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Abstract 

 

Water quality impairment in small tributaries due to soil erosion and stream 

degradation of West Tennessee is an ongoing problem. A method to model streamflow 

permanence can assist stream restoration work by supplementing ground monitoring and 

providing better targeting of conservation attempts in the most vulnerable areas. This 

project applied a random forest model by incorporating climatic and landcover data as 

predictors to create streamflow permanence data for the West Tennessee tributaries 

(Lower Mississippi-Hatchie Hydrologic Unit, HUC 4-801). Specifically, the applicability 

of the Flow Conditioned Parameter Grids (FCPG) process is tested to study if the process 

improves prediction results compared to raw predictor results. In addition, the model’s 

ability to capture the effect of headwater lakes in increasing the probability of streamflow 

permanence in downstream reaches is investigated using two pairs of streams from the 

Tennessee Department of Environmental Conservation (TDEC) database of watershed 

water quality assessments. With the various predictor variable configurations tested in the 

model, an average of 25 percent Mean Squared Error (MSE) accuracy is acquired in the 

prediction of the streamflow permanence status of west Tennessee streams. The results 

showed processing FCPG layers did not provide an increase in prediction accuracy for 

this study. Validation of the model results using the test stream pairs was inconclusive. 

While the model did predict streamflow permanence downstream of one headwater lake 

and intermittent streamflow in the other stream of the pair. it predicted perennial flow for 
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both streams in the second pair, regardless of the presence of a headwater lake. This 

project provides scalable and replicable methods using machine learning and remote 

sensing data to predict streamflow permanence at a 25% MSE rate. 

Keywords:  Streamflow Permanence, Random Forest, Remote Sensing, 
Headwaters 
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Introduction 

 

Importance of headwater streams monitoring 

Headwater streams are defined as first and second-order streams (Wohl, 2017) 

and represent the majority of stream channel length (Godsey & Kirchner, 2014; Leopold 

et al., 1964). Headwaters are one of the most endangered river ecosystems and continue 

to be threatened by land-use changes and river engineering (Wohl, 2017). Headwater 

streams influence downstream parts of the river network in various ways such as 

retainment or transmission of sediment and nutrients, organic and inorganic carbon, wood 

(Sando & Blasch, 2015), and the creation of habitats for diverse organisms (Wohl, 2017). 

Previous research shows that headwater streams are crucial to hydrological 

networks (Sando & Blasch, 2015). Disturbances in headwater streams may affect the 

condition of the surrounding areas (Costigan et al., 2016). Removal of riparian vegetation 

from headwater streams for agricultural and urban development affects the flow between 

headwaters and downstream (Winter, 2007) and in turn, causes degradation of 

downstream systems (Wasser et al., 2015).  Such disturbances occurring naturally or by 

human intervention may also influence downstream fish populations (Sando & Blasch, 

2015).  Previous research suggests that it is important to monitor the dynamics and 

condition of headwater streams, but in-situ monitoring of headwater streams is a 

challenging task, especially in small tributaries at regional scales (Eberts et al., 2019). 

Due to typically shallow headwater depths, these streams are vulnerable to blockage by 
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small structural changes and disconnection (Wohl, 2017), and the geographically 

widespread nature of these streams along with the narrow and fragmented spatial 

configuration of riparian corridors make their status of degradation and disturbance 

difficult to monitor (Wasser et al., 2013). 

In early studies of hydrology, it is understood that the length and density of 

headwater systems dynamically change year around and first-order streams were found to 

have the most variance (Blyth & Rodda, 1973; Day, 1978). Godsey and Kircher (2014) 

indicate that even stream order can show differences seasonally by two Strahler orders. 

For example, a first-order stream may become a second-order stream or completely dry 

out, while a second-order stream may become a first-, third-, or even fourth-order stream 

as drainage in the watershed changes as the seasonal variations occur. In-situ monitoring 

of headwater streams is a costly, slow process and bound to low sampling rates, resulting 

in low accuracy. In addition to the cost factor, some of these areas are even more 

challenging to map by hand due to logistical factors such as the steepness of the terrain or 

the density of surrounding forested areas (Godsey & Kirchner, 2014). More frequent 

observations could be useful when evaluating restoration efforts and determining which 

tributaries’ surface flow might be affected by varying environmental factors such as land-

cover, land-use, climate change, human activities, etc. (Godsey & Kirchner, 2014). 
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Streamflow Permanence in West Tennessee 

Streamflow permanence is the flow status of a river that is defined by having a 

surface-water presence (Costigan et al., 2016) which affects the surrounding riparian 

corridors. In recent decades, there has been an increased interest among researchers in 

streamflow permanence and prediction, since smaller streams and their status are 

believed to be one of the biggest factors affecting hydrological systems. Smaller streams 

are also the least-researched and because of this, may also be the last to benefit from 

conservation efforts (Jaeger et al., 2021) 

The prediction of streamflow permanence is important to understand the overall 

state of these smaller streams and their riparian corridors and allows restoration and 

preservation attempts to be focused or redirected to more important areas of the 

watershed. As with climate changes, it has become challenging to predict the streams that 

would have year-round water flow. Even though streamflow permanence studies have 

been conducted on small scales, recent studies show that models that combine the 

physical characteristics of headwaters with regional climatic data could be instrumental 

in gaining an understanding of regional-scale streamflow permanence which allows for 

annual and monthly changes to be reflected in the streamflow permanence model and its 

outcomes (Pate et al., 2020). Furthermore, stream integrity is usually lower in areas 

where urban and agricultural development is high (Costigan et al., 2016; Wasser et al., 

2015). This is true for the smaller streams that flow through the densely-agricultural 

region of west Tennessee. These streams make up the tributary watersheds of the 
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Mississippi River in the Lower Mississippi-Hatchie hydrologic unit. Due to various 

factors such as soil erosion and stream channel degradation, water quality is a continuing 

issue in these areas. According to a 2015 report prepared for the U.S. Environmental 

Protection Agency (EPA), most watersheds in West Tennessee have a low health index 

and are prone to further degradation (K. Matthews et al., 2015). 

 

Streamflow Permanence Modeling Approaches 

Previous efforts to identify streamflow permanence include collecting direct 

observations using citizen scientists' contributions (Jensen et al., 2017; Turner & Richter, 

2011), and implementing sensor-based technologies such as electrical resistance sensors 

(Goulsbra et al., 2014) and state loggers (Bhamjee & Lindsay, 2011). Airborne remote 

sensing methods can be incorporated for replicable monitoring strategies, especially for 

regional-scale studies (Hayes et al., 2014; Michez et al., 2017), while Johansen et al., 

(2010) found that remote sensing is the only viable technique for measurements in large 

spatial extent assessments. In the light of streamflow permanence monitoring efforts in 

rivers, it is suggested that compiling various sources of datasets would be beneficial to 

understanding the condition of headwater streams and developing a new model to 

understand the dynamics of streamflow permanence. 

Among various modeling approaches in the field of hydrology, a machine 

learning approach, random forest, is a tree-based learning algorithm that is 

computationally efficient for large datasets (Oshiro et al., 2012). The random forest 
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model creates decision trees from a set of samples (Biau & Scornet, 2016) and prediction 

is done by aggregation of multiple decisions (nodes) from decision trees (Svetnik et al., 

2003). After the selection of a sample, the algorithm pulls a random assortment of 

features and begins testing a series of splits using each feature to predict a class (i.e., 

“wet”, or “dry”). The “wet” and “dry” classes are based on streamflow intermittency, 

which is defined as streams that have at least one dry (no) flow observation throughout 

the year. If an area has multiple observations at different times of the year, a single dry 

observation is sufficient to consider it as an intermittent stream and belongs to the “dry” 

class for this study’s purposes. Similarly, if a stream is observed to have surface flow in 

the dry months of the year, it is considered to be a perennial stream, and belongs to the 

“wet” class. Ephemeral streams are excluded from this study since generally these 

streams only flow when there is precipitation. 

Jaeger et al. (2019) created the Probability of Streamflow Permanence 

(PROSPER) model where every variable is modified with the process called Flow 

Conditioned Parameter Grids (known as FCPG) for the prediction of streamflow 

permanence in the Northeast Pacific region. The FCPG approach accumulates predictor 

parameters according to the elevation and flow direction data of basins. The PROSPER 

model was able to predict streamflow permanence with 17%-22% prediction error rates. 

Shen et al., (2022) also applied a random forest model for error correction in prediction 

for large-scale models such as the PCRaster GLOBal Water Balance model (PCR-

GLOBWB), which is a grid-based hydrological prediction model by Utrecht University, 
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and their results showed improvement of the estimation of errors. Pham et al., (2020) 

found that compared to multiple linear regression models, random forest performed better 

in the prediction of streamflow status in snowmelt-driven watersheds. Other studies 

compared various machine learning models and neural networks and found extreme 

machine learning kernels had superior performance compared to other models (Li et al., 

2019). 

 

Objectives 

 

The objective of this study is to produce a stream permanence dataset of Mississippi 

River tributaries in west Tennessee using a random forest model. Specifically, this work 

will test if a random forest model can predict the streamflow permanence in the headwater 

streams of these tributary rivers using moderate-resolution datasets of climatic and 

landcover predictors by applying the FCPG process used in Jaeger et. al (2019). The 

random forest learning algorithm is trained by samples of “wet” and “dry” classes of stream 

reaches identified from the database tables of the National Hydrography Dataset (NHD) 

Plus - High Resolution (HR) version and verified by aerial photographs. Additionally, the 

trained model is tested on two pairs of streams to examine if headwaters with and without 

lakes can be identified using streamflow permanence predictions. These stream pairs have 

been assessed by TDEC as part of their watershed water quality management and 

stewardship program (https://tdeconline.tn.gov/dwr/). Pair 1 is comprised of Meridian and 
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Bond Creeks in the Forked Deer watershed (Figure 1) and Pair 2 is made up of Spring and 

Piney Creeks in the Hatchie watershed (Figure 1). Meridian Creek has headwater lakes and 

is fully supporting of all uses (i.e. fish and aquatic life, human, livestock, agricultural, and 

industrial), while Bond Creek is not. Similarly, Spring Creek has some headwater lakes and 

is fully supporting, and Piney Creek has no headwater lakes and is not. TDEC defines 5 

support categories: fully supporting waters meet all the quality criteria for their assigned 

use categories, supporting waters support some of their assigned use categories but have 

not been assessed for all uses, not assessed waters have not been assessed or relevant data 

is outdated, impaired waters have a Total Maximum Daily Load completed but not required, 

and not supporting waters are assessed and found to have one or more water quality issues. 

As a result of this study, it is expected to have a better understanding of headwater 

streams in the area and create models that can be utilized by state agencies to improve and 

optimize management and monitoring efforts as new data become available. 

 

Study Area 

 

This study is focused on the Lower Mississippi-Hatchie Hydrologic Unit Code 

(HUC) 4-0801 region. This area has been chosen due to ongoing water quality issues in the 

area as assessed by previous reports (K. Matthews et al., 2015). The area consists of various 

landcover types with agriculture being the dominant land use. Most streams in the area are 
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low gradient with silt or sandy bottoms, resulting in channelization and degradation of 

aquatic habitat.  

 

  

Figure 1 Area of Study 
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Data Preparation 

Since streamflow status can change significantly in each month of the year, 

monthly datasets are chosen for the analysis to discern these changes in streamflow 

permanence. All data utilized in this study are shown in Table 1. 

Climate predictor variables in this study include annual monthly precipitation 

(PPT) and maximum (Tmax) and minimum temperature (Tmin) from 2010 to 2020 

collected from the Parameter-elevation Regressions on Independent Slopes Model 

(PRISM) from Oregon State University PRISM Climate Group (PRISM Climate Group 

at Oregon State University, 2014). The PRISM model takes data from close to 13,000 

stations for precipitation and 10,000 for temperature and analyzes them to produce 

climate datasets (Daly et al., 2008). 

Evapotranspiration (ET) is the combination of transpiration (water use) by 

vegetation and evaporation from the soil surface (Senay et al., 2013). For ET data, the 

Operational Simplified Surface Energy Balance (SSEBop) model data is utilized. 

SSEBop uses various datasets to model ET, including elevation, temperature correction 

coefficient, land surface temperature, and air temperature.  

For land-cover/land-use data, the National Landcover Datasets (NLCD) from 

2011, 2016, and 2019 are utilized. The major landcover and land use classes for the study 

area are Cultivated Crops (11624800 cells), Deciduous Forest (5617030 cells), Woody 

Wetlands (3797521), Pasture/Hay (3684800 cells), Mixed Forest (1622866 cells), 
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Developed Open Space (1432130 cells), Evergreen Forest (973899 cells) and Open Water 

(939525 cells).  

Topography data is taken from the NHDPlus dataset which is derived from the 

USGS 3DEP program with 30m resolution.  

Category Data source References 

Physiographic 
Land Use and Land Cover  

National Landcover Dataset 
(NLCD) 

Fry et al., 2011; Homer et 
al., 
2007; Homer et al., 2015 

Climate (Temperature 
and Precipitation) PRISM Climate data Daly et al. 2017 

Evapotranspiration 
Operational Simplified 
Surface Energy Balance 
(SSEBop) 

Senay et al., 2013 

Table 1 Datasets to compile predictive variables 

 

All predictor variables have been reprojected to the NAD83 Conus Albers (EPSG 

5070) coordinate system, resampled to 30m resolution, and clipped to the Lower 

Mississippi-Hatchie study area, HUC 4-0801, using the FPCG Tools library’s batch 

resampling tools. The FCPG Tools library can be downloaded through the USGS GitLab 

repositories (https://code.usgs.gov/StreamStats/FCPGtools) and the relevant code to 

reproduce this study’s results can be found in the appendix. 
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Methods 

 

Observation Dataset 

Having a set of accurate observation points to train machine learning models is an 

important first step in the prediction and classification of the streamflow intermittency of 

a river. For the United States, a dedicated streamflow dataset is not readily available. 

While there are streamflow permanence datasets available, these datasets have regional 

inconsistencies and most stream gauges have a location bias toward large rivers, making 

them not feasible for small headwater studies (Jaeger et al., 2021). 

Upon inspection of various nationwide streamflow datasets such as USGS Gages, 

CrowdWater, Stream Tracker, EPA, and FLOwPER (Jaeger et al., 2021), streamflow 

observations for the Mid-South region of the United States were insufficient for the 

identification of headwater streams. The HUC4-0801 study area contains some stream 

gauges in West Tennessee, on the Forked Deer, the Obion, and a few other streams, but 

since these are larger rivers with permanent streamflow, they were not fit for the study 

purposes. Therefore, the definition of intermittent and perennial streams from flowlines in 

the NHDPlus-HR attribute table was utilized to derive an intermittent/perennial stream 

observations dataset. The NHD-Plus attribute table includes Feature Type (F-type) and 

Feature Codes that encode detailed information from the USGS topographic maps. 

Streams with F-type “Stream – Intermittent” are sampled and randomly selected to 

represent “dry” observations. For “wet” observations, streams with F-Type “Stream – 
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Perennial” are selected, converted into points, and sampled randomly. The sampling of 

the point datasets is done using the R statistical language and the Tidyverse package for 

data wrangling. The resulting training dataset is further verified using various aerial 

satellite imagery such as Google Earth (https://earth.google.com) and the National 

Agricultural Imaging Program (NAIP) collection of digital aerial photos (Earth Resources 

Observation And Science (EROS) Center, 2017) to achieve better accuracy. Figure 2 

shows two examples of dry and wet data points used to train the models. 

 

 

Figure 2 An example of “dry” (left) and “wet” (right) observation points verified by aerial 
photograph identification. 

 

Model Development 

 

Digital Elevation Model Processing  

Data gathered from the USGS national map portal is imported into the ArcGIS 

Pro software to be preprocessed. Individual raster digital elevation model (DEM) layers 
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are mosaiced to cover the entire study area of HUC4-0801. As the first step of 

hydrological modeling of the DEM, the Fill tool is used to fill the sinks and depressions 

in the elevation model (Planchon & Darboux, 2002). Sinks should be filled to achieve the 

correct delineation of hydrological networks. Leaving sinks and peaks as they come in 

the raw data can cause discontinuities in the elevation model. For a USGS 30m resolution 

DEM, between 0.9 to 4.7 percent of the pixels were found to be sinks (Tarboton et al., 

1991). Filling sinks in the DEM is an iterative process. Fixing one sink can create other 

sinks or peaks. The tool iterates until it is unable to identify a sink or a peak anymore. 

Therefore, to assure the reliability of the data from the beginning, iteration of the peaks 

and sinks using the fill tool is crucial.  

After the fill iteration step, the flow direction raster is calculated from the DEM 

raster using the eight-direction (D8) model. Flow direction calculation is an important 

step in hydrological modeling because it has the ability to determine which cells would 

likely flow into their neighboring cells. Eight available values represent the flow 

direction of a cell. In an 8-direction pour point model, each cell takes a number indicating 

to which of the 8 surrounding cells water will flow from the current cell. This process is 

then followed by the flow accumulation calculation (Jenson & Domingue, 1988).  

The final step of preprocessing hydrological data is flow accumulation. In this 

process, each cell is assigned a number that is equal to the number of cells that flow into 

that cell. After the flow accumulation raster is calculated, the raster calculator tool is used 

to define a threshold number of cells that can flow into specific cells to be met or 
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exceeded, creating a stream. For this process, a conditional operator inside the raster 

calculator is used as 

 
𝐶𝑜𝑛(“FlowAccumulation” > 1000, 1 

Equation 1 Flow Accumulation Threshold 

 

 These steps for calculation of flow accumulation are explained in O’Callaghan & 

Mark (1984) and approaches to choosing an appropriate threshold for the calculation of 

stream networks are discussed in Tarboton, et al. (1991). For this study area, and 

resolution of 30 m per pixel, a threshold of 1000 has been chosen after testing a range of 

values. In the comparison of aerial satellite imagery with the resulting stream networks, 

1000 was the number that matched the most visible headwater streams from the true color 

imagery. Figure 3 shows the results of this process. 
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Figure 3 Stream Network Delineation from DEM 

 

 

Random Forest 

Random forest is a machine learning algorithm that can be used for probabilistic 

predictions or classification tasks. It works by combining multiple decisions from a set of 

decision trees. Random forest is popular in the remote sensing field due to its accuracy in 

classification and being resistant to overfit issues (Pal, 2005).  
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A random forest model was trained by 611 observation points created from the 

NHD Plus-HR Flowlines data as a point feature class in the HUC4-0801 area. Of these, 

321 points were recorded as “dry” observation points and 290 are recorded as “wet”. The 

resulting streamflow intermittency observation points are exported as a multipoint feature 

class dataset in ArcGIS pro software to be used as training observation points. 

To test the FCPG process in the model, various configurations of predictors are 

tested for this study. The first training model tested the prediction parameters from PRISM 

(n=396) and SSEBop (n=132) from 2010 to 2020 and landcover categories from NLCD 

for 2011, 2016, and 2019 without any FCPG process applied to any of the predictors. For 

the second model, the FCPG-processed climatic layers, along with landcover categories 

without the application of the FCPG process, were used. The third training model used 

FCPG-processed climatic prediction layers, and the binarized, accumulated, and flow-

conditioned NLCD landcover layers for 2011, 2016, and 2019. The binarization separates 

all landcover classes into binary rasters so they can be accumulated using the FCPG Tools 

accumulation function. These different combinations were used to test whether the FCPG 

process is a viable treatment for both categorical and continuous variables, as assessed by 
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the model performances. The flow diagram for these steps is shown in Figure 4 below and 

Figure 5 represents the processes applied to different models.  

  

Figure 4 A flow diagram for the analysis steps 
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Figure 5 Processes for Prediction Variables 

 

Model Evaluation  

One of the most useful aspects of the random forest process is the creation of 

variable importance measurements for each predictor variable (Strobl et al., 2007). 

Variable importance is quantified by the rate of decrease in classification error and can 

suggest the most useful predictor variables. The model performance is determined by the 

creation of error estimates such as the Mean Squared Error (MSE) Out-of-Bag (OOB) 

error (Belgiu & Drăguţ, 2016), as well as F1 scores in which both false positives and 

false negatives are considered during the calculation of the score (Seo et al., 2021), and 

the Matthews’ Correlation Coefficient (MCC) (Matthews, 1975). MSE is the average 
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squared difference between the estimated values and the actual value. Lower MSE scores 

generally mean better prediction accuracy. The F1 score combines precision and recall 

values of a random forest model and it can provide further insight into a model to assess 

if the model is affected by classification issues. The OOB error process separates a 

certain amount of data to be tested against the model to validate the model’s prediction 

success. For every decision tree, several observations get selected to make up the tree, 

and the remaining observations become the OOB points. The benefits of using OOB error 

validation are data leakage prevention, lowered variance, and good performance for 

small- to medium-sized datasets. In this study, 10% of the data was split for model 

evaluation, and the sensitivity and accuracy of the model output are reported in the results 

section.  

 

The sensitivity calculation is shown in Equation 2: 

 

𝑇𝑃	/	(𝑇𝑃 + 	𝐹𝑁) 

Equation 2 Sensitivity Calculation 

 

where TP is True Positive, and FN is False Negative.  

The accuracy calculation is shown in Equation 3:  

 

(𝑇𝑃	 + 	𝑇𝑁)	/	(𝑇𝑃	 + 	𝐹𝑃	 + 	𝑇𝑁	 + 	𝐹𝑁).  
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Equation 3 Accuracy Calculation 

 

where TN is True Negative and FP is False Positive, and TP and FN are as before. 

MCC is the same as the calculation of Phi in statistics and is shown in Equation 4: 

(𝑇𝑃 ∗ 𝑇𝑁	– 	𝐹𝑃 ∗ 𝐹𝑁)	/	√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁) 

Equation 4 MCC Calculation 

 

For two-class predictions, the model’s discrimination ability is presented in a 

confusion matrix. For a two-class prediction, four classes represent the results (Brown, 

2018).  The MCC score is only high when all 4 confusion matrix categories (True 

Positive [TP], True Negative [TN], False Positive [FP], False Negative [FN]) scored a 

high value (Matthews, 1975).  

 

Flow Conditioned Parameter Grids 

FCPG Tools are a Python 3 library and require Python and TauDEM tools 

(Tarboton, 1997) to be installed. Most of the installation dependencies are managed by a 

conda environment file that can be downloaded from corresponding USGS repositories. 

Conda is a tool offered by Anaconda software distribution that allows users to create 

Python environments and manages package dependencies. 

Three hundred and ninety-six prediction rasters from PRISM and 132 prediction 

rasters from the SSEBop datasets are batch processed to be used in the random forest 
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model using the FCPG Tools (Barnhart et al., 2020) batch resampling function. This 

function requires a list of input rasters, a flow direction grid, and an output directory to 

save the processed rasters. The flow direction raster calculated in ArcGIS Pro was used to 

resample, reproject, and clip all the prediction layers. The process took approximately 7 

hours of raw processing time on a Xeon E3 1270 v2 processor with 32 GB ECC error-

correcting RAM modules.  

Using FCPG Tools’ batch accumulation function, previously resampled and 

clipped parameter rasters are accumulated using the TauDEM D8 tool. The function 

requires an input list of rasters to be accumulated using a flow direction raster of the area. 

The process took 10 hours of raw processing time on a Xeon E3 1270 v2 processor with 

32 GB ECC RAM modules.  

As the final step of the FCPG process, the batch FCPG function from the FCPG 

Tools library is used to calculate Flow Conditioned Parameter Grids for the predictive 

layers. The process took 5 hours of raw processing time on a Xeon E3 1270 v2 processor 

with 32 GB ECC RAM modules.  

 

Results 

Random Forest Outcomes 

Random forest model performance is evaluated by MSE OOB error rates in 

addition to F1, MCC, Sensitivity, and Accuracy scores. All three model results are shown 

in Table 2 below, followed by a section explaining each model's predictor importance. 



 
 

22 

 

 

 

Number of Trees 50 100 
  Model 1 MSE 26.454 24.363 
    Intermittent 24.419 21.33 
    Perennial 28.747 27.804 
Number of Trees 50 100 
  Model 2 MSE 26.869 24.533 
    Intermittent 24.188 21.26 
    Perennial 29.636 28.093 
Number of Trees 50 100 
  Model 3 MSE 29.951 28.456 
    Intermittent 27.381 24.697 
    Perennial 32.8 32.557 

Table 2 Results of all tested models 

 

Model 1 

For the first model tested in this study, climatic predictor variables of 

precipitation, minimum and maximum temperature, and evapotranspiration as well as 

NLCD landcover classification layers are fed to the model without being processed 

through FCPG Tools. NLCD layers are fed to the model as categorical variables. The 

model resulted in an MSE OOB rate of 26.4 at 50 trees and 24.3 at 100 trees. Prediction 

for intermittent streams was 24.4 at 50 trees and 21.3 at 100 trees. The perennial 

prediction rate was 28.7 at 50 trees and 27.8 at 100 trees.  

For this model, the most important predictors were the landcover classes for all 3 

years, the precipitation from November 2020, and the minimum temperature for April 
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2020 from the PRISM dataset. The selection of November 2020 was particularly 

interesting since it was one of the most important variables in the second model as well. 

The results for the variable importance of Model 1 are shown in Figure 6 and 

corresponding Table 3. 

 

 

Figure 6 Variable Importance for the Model 1 
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Top Variable Importance 
 

NLCD 2016  0.22 
Minimum temperature 201210 0.18 
Precipitation 201104 0.18 
Precipitation 201303 0.17 
Precipitation 201404 0.15 
Precipitation 201609 0.14 
Precipitation 202007 0.13 
Precipitation 201710 0.13 
Precipitation 201512 0.12 
Precipitation 201501 0.12 
Precipitation 201909 0.11 
Evapotranspiration 201511 0.11 
Precipitation 201903 0.11 
Precipitation 201412 0.11 
Precipitation 201704 0.1 
Precipitation 202001 0.1 
Precipitation 201808 0.1 

Table 3 Variable Importance Table for Model 1 

 

The model had a 0.74 accuracy for both intermittent and perennial classification 

predictions and similar sensitivity and F1 scores at 0.74 for intermittent and 0.73 for 

perennial stream classifications. Classification diagnostics for Model 1 are shown in 

Table 4 below. 

 

Validation Data: Classification Diagnostics 
    

Category F1-
Score 

MCC Sensitivity Accuracy 

Intermittent 0.74 0.48 0.74 0.74 

Perennial 0.73 0.48 0.73 0.74 

Table 4 Classification Diagnostics for Model 1 
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Model 2 

The second model uses the same variables as the first model, but only climatic 

variables were processed with the FCPG process; the NLCD predictors were fed to the 

model as categorical data. MSE OOB was 26.8 at 50 trees and 24.5 at 100 trees. The 

intermittent prediction rate was 24.1 at 50 trees and 21.2 at 100 trees for the second 

model.  

The most important variables were NLCD 2011 landcover type, precipitation for 

November 2020 which was also one of the most important variables in the first model, 

NLCD 2016 landcover type, and precipitation for April 2017.  2020 was not a drought 

year but 2017 was classified as an exceptionally drought year. The result for the variable 

importance of Model 2 is shown in Figure 7 and corresponding Table 5. 
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Figure 7 Variable Importance for Model 2 

 

Top Variable Importance 
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Top Variable Importance 
 

Precipitation 202007 0.12 
Evapotranspiration 202002 0.12 
Precipitation 201710 0.12 
Precipitation 201311 0.12 
Precipitation 201706 0.12 
Precipitation 201408 0.12 

Table 5 Variable Importance Table for Model 2 

 

On the second model, the accuracy score for both intermittent and perennial 

streams increased to 0.84, while the sensitivity score was 0.91 for intermittent streams but 

0.74 for perennial streams. The F1 and MCC scores were similar for both intermittent and 

perennial streams at 0.67 for MCC and 0.8 for F1 scores. Classification diagnostics for 

Model 2 are shown in Table 6 below. 

 

Validation Data: Classification Diagnostics 
    

Category F1-
Score 

MCC Sensitivity Accuracy 

Intermittent 0.86 0.67 0.91 0.84 
Perennial 0.8 0.67 0.74 0.84 

Table 6 Classification Diagnostics for Model 2 

 

Model 3 

In the last model, both the climate and landcover predictors were processed using 

FCPG tools, after binarization of the individual NLCD years instead of using these 

predictors as categorical data. The binarization process separates all landcover classes 
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into binary rasters so they can be accumulated using the FCPG Tools’ accumulation 

function, i.e., the Forest category produces a binary raster where forested areas are 

represented with True (1), and non-forested areas are False (0). The addition of FCPG 

landcover layers resulted in an increase in MSE OOB error to 29.9 at 50 trees and 28.4 at 

100 trees. The prediction error rate for intermittent streams was 27.3 at 50 trees and 24.6 

at 100 trees. For perennial streams, the prediction error rate was 32.8 at 50 trees and 32.5 

at 100 trees.  

The most important layers for predicting streamflow permanence in this model 

were the precipitation layers from April 2017, November 2020, September 2014, October 

2017, July 2015, July 2020, and April 2014 followed by the evapotranspiration predictor 

from October 2011. Results are presented in Figure 8 and shown in Table 7. 2011 and 

2017 were particularly dry years and this may have contributed to April 2017 being the 

most important variable in this model as well as the high importance of 

evapotranspiration for October 2011. 
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Figure 8 Variable Importance for Model 2 

 

Top Variable Importance 
 

Variable Importance 
Precipitation 2017 04  0.32 
Precipitation 2020 11  0.3 
Precipitation 2014 09  0.29 
Precipitation 2017 10  0.29 
Precipitation 2015 07  0.25 
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Precipitation 2014 04  0.2 
Evapotranspiration 2011 10 0.2 
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Top Variable Importance 
 

Precipitation 2018 08  0.19 
Precipitation 2011 08  0.17 
Precipitation 2012 04  0.17 
Precipitation 2017 06  0.15 
Evapotranspiration 2012 01 0.15 
Precipitation 2012 03  0.15 
Precipitation 2019 10  0.15 
Minimum temperature 2012 10  0.15 
Evapotranspiration 2012 12 0.15 
Precipitation 2014 10  0.14 

Table 7 Variable Importance Table for Model 3 

 

On the third model, accuracy decreased to 0.72 for both categories, sensitivity 

was 0.7 and 0.75 for intermittent and perennial streams, respectively. The MCC scores 

were low at 0.44 for both categories and F1 scores had a relatively big gap between them 

at 0.75 for intermittent and 0.68 for perennial streams. A low MCC score suggested a 

decrease in prediction accuracy for this model which could be related to low elevation 

variation in the study area. Classification diagnostics for Model 3 are shown in Table 8 

below. 

 

Validation Data: Classification Diagnostics 
    

Category F1-
Score 

MCC Sensitivity Accuracy 

Intermittent 0.75 0.44 0.7 0.72 
Perennial 0.68 0.44 0.75 0.72 

Table 8 Classification Diagnostics for Model 3 
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Overall, Model 1 performed best due to consistent high accuracy and sensitivity 

scores for both intermittent and perennial data points (Table 2). This model used no 

FCPG processing in setting up the predictor variables and both continuous predictors and 

categorical variables are fed to the model only after clipping, reprojecting, and 

resampling of these variables.  

 

Figure 9 Training Data Prediction Results Blue Dots are Correct Classifications; Orange Dots 
are Misclassifications from the first model 
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Validation of the 10% of training data split off for this purpose resulted in 24 

correct and 9 incorrect intermittent classifications, and 21 correct and 7 incorrect 

perennial classifications. Prediction results for the entire training observation data are 

shown in Figure 9.  

 

Figure 10 Detail view of a correctly classified stream: an intermittent stream classified as 
intermittent 

 

Figure 10 shows a 2nd order stream that is classified as an intermittent stream by 

the random forest classifier. Agricultural activities might have contributed to the 

classification of this observation as an intermittent stream. 
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Figure 11 Detail view of an incorrectly classified stream, classified as perennial, but an 
intermittent stream 

 

Figure 11 shows a stream that is classified as a perennial stream, in disagreement 

with the imagery data. Validation of the NHD classification of this stream reach using 

satellite imagery shows small agricultural drainage ditches flowing through crop fields 

served by a center pivot irrigation system (Figure 11). Lighter green areas are vegetated 

margins separating the different crop fields. This stream is a small-order tributary or even 

a headwater, and as such would be expected to be dry during the late summer and early 

fall months. Such areas were predicted to pose a challenge to the model, in part because 

the resolution of the input data may be too coarse to correctly classify flow conditions in 
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these small streams. Further investigation of the riparian corridors of these streams using 

vegetation indices derived from fine-resolution, multiband imagery, may provide 

additional information to the model to increase the accuracy of its predictions in small 

headwaters. 

After deliberation of the validation data on the three training models, Model 1, 

which is the best performing model,  is used to predict the entire study area. This model 

is considered the best performing model due to the consistency in the prediction of 

intermittent and perennial streams. Two predictions are made to visually inspect the result 

of the model output, one as a raster for the entire study area and another one as a feature 

class for the flow lines. 
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Figure 12 Final Prediction Raster and Flow Lines Feature Class for the Study Area 

 

The predictions made by the model should be taken as areas with a high 

probability of either having intermittent or perennial streams (Figure 12) rather than 

specific predictions per stream, mostly due to the lack of input variable resolution. Purple 

areas on the map are perennial prediction areas and the orange color represents areas 

where the model predicts a higher expectancy of streams with intermittent flow. 

Superimposed are the feature class predictions for the same area, with blue lines 
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representing perennial streams and red lines the predictions for streams with a higher 

possibility of going intermittent. 

 

Figure 13 Predictions of Stream Network Results for the Study Area 

 

Random forest model results presented as a flow line feature class showing the 

prediction of stream permanence for individual streams in the study area are shown in 

Figure 13. These results indicate which areas tend to contain environmental effects that 

could result in more intermittent streams and which areas have more perennial streams, 
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although many headwaters are predicted as perennial. This can be attributed to training 

data used in creating the model, and in-situ verification of this data can provide answers 

to why the model predicted some headwaters as perennial. The areas with intermittent 

predictions could be affected by agricultural land uses and other activities as well as the 

elevation and slope of these areas. In general, smaller-order streams (upstream reaches) 

are more likely to be intermittent than are higher-order streams (downstream reaches) 

because, in addition to receiving water input from precipitation, surface runoff, and 

baseflow from the subsurface, downstream areas receive input from all upstream reaches. 

Because of this, these higher-order streams tend to be perennial unless there is extreme 

water loss through evaporation, or more likely, loss due to infiltration to the subsurface 

via a sandy streambed. This could be investigated using the model by incorporating 

variables into it that reflect other water budget inputs and outputs to and from the basin.  
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Figure 14 Model Predictions for Pair 1, Meridian, and Bond Creek  

   In addition to the predictions for the entire study area, two pairs of streams 

were selected from the TDEC watershed health assessments to test the model’s ability to 

discriminate between a stream with a headwater lake and one without. Classification 

results suggest that most of Bond Creek are perennial streams except for some tributaries, 

while Meridian Creek has parts that are classified as intermittent streams that can dry out 

in the dry months of the year. These predicted intermittent sections of Meridian Creek are 

both in upstream reaches above the headwater lakes as well as further downstream below 

them, where the flow would be expected to be perennial. Bond Creek is a small stream 
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with no headwater lakes, and so perennial flow here was not expected. Figure 15 shows 

this stream pair in the TDEC dataset, where results of their in-situ verifications have been 

displayed. Bond Creek was assessed as not supporting of all its uses (red lines, Figure 15) 

which is an indication that this stream experiences intermittent flow. In contrast, Meridian 

Creek is fully supporting of all its uses downstream of the lakes, but not supporting in the 

headwater reaches above the lakes. This means that the headwater lakes supply enough 

flow that downstream reaches are likely perennial, while above the lake there may be 

intermittent flow. For this test pair, it is not conclusive to say that intermittency is 

predicted correctly according to the existence of a headwater lake. Thus, the presence of 

headwater lakes in the streamflow permanence prediction was not a reliable classifier in 

this study’s scope. Visual assessment of the model output suggests an overprediction of 

permanence. More specific prediction and classification studies using distance-based 

model inputs and distance-based accumulation methods offered by FCPG Tools may be 

needed to identify and classify headwater lakes and how they affect the streamflow of 

first and second-order streams. 
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Figure 15 TDEC Assessments of Pair 1 Streams  

 

In Figure 16, the second test pair is shown for visual comparison of streamflow 

permanence predictions. Piney Creek stream reaches are mostly shown as intermittent 

while Spring Creek reaches are mostly predicted as perennial. These results are what 

would be expected given the in-situ assessments from the TDEC dataset (Figure 17). 
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While the headwater lakes in Spring Creek were not assessed water bodies, they are 

present throughout the watershed. The assessed stream reaches of Spring Creek are all 

classified as fully supporting of all their uses, and therefore would be likely to have 

perennial flow. Only the mainstem of Spring Creek was assessed (red line, Figure 17), 

but this was classified as not supporting of all its uses. Given its size and lack of 

headwater lakes, this stream is likely to experience intermittent flow.  The model 

predictions and in situ assessments align for the second test pair, but given the results 

from Pair 1, it is not conclusive that the model is making the correct prediction for the 

expected reasons. Further examination of both the model results and the TDEC dataset 

along with the identification of more headwater lakes is needed to fully assess the 

credibility of the model predictions of flow permanence in smaller streams below a lake. 

 



 
 

42 

 

Figure 16 Test Pair 2, Piney Creek and Spring Creek with corresponding subwatersheds 
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Figure 17 Test Pair 2 in the TDEC dataset 

 

In Figure 18, the Hatchie River is shown. The streams of the Lower Hatchie River 

watershed are marked as intermittent by the model even though the mainstem of the 

Lower Hatchie is perennial. This could be attributed to the coarse resolution of the 

predictor variables, or that pure climate and land cover input variables are insufficient to 

predict the flow accumulation that provides the perennial flow in downstream reaches of 

larger (higher-order) streams. This could also be due to the lack of proper observation and 
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training data for the model, although the HHD Plus HR dataset generally has intermittent 

and perennial flow classifications on major rivers. Figure 19 shows a zoomed-in figure of 

these areas. While the surrounding small tributaries of the Lower Hatchie River likely are 

intermittent, their accumulated flow combined with the perennial flow from upstream 

would make the Lower Hatchie mainstem perennial as well. This result, combined with 

the large amount of predicted area of streamflow permanence in the eastern portion of the 

study area, which are the headwaters for the rivers here (Figure 12) warrants further 

investigation. 
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Figure 18 Model predictions in the Hatchie River watershed  
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Figure 19 Intermittent Parts of Lower Hatchie River 

  

Discussion and Further Steps  

In this study, streamflow permanence is analyzed using a random forest model 

with various predictor data inputs that include precipitation, minimum and maximum 

temperature, and evapotranspiration on ungauged headwater streams. Previous studies 

about streamflow intermittency classification and prediction use both advanced machine 
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learning techniques and deep learning applications for the prediction of streamflow status 

(Bolanos et al., 2016; Jiang & Wang, 2019; Li et al., 2019; Peng et al., 2020; Razavi & 

Coulibaly, 2013). While some of these studies are built to predict the intermittency status 

of streams and hydrological networks from scratch (Ha et al., 2021; Sando & Blasch, 

2015), others attempt further feature engineering by selecting the most important 

variables to improve model performance and efficiency for better analysis and predictions 

(Shen et al., 2022).  

 When considering the streamflow, the total water budget in a basin is affected by 

precipitation and evapotranspiration as tested in this study, but many other variables 

affect the streamflow including conveyance evaporation, imported water, stream outflow, 

infiltration, and runoff. In this study, soil and permeability data are mostly excluded 

except for the NLCD land use/ land cover data, but these variables also can be 

incorporated into predictive models to improve model performance and make more 

reliable predictions.  

For a comprehensive list of catchment attributes, Razavi & Coulibaly (2013) 

serve as a reference point to define these potential variables and datasets to add to further 

streamflow permanence studies that observe flow status in ungauged streams. These 

variables include area, elevation, porous aquifers, river network density, catchment 

drainage area, leaf area index, percentage of woody vegetation in the catchment, plant 

water-holding capacity, and soil moisture deficit. In addition to these variables, the model 

settings can also be adjusted. For example, tree size in the random forest model can be 
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increased for better prediction results, given there is enough processing power available. 

Random forest uses the results of many decision trees to create a final prediction. All of 

the random forest models tested in this study have been built on both 50 and 100 trees, 

but other studies have found that increasing the tree sizes also increased prediction 

accuracy when using a random forest algorithm (Peng et al., 2020). In addition, to 

adjusting tree size, training a model on gauged networks to determine key factors in flow 

density can also improve feature engineering in machine learning applications. 

Processing predictor parameters in conjunction with the elevation of corresponding 

watersheds is yet another approach that could be utilized in streamflow permanence 

prediction studies.  

FCPG Tools (Barnhart et al., 2020) are produced to process the accumulation of 

predictor parameters using elevation and flow direction data. In this study, this FCPG 

accumulation process is applied to test the potential benefits of replacing raw predictive 

data with flow-conditioned variables in a random forest model for West Tennessee 

tributaries. Out-Of-Bag Error and other metrics are used to assess the performance of 

each classification model, as well as observation and verification of the headwater pairs 

from West Tennessee watersheds. Previous studies successfully incorporated random 

forest models with a 20-30% prediction MSE OOB error for streamflow status (Jaeger et 

al., 2019; Li et al., 2019). This study’s results are comparable to those with a 24% MSE 

OOB error rate for the best performing model, where no predictor variables were 

processed using FCPG Tools, and 28% for the worst performing model, in which both 
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continuous and categorical variables were accumulated using FCPG Tools. The results of 

these models indicate that in this study’s scope, the FCPG process did not make a 

significant difference in the classification of streamflow intermittency status. This may be 

attributed to low elevation variability in this study’s area of interest. Further investigation 

of the reasoning behind these results can be conducted to understand what else can be 

done differently to improve these predictions.  

In addition, there was a weak relationship in this study between streamflow status 

and the existence of headwater lakes. While the existence of headwater lakes does affect 

the streamflow permanence of streams, additional predictors may be needed for a more 

precise classification than those predictor parameters used here. The ArcGIS Random 

Forest Classification and Regression tool offers the addition of distance-based training 

variables to be considered for the model and FCPG Tools also provide distance-based 

accumulation methods that can be used for testing the effects of the spatial relation of 

headwater lakes and streamflow permanence. 

Meridian and Bond Creeks (Figure 14) did not match the prediction of streamflow 

with their corresponding headwater existence status as would be expected given the 

TDEC water quality assessments (Figure 15). However, the predictions for Piney and 

Spring Creeks (Figure 16) did (Figure 17). Further investigation is needed to understand 

the relation between headwater streams that have lakes upstream and headwater streams 

without headwater lakes in order to predict the status of the corresponding streams. 

Applying a wider selection of prediction variables may also significantly improve 
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predictions of the correlation between streamflow permanence and headwater lakes. For 

example, Jaeger et al., (2021) indicated that many factors contribute to the prediction of 

streamflow status, and observing these variables can assist in predicting the presence or 

absence of surface water flow. In this study, the variables that had the greatest impact on 

streamflow status across all models were the precipitation predictors. Variable importance 

tables showed the occurrence of the precipitation variable inputs in the months following 

each July in all three models. During the dry season, baseflow supplies the streamflow 

This could mean that model’s variable importance in choosing the summer growing 

season as an important predictor of baseflow as the streamflow source. Additionally, west 

Tennessee has periodic dry years and, in some years, just dry summers. This may indicate 

that some streams only become intermittent in very dry years. These results suggest that 

while the model is capturing the correlation between seasonal changes and streamflow, it 

may benefit from the addition of distance-based accumulation processes to better route 

the flow inputs through the network. 

Streamflow prediction has many contributing factors in addition to precipitation. 

Minimum and maximum temperature and evapotranspiration variables were both tested 

in this study but showed lower importance compared to precipitation. Further research 

incorporating other variables can assist in predicting streamflow and the assessment of 

stream health status. These analyses of streamflow predictions can serve in understanding 

the health status of basins. Water budget and water balance simulations can be used as an 

additional input to such prediction studies by using other variables for water that flows 
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into the basin and water that exits from the basin. Also, soil type and permeability are 

important factors when calculating streamflow status and there are datasets such as 

STATS2GO (Soil Survey Staff, 2022) that can provide additional training variables for 

such predictive models. Accurate predictions of streamflow status could also provide 

critical insight into studying the implications of climate change in hydrological networks, 

although only to the extent that climate variables are considered important to the model. 

This study found there is a need to fill some data gaps in the recently released 

NHDPlus HR v2 hydrography dataset. NHDPlus HR v2 contains missing attribute data 

for feature types of streams in this study’s area of interest. In specific regions, there are 

no intermittency data; these streams are not assessed and not marked as perennial, 

intermittent, or ephemeral. This study’s results could fill this data gap for these areas until 

the NHDPlus HR v2 dataset is assessed and marked in these areas. Figure 20 shows the 

areas with missing intermittency information. 
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Figure 20 Streams with missing intermittency data with prediction results of the random forest 
model 

 

In this study, a training dataset is derived from the NHDPlus HR v2 dataset using 

intermittent/perennial attributes of the streams in West Tennessee basins to test if the 

environmental variables such as precipitation and evapotranspiration can be useful in 

predicting stream impairment. In addition, two pairs of streams are tested to see if 

predictions of the models can distinguish between streams with headwater lakes and 
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streams without headwater lakes. Results show acceptable prediction accuracy for 

streamflow status but not for permanence below headwater lakes. Due to the limitation of 

this study, in-situ verification was not a viable option. In order to better assess the model 

performance, in-situ verification of the training data may be needed. In addition, FCPG 

Tools accumulation functions are utilized, and the results did not improve using FCPG 

tools. The FCPG study currently in progress has not been published yet, and given the 

results of the new investigation, the results of this study may be reassessed once the 

FCPG paper is released. As a result of these analyses, it is understood that the NHD Plus 

HR dataset has data gaps, and further attempts and studies are needed to fill this gap. 

Furthermore, a nationwide streamflow permanence dataset is needed for further 

investigation of streamflow permanence. Results of these models also indicated that 

precipitation is a strong predictor of streamflow, similar to elevation data. Even though it 

may lower the prediction accuracy, it may be useful to isolate precipitation and conduct 

similar tests with other predictors to understand other contributing variables in the 

prediction of streamflow status without the dominant effects of precipitation. In 

conclusion, this study expects that these results can be useful for state agencies, 

environmental/conservation groups, and other entities to further understand streams that 

may dry at any time throughout the year and which environmental factors could be 

causing impairment of streams. These replicable and scalable methods can offer an 

understanding of spatio-temporal dynamics that influence streamflow permanence in 

West Tennessee streams. 
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Appendix 

 

The codes used in this study can be found in the appendix. Further information 

and more code examples can be found in the official Flow Conditioned Parameter Grid 

GitHub or GitLab repositories hosted by the USGS 

 

import FCPGtools as fc 
import os 
import rasterio as rs 
import geopandas as gpd 
import matplotlib.pyplot as plt 
import numpy as np 
 
# Verbose output 
verbose = True 
 
def plot(fl, cmap='Blues'): # define a helper plotting function 
    src = rs.open(fl) 
    tmp = src.read(1) 
    try: 
        tmp[tmp == src.nodata] = np.NaN 
    except: 
        pass 
    plt.figure(figsize = (10,10)) 
    plt.imshow(tmp, cmap = cmap, vmin=0, vmax=255) 
     
print('FCPGtools version %s loaded from 
%s'%(fc.__version__,fc.__path__[0]))  

 

testFolder = os.path.join('.','test_batch_output') # folder to store 
outputs 
FDR = os.path.join('.','test_batch_data','validation_upstream_fdr.tif') 
# upstream area FDR grid 
WBD = 
gpd.read_file(os.path.join('.','test_batch_data/upstream_wbd.shp')) # 
upstream WBD subset to test cascading parameters 

 

# reproject the WBD to the grid CRS 
tmp = rs.open(FDR) 
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dstCRS = tmp.crs.to_proj4() 
 
WBD.to_crs(crs=dstCRS, inplace=True) 

 

# define output paths for TauDEM flow direction 
FDRTau = os.path.join(testFolder,'FDRtau.tif') 
 
# define output paths for TauDEM flow accumulation 
upstreamFAC = os.path.join(testFolder,'upstreamFAC.tif') # path for the 
output FAC grid. 
 
# reclassify ESRI flow directions to TauDEM 
fc.tauDrainDir(FDR, FDRTau, verbose=verbose) 
 
# calculate flow accumulation 
fc.tauFlowAccum(FDRTau,upstreamFAC, cores=4, verbose=verbose) 

 

# define output filepaths for NLCD 
NLCDAccum = os.path.join(testFolder,'NLCDAccum.tif') 
NLCDFCPG = os.path.join(testFolder,'NLCDFCPG.tif') 
# NLCD layer import 
nlcd11_11 = os.path.join(testFolder, 'nlcd11binarized', 
'nlcd_2011_land_cover_l48_20210604rprj12.tif') 

 

# calculate single parameter accumulation for NLCD 
nlcd_accum = fc.accumulateParam(nlcd11_11, FDRTau, NLCDAccum) 
finalNLCDFCPG = fc.make_fcpg(NLCDAccum, upstreamFAC, NLCDFCPG, verbose 
= verbose) 

 

# assign input folder path  
nlcd_batch_folder = os.path.join('.','test_batch_data', 'nlcdbin') 
 
# emtpy list to populate with parameter filenames 
nlcd_batch_list = [] 
 
for filename in os.listdir(nlcd_batch_folder): 
    name, ext = os.path.splitext(filename) 
    if ext == '.tif': #change filetype here 
        infile = os.path.join(nlcd_batch_folder, filename) 
        nlcd_batch_list.append(infile) 

 

nlcdbin = os.path.join('.','test_batch_data', 'nlcdbin') 
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nlcdlist = [] 
 
for filename in os.listdir(nlcdbin): 
    infile = os.path.join(nlcdbin, filename) 
    nlcdlist.append(infile) 

 

accumParams = fc.accumulateParam_batch(nlcdlist, FDRTau, testFolder 
,cores = 4, verbose = verbose) 
batch_accumout_folder = 
os.path.join('.','test_batch_output\ssebop_accum_out') # folder to 
store outputs 
accumParams = [] 
 
for bfilename in os.listdir(batch_accumout_folder): 
    binfile = os.path.join(batch_accumout_folder, bfilename) 
    accumParams.append(binfile) 
# batch FCPG output folder path 
batch_FCPG_folder = 
os.path.join('.','test_batch_output\ssebop_FCPG_out') # folder to store 
outputs 
 
# batch FCPG 
 
upstream_cpgs = 
fc.make_fcpg_batch(accumParams,upstreamFAC,batch_FCPG_folder, verbose = 
verbose) 
usLCbinary = fc.cat2bin(LCupstream, testFolder, verbose=verbose) 
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