarity.svl
	ligand_similarity_mdb.svl
	loopnumber.svl
	mseq_renum.svl
	name_to_smiles.py
	nearby.svl
	pdb_db_import.svl
	pdb_dockprep.svl
	remove_chiconstraint.svl
	remove_empty_chains.svl
	remove_ligandless_chains.svl
	select_db_entries_from_token.svl
	similarity_matrix_db.svl




