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Comparative study of adaptive variational quantum
eigensolvers for multi-orbital impurity models
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Hybrid quantum-classical embedding methods for correlated materials simulations provide a

path towards potential quantum advantage. However, the required quantum resources arising

from the multi-band nature of d and f electron materials remain largely unexplored. Here we

compare the performance of different variational quantum eigensolvers in ground state

preparation for interacting multi-orbital embedding impurity models, which is the computa-

tionally most demanding step in quantum embedding theories. Focusing on adaptive algo-

rithms and models with 8 spin-orbitals, we show that state preparation with fidelities better

than 99.9% can be achieved using about 214 shots per measurement circuit. When including

gate noise, we observe that parameter optimizations can still be performed if the two-qubit

gate error lies below 10−3, which is slightly smaller than current hardware levels. Finally, we

measure the ground state energy on IBM and Quantinuum hardware using a converged

adaptive ansatz and obtain a relative error of 0.7%.
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Eigenstate preparation for Hamiltonian systems is one pro-
mising application of noisy intermediate-scale quantum
(NISQ) computers to achieve practical quantum

advantage1–7. One of the representative hybrid quantum-classical
algorithms to achieve this task is the variational quantum eigen-
solver (VQE). It attempts to find the ground state of a given
Hamiltonian H within a variational manifold of states that are
generated by parametrized quantum circuits U(θ) acting on a
reference state Ψ0

�� �
. The parameters θ are obtained by classically

minimizing the energy cost function EðθÞ ¼ Ψ0jUyðθÞHUðθÞjΨ0

� �
that is measured on quantum hardware2–4,8. The quality of a VQE
calculation is tied to the ability of the variational ansatz to represent
the ground state with high fidelity. In quantum computational
chemistry, the unitary coupled cluster ansatz truncated at single
and double excitations (UCCSD) has been extensively studied,
owing to the success of the classical coupled cluster algorithm9–11.
It was found that the application of UCCSD ansatz is limited by the
rapid circuit growth with system size and the deteriorating accu-
racy in the presence of static electron correlations8,12,13. Therefore,
alternative variants have been developed, including hardware-
efficient ansätze, that improve the trainability and expressivity of
the wave function ansatz3,13–20.

Indeed, it was found that compact and numerically exact
variational ground state ansätze can be adaptively constructed for
specific problems using approaches like the adaptive derivative-
assembled pseudo-trotter (ADAPT) ansatz13,16. The adaptive
ansatz is typically obtained by successively appending para-
metrized unitaries to a variational circuit with generators chosen
from a predefined operator pool. In practice, the ADAPT-VQE
algorithm works well with an operator pool composed of fer-
mionic excitation operators in the UCCSD ansatz. The extended
qubit-ADAPT VQE approach16 utilizes an operator pool com-
posed of Pauli strings in the qubit representation of fermionic
excitation operators in the UCCSD ansatz, which is shown to be
capable of generating significantly more compact ansätze than the
original ADAPT-VQE method at the price of introducing more
variational parameters. As the circuit complexity (i.e., the number
of two-qubit operations in the circuit) is a determining factor for
practical calculations on NISQ devices, qubit-ADAPT is prefer-
able and chosen for the comparative study in this work.
Regarding the scalability of the qubit-ADAPT method towards
larger system sizes, we note that reference18 reports a favorable
linear system-size scaling for the adaptive ansatz complexity of
nonintegrable mixed-field Ising model using the adaptive varia-
tional quantum imaginary time evolution method (AVQITE).
AVQITE is known to generate variational circuits of comparable
complexity as qubit-ADAPT VQE. As a first step to investigate
the scalability in fermionic models, we here study qubit-ADAPT
VQE for fermionic models with two and three spinful orbitals.

An alternative approach to constructing efficient wavefunction
ansätze for problems in condensed matter physics is to exploit the
sparsity of the Hamiltonian. Interacting electron systems are
often simulated with reduced degrees of freedom, represented, for
example, by a single-band Hubbard model. This simplified model
features a sparse Hamiltonian including nearest-neighbor hop-
ping and onsite Coulomb interactions only. Motivated by the
simplicity of the Trotterized circuits for dynamics simulations
due to Hamiltonian sparsity, the Hamiltonian variational ansatz
(HVA) has been proposed by promoting the time in Trotter
circuits to independent variational parameters21. The HVA
ansatz has attracted much attention and turns out to be very
successful in reaching a compact state representation for sparse
Hamiltonian systems including local spin models21–23. Here, we
propose to combine the flexibility of an adaptive approach with
the efficiency of the HVA by designing a “Hamiltonian

commutator” (HC) operator pool that contains pairwise com-
mutators of operators that appear in the Hamiltonian.

To obtain a realistic description of correlated quantum mate-
rials, which typically contain partially filled d-orbitals such as
transition metal compounds, or f-orbitals such as rare-earth and
actinide systems, it is important to go beyond the single-orbital
description of a simple Hubbard model24. Intriguing physics
arises from the local Hund’s coupling of electrons in different
atomic orbitals. Examples are bad metallic behavior with sup-
pressed quasiparticle coherence and orbital-selective Mott tran-
sitions or superconducting pairing, which naturally require a
multi-orbital description25–28. A multi-orbital model including
additional inter-orbital hoppings and Hund’s couplings will
necessarily make the Hamiltonian less sparse and consequently
the HVA ansatz more complicated. Nevertheless, the complexity
of material simulations can be greatly reduced by quantum
embedding methods which map the infinite system to coupled
subsystems, typically a noninteracting effective medium and some
many-body interacting impurity models24,29–37. These quantum
embedding approaches have proven to be very effective to
simulate correlated electron systems, including energies, electro-
nic structure, magnetism, superconductivity, and spectral prop-
erties of multiple competing phases. The computational load in
these approaches is shifted from the solution of a full lattice
system to that of an interacting multi-orbital impurity model.
Classical algorithms for solving the impurity problem, however,
are not scalable, which can be more tractable with quantum
computers35,38.

In this paper, we compare the VQE circuit complexity for
ground state preparation of multi-orbital many-body impurity
models with a fixed HVA versus a qubit-ADAPT ansatz with
different operator pools. An HC operator pool compatible with
HVA is proposed to allow a fair comparison between qubit-
ADAPT and fixed ansatz HVA calculations. For comparison, we
also include results from UCCSD and qubit-ADAPT calculations
with a simplified UCCSD pool. To connect with quantum
embedding methods for realistic materials simulations, we use the
Gutzwiller embedding approach33,39–44 to generate the impurity
models that we employ for our benchmark35,45. The quantum
calculation we perform is general and could also be applied to
other embedding methods. Numerical results from a noiseless
state vector simulator and quantum assembly language (QASM)-
based simulator with quantum sampling noise are presented.
Important techniques for efficient circuit simulations of qubit-
ADAPT VQE are discussed, including ways to simplify gen-
erators and reduce the operator pool size. We further investigate
the impact of realistic gate noise by performing qubit-ADAPT
VQE simulations with a realistic noise model including amplitude
and dephasing channels. Finally, we measure the energy cost
function of the converged VQE ansatz for the eg model composed
of eight spin-orbitals on the IBM quantum processing unit (QPU)
ibmq_casablanca and on Quantinuum hardware.

Results and discussion
Quantum embedding model. Here we focus on a specific
quantum embedding method: the well-established Gutzwiller
variational embedding approach for correlated material
simulations33,39–44, which is known to be equivalent to rota-
tionally invariant slave-boson theory at the saddle point
approximation46,47. Recently, our group has developed a hybrid
Gutzwiller quantum-classical embedding approach (GQCE)35.
GQCE maps the ground state solution of a correlated electron
lattice system to a coupled eigenvalue problem of a non-
interacting quasiparticle Hamiltonian and one or multiple finite-
size interacting embedding Hamiltonians44. Within GQCE one
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employs a quantum computer to find the ground state energy and
the single-particle density matrix of the interacting embedding
Hamiltonian, for example, using VQE.

The embedding Hamiltonian describes an impurity model
consisting of a physical many-body NS-orbital subsystem (ĤS)
coupled with a NB-orbital quadratic bath (ĤB):

Ĥ ¼ ĤS þ ĤB þ ĤSB; ð1Þ
with

ĤS ¼ ∑
αβ
∑
σ
ϵαβĉ

y
ασ ĉ

y
βσ þ

1
2
∑
αβγδ

∑
σσ 0

Vαβγδ ĉ
y
ασ ĉ

y
γσ 0 ĉ

y
δσ 0 ĉ

y
βσ ; ð2Þ

ĤB ¼ �∑
ab
∑
σ
λabf̂

y
aσ f̂

y
bσ ; ð3Þ

ĤSB ¼ ∑
aα
∑
σ

Daαĉ
y
ασ f̂

y
aσ þ h:c:

� �
: ð4Þ

Here α, β, γ, δ are composite indices for sites and spatial orbitals
in the physical subsystem. Likewise, the bath sites and orbitals are
labeled by a, b, and σ is the spin index. The fermionic ladder

operators ĉy and f̂
y
are used to distinguish the physical and bath

orbital sites.
The one-body component and two-body Coulomb interaction

in the physical subsystem are specified by matrix ϵ and tensor V.
The quadratic bath and its coupling to the subsystem are defined
by matrix λ and D, respectively. Compared with typical quantum
chemistry calculations, the embedding Hamiltonian is much
sparser since the two-body interaction only exists between
electrons in the physical subsystem.

For clarification, we name the above-defined embedding
Hamiltonian system as (NS;NB) impurity model, where
(NS;NB) is the number of spatial orbitals in the system and
bath models. Within GQCE, the ground state solution of the
embedding Hamiltonian at half-electron filling is needed, which
is achieved by a chemical potential absorbed in the one-body
Hamiltonian coefficient matrices ϵ and λ in Eq. (1).

In the numerical simulations presented here, we choose a
Gutzwiller embedding Hamiltonian for the degenerate M-band
Hubbard model. The noninteracting density of states of the lattice

model adopts a semi-circular form ρðωÞ ¼ 2M
πD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðω=DÞ2

q
as

shown in Fig. 1a, which corresponds to the Bethe lattice in infinite
dimensions. In the following, we set the half band width D= 1 as
the energy unit. In physical systems, D is of the order of a few eV.
The Coulomb matrix V takes the Kanamori form specified by

Hubbard U and Hund’s J parameters: Vαααα=U, Vααββ=U−2J,
and Vαβαβ=Vαββα= J for α ≠ β. Here we have assumed spin and
orbital rotational invariance (within the eg or t2g manifold) for
simplicity and to limit the interaction parameter space.

The embedding Hamiltonian, as illustrated in Fig. 1b, is
represented with 2M spatial orbitals: M degenerate physical
orbital plus M degenerate bath orbitals. The symmetry of the
model reduces matrices ϵ, λ and D to single parameters
proportional to identity.

In the following, we set the electron filling for the lattice model
to Mþ 1, which is one unit larger than half-filling, and fix the
ratio of the Hund’s to Hubbard interaction to J/U= 0.3 and
U= 7. These parameters put the model deep in the correlation-
induced bad metallic state, with physical properties distinct from
doped Mott insulators25. It represents a wide class of strongly
correlated materials, such as iron pnictides and chalcogenides,
where Hund’s coupling significantly reduces the low-energy
quasiparticle coherence scale26,48,49. Hund’s metal physics is far
beyond a static mean-field description and requires treating the
localized and itinerant characters of electrons on equal footing,
which can be realized in the quantum embedding approach
adopted here.

In the calculations below, we consider M ¼ 2 and M ¼ 3,
which correspond to eg and t2g orbitals in cubic crystal symmetry,
respectively. The associated ðNS;NBÞ ¼ ð2; 2Þ and (3, 3) impurity
models have in total 8 and 12 spin-orbitals. The two models host
nontrivial many-body ground states and represent important
checkpoints along the path to achieve a practical quantum
advantage in correlated materials simulations through a hybrid
quantum-classical embedding framework. In quantum simula-
tions reported below, parity encoding which exploits the
symmetry in a total number of electrons and spin z-component
is used to transform the fermionic Hamiltonian to qubit
representation.

Variational quantum eigensolvers. GQCE leverages quantum
computing technologies to solve for the ground state of the
embedding Hamiltonian, specifically the energy and one-particle
density matrix. Note that the ground state is always prepared at
half-filling for the embedding system, which is determined by the
Gutzwiller embedding algorithm and is independent of the actual
electron filling of the physical lattice model33,44. For this purpose,
we benchmark multiple versions of VQE with fixed or adaptively
generated ansatz to prepare the ground state of the above
embedding Hamiltonian. We consider VQE calculations with
fixed UCCSD ansatz and the associated qubit-ADAPT VQE using
a simplified UCCSD operator pool. The calculations are naturally
performed in the molecular orbital (MO) basis representation,
where the reference Hartree–Fock (HF) state becomes a simple
tensor product state and fermionic excitation operators can be
naturally defined. However, using a MO representation comes at
the cost of reducing the sparsity of the embedding Hamiltonian
compared to the atomic orbital (AO) basis representation. To
take advantage of the Hamiltonian sparsity in AO representation,
we consider a generalized form of the HVA and the associated
qubit-ADAPT VQE with a modified HC operator pool.

VQE algorithm. For an Nq-qubit system with Hamiltonian Ĥ,
VQE amounts to minimizing the cost function EðθÞ ¼
hΨ½θ�j Ĥ jΨ½θ�i with respect to the variational parameters θ, as
schematically illustrated in Fig. 2. Here, Ψ½θ�

�� � ¼ ÛðθÞ Ψ0

�� �
is

obtained by application of a parametrized quantum circuit ÛðθÞ
onto a reference state Ψ0

�� �
. The cost function is evaluated on a

quantum computer and the optimization is performed classically

0

DOS

−

ℳ
(a) (b)

Fig. 1 Model setup. a The noninteracting density of states (DOS) of the
degenerate multi-band Hubbard-Hund lattice model on the Bethe lattice
has a semicircular shape. b (M;M) site impurity model with M-fold
degenerate correlated orbitals coupled with M bath orbitals. The
interactions among the physical orbitals are specified by the Coulomb
matrix V. Due to symmetry, each physical orbital (positioned at zero energy
level) is coupled with a single bath orbital at energy level λ with a coupling
parameter D. The models with M ¼ 2 and 3 correspond to that of eg and
t2g orbitals in cubic crystal symmetry, respectively.
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using E(θ) as input. The accuracy of VQE is therefore tied to the
variational ansatz Ψ½θ�

�� �
and to the performance of the classical

optimization, e.g., how often the cost function is called during the
optimization and how well the approach converges to the global
(as opposed to a local) minimum of E(θ).

UCCSD ansatz. The UCCSD ansatz takes the following form:

Ψ½θ�
�� � ¼ eT̂½θ��T̂

y½θ� Ψ0

�� � ¼ e�i∑jθj f jðfσ̂gÞ Ψ0

�� �
: ð5Þ

The operator T̂½θ� consists of single and double excitation
operators with respect to the HF reference state Ψ0

�� �
:

T̂½θ� ¼ ∑
p�p
θ�ppĉ

y
�pĉp þ ∑

p<q;�p<�q
θ�p�qpqĉ

y
�pĉ

y
�qĉqĉp: ð6Þ

Here p, q and �p; �q refer to the occupied and unoccupied MOs,
respectively, with spin included implicitly. f jðfσ̂gÞ ¼ ∑kwjkP̂k is a

weighted sum of Pauli strings (P̂k 2 fI;X;Y;Zg�Nq) for the qubit
representation of the fermionic excitation operator associated
with parameter θj. Here θj runs over the set of parameters θ�pp and

θ�p�qpq. For the impurity model without spin–orbit interaction, only
excitation operators which conserve a respective number of
electrons in the spin-up and spin-down sectors need to be con-
sidered. In practical implementation, a single-step Trotter
approximation is often adopted to construct the UCCSD circuit:

Ψ½θ�
�� � � Y

jk

e�iθjwjkP̂k Ψ0

�� �
: ð7Þ

Furthermore, the final circuit state generally depends on the order
of the unitary gates. In the calculations reported here, we apply
gates with single-excitation operators first following the imple-
mentation in Qiskit50.

Qubit-ADAPT VQE with simplified UCCSD pool. VQE-UCCSD is
a useful reference point for quantum chemistry calculations.
However, the fixed UCCSD ansatz has limited accuracy and often

involves deep quantum circuits for implementations. Various
approaches have been proposed to construct a more compact
variational ansatz with systematically improvable accuracy. In
this work, we will focus on the qubit-ADAPT VQE method16,
where the ansatz takes a similar pseudo-Trotter form:

Ψ½θ�
�� � ¼ YNθ

j¼1

e�iθj P̂j Ψ0

�� �
: ð8Þ

With qubit-ADAPT, the ansatz is recursively expanded by adding
one unitary at a time, followed by reoptimization of parameters.
The additional unitary is constructed with a generator selected
from a predefined Pauli string pool which gives maximal energy
gradient amplitude jgjmax at the preceding ansatz state. The
ansatz expansion process iterates until convergence, which is set
by jgjmax<10

�4 here. Note that we have set the half bandwidth of
the original noninteracting lattice model to D= 1, such that
jgjmax � 0:1 meV in physical systems with D ~ 1 eV.

The computational complexity of qubit-ADAPT VQE calcula-
tions is tied to the size of the operator pool, which consists of a set
of Pauli strings. Naturally, one can construct an operator pool
using all the Pauli strings in the qubit representation of fermionic
single and double excitation operators. However, the dimension
of this UCCSD-compatible pool is usually quite big and scales as
OðN4

qÞ. Here we propose a much-simplified operator pool, which
consists of Pauli strings from single-excitation and paired double-
excitation operators only. The pair excitation involves a pair of
electrons with opposite spins, which are initially occupying the
same spatial MO, hopping together to another initially unoccu-
pied spatial MO. To further reduce the circuit depth, only one
Pauli string is chosen from each qubit representation of the
fermionic excitation operator. The qubit representation is a
weighted sum of equal-length Pauli strings, and a specific choice
of which one of them does not seem to be important in practical
calculations reported here. This simplified pool containing
operators arising from the UCC ansatz restricted to single and
paired double excitation operators (sUCCSpD)51,52 greatly
reduces the number of Pauli strings compared to the UCCSD
pool. The dimension of this sUCCSpD pool scales as OðN2

qÞ. For
the (2, 2) eg impurity model, the pool size reduces from 152 for
UCCSD to 56 for sUCCSpD, and for the (3, 3) t2g impurity model
it reduces from 828 to 192. The code to perform the above qubit-
ADAPT VQE calculations at the state vector level with examples
are available in figshare53.

Hamiltonian variational ansatz. The Hamiltonian sparsity in the
AO basis naturally motivates the application of the Hamiltonian
variational ansatz21, which generally takes the form of multi-layer
Trotterized annealing-like circuits. While different ways of
designing specific HVA forms have been developed, we propose
the following ansatz with L layers for the impurity model:

Ψ½θ�
�� � ¼ YL

l¼1

YNG

j¼1

e�iθlj ĥj Ψ0

�� �
: ð9Þ

Here Ĥ ¼ ∑NG
j¼1 ĥj, with ĥj being a subgroup of Hamiltonian

terms which share the same coefficient and mutually commute.
Such ansatz construction aims to differentiate the physical and
bath orbitals while retaining the degeneracy information among
the orbitals in a systematic way. For each layer of unitaries, we
first apply the multi-qubit rotations that are generated by the
interacting part of the Hamiltonian, since these act as entangling
gates. For the (M;M) impurity model, two reference states have

been tried: ΨðIÞ
0

��� E
is a simple tensor product state with M

| ⟩Ψ( )
⟩|0

⟩|0

⟩|0

⟩|0

⋮

( )

⋮

( )

Classical 
op�mizer

Fig. 2 Schematic illustration of the variational quantum eigensolver
algorithm. Given an initial guess for the parameter vector θ, the many-body
state is prepared using parametrized circuit ÛðθÞ on the quantum computer.
A set of measurements are performed on a computational basis to estimate
the cost function E(θ), possibly including classical postprocessing for error
mitigation. This value is subsequently passed to a classical optimizer. The
parameters θ are then updated by the optimizer, which triggers a new
iteration of state preparation and energy measurement. The cycle continues
until E(θ) converges.
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physical orbitals fully occupied and the bath orbitals empty;

ΨðIIÞ
0

��� E
is the ground state of the noninteracting part of Ĥ, which

is equivalent to the one-electron core Hamiltonian in quantum
chemistry. We did not find any significant difference between the
two choices of reference state in practical simulations of the
impurity models. Therefore, only HVA calculations with the

reference state ΨðIÞ
0

��� E
are reported here. We adopt the gradient-

based Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm as
the classical optimizer. Proper parameter initialization for HVA
optimization is crucial, as barren plateaus and local energy
minima are generally present in the variational energy landscape.
In practice, we find that a uniform initialization of the para-
meters, such as setting all to π/7, overall works well for simula-
tions reported here.

Inspired by the idea of adaptive ansatz generation13, we also
tried constructing and optimizing an L-layer HVA ansatz by
adaptively adding layers from 1 to L. Specifically, the calculation
starts with optimizing a single-layer ansatz, followed by
appending another layer to the ansatz while keeping the first
layer at previously obtained optimal angles. The two-layer ansatz
is then optimized with the parameters for the new layer initialized
randomly or uniformly. The procedure continues with the
optimization of l-layer ansatz leveraging the (l−1)-layer solution
until the ansatz reaches L layers.

Let the number of cost function evaluations for optimizing an
l-layer ansatz be Nð2Þ

l . The total number of function evaluations

amounts to Nð2Þ ¼ ∑L
l¼1 N

ð2Þ
l . In practice, we find that the direct

optimization of the L-layer ansatz using a uniform initialization
takes N(1) function evaluations with N ð1Þ � Nð2Þ

L <Nð2Þ, and
reaches the same accuracy. Starting with L layers is therefore
more efficient than growing the ansatz layer by layer.

Intuitively, this can be related to the fact that successive HVA
optimization introduces discontinuities in the variational path
toward the ground state whenever a new layer of unitaries is
added. Since the energy gradient associated with new variational
parameters that are initialized to zero (for continuity) vanishes
(see the “Methods” section), they have to be initialized away from
zero. In other words, the (l−1)-layer HVA solution is not a good
starting point for the optimization of the l-layer ansatz. The open
source code to perform the above HVA calculations at the state
vector level with examples are available in figshare54.

Hamiltonian commutator pool. It has been demonstrated that the
qubit-ADAPT VQE in the MO basis outperforms VQE-UCCSD
calculations regarding circuit complexity and numerical
accuracy13,16. Motivation by this observation, we compare the
corresponding qubit-ADAPT VQE with a Hamiltonian-
compatible pool in AO basis and HVA calculations. Following

HVA, we choose the simple tensor product state ΨðIÞ
0

��� E
as the

reference state. In the qubit-ADAPT step, the energy gradient
criterion gθ ¼ 2Im½hΨ½θ�j P̂Ĥ jΨ½θ�i� to append a new unitary
generated by P̂ vanishes due to symmetry with Ψ[θ], if the
number of Pauli-Y operators in the Pauli string P̂ is even13,55.
This can be simply shown by the following argument. Because the
impurity model in this study respects time-reversal symmetry and
spin-flip (Z2) symmetry, both Hamiltonian Ĥ and wavefunction
are real (Ĥ ¼ Ĥ�

;Ψ½θ� ¼ Ψ½θ��). The Pauli string P̂ is also real
(P̂ ¼ P̂

�
) if it has an even number of Pauli-Y operators. Conse-

quently, the expectation value of hΨ½θ�j P̂Ĥ jΨ½θ�i is real and gθ
vanishes if the associated generator P̂ has an even number of
Pauli-Y operators.

By construction, the sUCCSpD pool consists of Pauli strings of
an odd number of Y’s. However, the Hamiltonian of the impurity
models studied here is all real. Consequently, all the Pauli strings
in the qubit representation of the Hamiltonian contain an even
number of Y’s, which excludes the option of directly constructing
the operator pool from the Hamiltonian operators. Nevertheless,
the practical usefulness of HVA implies that the Hamiltonian-like
pool can be constructed by commuting the Hamiltonian terms,
which we call the Hamiltonian commutator (HC) pool PHC.
Mathematically PHC is constructed in the following manner:

PHC ¼ f 1
2i ½P̂; P̂

0� j P̂; P̂0 2 PH; andNY ð½P̂; P̂
0�Þðmod 2Þ ¼ 1g;

ð10Þ

Here PH is the set of Pauli strings fP̂hg present in the qubit
representation of Hamiltonian Ĥ ¼ ∑hwhP̂h. NY ðP̂Þ counts the
number of Y operators in the Pauli string P̂. Therefore, the size of
PHC can scale as N2

H, where NH is the total number of
Hamiltonian terms. Clearly, the pool PHC should only be applied
to sparse Hamiltonian systems. The dimension of the HC pool is
56 for the eg impurity model, and 192 for the t2g model.

Quantum circuit implementation. Performing a calculation on a
quantum computer always needs to deal with the presence of
noise. Even for ideal fault-tolerant quantum computers, quantum
sampling (or shot) noise is present due to a finite number of
measurements that are used to estimate expectation values. The
current noisy quantum devices exhibit additional noise originat-
ing from qubit relaxation and dephasing as well as hardware
imperfections when implementing unitary gate operations. In this
subsection, we describe several techniques adopted in our simu-
lations to most efficiently use the available quantum resources
and stabilize the calculations against sampling noise. We discuss
how to mitigate gate noise in the final subsection.

Measurement circuit reduction. The quantum circuit imple-
mentation for VQE and its adaptive version amounts to the direct
measurement of the Hamiltonian as a weighted sum of Pauli
string expectation values, hĤi ¼ ∑hwhhP̂hi, with respect to
parametrized circuits U[θ]. Here, Ĥ ¼ ∑hwhP̂h is the Hamilto-
nian in qubit representation. Because the number of shots (or
repeated measurements) scales with the desired precision ϵ as
Nsh / 1

ϵ2 due to the central limit theorem, Nsh is often huge in
practical calculations. Therefore, it is desirable to group the Pauli
strings into mutually commuting sets such that the number of
distinct measurement circuits is reduced to a minimum. Indeed,
many techniques to achieve such measurement reduction have
been developed56–61. In this work, we adopt the measurement
reduction strategy based on the Hamiltonian integral
factorization61, which shows a favorable linear system-size scaling
of the number of distinct measurement circuits and embraces a
diagonal representation for the operators to be measured.

Specifically, we transform the physical subsystem Hamiltonian
as follows:

ĤS ¼ ∑
αβσ

eϵαβĉyασ ĉβσ þ 1
2
∑
αβγδ

∑
σσ 0

Vαβγδ ĉ
y
ασ ĉ

y
βσ ĉ

y
γσ0 ĉδσ 0 ; ð11Þ

with eϵαβ ¼ ϵαβ � 1
2∑γVαγγβ. A typical way to simplify the

measurement of the two-body terms Ĥð2Þ
S in Eq. (11) is to

perform nested matrix factorization for the Coulomb V tensor.

Namely, we first rewrite Ĥð2Þ
S in the following factorized form by

diagonalizing the real symmetric positive semidefinite
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supermatrix V(αβ),(γδ):

Ĥð2Þ
S ¼ 1

2
∑
L

l¼1
∑
αβ
∑
σ

LðlÞ
αβĉ

y
ασ ĉβσ

� �2
: ð12Þ

Here l runs through the L positive eigenvalues of the supermatrix
V, and the lth component of the auxiliary tensor L is obtained by
multiplying the lth eigenvector with the square root of lth positive
eigenvalue. Each tensor component, LðlÞ, which is a real
symmetric matrix, is subsequently diagonalized to reach the
following decomposition:

∑
αβσ

LðlÞ
αβĉ

y
ασ ĉβσ ¼ ∑

Ml

m¼1
λðlÞm ∑

αβσ
U ðlÞ

αmU
ðlÞ
βmĉ

y
ασ ĉβσ ¼ ∑

Ml

m¼1
∑
σ
λlmn̂

ðlÞ
mσ ð13Þ

Here, we have defined n̂ðlÞmσ � ∑αβU
ðlÞ
αmU

ðlÞ
βmĉ

y
ασ ĉβσ . The index m

goes through the Ml nonzero eigenvalues λðlÞm and associated
eigenvectors U ðlÞ

m , which determines the single-particle basis
transformation for the lth component. The whole embedding
Hamiltonian of Eq. (1) can then be cast into the following
doubly-factorized form with a unitary transformation similar to
Eq. (13) for the one-body part:

Ĥ ¼ ∑
M0

m¼1
∑
σ
ϵð0Þm n̂ð0Þmσ þ 1

2 ∑
L

l¼1
∑
Ml

m¼1
∑
σ

λðlÞm n̂
ðlÞ
mσ

� 	2
; ð14Þ

which is composed of L+ 1 groups characterized by unique
single-particle basis transformations {U(l)}, including one from
the single-electron component. This form allows efficient
measurement of the Hamiltonian expectation value using Lþ
1 / OðNÞ distinct circuits for a generic quantum chemistry
problem with a single-particle basis dimension given by N.

The expectation value of Ĥ is obtained by measuring each group l
independently in the variational state Ψ½θ�

�� �
. The variational state is

transformed to the same representation used in the lth group by

applying a series of Givens rotations, feθμν ð̂cyμσ ĉνσ�h:c:Þg, with the set of
{θμν} determined by the single-particle transformation matrix U(l).
Here μ and ν are generic indices for physical and bath orbital sites.
Therefore, the number of distinct measurement circuits is Nc= L+
1. As an example, we have Nc= 4 for eg model. We refer to the
“Methods” section for further details.

In practice, it is advantageous to isolate the one-body and two-
body terms that contain only density operators before the double
factorization procedure, because they are already in a diagonal
representation. For the eg model we have carried out the double-
factorization with explicit calculations in the “Methods” section
and we ultimately find Nc= 3 for the eg model. This can be
compared with the Hamiltonian measurement procedure using
the mutual qubit-wise commuting groups: operators that
commute with respect to every qubit site are placed in the same
group. This commuting Pauli approach generally needs Nc /
OðN4Þ distinct circuits for Hamiltonian measurement. And for
the eg model, it requires Nc= 5.

Noise-resilient optimization. Although classical optimization
approaches such as BFGS, which rely on a computation of the
energy gradient, are effective, they rely on very accurate cost
function evaluations. Because of the inherent noise in quantum
computing, optimization algorithms that are robust to cost
function noise are highly desirable. In the noisy quantum simu-
lations reported here, we adopt two optimization techniques that
are more tolerant to noise than BFGS: sequential minimal opti-
mization (SMO)62 and Adadelta63. Because of their similar per-
formance in the noisy simulations, we only discuss SMO in the
main text and leave the discussions of Adadelta in the “Methods”
section.

SMO is the first technique we use for our noisy quantum
simulations. Tailored to the qubit-ADAPT ansatz of Eq. (8)
where each variational parameter is associated with a single Pauli
string generator, the optimization consists of Nsw sweeps of
sequential single parameter minimization of the cost function. At
a specific optimization step with varying parameter θj, while
keeping others fixed, the cost function has a simple form of
a cosð2θj � bÞ þ c, with the optimal θ�j ¼ b=2 if a < 0 and (b+ π)/
2 otherwise. To determine the parameters a, b, and c, one requires
knowledge of function values for at least three mesh points in the
range of [−π/2, π/2). In practice, we use eight uniformly spaced
mesh points to better mitigate the effect of noise in the cost
function. Consequently, least square fitting is used to determine
the values of a, b and c. In SMO calculations, we use the number
of sweeps as the parameter to control the convergence, which we
set to Nsw= 40. Alternative control parameters, such as energy
and gradient, usually are required to be evaluated at higher
precision, which can be challenging and introduce additional
quantum computation overhead.

In this work, we perform noisy simulations with classical
optimizations that include sampling noise due to a finite number
of measurements or shots (Nsh) as well as both sampling and gate
noise. The purpose is to investigate the performance of the qubit-
ADAPT algorithm in the presence of sampling and gate noise and
to separate the effects of sampling noise, which is controlled by a
single parameter Nsh from the effect of gate noise. The code with
the circuit implementation of qubit-ADAPT VQE with examples
on QASM simulator and quantum hardware are available at
figshare64.

Statevector simulations. In this section, we present numerical
simulation results using a statevector simulator, which is
equivalent to a fault-tolerant quantum computer with an infinite
number of measurements (Nsh=∞). Figure 3 shows the ground
state energy calculations of the (2, 2) eg and (3, 3) t2g impurity
models using VQE-HVA as well as qubit-ADAPT VQE with
sUCCSpD and HC pools. The reference UCCSD energy is 0.029
higher than the exact ground state energy EGS for the eg model
and 0.128 higher for the t2g model. This implies that both models
are in the strong electron correlation region. For calculations of
the eg model, the energy converges below 10−5 with Nθ= 20
variational parameters for VQE-HVA, Nθ= 59 for ADAPT-
sUCCSpD, and Nθ= 31 for ADAPT-HC. Although the qubit-
ADAPT VQE calculation on a statevector simulator is in prin-
ciple deterministic, the operator selection from a predefined
operator pool can introduce some randomness due to the
numerical accuracy and near degeneracy of scores (i.e., the
associated gradient components) for some operators. As a result,
the converged Nθ can slightly change by about one between runs.

As a simple estimation of the circuit complexity for NISQ
devices, we provide the number of CNOT gates Ncx assuming full
qubit connectivity, which can be realized in trapped ion systems.
The converged circuit has Ncx= 288 for VQE-HVA, Ncx= 292
for ADAPT-sUCCSpD, and Ncx= 150 for ADAPT-HC. As a
reference, the UCCSD ansatz has Nθ= 26 and Ncx= 1096. The
HVA calculation converges with the smallest number of
variational parameters, but the number of CNOT gates (Ncx) is
in between that of ADAPT-HC and ADAPT-sUCCSpD because
each variational parameter in HVA is associated with a generator
composed of a weighted sum of Pauli strings. The ADAPT-HC

calculation starts from a reference state ΨðIÞ
0

��� E
, a simple tensor

product state on an AO basis, with energy higher than the HF
reference state used by ADAPT-sUCCSpD, yet ADAPT-HC
converges faster to the ground state. In fact, the initial state
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fidelity, defined as f≡ ∣〈Ψ0∣ΨGS〉∣2, is 0.19 for ADAPT-HC,
compared with 0.76 for ADAPT-sUCCSpD. Therefore, the final
ansatz complexity does not show a simple positive correlation
with the initial state fidelity, which implies that both the
Hamiltonian structure and operator pool are determining factors.

Compared with ADAPT-sUCCSpD, the advantage of ADAPT-
HC becomes more prominent when applied to the t2g model. To
reach energy convergence below 10−5, ADAPT-HC needs
Nθ= 270 parameters and Ncx= 2052 CNOTs, while ADAPT-
sUCCSpD requires as many as Nθ= 1020 parameters and
Ncx= 8066 CNOTs. For reference, the UCCSD ansatz has
Nθ= 117 parameters and Ncx= 9200 CNOTs. The HVA
calculation is carried out with up to L= 10 layers, which
amounts to Nθ= 70 and Ncx= 2420, and the energy converges
close to 10−6.

We emphasize that strong electron correlation effects are
present in our chosen model that lies deep in the bad metallic
state48,49. This state cannot be accurately captured within a mean-
field description and hence requires the application of an
appreciable number of unitary gates to the reference state.
Generally, the circuit depth of a variational ansatz is tied to both
the complexity of the problem (i.e. the complexity of the ground
state wavefunction) and the desired state fidelity. As shown in
Fig. 4, when we require a state fidelity close to 99.9% or an energy
error close to 0.001, which is typically necessary for practical
calculations, one observes a sharp rise of Nθ when the system is
tuned from the weak correlation (U < 1) to the strong correlation
(U > 2) regime by increasing Hubbard U.

Simulations with shot noise. The ADAPT VQE calculations are
often reported at the statevector level, and a systematic study
including the effect of noise is not yet available13,16,65–67. Here we
present qubit-ADAPT VQE calculations of the (2, 2)eg model
including shot noise.

Figure 5 shows the representative convergence behavior of the
qubit-ADAPT energy with an increasing number of variational
parameters Nθ calculated using different numbers of shots per
observable measurement: Fig. 5a is for Nsh= 212, and Fig. 5b is
for Nsh= 216. We use SMO for the classical optimization. The
adaptive ansatz energy E overall decreases as the circuit grow and
more variational parameters are used. The energy uncertainty is
tied to the number of shots Nsh. The energy spread roughly
reduces by a factor of 4 when Nsh increases from 212 to 216,
consistent with the 16-fold increase in Nsh due to the central limit
theorem.

The energy points shown include not only the final SMO
optimized energies of the qubit-ADAPT ansatz with Nθ

parameters but also the intermediate energies after each of the
Nsw= 40 sweeps during SMO optimizations to provide more
detailed convergence information. The above-reported Nsh is
referred to as measurements for SMO optimizations. At the
operator screening step of the qubit-ADAPT calculation to
expand the ansatz by appending an additional optimal unitary,
we fix Nsh= 216 shots for energy evaluations in all cases and
determine the energy gradient by the parameter-shift rule68.

To further assess the quality of the qubit-ADAPT ansatz
obtained in these QASM simulations, we plot in Fig. 5c the ansatz

Fig. 3 Energy convergence of variational quantum eigensolver (VQE) calculations with four types of ansätze. Panels a, b show the energy difference
between the variational and the exact ground state energy EGS as a function of a number of variational parameters Nθ. Panels c, d show the energy
difference versus the number of CNOT gates Ncx. Panels a, c are for the degenerate ðNS ¼ 2;NB ¼ 2Þeg impurity model and panels b, d correspond to the
(3, 3) t2g impurity model. VQE calculations are reported with fixed Hamiltonian variational ansatz (HVA, orange dashed line) and unitary coupled cluster
ansatz with single and double excitations (UCCSD, black cross) as well as with adaptive ansätze constructed from a simplified unitary coupled cluster pool
with single and paired double excitation operators (sUCCSpD, black line) and a Hamiltonian commutator pool (HC, sky blue line). Here Ncx is estimated
according to each multi-qubit rotation gate with a Pauli string generator P of lengthlcontributing 2(l−1) CNOT gates, which assumes a full qubit connection.
The Hamiltonian parameters are ϵ=−9.8(−12.7), λ= 0.3(0.1), D ¼ �0:3ð�0:3Þ with the same Hubbard U= 7 for the eg (t2g) model, corresponding to the
correlated bad metallic regime. The energy unit is the half-band width D of the noninteracting DOS for the multi-band lattice model (see Fig. 1).
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energies evaluated using a statevector simulator at the end of each
noisy SMO optimization. The four solid curves are calculated
using the variational parameters that are obtained by QASM
optimizations with different numbers of shots Nsh as indicated
and noiseless optimization results are shown for comparison as
the dashed line. While there is no clear order of the energies
during the early stages of the simulation, the final convergence is
consistently improved with more shots. Specifically, the error
converges close to and below 10−3 for Nsh= 214 and 216 and the

fidelity f improves beyond 99.9%. The associated single-particle
density matrix elements also converge to an accuracy better than
10−2.

Similar QASM simulations of qubit-ADAPT VQE have been
performed using the Adadelta optimizer, as specified in the
“Methods” section. Generally, we find the numerical results and
the dependence on the number of shots to be comparable to
SMO. Compared with SMO, Adadelta can potentially take
advantage of multiple QPUs by evaluating the gradient vector
in parallel.

Discussion of optimal pool size. One important factor deter-
mining the computational load of qubit-ADAPT VQE calcula-
tions is the size of the operator pool Np. One simple strategy to
reduce Np is to strip off Pauli Z’s in the pool of operators because
they contribute negligibly to the ground state energy as pointed
out in refs. 16,66. This reduces Np of the Hamiltonian commutator
(HC) pool from 56 to 16 for the eg model, and from 192 to 60 for
the t2g model, due to a large degeneracy. Furthermore, some
qualitative guidance has been laid out in the literature to con-
struct a minimal complete pool (MCP) of size 2(Nq−1)16,69,
where Nq is the number of qubits. Indeed, we find that an MCP
can be constructed using a subset of operators in the HC pool.

We discover a dichotomy that the reduction of the pool size
can potentially make the optimization of the qubit-ADAPT
ansatz more challenging, especially in the presence of noise.
Figure 6 compares qubit-ADAPT calculations using three
different pool sizes of dimensions 56, 16, and 10, which were
introduced above. Figure 6a shows the qubit-ADAPT energies
with increasing Nθ from statevector simulations of the eg model
using the three pools. All the simulations converge with 31
parameters and final CNOT gate numbers Ncx= 150, 98, and 62
which decrease for the smaller pools. The details of the
convergence rate of the three runs differ significantly. When
the pool dimension decreases, the region of Nθ with minimal
energy change expands, as seen by the almost flat segments of the
curves of Fig. 6a. The minimal energy gain implies that small
noise in the cost function evaluation could deteriorate the
parameter optimization.

Indeed as shown in Fig. 6b, the qubit-ADAPT energy from
noisy simulation converges slower as the pool size decreases. The
flat segments in the energy curves become more evident owing to

Fig. 4 Error and state fidelity analysis of qubit adaptive derivative-
assembled pseudo-trotter (ADAPT) ansatz. a Log-scale contour plot of
the variational energy error E−EGS of the qubit-ADAPT ansatz as a function
of Nθ and Hubbard U for the (2, 2) eg impurity model. Here, EGS is the exact
ground state energy and E is the converged variational energy. b State
infidelity 1−f= 1−∣〈Ψ[θ]∣ΨGS〉∣2 versus Nθ and U. Here, Ψ½θ�

�� �
is the

converged ansatz state and ΨGS

�� �
is the exact ground state. The color bar

indicates a log scale from 10−5 to 1. At a fixed energy accuracy, we find that
Nθ generally increases with U and then saturates. The same holds for
infidelity. We also observe a sharp rise of Nθ at smaller U≈ 1−3 when
demanding an energy accuracy or infidelity below 10−3. This signifies the
onset of correlation effects in the many-body ground state. The results are
obtained from qubit-ADAPT calculations using the Hamiltonian
commutator pool of the eg model, where U varies from 0.5 to 8 with 0.5 as
the step size. The other model parameters can be retrieved at figshare53.

Fig. 5 Energy convergence of qubit adaptive derivative-assembled pseudo-trotter (ADAPT) simulations for eg model with shot noise. The difference
between the exact ground state energy EGS and that of qubit-ADAPT simulations with sampling noise was obtained with a number of shots Nsh= 212 in
panel (a) and Nsh= 216 in panel (b). Panel c shows the energy differences evaluated using statevector for the adaptive ansätze obtained in simulations
including shot noise, with Nsh= 210 (black line), 212 (orange line), 214 (sky blue line), and 216 (bluish green line). The statevector simulation results
(Nsh=∞, yellow line) of the qubit-ADAPT algorithm are also shown in a dashed line for reference. Hamiltonian parameters are identical to those used in
Fig. 3.
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the stochastic energy errors. We further analyze the quality of the
qubit-ADAPT ansatz by evaluating the energy at optimal angles
obtained in noisy simulations, as plotted in Fig. 6c. The energy
difference is 0.001, 0.027, 0.135 at Nθ= 31 where the statevector
simulation converges, and 0.0006, 0.001, 0.005 at the end of
Nθ= 40 for calculations with pools of size 56, 16, and 10,
respectively.

Our analysis clearly shows the strikingly distinct convergence
behaviors of qubit-ADAPT calculations using different complete
operator pools in the presence of sampling noise. This indicates
that the optimal pool in practical calculations can be a trade-off
between choosing a small pool size and guaranteeing sufficient
connectivity of the operators in the pool.

Simulations with noise models. Besides the inherent sampling
noise in quantum computing, NISQ hardware is subject to various
other error effects. These include coherent errors due to imperfect
gate operations as well as stochastic errors due to qubit decoherence,
dephasing, and relaxation. Here, we perform a preliminary investi-
gation of the impact of hardware imperfections on qubit-ADAPT
VQE calculations by adopting a realistic decoherence noise model
proposed by Kandala et al. in ref. 3. The model includes an
amplitude-damping channel (ρ ! ∑2

i¼1 E
a
i ρE

ay
i ) and a dephasing

channel (ρ ! ∑2
i¼1 E

d
i ρE

dy
i ). These act on the qubit density matrix

following each single-qubit or two-qubit gate operation. The Kraus
operators are given as:

Ea
1 ¼ 1 0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� pa

p

 �

; Ea
2 ¼

0
ffiffiffiffiffi
pa

p

0 0


 �
;

Ed
1 ¼ 1 0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� pd

p
 �
; Ed

2 ¼
0 0

0
ffiffiffiffiffi
pd

p
 �
:

ð15Þ

The error rates pa ¼ 1� e�τ=T1 and pd ¼ 1� e�2τ=Tϕ are deter-
mined by the gate time τ, the qubit relaxation time T1 and the
dephasing time Tϕ= 2T1T2/(2T1−T2), where T2 is the qubit coher-
ence time. For the sake of simplicity of the analysis, we choose a
uniform single-qubit gate error rate pa1 ¼ pd1 � p1 ¼ 10�4, which is
close to the value found in current hardware. We also assume a
uniform two-qubit error rate pa2 ¼ pd2 ¼ p2 that we vary between
10−4 and 10−2, in order to study the impact of two-qubit noise on
the VQE optimization.

Figure 7a shows a typical qubit-ADAPT energy curve E−EGS
during optimization as a function of the number of variational
parameters Nθ obtained in noisy simulations with p2= 10−2,
10−3, and 10−4. Here, EGS is the exact ground state energy. The
results with only single-qubit noise are also shown for reference.
Figure 7b contains the associated exact energies for the ansatz
states, which we obtain by evaluating the VQE ansatz on a
statevector simulator.

For p2= 10−2, which represents the current hardware noise
level, the noisy energy increases with Nθ, indicating that the error
rate is too large to get reliable energy estimation. Nevertheless, as
shown in the corresponding statevector analysis in Fig. 7b, one
still observes a sizable energy reduction in the early stage of the
optimization. The evaluated ansatz state fidelity is found to
improve from 0.19 in the initial state to about 0.70 with
4 <Nθ < 9. When further increasing Nθ, however, the statevector
ansatz energy shows an upward trend due to noise accumulation,
signifying a failure of the noisy optimization. For a smaller error
rate, p2= 10−3, which was demonstrated recently with the IBM
Falcon device70, the noisy energy initially decreases and reaches a
minimum near Nθ= 7. This is again followed by an upturn as the
number of variational parameters Nθ grows. On the other hand,
the corresponding statevector analysis shows a clear continuous
energy improvement up to Nθ= 25, followed by saturation with
small fluctuations. We find the ansatz state fidelity saturates near
0.97. Similar observations apply to the noisy simulations with
other two-qubit error rates. The statevector analysis shows that
the energy converges at an error ≈ 3 × 10−3 with a fidelity ≈ 0.997
for p2= 10−4. When including only single-qubit errors, we find
an error ≈ 1 × 10−3 with a fidelity ≈0.9992.

The observed improvement of the ansatz (revealed using
statevector analysis), even though the noisy energy expectation
value increases, is intriguing. This effect is most clearly seen in
results for p= 10−3 between 7 ≤Nθ < 25. It demonstrates the
robustness of VQE to certain types of noise effects and can be
rationalized as follows. Assuming for simplicity a global
depolarizing error channel, we can relate the expectation value
of an observable �hOi with respect to a noisy density matrix to the
noiseless result 〈O〉 as �hOi ¼ ð1� pÞhOi þ p

2n Tr½O�71,72. Since any
observable can be shifted to be traceless (Tr[O]= 0), 〈O〉 is
equivalent to �hOi up to a constant scaling factor. The noise thus
only rescales the energy landscape of the variational ansatz and
maintains the optimal parameters. The fact that we find the

Fig. 6 Pool size dependence of the energy convergence behavior for qubit adaptive derivative-assembled pseudo-trotter (ADAPT) calculations of the
eg model. The difference between the exact ground state energy EGS and qubit-ADAPT results as a function of Nθ from a statevector simulations and
b Quantum assembly language (QASM)-based simulations with Nsh= 216 shots using three different operator pools of size 56 (black line), 16 (orange line)
and 10 (sky blue line), derived from the Hamiltonian commutator pool. The respective energy differences evaluated using statevector for the adaptive
ansätze obtained in the noisy simulations of panel (b) are shown in panel (c).
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ansatz energy to saturate in the statevector analysis with finite p2
is caused by our choice of noise model, which includes noise
effects beyond a global depolarizing channel. This observation of
state improvement during optimization masked by noisy energy
expectation values suggests that with reasonably small error rates,
expensive error mitigation techniques may be restricted to the
final converged state at the end of VQE calculations to ensure
accurate observable measurements.

Estimating ground state energy on NISQ devices. As a further
step to benchmark the realistic noise effect on qubit-ADAPT
VQE calculations of the multi-orbital quantum impurity models,
we measure the Hamiltonian expectation value of the eg model
with a converged qubit-ADAPT ansatz on the IBM quantum
device ibmq_casablanca. The ansatz with optimal para-
meters is obtained with the HC pool using statevector simula-
tions. The converged qubit-ADAPT ansatz used for the ground
state energy estimate has 32 parameters, and the associated 32
generators for multi-qubit unitary gates are listed in the “Meth-
ods” section.

To reduce the noise in the cost function measurement, it is
essential to utilize a range of error mitigation techniques. We

employ the standard readout error mitigation using the full
confusion matrix approach, as implemented in Qiskit50. The
adopted measurement circuits based on Hamiltonian integral
factorization also allow convenient symmetry detection and
filtering with respect to how well the ansatz preserves the total
electron number Ne= 4 and total spin z-projection Sz= 0. The
gate error is mitigated using zero noise extrapolation (ZNE) with
Richardson second-order polynomial inference73,74. The noise
scale factor increases from 1 to 2 and 3 for each measurement
circuit by local random unitary folding following the implemen-
tation in Mitiq75,76. Because of the random gate folding and the
stochastic SWAP mapping during transpilation to native gates50,
we perform ten runs for each measurement circuit at each noise
level to smooth out the nondeterministic effects with averaging.
For each run, we apply Nsh= 214 shots for the measurements.

Figure 8a shows the Richardson extrapolation for the ground
state energy with measured points at noise scale factors λ= 1, 2, 3,
taking all 10 runs for each λ into account. The estimated energy
has an absolute error Δ(E)= 0.6 ± 1.4 compared with the exact
result indicated by the horizontal dashed line. This corresponds
to a relative error of 3%. The standard deviation is obtained by
fitting the sample points with a second-order polynomial using
the SciPy function curve_fit which takes both the mean values
and standard deviations into account77. In the postprocessing for
the mean value of the energy cost function from statistical
samplings, we first apply readout calibration, followed by
symmetry filtering which discards the configurations with total
electron number Ne ≠ 4 or total spin Sz ≠ 0. We observe that the
ten runs can be divided into two groups based on the average Ne

and Sz evaluated before symmetry filtering, as shown in Fig. 8c
and d. A subgroup of five runs denoted by square symbols has
much less bias away from the correct conserved quantum
numbers Ne= 4 and Sz= 0 than the other five runs shown as
circles. A more accurate ground state energy can be obtained
when restricting to this optimal subgroup, as shown in Fig. 8b.
The estimated energy error reduces significantly to Δ(E)= 0.1 ±
0.2, with a relative error of 0.7%.
In the above calculations on QPU, the circuits are transpiled

into the basis gates of ibmq_casablanca device using the
qubit layout and coupling map illustrated in the inset of Fig. 8a.
Due to the limited qubit connectivity between nearest neighbors,
each of the three transpiled measurement circuits for the eg model
contains about 350 CNOT gates, which amounts to over two-fold
increase compared to about 150 CNOTs without qubit swapping.
Therefore, we also benchmark the calculations on other types of
QPUs with full qubit connectivity such as trapped-ion devices. As
an initial reference, we perform an energy estimation with the
same ansatz on Quantinuum’s trapped-ion Honeywell System
Model H1-2. The transpiled circuits have about 150 two-qubit
ZZMax gates as expected. Due to limited access to the device, we
apply only Nsh= 450 shots per circuit for the measurements
without utilizing any error mitigation. The energy thus obtained
is −17.6 ± 2, which should be compared with data points in
Fig. 8a at a scale factor 1, and is found to be located near the
lower end of that range. Here the error bar is estimated using
multiple runs of simulations with the associated system Model
H1-2 emulator (H1-2E) including a realistic noise model.

Conclusions
In an effort towards performing hybrid quantum-classical simu-
lations of realistic correlated materials using a quantum embed-
ding approach29–37, we assess the gate depth and accuracy of
variational ground state preparation with fixed and adaptive
ansätze for two representative interacting multi-orbital, eg and t2g,
impurity models. To take advantage of the sparsity of the

Fig. 7 Noisy qubit adaptive derivative-assembled pseudo-trotter
(ADAPT) simulations and analysis of eg model. a Difference between the
exact ground state energy EGS and qubit-ADAPT noisy simulation results
with a uniform two-qubit gate error rate p2= 10−1 (black line), 10−3

(orange line), 10−4 (sky blue line) and 0 (bluish green line). We use a
uniform single-qubit error rate p1= 10−4 and Nsh= 216 shots per
measurement circuit. b Energy differences evaluated using statevector for
the adaptive ansätze obtained in the noisy simulations. The noisy
simulations are performed with the Hamiltonian commutator pool of
size 56.
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Hamiltonian in the atomic orbital representation in real space, we
consider the HVA ansatz and an adaptive variant in the qubit-
encoded atomic orbital basis. An HC pool composed of pairwise
commutators of the Hamiltonian terms is developed to allow fair
comparison between the qubit-ADAPT and HVA ansatz. For
reference, the standard UCCSD and related qubit-ADAPT cal-
culations using UCCSD-compatible pools are also presented. The
qubit-ADAPT calculation with an HC pool generally produces
the most compact circuit representation with a minimal number
of CNOTs in the final converged circuit. The fixed HVA ansatz
follows very closely and has the additional advantage of requiring
the least variational parameters Nθ.

To address the effect of quantum shot noise, we report QASM
simulations of qubit-ADAPT VQE in the presence of shot noise
for different numbers of shots (Nsh) that allow controlling the
stochastic error. For our benchmark, we adopt state-of-the-art
techniques such as low-rank tensor factorization to reduce the
number of distinct measurement circuits and a noise resilient
optimization including sequential minimal optimization and
Adadelta. We find a modest number of shots Nsh= 214 per
measurement circuit can lead to a variational representation of
the ground state with fidelity f > 99.9%.

We further discuss ways to simplify the pool operators and
reduce the pool size using eg model as an example. It is pointed out
that a minimal complete pool, as defined in refs. 16,69, can be
constructed using a subset of the HC pool. While a simplified pool
can reduce the quantum computation resource in the adaptive
operator screening procedure, it can make classical optimization
more complicated, especially in the presence of noise. This suggests
both the dimension and connectivity of operators are joint deter-
mining factors to design a practically optimal pool.

To assess the effects of realistic noise on VQE calculations of
multi-orbital impurity models, we perform qubit-ADAPT VQE
calculations with a realistic decoherence noise model that
includes amplitude and dephasing error channels. We find the
impact of two-qubit errors to dominate over those of single-qubit
errors, also since they are larger in NISQ hardware. We report
that practically useful results can be obtained for p2= 10−3,
which is close to current hardware levels. Importantly, we observe
that the classical optimization continues to improve the ansatz
even in a regime, where the noisy energy expectation value starts
to rise. We reveal this behavior by executing the ansatz state on
statevector simulators. Such persisting ansatz state improvement
masked by noise shows that VQE is robust to certain noise effects
and implies that costly error mitigation methods can potentially
be reserved for the evaluation of expectation values in the final
converged state.

Finally, we measure the energy for a converged qubit-ADAPT
ansatz of the eg model on the ibmq_casablanca QPU and
Quantinuum’s H1-2 device. Using the results from IBM hard-
ware, we obtain an error of 0.1 (0.7%) for the total energy by
adopting error mitigation techniques such as zero-noise extra-
polation, combined with a careful post-selection based on sym-
metry and the conservation of quantum numbers.

Moving forward, the full qubit-ADAPT VQE calculations of
quantum impurity models will be extended from noisy QASM
simulations to simulations that include device-specific noise
effects beyond our decoherence model and finally to experiments
on real hardware. Our study shows that an array of error miti-
gation techniques, including readout calibration, zero-noise
extrapolation73,74, and potentially probabilistic error
cancellation74,78,79, Clifford data regression80,81, and probabilistic

Fig. 8 Estimating ground state energy of the eg model on IBM device ibmq_casablanca. Richardson energy extrapolation is applied by a quadratic
curve fitting for three data points of increasing noise scale with averages over 10 runs in (a) and an optimal subset of 5 runs in (b). Distinct but equivalent
hardware native circuits are associated with each run owing to the nondeterministic nature of local random unitary folding and transpilation. The average
number of electrons Ne and total spin z-component Sz for each of the 10 runs in terms of their deviations from ideal values are plotted in (c) and (d),
respectively. The optimal subset of five runs is identified by smaller symmetry violations ∣Ne−4∣ < 0.2 and ∣Sz∣ < 0.1. The inset a shows the qubit layout of
ibmq_casablanca. The dark numbered circles represent the qubits adopted in the calculation with that particular order. Inset in b: the energy error
Δ(E)= ∣E−EGS∣ in log scale. The error bar denotes the standard deviation of the sample mean.
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machine-learning-based techniques82, need to be adopted to
reach sufficiently accurate results. This is especially important
when using VQE as an impurity solver in a quantum embedding
approach as sufficiently accurate impurity model results are
needed in order to enable the convergence of the classical self-
consistency loop. Our results constitute an important step for-
ward in demonstrating high-fidelity ground state preparation of
impurity models on quantum devices. This is essential for rea-
lizing correlated material simulations through hybrid quantum-
classical embedding approaches, where the ground state pre-
paration of a generic f-electron impurity model consisting of 28
spin-orbital is on the verge of achieving practical quantum
advantage35.

Methods
Energy gradient of HVA. Here we show that the outermost lth layer gradient

component vanishes (∂EðθÞ∂θlj

���
θl¼0

¼ 0) for an l-layer HVA ansatz

Ψl ½θ�
�� � ¼ ΠNG

j¼1e
�iθlj ĥj Ψl�1½θ�

�� �
:

∂EðθÞ
∂θlj

�����
θl¼0

¼ ∂hΨl ½θ�jĤjΨl ½θ�i
∂θlj

�����
θl¼0

¼ �ihΨl�1½θ�j Ĥĥj jΨl�1½θ�i þ c:c:

ð16Þ

Because the system Hamiltonian Ĥ under study is real due to time-reversal sym-
metry, HVA is also real by construction. Therefore, hΨl�1½θ�j Ĥĥj jΨl�1½θ�i is real,
and ∂EðθÞ

∂θlj

���
θl¼0

vanishes. Note that the exactly same reason motivates the develop-

ment of the HC pool for qubit-ADAPT calculations.

Hamiltonian factorization of the impurity model. Here we explain explicitly how
the Hamiltonian factorization is obtained using the eg model as an example, whose
Hamiltonian takes the following specific form:

Ĥ ¼ D ∑
2

i¼1
∑
σ

ĉyiσ f̂ iσ þ h:c:
� �

ð17Þ

þJ=2 ĉy1" ĉ2" þ ĉy1# ĉ2# þ h:c:
� �2 ð18Þ

þU ∑
2

i¼1
n̂i"n̂i# þ ðU � 2JÞ∑

σσ 0
n̂1σ n̂2σ 0 ð19Þ

þeϵ ∑2
i¼1

∑
σ
n̂iσ þ λ ∑

2

i¼1
∑
σ
n̂fiσ : ð20Þ

Here n̂iσ ¼ ĉyiσ ĉiσ and n̂fiσ ¼ f̂
y
iσ f̂ iσ are the electron occupation number operators

for the physical and bath orbitals, respectively. The factorization procedure is only
needed for the single-particle hybridization term (17) and the pair hopping and
spin-flip terms (18), as the rest are already in the diagonal representation.

The hybridization term (17) can be written in a diagonal form through single-
particle rotations on the physical and bath orbitals as follows:

∑
2

i¼1
ĉyiσ f̂ iσ þ h:c:

� �
¼ �n̂ð0Þ1σ � n̂ð0Þ2σ þ n̂ð0Þ3σ þ n̂ð0Þ4σ ; ð21Þ

where n̂ð0Þmσ ¼ ĉyð0Þmσ ĉ
ð0Þ
mσ and the rotated fermionic operators ĉð0Þmσ are given by,

ĉð0Þ1σ ¼ 1ffiffi
2

p ð̂c1σ þ f̂ 1σ Þ; ĉð0Þ2σ ¼ 1ffiffi
2

p ð̂c2σ þ f̂ 2σ Þ;
ĉð0Þ3σ ¼ 1ffiffi

2
p ð̂c1σ � f̂ 1σ Þ; ĉð0Þ4σ ¼ 1ffiffi

2
p ð̂c2σ � f̂ 2σ Þ:

ð22Þ

This can be derived conveniently in the matrix formulation:

∑
2

i¼1
ĉyiσ f̂ iσ þ h:c:

� �

¼ ĉy1σ ĉy2σ f̂
y
1σ f̂

y
2σ

� � 0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

0
BBB@

1
CCCA

ĉ1σ
ĉ2σ
f̂ 1σ
f̂ 2σ

0
BBBB@

1
CCCCA

¼ ĉy1σ ĉy2σ f̂
y
1σ f̂

y
2σ

� �
1ffiffi
2

p 0 1ffiffi
2

p 0

0 1ffiffi
2

p 0 1ffiffi
2

p

1ffiffi
2

p 0 � 1ffiffi
2

p 0

0 1ffiffi
2

p 0 � 1ffiffi
2

p

0
BBBBB@

1
CCCCCA

´

�1 0 0 0

0 �1 0 0

0 0 1 0

0 0 0 1

0
BBB@

1
CCCA

1ffiffi
2

p 0 1ffiffi
2

p 0

0 1ffiffi
2

p 0 1ffiffi
2

p

1ffiffi
2

p 0 � 1ffiffi
2

p 0

0 1ffiffi
2

p 0 � 1ffiffi
2

p

0
BBBBB@

1
CCCCCA

ĉ1σ
ĉ2σ
f̂ 1σ
f̂ 2σ

0
BBBB@

1
CCCCA

¼ ĉyð0Þ1σ ĉyð0Þ2σ ĉyð0Þ3σ ĉyð0Þ4σ

� 	 �1 0 0 0

0 �1 0 0

0 0 1 0

0 0 0 1

0
BBB@

1
CCCA

ĉð0Þ1σ

ĉð0Þ2σ

ĉð0Þ3σ

ĉð0Þ4σ

0
BBBB@

1
CCCCA:

ð23Þ

The pair hopping and spin-flip terms of the second line of Eq. (18) can be rewritten
as:

J=2 ĉy1" ĉy1# ĉy2" ĉy2#
� �

Lð1Þ

ĉ1"
ĉ1#
ĉ2"
ĉ2#

0
BBB@

1
CCCA

0
BBB@

1
CCCA

2

: ð24Þ

with

Lð1Þ ¼

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

0
BBB@

1
CCCA: ð25Þ

The above expression is obtained by diagonalizing the Coulomb supermatrix of
V(αβ),(γδ) with density-density elements set to zero, V(αα),(γγ)≡ 0, which gives a
single eigenvector associated with nonzero eigenvalue. Following the similar
derivation in Eq. (23), the pair hooping and spin-flip terms have the following
diagonal representation:

J=2 �n̂ð1Þ1" � n̂ð1Þ1# þ n̂ð1Þ2" þ n̂ð1Þ2#
� �2

; ð26Þ

with n̂ð1Þmσ ¼ ĉyð1Þmσ ĉ
ð1Þ
mσ and

ĉð1Þ1σ ¼ 1ffiffiffi
2

p ð̂c1σ þ ĉ2σ Þ; ĉð1Þ2σ ¼ 1ffiffiffi
2

p ð̂c1σ � ĉ2σ Þ: ð27Þ
Finally, we can represent the embedding Hamiltonian for eg model in the

following doubly-factorized form:

Ĥ ¼D∑
σ

�n̂ð0Þ1σ � n̂ð0Þ2σ þ n̂ð0Þ3σ þ n̂ð0Þ4σ

� �
þ J=2 �n̂ð1Þ1" � n̂ð1Þ1# þ n̂ð1Þ2" þ n̂ð1Þ2#

� �2

þ U ∑
2

i¼1
n̂i"n̂i# þ ðU � 2JÞ∑

σσ 0
n̂1σ n̂2σ 0

þ eϵ ∑2
i¼1

∑
σ
n̂iσ þ λ ∑

2

i¼1
∑
σ
n̂fiσ :

ð28Þ

With the Hamiltonian integral factorization we find that three distinct
measurement circuits are needed for the Hamiltonian expectation value: (i) the
diagonal terms in the original atomic orbital basis, (ii) the hybridization terms in
the basis of cð0Þmσ (22), (iii) the pair hopping and spin-flip terms in the basis of
cð1Þmσ (27).

Quantum simulation with Adadelta optimizer. In the main text, we reported the
qubit-ADAPT VQE calculation with shots using the SMO optimizer. Here we
additionally perform the calculations using the Adadelta optimization method,
which is potentially tolerant to cost function errors63. Below we describe the
implementation of the algorithm followed by the results.

The algorithm minimizes the cost function along the steepest decent direction
in parameter space, with a parameter update at step t as θt= θt−1−wt⊙ gt. The
gradient vector is determined from the derivative of the energy function along
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every parameter direction gt=∇θE(θt), where EðθÞ ¼ hΨ½θ�j Ĥ jΨ½θ�i is the
estimated energy. The set of parameter-dependent adaptive learning rates is

determined as wt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δθt�1þϵ

p ffiffiffiffiffiffiffi
stþϵ

p , where the leaked average of the square of rescaled

gradients at the previous step is obtained as
Δθt�1 ¼ βΔθt�2 þ ð1� βÞðwt�1 	 gt�1Þ2, and that of gradients is evaluated as
st ¼ βst�1 þ ð1� βÞg2t . The operator⊙ denotes element-wise product. The
Adadelta algorithm involves a hyperparameter ϵ to regularize the ratio in
determining wt, which is set to 10−8, and a mixing parameter set to β= 0.9. The
leaked averages are all initialized to zero. We fix the number of steps in Adadelta
optimization to Ns= 250 in our simulations. Considering that the evaluation of one
gradient component associated with a variational parameter involves cost function
measurements at two distinct parameter points following the parameter-shift rule,
the quantum computational resource for Adadelta optimization is comparable to
SMO with Nsw= 60.

Figure 9 shows the representative convergence behavior of qubit-ADAPT
energy with an increasing number of variational parameters Nθ calculated using a
number of shots Nsh= 216 per observable. The adaptive ansatz energy E decreases
as the circuit depth increases with more variational parameters. The energy points
shown include not only the final Adadelta optimized energies of the qubit-ADAPT
ansatz with Nθ parameters but also intermediate energies for the 250 Adadelta steps
to provide a detailed view of the convergence. For the operator screening step of the
qubit-ADAPT calculation we fix Nsh= 216 for energy evaluations in all cases, and
determine the energy gradient by the parameter-shift rule68. The final energy error
from the calculations with Adadelta is E−EGS= 4.4 × 10−3. This is comparable
with the result from the SMO optimizer.

The ground state ansatz of (2, 2) eg model used on ibmq_casablanca. The
qubit-ADAPT ansatz takes the pseudo-Trotter form. The converged ansatz for the
eg model which we used for the calculations on IBM quantum hardware
ibmq_casablanca is composed of 32 generators for the multi-qubit unitary
gates, which are listed here with parity encoding (in the order that they appear in
the ansatz):

IIIZXY, IYXIII, XYZIII, IIZYXZ, IXYIII,
ZXYIIZ, XYIIZZ, XYIIIZ, IIIIYX, IZXYXX,
IIXZYI, IIXIIY, IIXIZY, IIZYXZ, IIIZYX,
YXIIII, IZXIZY, IIXIZY, IIYIIX, IIZXYI,
IZXYXX, IZYIZX, ZYXIII, ZYIIZX, IIYIIX,
IIIIXY, IIXIIY, IIXIYZ, IIXZYI, YXXIZX,
IIXIYZ, YXXIIX.

Data availability
All the data to generate the figures are available at figshare83. Data supporting the
calculations are available together with the codes at figshare53,54,64. All other data are
available from the corresponding authors on reasonable request.

Code availability
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