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INTRODUCTION 

Pseudo-random signal correlation techniques can irnprove the flaw detection capability of ultrasonic 
NDE systems. While the correlation-based systems provide significant improvement in the signal-to-noise 
ratio compared to pulsed systems, their performance is limited by the so-called "self-noise" of the system. 
Self-noise is a result of imperfect autocorrelation characteristics of the excitation signal. Last year, we 
suggested some techniques for irnproving the flaw detection capability of continuous-mode ultrasonic NDE 
systems [1]. Thesesystems use a continuously transmitred coded waveform as an excitation signal, and the 
received signal is processed through a correlation filter. This year, we present another new approach and 
demonstrate performance results and the practicability of each approach. 

BACKGROUND AND THEORY 

Two basic types of ultrasonic correlation systems were proposed in the past. The first type operates 
in the coded-pulse modeandrelies on the aperiodic (linear) autocorrelation properties ofthe coded-pulse [2-
6]. While this approach perrnits the use of a single transducer for transmission and reception, which makes it 
similar to pulse-echo methods, its performance is limited by relatively !arge self-noise Ievels. A second type 
of ultrasonic correlation systems, also proposed previously, operate in continuous mode and rely on the 
periodic (circular) autocorrelation properties ofthe pseudo-random waveform [7,8]. As discussed in the next 
section, these systems also suffer from the self-noise problem, although to a lesser extent. 

The signal-processing blockdiagram of the ultrasonic correlation system we used is shown in Figure 
I. The transmitter generates a pseudorandom excitation signal, s(t), that is introduced into the test object 
using a suitable transmitting transducer. The scattered ultrasound, that is picked up by the receive transducer, 
and the additive system noise component, n(t), constitute the received signal, r(t). The function h(t) 
represents the impulse response of the composite system which includes, the test object, transmit and receive 
transducers, and their associated electronics. The correlation filter computes the cross-correlation between the 
received waveform, r(t) and the transmitted signal, s(t). The same setup is used for both coded pulses and 
continuous transmission. A short review of the theory is now provided for continuity purposes. 

Assuming the system to be linear and time-invariant, the output of the correlation filter can be repre­
sented by, 

<r.+n 
R(1:)= J s(t+'t) [s(t)*h(t)+n(t)] dt . (1) 

t=t0 
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Figure 1 Signal processing blockdiagram for the 
laboratory spread-spectrum ultrasonic correlation 
system used for measurements. 
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Figure 2 Idealized impulse response used for 
simulations. 
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where, T represents the integration time of the correlator. For continuous-mode systems, T is equal to the 

period of the transmitted signal, s(t). For coded-pulse mode systems, T corresponds to the fulllength of the 
coded pulse. By interchanging convolution and integration, and computing the autocorrelation of the 
excitation signal, the output correlation function representing the signature of the test object is 

(2) 

where Nlr:) is the random noise component given by, 

(to +1) 

N,(t)= J s(t+t)n(t)dt. (3) 
t=t0 

and Rss( t) represents the autocorrelation of the excitation signal. If the autocorrelation function of the excita­

tion waveform could be made a perfect delta function, equation (2) would become 

R(t)=h(t)+N,(t) 

and we would have a estimate of the impulse response without frequency distortion and corrupted only by 
additive measurement noise. 

(4) 

In [7} and [8], the authors show that this method of estimating the impulse response, h(t), provides 
significant improvement in SNR compared to the pulsed ultrasonic method. The focus of this paper, however, 
is the implementation of the "imperfect" autocorrelation function of the excitation waveform and its conse­
quences on the estimation of h(t). 

SELF-NOISE IN UL1RASONIC CORRELATION SYSTEMS 

There are two factors which prevent a practical correlation system from achieving the ideal results 
portrayed in equation (5)- the transmitted waveform is not truly random but pseudo-random and the 
correlation function implementation is not ideal. An ideal correlator has an infinite integration time, not the 
finite integration time, T, imposed by a practical correlator. For coded pulse bursts of length, T, the aperiodic 
autocorrelation function of the excitation waveform is given by 
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(10 +T-~) 

Rs.(r:) = J s(t+r:) s(t) dt . (5) 
t=t0 

while for continuous-mode correlation systems, the periodic autocorrelation function is 

(10 +1) 

Rss( r:) = J s(t+r:) s(t) dt . (6) 
t-=t0 

Thus, the practicallimitations imposed by {5) and (6) require that (3) be modified to 

R55( r:) =h( r:) +N5( •) +N,( •) (7) 

where N5( •) represents the "self-noise" caused by the use of an excitation signal with imperfect, but practical, 

autocorrelation function. Self-noise is correlated with both the excitation signal, s(t), and the system impulse 

response, h(t) and its magnitude depends on the period of s(t) and the nature of h(t). If h(t) contains a high­

amplitude component caused by something such as a back wall reflection, it is very possible that the 

magnitude ofN.(•) is !arge enough to obscure weaker components of h(t). 

EXAMPLES OF SELF NOISE 

To predict and compare actual performance in the Iabaratory setup, the self-noise effects of both 

linear (coded pulse) and periodic (continuous) sequences in ultrasonic correlation systems were simulated. 
Based on using transducers with a center frequency of 5 MHZ, a pseudo-random bandpass signal, s(t), was 

generated from the binary phase-shift keying of a 5 MHZ (center frequency) carrier using a maximal-length­

pseudo-random code oflength 1023. The resulting linear (LACF, coded pulse) and periodic (PACF, 
continuous) autocorrelation functions (ACF) for the bandpass signal, s(t), are shown in Figures 3 and 4. Both 

correlation functions have their main correlation lobe at zero lag ( desired response ). The correlation sidelobes 

at non-zero lag, which are the undesired self noise, N5( •), are 38 dB below the main lobe for linear 

correlation (Fig 3) and 60 dB below the main lobe for periodic autocorrelation (Fig 4). The continuous system 

gives an improvement of 22 dB for a length 1023 sequence. 

For comparison purposes, we simulated the effect of self noise for the two autocorrelation methods 

(Figures 5 and 6) for the idealized system impulse shown in Figure 2. These results show that the coded-pulse 

approach has a serious dynarnic range Iimitation caused by self-noise and hence is not suitable for the most 

demanding applications. Its use is generally limited to the same applications where traditional pulse echo 
methods are used but where the material has more attenuation. The continuous-mode system has a constant 
self-noise Ievel and the impulse function estimate is much better than obtained using the coded pulse. 
However, the self-noise Ievel still Iimits it use because it obscures the smaller flaws. In the next section, we 
describe our approaches to reducing the self noise below both system noise and digitization noise Ievels. 

SELF-NOISE SUPPRESSION APPROACHES 

It is fairly straight forward to argue that a truly random waveform and its mathematically perfect 
autocorrelation function is practically unrealizable. However, there exists certain classes of deterministic but 
pseudorandom waveforms, which result in the complete suppression of self-noise. The last two approaches 

chosen for this paper are based on the design of a periodic pseudo-random waveform, s(t), such that its 

periodic autocorrelation function (PACF) satisfies the relation, 

where Tc is the duration of one symbol of the maximal-length sequence and is frequently called a 'chip' 

interval. If N represents the length of the sequence, the period of s(t) is given by, 

(8) 

(9) 

The problern of pseudo-random waveform design for self-noise Suppression directly translates into the design 
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Figure 3 Linear autocorrelation function (LACF) of a 
bandpass excitation signal based on a maximal­
length- sequence of length 1023. 

Figure 4 Periodic autocorrelation function (PACF) 
of a bandpass excitation signal based on a maximal­
length-sequence of length 1023. 

of corresponding sequences having certain desirable properties. In the following, the mathematical bases of 
two approaches are presented. 

In our previous paper [1], we presented two approaches for obtaining perfect suppression ofthe self 
noise. In this paper, we will use the one based on perfect periodic autocorrelation defined the waveform 
symbol values as 

A=(-l±y'M+l) 
M 

(10) 

where M is the length ofthe sequence (1023 symbols). We refer to this as "Approach-2"- using sequences 
with perfect periodic autocorrelation function and amplitude offset, or simply the "amplitude offset approach." 
Forthis paper, we present a new method called "Approach-3" which is now described. 

In Approach-3, we obtain a new sequence {z.}, by making the following transformation on a 
maximal-length sequence {a,.} 

"n- Tl 

a = -1 

The PACF of the resulting complex sequence is given by, 

M 

p zz(d)= L Z* n . zn+d 
n=l 

The product z * n. zn+d can have only two values, I and e icjl. Hence equation (12) reduces to, 

Using a property of maximal-length sequences, it can be shown that, 

icjl 
p (d*O)=(M-1)+(M+1)e 

zz 2 2 
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(12) 

(13) 

(14) 



The constraint equation that will set the magnitude of P zz(d*O) equal to zero is 

(M -1)+(M + 1).cos(<j>)=O 

which gives the value of the phase angle as, 

M-1 
<J>=cos- 1( ---) 

M+1 

(15) 

(16) 

Hence, if <I> is chosen according to the above relation, the sequence {z.} will be based upon two elements '+I' 

& e i<J>, and the P ACF of the sequence will be perfect. This means that, 

M 

P (bO)=~z Z* d=O 
zz L..J n n+ 

nol 

M 

P zz(d=O)= L Zn Z* n = M 
n"'l 

Approach-3 will be referred to as the "phase-offset method." 

For comparison purposes, it is necessary to surnmarize our original method (Approach-1) to 
generating the random continuous waveform. It was based on a well-known method of carrier modulation 
called "binary phase shift keying" (BPSK) where s(t) is generated using the following transformations for 
sequence values to phases to signal: 

z = + 1 n 

z = -1 n 

8(t)=1 

8(t)=1t/2 s(t) = Acos[21tfot + 8(t)] 

(17) 

(18) 

(19) 

Although the original method had low self-noise, it was not zero. The new method (phase-offset) defined in 
the same format is 

z = -1 n 

8(t)=1 

I M-1 8(t)=cos- ( ---) 
M+1 

s(t) = Acos[21tf0t + 8(t)] 

and we remind the reader that the waveform values vary as a function of M, the code length. 

SYSTEM IMPLEMENTATION AND SIMULATION 

(20) 

The new phase-offset method was implemented on a general purpose lab-grade instrument (Fig. 1) 
and its performance evaluated by making measurements on a test sample. A 486PC is connected to the 
arbitrary function generator (AFG) and to the 8-bit digitizer through the IEEE-488 interface. The excitation 
waveform, s(t), was generated in the PC and downloaded to the AFG. The waveform was based on a 10th 
order maximallength sequence- giving sequence length of 1023. The received signal, after amplification, was 
digitized at a 100 MHZ sample rate using an eight bit digitizer. The correlator was implemented with digital 
signal processing algorithms on the PC. 

lt is important to understand the instrument limitations before performing the experiment and 
interpreting the results. Of particular consequence is the effect of quantization noise generated as a result of 
the digitization of the received waveform. The quantization noise produces a random noise component in the 
measured signature function, as represented in (4) and (7). For an 8-bit quantizer, the quantization noise is on 
the order of -40 dB. The test object was a circular disk of plastic material, 114 inch thick and \12 inch in 
diameter. The measured impulse response was expected to consist of a through-transmission component 
followed by regularly spaced and attenuated components corresponding to the multiple reflections from the 
two flat surfaces of the disk. 
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Figure 5 Impulse response simulation using coded­
pulse correlation system. 
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Figure 6 Impulse response simulation using 
continuous-mode correlation system. 
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The measured impulse response using our previous method (BPSK, Approach-!) is shown in Figure 

7. It has an almost constant self-noise Ievel of -60 dB, which matchesweil with the theoretical results. The 
self-noise Iimits the detectability Iimit for the BPSK approach and , in this example, reflections beyond the 6th 
cannot be observed. Any signal component weaker than -60 dB is obscured by the self noise and is 
undetectable. Figure 8 shows the equivalent test result using amplitude offset (Approach-2). A casual 
comparison might only reveal that there is an improvement in the detectability Iimit of about 20 dB since the 
noise floor has gonedown to between -60 and -80 dB. Thus making it possible to "see" the 7-th through the 
10-th multiple reflections which were previously obscured. However, a detailed analysis of the result shows 
that the detectability Iimit is now determined by the random noise Ievel (instead of the self-noise Ievel) and the 
noise floor in this figure corresponds to the random noise component of (4). Finally, the equivalent results for 
the new offset phase method (Approach-3) is shown in Figure 9. 

PRACTICAL CONSIDERA TIONS 

Approach-3 produces a signal which is also described as offset biphase modulation since the 
difference between the two phase angles is not exactly 180 degrees. Also, the waveform has a constant 
envelope so amplitude distortions arenot a big concern. By using new digital techniques, such as arbitrary 
waveform generation, offset BPSK can be generated very conveniently. Previously, generation of an accurate 
offset biphase modulated signal using analog circuits was very difficult. Finally, this optimum waveform 
design is derived only for maximal-length sequences. This is not a serious Iimitation since most pseudo­
random correlation systems are designed with maximal-length sequences because of their well-known and 
effective randomness properties. Perhaps the only Iimitation is that the maximal-length sequences exist only in 

lengths (2n -1), where n isapositive integer. The presented techniques for self-noise suppression can, 

however, be extended to a much wider class of pseudo-random sequences. 

CONCLUSION 

By employing a carefully designed, periodic pseudo-random excitation waveform and a periodic 
correlation filter, it is possible to completely eliminate the self-noise in ultrasonic correlation systems. The 
remaining Iimits then become random system noise and digitization noise. Performance measurements in the 
Iabaratory indicate that the new method is very effective. 
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Figure 7 Impulseresponse (correlation signature) of plastic disk using the previous BPSK 
waveform (Approach-!). 
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Figure 8 Impulseresponse (correlation signature) of plastic disk using sequences with perfect 
periodic autocorrelation function and amplitude offset (Approach-2). 
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Figure 9 Impulse response ( correlation signature) of plastic disk using sequences with perfect 
periodic autocorrelation function and phase offset (Approach-3). 

REFERENCES 

1. Jahangir K. Kayani and Steve F. Russell, "Choice of coded waveform and correlation filter for self· 
noise suppression in ultrasonic correlation systems", Review of Progress in Quantitative 
Nondestructive Evaluation, Vol. 15, Edited by D. 0. Thompson and D. E. Chimenti, Plenum Press, 
New York, 1966. 

2. Eric S. Furgason, Vernon L. Newhouse, Nihat M. Bilgutay and George R. Cooper, "Application of 
Random Signal Correlation Technique to Ultrasonic Flaw Detection", Ultrasonics, Vol. 13, No. l, 
January 1975, Page 11-17. 

3. Nihat M. Bilgutay, Vernon L. Newhouse, "Evaluation ofRandom Signal Correlation System for 
Ultrasonic Flaw Detection", IEEE Transactions on Sonics and Ultrasonics, Vol. SU-23, September 
1976, Page 329-333. 

4. Charles M. Elias and T. J. Moran, "A Pseudorandom Binary Noise NDE Ultrasonic Correlation 
System", Proceedings of IEEE Ultrasonics Symposium, 1978, page 311-315. 

5. Charles M. Elias, "An Ultrasonic Pseudorandom Signal-Correlation System", IEEE Transactions on 
Sonics and Ultrasonics, Vol. SU-27, No. 1, January 1980, Page 1-7 

6. B. B. Lee and Eric S. Furgason, "A New Digital Correlation Flaw Detection System", Journal of 
Nondestructive Evaluation, Vol. 2, No. 1, 1981, Page 57-63. 

7. Mohamed A. Benkhelifa, Marcel Gindre, "Echography Using Correlation Techniques, Choice of 
Coding Signal" , IEEE Transactions on UFFC, Vol. 41, No. 5, September 1994, Page 579-586. 

8. Eric A. Lindgren, M. Rosen, "Ultrasonic Characterization of Attenuative Materials by means of a 
Correlator System", Nondestructive Characterization of Materials IV, Plenum Press, New Y ork, 
1991. 

1914 




