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Abstract

Optical flow estimation is a computer vision problem which aims to estimate apparent 2D

motion (flow velocities) of image intensities between two or more consecutive frames in an

image sequence. Optical flow information is useful for quantifying dense motion field in

numerous applications such as autonomous driving, object tracking in traffic control sys-

tems, video frame interpolation, video compression and structural biomarker development

for medical diagnosis. Recent state of the art learning methods for optical flow estimation

are two-frame based methods where optical flow is estimated sequentially for each image

pairs in an image sequence. In this work, we introduce a learning based spatio-temporal

transformers for multi-frame optical flow estimation (SSTMs). SSTM is a multi-frame based

optical flow estimation algorithm which can learn and estimate non-linear motion dynamics

in a scene from multiple sequential images of the scene. When compared to two-frame meth-

ods, SSTM can provide improved optical flow estimates in regions with object occlusions and

near boundaries where objects may enter or leave the scene (out-of-boundary regions). Our

method utilizes 3D Convolutional Gated Recurrent Networks (3D-ConvGRUs) and space-

time attention modules to learn the recurrent space-time dynamics of input scenes and pro-

vide a generalized optical flow estimation. When trained using the same training datasets, our

method outperforms both the existing multi-frame based optical flow estimation algorithms

and the recent state of the art two-frame methods on Sintel benchmark dataset (based on a

computer-animated movie) and KITTI 2015 driving benchmark datasets.
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Chapter 1

Introduction

In computer vision, optical flow estimation is a task of estimating dense and apparent flow

field in a scene from a sequence of input images. Given two or more input images, the goal of

optical flow estimation algorithms is to estimate the pixel-wise velocities between the input

images with the flow estimates invariant to occlusions, motion blur, out of boundary regions

and small/large displacements.

Horn and Schunck [3] was a pioneering algorithm that introduced a variational energy

minimization approach to estimate optical flow using the brightness consistency assumption

(pixel intensities are assumed to be constant for small temporal change) and smoothness con-

straint (smooth or elastically deformed motion is assumed) as part of the objective function.

More recent classical methods used a bank of hand-crafted motion filters tuned to capture

moving patterns and texture characteristics from input images to estimate the direction and

magnitude of optical flow fields [4, 5].

With the recent advancement of deep learning frameworks, and availability of large datasets

with known ground truth, optical flow estimation task is reformulated as an end-to-end learn-

ing problem without requiring assumptions about the nature of the input images or the motion

pattern. FlowNet [6] introduced a two-frame learning based optical flow estimation method,

where a single flow field is estimated from a pair of input frames, based on convolutional

neural networks (CNNs). Following FlowNet [7] various improvements were done on two-

frame learning based techniques. These techniques include, coarse-to-fine pyramid network
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[8], multiple intermediate flow estimates and warping based brightness error computation [7],

receptive field guided motion feature extraction networks [9] and 4D all-pairs correlation vol-

ume with gated recurrent networks [1]. These two-frame methods can be seen as approaches

that approximate flow dynamics between two corresponding pixels in an image pair linearly

(with some recurrent information considered in some methods).

Another approach of solving the optical flow estimation task is by using multiple input

frames simultaneously. Such multi-frame based optical flow estimation methods use three or

more consecutive input images of the same scene to estimate one or more optical flows at

each inference instants. Compared to two-frame methods, multi-frame methods can benefit

significantly from the temporal information that are available in longer input sequences and

thus such an approach may be able to capture non-linear flow dynamics among corresponding

pixels in an image sequence. Motivated by Heeger’s [4] approach to use hand crafted spatio-

temporal Gabor filters for optical flow estimation, Teney et al. [10] developed a learning-

based multi-frame optical flow estimation based on learnable 3D CNNs and signal processing

concepts. Zhile et al. [11] extended the two-frame PWC-Net [8] method to a multi-frame

method via fusion of multiple flow estimates in parallel and was able to achieve a better

result compared to the original PWC-Net. As of now, there are not many state of the art

multi-frame based optical flow estimation methods. We believe that this is mainly due to the

limited availability of datasets for training multi-frame optical flow models.

Poor generalizations (low estimation accuracy) around occluded and out of boundary re-

gions is one of the significant limitations of two-frame based optical flow estimation methods.

This is likely because in these regions the flow dynamics are often complex and cannot be

fully captured using only two frames. In other words, for regions of the input frames which

can only be seen in one of the two frames, two-frame methods do not have a good context

about these disappearing regions. This limited information about the disappearing regions

causes erroneous flow estimates. Moreover, we believe that, the estimated flow in such meth-

ods is a linear approximation, such that given two input frames we estimate the pixel-wise

trajectory that fits a pair of corresponding points in the two given frames. While this might

give a good flow estimate in most cases, it cannot generalize the non-linear flow dynamics of
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the motion over multiple time windows. For example, if we want to use the estimated two-

frame based flow vectors to interpolate more frames in between, we are assuming a linear

trajectory that do not hold true to generalize real world trajectories.

In this work, we develop a multi-frame optical flow estimation method with the goal of

overcoming the limitations of two-frame methods near occluded and out of boundary regions.

Our methods are designed on the basis of understanding the space-time nature of the input

sequence in a wider temporal windows by taking multiple input frames, instead of two, and

estimate their flows in parallel. Unlike most two-frame methods whose context features are

limited to the spatial context of a single image, we design spatio-temporal filters and apply

them over multiple input images to capture the space-time context of the input sequence.

Moreover, we learn the recurrence structure of the input in space-time domain to understand

the non-linear dynamics of optical flow. Our current method is based on three input frames

and it has a quadratic nature as the estimated flows are over three corresponding pixels of three

input frames. This gives our method the ability to understand the non-linear flow dynamics

when compared to two-frame methods. We believe that, by understanding the non-linear

flow dynamics we can predict the trajectory of each scene points with a better accuracy and

can also be used for interpolating and extrapolating more realistic frames (in next-frame

prediction problems).

Our proposed multi-frame method has the following features. Given three input images,

we use 4D correlation volume to compute visual similarities between each of the neighbour-

ing input frames. Concurrently, we extract context features from three consecutive frames in

each image sequence using spatio-temporal 3D CNN network. With the weights of 3D Con-

volutional Gated Recurrent Units (3D conv GRUs) tied, we learn the non-linear recurrence

of the input sequence given the context features, the correlation volumes, and intermedi-

ate optical flow estimates in each GRU level. Further, we introduce an error block network

which computes a multi-level brightness error by warping intermediate flow estimates. This

error was used as an additional information while generating motion features. Moreover, we

used space-time attention mechanism with a cross-attention architecture wherein two atten-

tion networks were used to capture global dependencies among corresponding pixels in three

3



consecutive image frames.

The structure of this thesis is organized in the following order. In chapter 2, we describe

the i) multi-frame optical flow datasets we used for training, validation and testing, ii) details

of the network input and output, iii) evaluation metrics used during validation and testing,

and iv) tools used for visualizing estimated flows. In chapter 3, we provide a brief review

of works related to the key features of our methods; define a mathematical framework for

multi-frame optical flow estimation; and discuss the main features and contribution of our

multi-frame methods. In Chapter 4, we present our experiment details including training

approaches, ablation experiments conducted to elucidate key features of our methods when

compared to other methods; and present qualitative and quantitative results of our method.

In Chapter 5, we summarize and discuss our results, scientific observations from each of our

experiments, and our contribution. In chapter 6, we conclude this research work with a brief

summary of our multi-frame optical flow estimation methods, their performance, and future

research direction of this research work.
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Chapter 2

Datasets and Evaluation Methods

2.1 Datasets

In this section, we provide a brief overview of the datasets that were used for training, validat-

ing and testing all the optical flow algorithms studied in this research work. It should be noted

that the ground truth of the final testing datasets were not available to us. Further, the accu-

racy of our methods on the final testing datasets were assessed blindly by the leaderboards

of respective datasets.

2.1.1 MPI Sintel

MPI Sintel [12] is naturalistic synthetic dataset for optical flow estimation based on the CGI

movie Sintel. MPI Sintel contains 1064 training images from 35 different scenes along with

their ground truth optical flows and 564 testing images from 8 different scenes with no ground

truths. Compared to other optical flow benchmark datasets such as Middleburry [13] and

KITTI [14], Sintel contains frames with larger and non-rigid motions [15]. Sintel has two

versions namely, Clean pass and Final pass. The Clean pass version contains computer ren-

dered images with no image degradation effects. The Final pass dataset, on the other hand,

contains frames with different degradation effects such as defocus blur, motion blur and arti-

ficial atmospheric effects [15].
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2.1.2 KITTI 2015

KITTI 2015 [16] is a real world dataset for optical flow estimation and autonomous driving

recorded from a moving vehicle. Compared to the previous KITTI 2012 version, KITTI 2015

contains more dynamic scenes. The moving objects in each scene are mostly rigid containing

large displacement motions.

The multi-view version of KITTI 2015 that we used in this research work has 200 different

scenes (sequences) and 20 training frames per scene. Only the ground truth flow between 10th

and 11th frame in each sequence was available for training. The ground truth flows between

each pair of images in every scene are sparse such that motion information of some objects

(distant object like sky) were not available [6]. The multi-view version also has 200 testing

scenes which we used to test our final methods. The “multi-view” terminology used by the

KITTI dataset refer to “multi-frame”.

2.1.3 Virtual KITTI2

Virtual KITTI2 [17] dataset for optical flow estimation is a synthetic dataset recreated based

on the KITTI dataset. The dataset consists of 5 sequences which are clones of the KITTI

tracking dataset. Each sequence has modified variants of the cloned sequences with different

camera orientations, lighting and weather conditions. Different camera orientations include

15◦ and 30◦ rotations to the left and right. The dataset also includes five different image se-

quences with artificially modified weather and lighting conditions such as with rain, morning,

overcast, fog and sunset.

Virtual KITTI2 is an updated version of Virtual KITTI [18] containing a second stereo

camera view for each sequence. Virtual KITTI2 has two stereo camera views namely Cam-

era0 and Camera1 such that Camera1 is positioned approximately 0.53m to the right of Cam-

era0 coordinates [17]. This doubles the size of the dataset in Virtual KITTI2 compared to

Virtual KITTI [18] which has only one camera view (Camera0). Moreover, Virtual KITTI2

utilizes advanced post-processing and lighting features available in the more recent version

of the Unity game engine available for generating a more photo-realistic images [18] when

6



compared to Virtual KITTI [17].

2.1.4 Monkaa

Monkaa [19] is a synthetic dataset based on the short movie Monkaa created using a cus-

tomized version of the open source 3D creation suite Blender. This dataset contains 8591

training frames from 8 different scenes with resolution size of 960 × 540. Similar to the

MPI Sintel dataset, Monkaa contains two different versions of the input frames namely final

pass and clean pass. The final pass version contains different effects such as motion blur,

lighting and depth of field blur effects that degrade the colors and textures of the input frames

[19]. The clean pass on the other hand contains clean frames with no added degrading ef-

fects. Furthermore, for data augmentation purpose, more sequences are rendered by varying

camera orientations and motion paths. While both Monkaa and MPI Sintel were based on

3D animated movies, Monkaa dataset is less naturalistic and has fewer number of scenes and

randomness when compared to the MPI Sintel dataset.

2.1.5 HD1K

HD1K [20] is a real world optical flow and autonomous driving benchmark dataset captured

from a moving vehicle. The dataset consists of various traffic scenes taken relatively at a

larger resolution of 2560× 1080 pixels.

Table 2.1: Summary of training datasets used. For KITTI, we used the multi-view version
which consists of 20 frames per scene or sequence (out of the 20 frames available in every
scene, we used only three frames namely 9th, 10th and 11th frames).

Datasets Number of Number of Number of Resolution Dataset type
frames scenes Ground truths (pixels)

Sintel 1064 23 1041 1024×436 Synthetic
KITTI 600 200 200 1242×375 Real

Virtual KITTI2 21,260 5 42,510 1242×375 Synthetic
Monkaa 8591 8 17,166 960×540 Synthetic
HD1K 1083 35 1083 2560×1080 Real
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2.2 Input Frame/Output Flow Scheme

The aforementioned datasets were kept in their original structure and format. Each of the

scenes of these datasets should contain at least three input frames. For every three consecutive

input images of the same scene, I1, I2 and I3, our method estimates two optical flow fields,

F1 and F2, respectively between I1 and I2, and I2 and I3. For estimating optical flow for all

frames in a sequences, three input frames were chosen as input to our multi-frame method.

Depending on the number of frames available per sequence, the following strategies were

used for selecting the three input frames for our methods.

1. For odd number of input image frames per sequence:

I1 I2︸ ︷︷ ︸
F1 F2

I3 I4︸ ︷︷ ︸
F3 F4

I5 I6 I7︸ ︷︷ ︸
F5 F6

2. For even number of input image frames per sequence:

I1 I2︸ ︷︷ ︸
F1 F2

I3

F4 F5︷ ︸︸ ︷
I4 I5︸ ︷︷ ︸

F3 F4

I6

2.3 Performance Evaluation Methods

The following standard optical flow evaluation metrics were used for validating our models

during training as well as for assessing the accuracy of our methods on the final test datasets

reported by the KITTI and Sintel leaderboard.

2.3.1 Endpoint Error (EPE)

Endpoint error (EPE) is a standard evaluation metrics for optical flow estimation. EPE mea-

sures the point-wise squared error summed over all pixel positions between the estimated op-

tical flow and its corresponding ground truth flow. Given the estimated flow vectors uest(x, y)
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and vest(x, y) and the corresponding ground truth vectors ugt(x, y) and vgt(x, y) at pixel lo-

cation (x, y), EPE at pixel position (x, y) in the image plane is computed as:

EPE(x, y) =
√

(ugt(x, y)− uest(x, y))2 + (vgt(x, y)− vest(x, y))2 (2.1)

The EPE of an estimated flow of size h × w is computed as the sum of EPE(x, y) over all

pixel locations, (x, y). This is given as:

EPE =
w−1∑
x=0

h−1∑
y=0

EPE(x, y) (2.2)

2.3.2 EPE Near Occluded Regions (dm−n)

This evaluation metric measures the accuracy or EPE within a certain rage of distance from

the occluded regions. dm−n denotes EPE over regions with pixels that are m to n pixels

away from the nearest occluded boundary. This metric helps us to understand how well our

estimated flow result or in general our flow estimation method is performing near occluded

regions. dm−n is a standard measurement used in the MPI Sintel [15] leaderboard.

2.3.3 sm−n

sm−n is defined as EPE over regions with flow magnitude in the range of m to n pixels per

frame. This helps us evaluate and understand the performance of our optical flow estimation

methods in regions with various flow magnitudes..

2.3.4 Fl-all %

Fl-all (%) measures the percentage of outlier optical flow estimates whose EPE is above 3

pixels or 5% of the ground truth averaged over all regions. In other word, each flow estimate

at pixel location (x, y) is considered to be correct estimate if the EPE(x, y) is less than 3

pixels or 5%. Fl-all is a standard optical flow evaluation metric used by KITTI leaderboard.
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2.3.5 Fl-fg % and Fl-bg %

Both Fl-fg% and F-bg% measure EPE outliers similar to Fl-all with the only difference being

the outliers are measured over a specific region of interest (instead of the entire region). Fl-

fg% and Fl-bg% measure EPE outliers whose EPE are above 3 pixels or 5% of the ground

truth in the foreground and background regions respectively. Fl-fg% and F-bg% are also the

metrics used by KITTI leaderboard on the KITTI test dataset.

The KITTI leaderboard reports the aforementioned three optical flow outlier metrics (Fl-

fg%, Fl-all% and F-bg% ) in two groups namely for non-occluded regions only and for all

regions for a total of 6 evaluation metrics.

2.4 Flow Color Coding

In this work, we use a standard optical flow color coding map to visualize the estimated opti-

cal flows and have qualitative comparisons with estimated flow results of other methods. The

flow color coding scheme captures the magnitude and directional characteristics of flow vec-

tors using a color wheel. Figure 2.1 shows the optical flow vector field as a quiver plot, color

coded flow field and the flow color coding wheel. In the color coding wheel, the magnitude

and direction of flow vectors are encoded as the saturation and color information respectively.

Figure 2.1: Flow visualization. a) Input frame, b) quiver plot of the optical flow field, c) Flow
color coding map, d) Color coded optical flow field.
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Chapter 3

Methodology

3.1 Problem Definition

Given multiple sequences of image frames, It, It+1, It+2, ..., It+n for integer n > 2 such that

an input frame, It = E(x(t), y(t), t), at time t is defined as the brightness of point (x(t), y(t)),

our goal is to estimate the intermediate flow velocities, Ft→t+1, Ft+1→t+2, ..., Ft+(n−1)→t+n,

between every two consecutive frames such that Ft→t+1 = G(u(t), v(t), t) is the optical flow

field between frame It and It+1. We call this multi-frame optical flow estimation as the flow

estimation at each instance depends on not only a pair of images but three or more inputs

images. Three-frame based optical flow estimation is the case where n = 2, such that given

three consecutive frames It, It+1, It+2 our goal is to estimate Ft→t+1, Ft+1→t+2.

Figure 3.1 shows the spatio-temporal orientation of an object moving in the x direction

at a constant velocity (Figure 3.1 a). Figure 3.1 b) shows the space-time view of the motion

trajectory over a time frame of length t such that a slice along xy- plane represents the spatial

position of the object at time t. This slice is equivalent to a frame that captures the spatial

orientation of the moving objects within the scene at that particular time instance. Figure 3.1

c) shows the slice of the space-time cubic orientation along xt-plane in which the slope of

the bar’s motion in the tx-plane captures the horizontal velocity of the bar’s motion.
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Figure 3.1: Multi-frame motion trajectory (Image redrawn from [2]). a) the red bar is moving
with constant velocity along the x direction. b) illustrates the motion over spatio-temporal
domain. c) shows the slice of (b) along t − x plane such that the inverse of the slop of this
bar represents the horizontal velocity.

3.2 Related Work

Heeger et al. [4] approached the optical flow estimation problem as the analysis of the space-

time visual motion of a given scene. Heeger’s multi-frame based method jointly captures

2D spatial motion dynamics and temporal dependencies over multiple frames. These space-

time motion features and representations are captured by families of 3D Gabor filters tuned

to respond to specific flow magnitudes and directions. By learning the space-time motion

dynamics, Heeger’s optical flow estimates were able to deal with the aperture problem.

Toshio et al. [21] developed one of the earliest classical methods for multi-frame optical

flow estimation. In this work, Toshio et al. extended the two-frame Horn and Schunck [3] op-

tical flow algorithm by introducing temporal coherence constraint to the existing smoothness

constraint using Kalman filter. The smoothness constraint assumes the moving objects in the

scene to be rigid or deforming elastically. The temporal coherence constraint introduced by

Toshio et al., on the other hand, fuses the smoothness constraint over multiple time frames

to have a better generalization of the scene dynamics. Compared to the original Horn and

Schunck two-frame algorithm, the resulting optical flow estimates from Toshio’s multi-frame
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method are more accurate and robust to noise.

A classical machine learning based method introduced by Kennedy et al. [22] showed

the significance of using multiple frames for optical flow estimation. Kennedy computed

multiple flow estimates based on neighbouring frames. These multiple flow estimates are

then fused by a random forest classifier to capture a generalized temporal information of the

dynamic scene that gives a better estimation of flows in occluded regions.

In a more recent work, Zhile et al. [11] introduced a multi-frame extension of the two-

frame learning based PWC-Net [8] method. In this approach, multiple forward and backward

optical flows are estimated from three input frames using PWC-Net. These flow estimates

are then warped at different levels and fused together to give a single flow estimate between

the second and third frames. Zhile’s multi-frame method outperformed PWC-Net and other

two-frame methods of that time.

Recent state of the art methods for optical flow estimation are two-frame methods which

include RAFT [1] and GMA [23]. RAFT introduced a 4D correlation volume based on the

Kronecker product of feature maps to capture visual similarities between all-pairs of pixels

in the two input frames. RAFT also formulated the optical flow estimation problem as a re-

current problem by which convolutional Gated Recurrent Unit (convGRU) blocks are used

to iteratively estimate a residual flow direction from the visual similarity captured by the 4D

correlation volume and context features. GMA extended the work of RAFT by introducing

transformer network to capture the global dependencies of motion features in the image se-

quence. GMA outperformed RAFT and thus signified the importance of attention mechanism

to capture long term temporal dependencies among input frames.

The following subsections discuss model features, techniques and theoretical backgrounds

which formed the basis for our design of multi-frame optical flow estimation methods namely

SSTM and SSTM++.

3.2.1 Separable 3D Convolutions

Assuming symmetry among space and time dimension filter coefficients, a 3D convolutional

filter with a dimension of t × h × w can be separated into a spatial filer of size 1 × h × w,
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and a temporal filter of size t × 1 × 1; where t represents the temporal depth of the 3D

filter and h and w represent the height and width of the filter in spatial dimensions. When

the symmetry approximation is valid, this reduces the number of learnable parameters from

hwt to hw + t. Moreover, Xie et al. [24] showed that such separable filters are not only

computational efficient, but also bring more accurate results when compared to the Inception

3D model [25] where 3D convolutional filters of the form t× h×w are used to learn spatio-

temporal features of input videos. More recent work used such separable filters as building

blocks of spatio-temporal filters designs [26, 27, 28, 29, 30].

3.2.2 Spatio-temporal Filters

Spatio-temporal filters are 3D motion filters that can be applied in space-time domain to

capture 2-dimensional spatial motion features (motion directions and magnitudes) and 1-

dimensional temporal features (interpretation and generalization of the motion from the tem-

poral queue) [4]. Such spatio-temporal filters are widely used to learn and represent motion

features in videos and sequence of images of the same scene [4, 31, 10, 32, 24, 30].

One way of designing such 3D spatio-temporal filters is by using handcrafted 3D Gabor

filters. Heeger et al. [4], for example, used multiple separable handcrafted spatio-temporal

Gabor filters tuned for extracting motion patterns from a sequence of images. These fil-

ters consist of two separable components namely 3D Gaussian and sinusoidal components.

The Gaussian part serves as an envelope function which localizes the filter over a specific

space-time window. The sinusoidal term, on the other hand, specifies the spaio-temporal

frequencies at which the filter gives the maximum output. Such 3D Gabor filters are given as:

f(x, y, t) =
1√

2π3/2σxσyσt
× exp {−(

x2

2σ2
x

+
y2

2σ2
y

+
t2

2σ2
t

)} × sin (2π(ωx0x+ ωy0y + ωt0t))

(3.1)

Where ωx0 , ωy0 and ωt0 are the spatio-temporal central frequencies and σx, σy and σt are

Gaussian space-time windows. By designing a family of such 3D Gabor filters with different
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temporal frequencies and spatial orientations, Heeger was able to capture motion features of

sequences of images in different directions.

With the advancement of deep learning methods, more recent methods for video analy-

sis and optical flow estimation use learnable spatio-temporal filters using 3D convolutional

neural networks to extract motion features. Zhaofan et al. [31] introduced pseudo 3D CNN

spatio-temporal filters which consist of 3D convolution filters decoupled into 2D spatial and

1D temporal filters. By combining such decoupled spatial and temporal filters in residual

connections, Zhaofan designed spatio-temporal filters for motion feature representation of

videos. Teney et al. [10] designed 3D spatio-temporal learnable filters that capture different

motion patterns in a sequence of multiple input images. These motion features are further fed

to CNN to output dense optical flow estimations.

3.2.3 Correlation Volume

Correlation volume in optical flow estimation and stereo matching problems refers to a mea-

sure of match or similarity between corresponding pixels (or patch of pixels) from any two

images of the same scene. FlowNet [6] introduced a correlation layer that matched a patch

of pixels of a given size from the feature map of the first input image with the feature map

of the second input image within a specified range. In this framework, given two feature

maps, fmap1 and fmap2, correlation between two patches, x1 ⊆ fmap1 and x2 ⊆ fmap2,

is computed as convolution between patches x1 and x2. With such operations, FlowNet [6],

computed a 3D correlation volume of size h×w×P 2, where h,w and P are the height of the

feature maps, width of the feature maps, and the neighbourhood size respectively. Similarly,

PWC-Net [8] introduced a 3D correlation volume based on convolution operations, however,

instead of matching feature maps of the first and second images like FlowNet [6], the corre-

lation is computed between the feature map of the first image and the warped feature map of

the second image using upsampled intermediate flow estimate.

In more recent work, RAFT [1] developed a 4D correlation volume based on pixel-wise

Kronecker products of all-pairs of pixels of feature maps. In RAFT [1], to compute visual

similarity between the extracted feature maps of consecutive input frames, a multi-layered
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correlation pyramid is designed using down-sampled all pairs Kronecker products. Given the

feature maps of the input frames, fmap1 ∈ RH×W×D, and fmap2 ∈ RH×W×D, a correlation

volume, C ∈ RH×W×H×W , is defined as:

Cijkl =
D∑

d=1

(fmap1)ijd (fmap2)kld (3.2)

where i, k ∈ {1, 2, .., H} and j, l ∈ {1, 2, ..,W}. A correlation pyramid of four layers

{C1,C2,C3,C4} is constructed by down-sampling the last two dimensions of the 4D corre-

lation volume at different rates. For example, the kth layer of this pyramid is down-sampled

at 1/2k−1 :

Ck ∈ RH×W×H/2k−1×W/2k−1

(3.3)

Each of the layers of this correlation pyramid capture information about both large (lower

resolution layers) and small (higher resolution layers) displacements in the input sequence. In

later stages, these layers are set to have the same dimensionality using bi-linear interpolation

and are concatenated for further processing.

3.2.4 Attention

Ashish et al. [33] recently introduced transformers, which are a type of neural networks that

are capable of solving sequence transduction problems based on attention mechanisms only,

without having to rely on convolutional neural networks (CNNs) or recurrent neural networks

(RNNs). In this work, transformers were introduced with the goal of solving Natural Lan-

guage Processing (NLP) problems, more specifically machine translation problems. These

transformer utilizes self-attention mechanism, a type of attention network which learns the

global relationships and dependencies of different parts of a single input sequence. In other

words, the query, key and value vectors of the attention module are coming from a single input

sequence. By building multiple of such self-attention modules which run in parallel, Ashish
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et al. designed a multi-head self-attention module which can be trained faster and achieve

higher accuracy in language translation problems compared to its counterparts namely the

CNN and/or recurrent based encoder/decoder architectures.

Following the introduction of transformers by Ashish et al. and its astonishing results

in machine translation problems, more recent work adapted the use of such neural network

architectures to solve different computer vision problems and achieved state of the art results.

Such computer vision problems include object detection [34, 35, 36], object tracking [37, 38,

39], image segmentation [40, 41, 42] and optical flow estimation [23, 43, 44].

GMA [23] is the first published method to make a good use of transformers for optical

flow estimation. GMA [23] introduced attention-module to the existing RAFT [1] optical

flow estimation method and achieved approximately 15.8% improvement on the EPE results

of both Sintel final and clean test datasets. Instead of the self-attention, GMA used a mecha-

nism similar to cross-attention where two different sequences were used to generate the key,

value and query vectors. However, instead of using the same sequence for key and value as

most cross-attention modules, GMA used the same sequence for key and query and a second

sequence for value. More specifically, the context features are used to generate the key and

query vectors, and the value vector from the motion features of the original RAFT architec-

ture.

3.3 SSTM: Model Features and Architecture

Figure 3.2 shows a schematic diagram of our SSTM architecture which is comprised of fea-

ture encoders and separable 4D correlation volumes for generating 3D motion features; and

a spatio-temporal feature encoder for generating spatio-temporal context. Both the 3D mo-

tion features and spatio-temporal context information were used to update the hidden state

of GRU modules and for generating an updated flow estimate. Detailed descriptions of these

units as well as the loss function used for training the SSTM model are given below.
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Figure 3.2: SSTM architecture: consists of 3D CNN Context feature encoder, two separate
4D correlation volumes, and 3D Conv GRU blocks. SSTM computes the correlation volume
and context features from three input frames using the 4D correlation volume and context
feature encoder. It then iteratively refines the optical flow estimate using the 3D conv GRU
update blocks.

3.3.1 Feature Encoder and 4D Correlation Volume

, 3D motion features Given three input images I1, I2 and I3, the feature encoder extracts

spatial features of the input images at 1/8 resolution. The feature encoder is made of fully

convolutional layers with different stride values such that the output feature maps are at 1/8

resolution of the input images. For input image I1 ∈ RC×H×W , the feature encoder gives

an output feature map, fmap1 ∈ RD×H/8×W/8, for D = 256 number of feature maps. We

then use a 4-D correlation volume as defined in RAFT [1] to measure two multi scale visual

similarities, C1 and C2 ∈ RD×H/8×W/8 for D=324, between pairs of neighbouring feature

maps in the sequence, fmap1 and fmap2, and fmap2 and fmap3, respectively. We further

concatenate these two correlation volumes into, C = [C1,C2], along a temporal dimension

such that, C ∈ RD×2×H/8×W/8.

18



3.3.2 Spatio-temporal Context Feature Encoder

Our spatio-temporal context feature encoder learns both spatial and temporal features from

multiple input images. We design such context feature encoder using four types of spatio-

temporal feature extractor blocks, namely, SPT1, SPT2, SPT3 and SPT4. These blocks are

made of 3D CNN layers decoupled into separate spatial and temporal layers with residual

connections. Decoupling 3D convolutional layers in this fashion significantly reduced the

high computational demands and memory cost that comes with using 3D convolutions. As

we described earlier, the underlying filter coefficients were assumed to be symmetrical for

decoupling 3D convolution operations. We minimized any approximation error due to our

symmetric filter assumption by using multiple types of separable 3D convolutions with resid-

ual connections. For example, a 3 × 3 × 3 3D convolutional filter can be decoupled into 2D

spatial filter of 1× 3× 3 and 1D temporal filter of 3× 1× 1. Similar types of blocks are used

in spatio-temporal feature representations of videos [31, 29].

Figure 3.3: Four types of SPT blocks, SPT-1, SPT-2, SPT-3 and SPT-4 designed by different
arrangements of the decoupled spatial and temporal filters with different residual connections
and stride values.

The context encoder consists of 6 SPT blocks that are cascaded in a particular order with

different stride values in such a way that the output feature map is at 1/8 spatial and 2/3
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temporal resolution. The three input images, I1, I2 and I3, are concatenated along a temporal

dimension while retaining their temporal queue and fed to this encoder, x ∈ RC×T×H×W ,

where C, T,H and W denote the number of color channels, the number of concatenated

frames, height and width of each frame, respectively. Given the concatenated input, x, the

cascaded SPT blocks output spatio-temporal context features, context ∈ RD×2×H/8×W/8

for D = 128 number of 3D feature maps that capture motion features. In this particular

experiment, T = 3.

Figure 3.4: The spatiotemporal (SPT) blocks are cascaded to build the context encoder which
extracts context features from three input frames.

3.3.3 3D Convolutional GRU Update Block

We introduce a 3D Convolutional GRU update block which uses a 3D spatio-temporal gating

system. This update block contains N GRU blocks with tied weights such that the hidden

state of the nth 3D GRU, hn ∈ RD×M×H/8×W/8, contains D = 128 number of 3D spatio-

temporal hidden units with M number of motion features or optical flows estimated in par-

allel. In this particular setting, M = 2 as two optical flows are estimated from three input

images. We believe that such spatio-temporal hidden units learn recurrent dependencies in

space and time among neighbouring 3D points.

This GRU update block takes an input vector Xn at the nth GRU block defined as the

concatenation of the correlation volume, C = [C1,C2], previously estimated flows Fn−1 =

[F 1
n−1, F

2
n−1], extracted context features, and multi-level brightness errors ε123n−1 from previous
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estimate flows as follows.

Xn = [C, Fn, context, ε
123
n ] (3.4)

Thus, the modified Update and Reset GRU equations are given as follows:

Zn = σ(Conv3d([hn−1, Xn],Wz)) (3.5)

rn = σ(Conv3d([hn−1, Xn],Wr)) (3.6)

where [hn−1, Xn] represents the concatenation of the input, Xn, and the previous state, hn−1;

and Wz represents filter coefficients (weights) in the 3D convolution layer. These 3D con-

volutional layers are decoupled in to 3 1D convolutional layers corresponding to x, y and t

directions. Figure 3.5 shows our 3D Convolutional GRU comprised of two 1D spatial filters

and one 1D temporal filter.

Figure 3.5: A 3D Convolutional GRU block built from two 1D spatial filters (along x and y
directions) and one 1D temporal (along t direction) CNN filters.

The candidate hidden state and the output vector from level n are then calculated as fol-

lows:

h′n = tanh(WXn + rn � hn−1) (3.7)
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hn = Zn � hn−1 + (1− Zn)� h′n (3.8)

The output hidden state of the nth GRU, hn ∈ RD×M×H/8×W/8, then splits into two equal

parts, h1n and h2n, along the temporal dimension such that h1n, h
2
n ∈ RD×H/8×W/8. These

two hidden states then pass through two convolutional layers with shared weights to give

flow updates ∆F 1
n and ∆F 2

n respectively at level n. Both flow estimates at the nth level are

updated as

F 1
n = F 1

n−1 + ∆F 1
n (3.9)

F 2
n = F 2

n−1 + ∆F 2
n (3.10)

Fn = [F 1
n , F

2
n ] (3.11)

We use N = 12 number of such GRU blocks with tied weights during training. Furthermore,

the hidden states of these GRU blocks have residual connections at a certain interval. We

believe that such residual connections play a major role in mitigating the vanishing gradient

problem as the number of GRU blocks, N , grows. We define residual GRU connection at r

interval as follows:

hn+k =


GRU(Xn+k−1, hn+k−1) + hn k = r, 2r, 3r, ...

GRU(Xn+k−1, hn+k−1) Otherwise
(3.12)

Figure 3.6 shows such residual GRU connections with a skip factor of k = 2.

3.3.4 Loss Function

The network generates a sequence ofN optical flow estimates, {(f 1
1 ,f

2
1 ), (f 1

2 ,f
2
2 ), ..., (f 1

N ,f
2
N)}

to arrive at the final optical flow estimate of (f 1
N ,f

2
N). Intermediate flow estimates from the
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Figure 3.6: Illustration of the residual GRU connection with a skip factor of k = 2 in which
the GRU hidden states are fed forward every two steps.

ith level (f 1
i ,f

2
i ) is comprised of an intermediate flow estimate f 1

i between images I1 and I2;

and an intermediate flow estimate f 2
i between images I2 and I3. Loss or objective function

for supervised training was defined as the average L1 norm between the estimated pair of op-

tical flows and their ground truth values weighted by an exponential factor γ. The following

loss function was used for end-to-end training of our networks.

Loss1 =
N∑
i=1

γN−i
(||f 1

gt − f 1
i ||1 + ||f 2

gt − f 2
i ||1)

2
(3.13)

For KITTI 2015, ground truth flows are available only for a single pair of images in every

sequence with 20 images / sequence. To handle this limitation, we used a modified loss

function while fine-tuning our models on KITTI 2015 training datasets. For image pairs I2

and I3 with ground truth flow f 2
gt, three images I1, I2 and I3 were fed as input to the models

for optical flow estimation. Therefore, we modified the loss function for fine-tuning on KITTI

2015 datasets as follows.

Loss2 =
N∑
i=1

γN−i||f 2
gt − f 2

i ||1 (3.14)
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Figure 3.7: SSTM++ architecture: consists of two additional features compared to the orig-
inal SSTM. The first addition was a brightness error block which computed using feature
maps warped using intermediate flow estimates. The second addition was a space-time at-
tention mechanism which extracted global dependencies of motion features in a given input
scene. In SSTM++, we used two separate spatial context feature encoders from the first two
frames.

3.4 SSTM++: Model Features and Architecture

Figure 3.7 shows the schematic diagram of our second method called as SSTM++. The

core architecture of the SSTM++ model is same that of SSTM. In addition, SSTM++ has

two additional modules namely a space-time attention network and a brightness error block.

Our first hypothesis is that the SSTM++ method can improve over the SSTM method by

using global motion features and identifying feature dependencies in both space and time

using a space-time attention module. The second hypothesis is that the brightness error block

can serve as an intermediate way of computing the optical flow estimation error at each

GRU blocks and hence can improve the performance of the SSTM method. We believe that

SSTM++ will benefit from these two additional designs compared to the original SSTM and

achieve better optical flow estimates.
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A detailed description of the additional attention network and the brightness based error

block added to the SSTM++ model are given below.

3.4.1 Attention

We use space-time attention mechanism to learn the global motion dependencies over the

input sequence. Similar to GMA [23], we used cross attention module where the query, key

and value vectors come from two different input sequences. In this setting, the context feature

is used to generate the query and key vectors, and the 3D motion features are used to generate

the value vectors.

As stated in Section 3.3.2, context feature, Context ∈ RD×T×H/8×W/8, extracted by the

spatio-temporal context encoder have temporal length of T = 2. This context feature is

split into two spatio-temporal context features along the temporal dimension. Let these split

context features be X1 and X2. Given the context features, context = [X1, X2], and the

3D global motion features, M = [M1,M2], built from the intermediate flow estimates and

the correlation volume, our attention module captures global dependencies of the motion

sequence in two time windows that correspond to the optical flow between I1 and I2 and I2

and I3.

We first flatten both the context and 3D motion features along the spatial dimensions

such that at a time window, t, the flattened context and 3D motion features are given as

X t ∈ RN×Lc , and M t ∈ RN×Lm , for N = HW , Lm and Lc denoting the flattened channel

dimension and M represents the 3D motion features.

For projection functions θ(.), φ(.) and σ(.), we define the query, key and value vectors as:

θ(Ct) = WqC
t (3.15)

φ(Ct) = WkC
t (3.16)

σ(M t) = WvM
t (3.17)
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where, Wq, Wk and Wv are the query, key and key projection vectors respectively. For input

frames It and It+1, the aggregated global motion feature Y t is given as

Y t = M t + α

N∑
j=1

f(θ(Ct), φ(Ct))σ(M t) (3.18)

Finally, the context C, global motion features (Y ), and motion features (M ) are concatenated

as

output =
[
[Ct|Y t|M t], [Ct+1|Y t+1|M t+1]

]
(3.19)

and fed as a input to the GRU block between two time windows t and t+ 1.

3.4.2 Error Block

Our error block uses warping operations to compute multiple brightness errors at different

levels. FlowNet2 [7] showed how feeding brightness errors to multiple stacks of networks

improve the accuracy of estimated optical flows. In FlowNet2, brightness error is computed

as the difference between the first image in the sequence and an estimate of the second image

obtained by warping the first image using the current flow estimates. In our method, however,

we compute brightness error as the difference between the feature map fmap1 and an esti-

mate of the feature map fmap1 obtained by warping fmap2 using the optical flow estimate

from level n computed as

ˆfmap1 = W (fmap2;F 1
n) (3.20)

= fmap2(x(t) + u(t), y(t) + v(t)) (3.21)

where, fmap2 represents the feature maps extracted from the second input image; and u(t)

and v(t) represent the components of the nth flow estimate F 1 in the x and y directions

respectively (x and y components of F 1
n ). This warping operation gives us an estimate of

fmap1 based on the current estimated flow. Therefore, we can compute the brightness error
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ε1n at level n as:

ε1n =
∥∥W (fmap2;F 1

n)− fmap1
∥∥ (3.22)

By taking advantage of the fact that our method takes multiple input images and estimates

two output optical flows, we compute the following additional brightness errors at each level

n as:

ε2n =
∥∥W (fmap3;F 2

n)− fmap2
∥∥ (3.23)

ε3n =
∥∥W (W (fmap3;F 2

n);F 1
n)− fmap1

∥∥ (3.24)

We feed this multi-level brightness errors ε123n = [ε1n, ε
2
n, ε

3
n] to the GRU update block

described in the next section.
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Chapter 4

Experiments

Our multi-frame methods for optical flow estimation, SSTM and SSTM++ were implemented

in PyTorch. These models were trained and validated using two RTX 8000 GPUs. In this sec-

tion, we present details about the procedures used for training our models, and the details of

ablation experiments conducted to validate the significance of various modules and interme-

diate features. In addition, we present qualitative and quantitative results of our models and

compare them with other recent state of the art methods (RAFT, GMA, and MFF).

4.1 Training Schedule

We used the standard training approach similar to recent optical flow estimation methods

[6, 8, 1] in which we trained and validated our model in four training stages. All models were

trained with goal of conducting a final test on Sintel and KITTI 2015 datasets (target datasets).

In the first two training stages, we used training datasets (Virtual KITTI and Monkaa) which

are different from target test datasets (Sintel and KITTI 2015). These datasets are larger in

size and they differ in their image characteristics when compared to the target datasets. This

helps our model to have a better generalization on unseen input images / sequences with

differing features and motion patterns.

Due to the multi-frame nature of our methods, we require the training datasets to have

multiple input images of each scene or sequence. The training datasets, FlyingChairs [6]
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and 3DFlyingThings [19], commonly used for training two-frame methods contain only two

images per sequence. Therefore, instead of using the FlyingChairs and FlyingThings3D

datasets, we used the Virtual KITTI2 and Monkaa datasets in the first two stages of the train-

ing. These two datasets are sufficiently larger in size for initial training, however, they contain

much fewer number of scenes compared to the FlyingChairs and FlyingThings datasets. The

last two stages of our training schedule include finetuning on target datasets for final evalua-

tion. On the third stage, we finetune the result from first two stages (V+M) using Sintel train-

ing dataset. Finally, we finetuned the result from these three stages on KITTI 2015 datasets.

In each of the four training stages, validation is done after every 5k training iterations. A

summary of these training stages is shown in Table 4.1.

4.1.1 Stage i: vkitti

In the first training stage, we used Virtual KITTI2 (V) datasets for both training and valida-

tion. We split the Virtual KITTI2 dataset into non-overlapping training (90%) and validation

(10%) datasets. The training is done for 100k iterations on 38,035 triplet images with a reso-

lution of 288×960. During this training stage, we used eq. 3.13 to compute the loss function.

Moreover, we used a batch size of 8 and a learning rate of 4× 10−4 which is relatively larger

compared to the later stages of training.

4.1.2 Stage ii: monkaa

The second stage (V+M) of our training is done on Monkaa dataset by initializing the network

weights from Stage i. At this training stage, we used Sintel training dataset for validation. The

monkaa training data contains 34,384 triplet input samples with a resolution size of 456×720.

Since each triplet input in this set has two ground truth optical flow values, we used the loss

function described in eq. 3.13. After we train this stage for 100k iterations with a batch size

of 6 and a learning rate of 1.2× 10−4, we tested and reported the result on unseen target data

(Sintel and KITTI 2015) as shown in Table 4.4.
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4.1.3 Stage iii: sintel

In the third training stage, we initialized the network weights from Stage iiand finetuned

using a mixture of datasets from Sintel training, Virtual KITTI2 validation, Monkaa and

HD1K datasets (V+M+S+H) with the ratio of 0.13, 0.13, 0.72 and 0.02 respectively. As all

these benchmark datasets have ground truth for multiple input images of the same scene, we

used the loss function in eq. 3.13. In this stage, we used a batch size of 6 with a learning

rate of 1.2× 10−4 for 120k iterations. The sintel-finetuned model was evaluated using testing

datasets provided by the Sintel leaderboard (http://sintel.is.tue.mpg.de/results). We reported

the leaderboard results in Table 4.4.

4.1.4 Stage iv: kitti

In the last stage of our training schedule (V+M+K), we initialized the network weights from

Stage iiiand finetuned using KITTI2015 training dataset. We trained this stage with a batch

size of 6 and a learning rate of 2×10−4. KITTI training dataset has ground truth flows only for

a pair of images among all 20 images available per sequence. To accommodate this difference

in the KITTI training dataset, we used the loss function defined in 3.14 which computes the

training loss based on only one of the two flow estimates and the available ground truth. The

kitti-finetuned model was evaluated using testing datasets provided by the KITTI leaderboard

(https://www.cvlibs.net/datasets/kitti/eval flow.php)

Table 4.1: Summary of training schedule. Loss1 and Loss2 refer to loss functions defined
in eq. 3.13 and eq. 3.13. V, S, M, K and HD1k refer to Virtual KITTI2, Sintel, Monkaa,
KITTI2015 and HD1k datasets respectively.

Stage Training Validation Loss Input size Batch InitializedTraining samples
data data function size weights (triplets)

vkitti V V Loss1 [288, 960] 8 - 38,035
monkaa M S Loss1 [456, 720] 6 vkitti 34,384
sintel V+M+S+HD1K S Loss1 [368, 768] 6 monkaa 147,836
kitti K K Loss2 [288, 960] 6 sintel 200
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4.2 Ablation Experiments

To determine the significance of each of the main parts of our design, we conducted ablation

experiments by training different versions of our methods on Virtual KITTY and Monkaa

datasets and evaluated the result on Sintel (Clean and Final) and KITTI2015 training datasets.

In brief, various ablated models were created to assess the significance of using 1) 3D con-

volution in place of 2D convolution while building the context features, 2) attention features,

and 3) feature warping for estimating training loss. The list of features used to build different

versions of our methods is shown in Table 4.2.

We first trained each of these variants of our methods for 50k iterations with batch size of

8. We then finetuned this result on Monkaa dataset with a batch size of 6 while validating on

Sintel training dataset. The validation result on Sintel dataset is then used to compare these

features and their significance on the final model. Moreover, we also compared the total

number of learnable parameters with or without the ablated features listed in table 4.2. These

ablation experiments are conducted on two RTX 8000 GPUs. Quantitative performance of

the models with and without ablated features is shown in Table 4.2. A detailed description of

the ablted features are presented in the following subsections.

4.2.1 Context

We designed two types of spatio-temporal encoders to capture the context information from

the image sequences. The first type of encoder utilized 2D Convolution to capture the spatial

features of the first two images in the sequence, I1 and I2. These images pass through 2D

CNN blocks with shared weights. The output spatial feature maps are then concatenated

along an addition temporal dimension to form a 3D spatio-temporal features. In the second

context encoder design, on the other hand, we used a 3D CNN based architecture as described

in Figure 3.4 to capture the spatio-temporal context features. In this configuration, all the

three images were concatenated and fed to the cascaded SPT blocks.
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4.2.2 Warping

Our Error block defined in Section 3.4.2 introduces a brightness error by warping features

using multi-level optical flow estimates. In our ablation experiment, we compared the effect

of feeding a multi-level brightness error to the 3D motion extractor block.

4.2.3 Attention

We assessed two models to analyze the effect of our space-time attention module on the

number of learnable parameters, inference time and standard results on Sintel and KITTI2015

training datasets. In the first model, we used a spatio-temporal attention module and a 2D

CNN context encoder. In the second model, we used a 3D CNN context encoder without any

attention module.

Table 4.2: Ablation experiment results. Trained on V+M (80k on Virtual KITTI and 50k
on Monkaa) and evaluated on Sintel and KITTI 2015 training datasets. Inference time is
measured using Sintel sequences (clean and final). Underlined features are used in the final
SSTM++ (with attn) method, and features with ’*’ are used in the final SSTM (without attn)
method.

Experiment Feature
Sintel (train)KITTI-15 (train)

Parameters (M) Inference time (s)
Clean Final AEPE Fl-all(%)

2D Convolution 2.17 2.94 5.92 18 5.61 0.38
Context 3D Convolution* 1.88 2.81 5.58 19 5.12 0.34

No attention* 1.88 2.81 5.58 19 5.12 0.34
Attention Spatio-temp 2.17 2.94 5.92 18 6.09 0.38

No warping∗ 2.56 3.19 5.32 17.1 5.89 0.32
Warping Warping 2.17 2.94 5.92 18 6.09 0.38

4.3 Inference Time and Number of Learnable Parameters

Inference time in this experiment refers to the average amount of time our trained model

took to estimate an optical flow field between two given images at a specified resolution /

size. As our method takes three input images and estimates two optical flow fields at each
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inference, we calculated inference time as the total inference time divided by the number

of flows estimated. This experiment is done using 2 RTX 8000 GPUs on Sintel-clean and

Sintel-final training datasets with resolution size of 368× 768. We also reported the number

of learnable parameters in our model and compared them with the recent state of the art

methods for optical flow estimation. These results are shown in Table 4.3.

Table 4.3: Average inference time for a single flow estimate from a pair of input frames from
the Sintel training dataset (clean and final), learnable parameter count and GPU memory from
the training stage “sintel” with a batch size of 6.

Method Parameters (M) Inference time (s) GPU Memory (GB)

RAFT [1] 5.3 0.38 11
GMA[23] 5.9 - -
Ours (no attn) 5.2 0.34 23
Ours (attn) 6.1 0.38 23

4.4 Training and Testing Results

We evaluated the performance of our multi-frame optical flow estimation models on the cur-

rent benchmark datasets using the standard optical flow evaluation metrics. We used Sintel

and KITTI 2015 training and testing datasets to evaluate our methods and reported the EPE

and Fl-all evaluation results. For Sintel training dataset, we reported the average EPE on

both clean and final datasets at different training stages. For KITTI 2015 training dataset,

we reported both the EPE and Fl-all errors. We also reported the EPE results on the test-

ing data evaluated by the Sintel leaderboard and both the Fl-all and Fl-fg results reported

by KITTI leaderboard. These results were compared with the most recent published state-

of-the-art methods for optical flow estimation. In Table 4.4, we present these quantitative

evaluation results on Sintel and KITTI test benchmark datasets from Sintel leaderboard and

KITTI leaderboard respectively.

Furthermore, we report the EPE, Fl-all and Fl-fg results on different regions of the input

frames on both Sintel and KITTI benchmark datasets. Table 4.5 shows the performance of our

method in comparison with other methods on Sintel final test datasets near occluded regions
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and regions with different velocities. Table 4.6 shows Fl-all, Fl-fg and Fl-bg percentage

estimated flow outliers on both all regions and non-occluded regions only in the input frames.

Table 4.4: Performance of optical flow models on Sintel and KITTI 2015 benchmark datasets.
’V+M’ refers to training on Virtual KITTI2 and Monkaa (analogous to Chairs+Things used
by two frame methods). ’V+M+S/K (+H)’ (analogous to ’C+T+S/K (+H)’ used by two frame
models) refers to using specific dataset during finetuning the model on Sintel using a mixture
of datasets including Sintel, Virtual KITTI, Monkaa and HD1K. The models were finetuned
on KITTI using the KITTI dataset only. Results with * refer to warm-start flow initialization
as defined in RAFT [1]. “Ours (no attn)” refers to our SSTM model shown in Figure 3.2 and
“Ours (attn)” refers to the SSTM++ design shown in Figure 3.7.

Training Method
Sintel (train) KITTI-15 (train) Sintel (test) KITTI-15 (test)

data Clean Final APE Fl-all(%) Clean Final Fl-fg (%) Fl-all (%)

FlowNet2 [7] 2.02 3.54 10.08 30.0 - - - -
C+T RAFT [1] 1.43 2.71 5.04 17.4 - - - -

GMA [23] 1.3 2.74 4.69 17.1 - - - -

RAFT [1] 2.21 3.21 7.03 23.7 - - - -
V+M Ours(no attn) 1.87 2.86 5.55 19 - - - -

Ours(attn) 2.1 2.97 5.46 17.6 - - - -

FlowNet2 [7] 1.45 2.01 2.30 6.8 4.16 4.74 - 11.48
C+T+S/K RAFT [1] 0.76 1.22 0.63 1.5 1.61* 2.86* 6.87 5.10

(+H) GMA [23] 0.62 1.06 0.57 1.2 1.39* 2.47* 7.03 5.15
CRAFT [45] 0.6 1.06 0.58 1.34 1.45 2.42 4.58 4.79

MFF [11] - - - - 3.43 4.57 7.25 7.17
RAFT [1] 0.98 1.39 0.58 1.18 2.86 4.19 8.65 6.85

V+M+S/K Ours(no attn) 0.67 1.03 0.56 1.18 2.13 3.08 7.20 5.02
(+H) 2.30* 3.32*

Ours(attn) 0.65 0.91 0.54 1.12 2.03 2.94 7.04 5.04
2.65* 3.21*
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Table 4.5: Sintel leaderboard results on Sintel-final test benchmark dataset. dm−n represents
EPE near occluded boundaries with a distance ranging m to n pixels. sm−n represents EPE
over regions with velocities betweenm to n pixels per frame as defined in Section 2.3. Results
written in bold are the best results among the listed methods and the ones underlined are
second to the best.

Method d0−10 d10−60 d60−140 s0−10 s10−40 s40++

MFF [11] 4.664 2.017 1.222 0.893 2.902 26.810
RAFT-VM 3.890 1.624 1.192 0.724 2.470 25.543
RAFT[1] 3.112 1.133 0.770 0.634 1.823 16.371

Ours(no attn) 2.992 1.129 0.843 0.553 1.935 18.356
Ours(attn) 2.917 1.076 0.648 0.511 1.660 18.022

Table 4.6: KITTI2015 leaderboard results on KITTI2015 test benchmark dataset. ’non-occ’
refers to non-occluded regions and ’all’ refers to all pixels. Fl-bg%, Fl-fg% and Fl-all% refer
to percentage outliers in the background, foreground and all regions respectively as defined
in Section 2.3.

Method
Fl-bg % Fl-fg % Fl-all % Fl-bg % Fl-fg % Fl-all %
(non-occ) (non-occ) (non-occ) (all) (all) (all)

MFF [11] 4.52 4.25 4.47 7.15 7.25 7.17
RAFT-VM 4.30 5.29 4.48 6.49 8.65 6.85
RAFT[1] 2.87 3.98 3.07 4.74 6.87 5.10
GMA[23] 2.97 3.80 3.12 4.78 7.03 5.15

Ours(no attn) 2.93 4.02 3.13 4.58 7.20 5.02
Ours(attn) 2.83 4.16 3.08 4.64 7.04 5.04

4.5 Visual Results and Qualitative Comparisons

In this section, we present visual examples of estimated flows on both the KITTI2015 and

Sintel test benchmark datasets. We also qualitatively compare our estimated flow results with

other recent state-of-the-art methods. Figures 4.1 and 4.2 show estimated optical flows on

KITTI2015 and Sintel test datasets respectively. In Figures 4.3 and 4.4, we qualitatively

compared our estimated optical flow results on sample Sintel and KITTI test dataset respec-

tively. We outlined regions of interest where our estimate shows significant improvement

over the other methods within the region marked with a red boundary.
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Figure 4.1: Sample frames from KITTI2015 test dataset and their corresponding optical flow
estimates using our SSTM method.

Figure 4.2: Results on sample frames from Sintel test dataset using our SSTM++ method.

Input Frame RAFT-VM RAFT[1] Ours

Figure 4.3: Visual comparison of optical flow estimates from various methods on sample
KITTI2015 test dataset. Frame42, Frame63 and Frame81 (first column top to bottom respec-
tively). The three results shown are from methods RAFT-VM, RAFT [1] and Ours (from left
to right respectively). The regions bounded by red boxes in the input frames represent the
regions where our method significantly outperformed the other two methods.

36



Input Frame RAFT-VM RAFT[1] Ours

Figure 4.4: Visual comparison of optical flow estimates from various methods on sample
Sintel test dataset. The three results shown are from methods RAFT-VM, RAFT [1] and Ours
from left to right respectively on sample testing datasets from Sintel. The red box regions
in the input frames show regions where our method significantly outperformed the other two
methods.
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Chapter 5

Discussion

5.1 Results on Sintel

Our multi-frame methods, both SSTM and SSTM++, provided the best EPE results on Sintel

clean and final datasets compared to other multi-frame methods as well as a recent two-frame

state of the art method (RAFT-VM) when trained using the same training stages and datasets

(V+M+S/K+H) as our SSTM and SSTM++ methods. Our SSTM method show up to 40%

improvement on EPE results for Sintel clean and final datasets. More detailed quantitative

evaluation results on Sintel final test benchmark dataset are shown in Table 4.5. Near the

occluded regions that are 0 to 60 pixels away from occluded boundaries, both SSTM and

SSTM++ methods outperformed all other listed methods by up to 6.6 % (on d0−10) and 5.3

% (on d10−60). These results strongly support our hypothesis that our multi-frame approach

has a better generalization near occluded regions. Moreover, our methods achieved a supe-

rior performance with limited and less diverse training datasets (V+M) when compared with

the original RAFT method [1] which was trained on a larger and more diversified datasets

(C+T). Thus, we believe that, in future, with the availability of larger datasets for optical flow

estimation with multi-frames, our model can be trained on such large datasets with diverse

image characteristics to provide a more accurate optical flow estimates.
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5.2 Results on KITTI

As shown in Table 4.6, our Fl-all result in non-occluded regions, Fl-all (non-occ), on the

KITTI test dataset is comparable with other top performing recent state of the art methods

(slightly worse). Both of our methods, SSTM and SSTM++, however, outperformed all

listed methods based on the Fl-all (all) measure in both occluded and non-occluded regions.

This implies that our multi-frame methods are performing better in occluded regions thus

supporting our hypothesis that occluded regions can be better understood with multi-frame

based optical flow estimation.

5.3 Effect of Warm-start

RAFT [1] introduced a warm-start procedure to initialize the flow estimates using previously

estimated optical flows. For example, having the flow estimate F1 between input frames I1

and I2, the method uses this flow to initialize the second flow to be estimated, F2, between

the next consecutive input frames in the sequence, I2 and I3. Such initialization resulted

in a significant improvement of the final results. RAFT [1] reported approximately 20.5%

and 11.2% improvements on EPE results of Sintel clean and final test benchmark datasets,

respectively, just by using warm-start initialization.

We experimented the effect of such flow initialization in our multi-frame optical flow

estimation method for Sintel test dataset. As our Multi-frame approach estimates a pair of

flows in parallel at each inference instants (unlike two frame methods which estimate each

flow sequentially), our flow initialization is done over two time step gaps. In other words,

given two flow estimates F1 and F2 from the first input triplet images, I1, I2 and I3, the next

flow estimates F3 and F4 are initialized by F1 and F2 respectively. However, our results did

not benefit much from such warm-start initialization as expected. In fact, in both reported

methods (with and without attention), our method performance was lowered by up to 30%

compared to the baseline where zero flow initialization was used. We believe that this is due

to the two step temporal gap between the previously estimated flow and the initialized flow,
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(between F1 and F2, F2 and F4). Given the large and non-rigid motions in the Sintel dataset,

dynamics in the scene undergoes significant changes within two temporal steps. More likely,

this resulted in a wrong flow initialization causing the method to use a less accurate initial

estimate.

5.4 Effects of Training Datasets

One major challenge in developing a multi-frame based optical flow estimation method is

that there are not many training datasets currently available which contain large number of

scenes (or sequences) as well as with multiple frames per scene. The standard training bench-

mark datasets for two-frame based optical flow estimation are 3DFlyingThings [19] and Fly-

ing Chairs [6] datasets. These two datasets consist of 21,818 and 22,872 pairs of images

from 2,247 and 809 number of distinct scenes respectively [19, 6]. On the other hand, the

multi-frame datasets that we used for training our multi-frame optical flow estimation meth-

ods namely Virtual KITTI2 [17] and Monkaa [19], contain only 5 and 8 number of scenes

respectively. With fewer distinct scences in the training datasets, the model had a fewer num-

ber of distinct moving objects and motion patterns available for learning to estimate optical

flow. Even with this training data limitation, our models were able to provide a better per-

formance without overfitting and loss of generalization (Table 4.4). Therefore, with a more

diverse multi-frame training datasets, the performance of our models will likely improve sig-

nificantly.

To quantitatively illustrate the effect of using these two different training datasets, we

trained recent two-frame state of the art optical flow estimation method, RAFT [1] (orig-

inally trained on 3DFlyingThings and Chairs), on Virtual KITTI2 and Monkaa according

to our training stages as discussed in Table 4.1 (we call this method RAFT-VM). All other

hyper-parameters namely the batch size, loss function, learning rates and weight decay are

kept the same as in the original RAFT method. As shown in Table 4.4, RAFT-VM method

underperformed when compared to the original RAFT by approximately 40% and 32% on

Sintel Clean and Final testing benchmark datasets respectively as reported from the Sintel
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leaderboard server. This result signifies and highlights the possible limitations and differ-

ences when using these two datasets (i.e. when using V+M instead of C+T) for training.

Despite this limitation in available training datasets for multi-frame optical flow methods,

our method achieves comparable results with RAFT on Sintel clean and final test benchmark

datasets and outperforms both RAFT and GMA [1, 23] on KITTI test benchmark dataset.

Moreover, our method outperforms RAFT-VM (RAFT trained on V+M+S/K(+H)) by up to

by 40% and 42% on Sintel Clean and Final test benchmark datasets. From this observa-

tion, we believe that given larger multi-frame training datasets than the existing ones which

comprised of large number of scenes with distinct objects and different motion patterns, our

multi-frame method can achieve state of the art results.

5.5 Effect of Attention Mechanisms

Our multi-frame based optical flow estimation method introduced two final methods namely,

SSTM and SSTM++. The main difference between these two methods is the use of space-

time attention mechanism in SSTM++, which is not part of the SSTM design. Our initial

hypothesis is that by introducing space-time attention networks to our SSTM method, we can

have a better understanding of the global dependencies of the input sequences in space-time

domain and have a more accurate and generalized optical flow estimation, especially around

occluded regions. Our result on Sintel test benchmark dataset supports this hypothesis. Re-

sults in Table 4.4 show that SSTM++ improved the EPE result approximately by 5% on both

Sintel final and clean test results. More detailed results in table 4.5 show that SSTM++ out-

performs SSTM in all listed regions around occluded boundaries and velocities. However, we

did not observe a similar result improvement in KITTI test dataset. In fact, SSTM performs

slightly better than SSTM++ on KITTI. We believe that the shorter scene lengths in KITTI is

primarily making it hard for SSTM++ to understand longer space-time dependency of each

scene (i.e. difficulty in associating similar features that are separated by larger extents in

space and/or time).
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5.6 Inference Time and GPU Memory Usage

At each inference instants, our multi-frame based methods take three input images in parallel

and estimate two optical flows. The first optical flow estimate is between first and second

input images and the second optical flow estimate is between second and third input images.

This inference scheme is faster than the two-frame methods where each pair of input frames

are fed sequentially and a single optical flow is estimated at each inference instants. Results in

Table 4.3 show that during inference, our methods are relatively faster than RAFT [1]. On the

other hand, analyzing the GPU memory usage during training stages, we observed that our

multi-frame methods consume relatively larger GPU memory for the same batch size. This is

because a single input batch size in our case is equivalent to three images while in two-frame

methods it’s two images. Thus, for the same batch size during training, our methods utilize a

higher GPU memory.

Another observation we made is on the GPU memory usage of 3D CNNs vs 2D CNNs

architectures for context feature extraction. As described earlier, we used a 3D CNN context

encoder in our SSTM method and a 2D CNN context feature encoder in our SSTM++ method.

By using our 3D CNN based spatio-temporal context encoder as show in Figure 3.4, we were

able to get comparable result with the 2D CNN based context encoder while reducing the

learnable parameters by about half a million. However, the 3D CNN based method had a

higher GPU memory usage during training.
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Chapter 6

Conclusion

In this work, we introduced two multi-frame optical flow estimation methods that can bet-

ter capture the temporal dependency of the input images in a sequence and can generalize

any non-linear motion patterns. These salient features of our methods allow them to better

understand flow estimates in occluded and out of boundary regions. Based on qualitative

and quantitative assessment using standard benchmark optical flow datasets, our methods

achieved higher performance than the state of the art multi-frame methods. Moreover, our

methods outperformed recent two-frame state of the art methods (when trained using the same

training datasets as our multi-frame methods) in occluded and out of boundary regions while

achieving comparable results in other regions. We believe that, in future, with the availability

of larger training datasets with multiple input sequences from various scenes, multi-frame

based methods can achieve a more generalized and accurate optical flow estimations when

compared to two-frame methods.
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