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Abstract
Genetically resistant or susceptible chickens to Marek’s disease (MD) have been widely used models to
identify the molecular determinants of these phenotypes. However, these prior studies lacked the basic
identification and understanding of immune cell types that could be translated toward improved MD
control. To gain insights into specific immune cell types and their responses to Marek’s disease virus
(MDV) infection, we used single-cell RNA sequencing (scRNAseq) on splenic cells from MD resistant and
susceptible birds. Totally, 14,378 cells formed clusters that identified various immune cell types.
Lymphocytes, specifically T cell subtypes, were the most abundant with significant proportional changes
in some subtypes upon infection. The largest number of differentially expressed genes (DEG) response
was seen in granulocytes, while macrophage DEGs differed in directionality by subtype and line. Among
the most DEG in almost all immune cell types were granzyme and granulysin, both associated with cell-
perforating processes. Protein interactive network analyses revealed multiple overlapping canonical
pathways within both lymphoid and myeloid cell lineages. This initial estimation of the chicken immune
cell type landscape and its accompanying response will greatly aid efforts in identifying specific cell
types and improving our knowledge of host response to viral infection.

Introduction
Marek’s disease virus (MDV), a highly oncogenic alphaherpesvirus that infects chickens, causes great
losses to the poultry industry by inducing T cell lymphomas and immunosuppression in susceptible
birds1 2. MDV establishes persistent infection in its host with clinical symptoms as early as three weeks
post infection. Vaccines against Marek’s disease (MD) are routinely administered to all commercial
poultry but have repeatedly lost efficacy over time due to the evolution of new MDV strains. While MD
vaccines are highly protective in controlling tumor incidence, it is hypothesized that their inability to
eliminate viral replication or transmission has been a major factor in the emergence of more virulent MDV
strains in MD-vaccinated flocks2.

MDV evades the host immune response through inhibition of important pathways, such as
downregulation of MHC class I3, thus allowing the virus to achieve latency and establish persistent
lifelong infection. MDV can escape innate immunity through downregulation of interferon expression4;
multiple MDV proteins, including the viral oncogene, Meq, are able to inhibit type 1 interferon production
via the cGAS-STING pathway, which may allow evasion of early innate responses to viral infection, and
escape of antitumor pathways5. MDV genes can also undergo alternative splicing in infected B cells,
suggesting ongoing viral diversity is a key part to its survival in the host6. The dynamics of MDV
emergence are correlated with numerous factors such as bird age, time of year, host genetic background,
and diet, making intervention and control very challenging7,8.

The search for a better understanding of MD resistance is complicated by its polygenic basis with the
major histocompatibility complex (MHC) locus a major influence on MD resistance1 as well as non-MHC
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genetic factors. Avian Disease and Oncology Laboratory (ADOL) lines 63 and 72 are two highly inbred

White Leghorn lines that are relatively MD resistant and susceptible, respectively1, and have proven
invaluable for understanding the underlying mechanisms of genetic resistance to MD. Hereafter, these
lines are referred to as resistant and susceptible. Because both lines share the same B2 MHC haplotype,
this greatly enables identification of non-MHC genes that influence MD incidence. Despite the complexity
of MD resistance, researchers have identified a large number of candidate genes that collectively account
for over 80% of the genetic variance between the two lines with allele-specific expression differences
observed in response to MDV infection within and between lines9. Also, a GWAS study of MD resistance
has identified 38 QTLs that after retesting the underlying variants in elite commercial lines suggests that
a few loci are associated with overcoming MDV infection10. These genetic studies collectively show the
expected polygenic nature of the MD genetic resistance.

Transcriptome analysis in MDV infection research has thus far either involved the preparation of bulk
RNA from whole organ homogenates11 or the isolation and study of a few single cell types, such as
macrophages12. The host response to MDV within macrophages from both MD resistant and susceptible
lines showed significant gene regulatory changes with stronger virally induced responses in cells from
susceptible birds (n = 1,265 genes regulated)12. Among lymphocytes, B cells are infected early following
MDV entry into the lung and a large (n = 2,186) in vitro DEG response was found in MDV-infected B-cells
compared to control B-cells, with an enrichment for cytokine-cytokine receptor activation pathways13.
While these studies have yielded gene expression signals relevant to the host immune response to MDV
infection in specific cell types or as aggregate transcriptomes, the context of coregulation of molecular
pathways by all cell types has been missing. Cell type specific responses to systemic infection are
important for understanding MDV’s evasion of immune response, and single-cell RNA sequencing
(scRNAseq) now allows for reconstruction of distinct cell populations and their gene expression patterns.
Recent work broadly illustrates the depth of exploration possible when investigating immune response by
cell type regardless of the virus type or host species14,15.

In this study, we performed scRNAseq to determine the splenic cellular reaction during the cytolytic phase
(six days post infection (dpi)) in MD resistant or susceptible chickens when in uninfected control or MDV-
infected states (Fig. 1). Our study adds to the prior but limited immune cell landscape knowledge of the
chicken16 17, especially in spleen, using scRNAseq of spleenic-derived mononuclear leukocytes; we
annotated major cell populations based on known chicken immune cell markers and inferred similarities
to mammalian immune cell types. We then determined the compositional and transcriptional changes
occurring upon MDV infection for these immune cell types. The use of birds infected with virulent MDV
and uninfected controls from both resistant and susceptible lines served to identify differences in early
cellular responses, which are likely to be important for early control of viral replication and tumorigenesis.

Results
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Cellular transcriptomics. Our previous work with these two lines demonstrated robust viral responses in
measured phenotypes of resistance and their gene expression1,9. After splenic-derived leukocyte harvest
from MDV-infected and control birds from both lines, we recovered 22,566 cells after standard quality
control filtering (see methods). Totally, 14,378 cells passed further quality control metrics for gene
number expressed, total read counts, and percent counts mapping to mitochondrial and ribosomal genes.
A median of 478 genes were detected per cell. To account for both batch effects and true differences
between cells of the same type in different samples, we integrated cells across samples using
Harmony18. We manually inspected all initial clusters after dimensionality reduction using uniform
manifold and approximation projection (UMAP19) and unsupervised clustering of all cellular
transcriptomes using the Leiden algorithm20. The distribution of individual cells by cluster are mostly
uniform by viral infection state or across genetic lines (Suppl. Figure 1) to yield 12 transcriptionally
distinct clusters of cells for further analysis.

Cell type identification. Before cell type identification, DEGs in each cluster compared to all other clusters
were identified. As there are few well-curated chicken gene markers for major immune cell types, manual
curation was essential, which included inference with human and mouse scRNAseq databases in
combination with searches of chicken immune studies for avian-specific expression patterns. Some
DEGs in each cluster were unannotated (just Ensembl gene identifiers), so additional curation was carried
out to assign gene ontology, if possible. For example, upon further curation the unannotated
ENSGAL00000015461 gene is Bu-1, a definitive marker of chicken B cells21. However, multiple DEGs had
neither orthologs with other species nor previous studies determining their ontology (Suppl. Table 1). Our
identification of the cell type mostly used the top 20 significantly DEGs per cluster (Suppl. Table 1; p < 
0.01; Fig. 2A), where our assignments represent a prediction based on cells that occupy a
transcriptionally distinct cluster. Future experiments should validate if these varied immune cell types
truly define a cell type, e.g., antigen presenting or plasma B cells. Some genes demonstrate the shared
lineage expected from prior studies, e.g., T cell factor-7 (TCF7; Fig. 2C), an established T cell marker, while
others are more cell-type specific, e.g., Ig λ chain (IGLL1; ENSGALG00000049450; Fig. 2D) in plasma B
cells. We hereafter report our cell type predictions by their lymphoid or myeloid categorizations (see
Fig. 2B).

Lymphoid Cells. Cluster 0, the largest grouping, appears to be an aggregate of T cell types (Fig. 2B),
enriched for αβ T cells with the presence of T cell receptor (TCR) β chain (TCRB; ENSGALG00000014754;
Fig. 2A; Suppl. Figure 2). Some cells belonging to this cluster also expressed TARP (TCR γ chain; Fig. 2A;
Suppl. Figure 2), but αβ T cells are the most abundant. T cell gene markers TCF7 (Fig. 2C), CD3e molecule
(CD3E), CD8a molecule (CD8A), and interleukin 7 receptor (IL7R) are also present (Suppl. Table 1).
Therefore, we labelled cluster 0 as bulk T cells.

Cluster 1 showed γδ T cell enrichment based on TARP (Fig. 2A) and TCR δ chain (TCRD;
ENSGALG00000043654; Suppl. Table 1) expression. T cell lineage genes such CD7 and interleukin 2
receptor subunit beta (IL2RB) were expressed (Fig. 2A; Suppl. Table 1) and when considering the localized
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expression of X-C motif chemokine ligand 1 (XCL1), a chemokine associated with T cell activation22

(Fig. 2A; Suppl. Figure 2), we classified cluster 1 as effector T cells (γδ enriched).

In cluster 2, TARP and TCRD expression are also observed (Fig. 2A; Suppl. Table 1) but compared to
effector T cells (γδ enriched), we suggest cluster 2 cells are in a different state due to GM-CSF family
chicken-specific cytokine KK34 gene expression (Fig. 2A; Suppl. Figure 2). Another distinguishing T cell
marker was the retinoic acid related orphan receptor (RORC; Suppl. Table 1) that is a therapeutic target for
T cell-associated diseases in humans23. RORC (in its γt isoform) is strongly associated with TH17
immune responses in mammals, including classical TH17 helper T cells, certain TH17-like innate
lymphocytes, and γδ T cell populations24 23,25. This cell type may represent chicken TH17-like T cells;
however, further characterization is needed to demonstrate typical TH17 cytokine activity. We therefore
labelled cluster 2 as T cells (γδ enriched).

Clusters 3 and 4 expressed T cell markers but less definitive evidence was available to assign specific T
cell type (Suppl. Table 1). In cluster 3, TCF7, IL7R, CD3E, and insulin like growth factor 1 receptor (IGF1R)
indicate assignment of a general T cells (1) label was appropriate (Fig. 2A; Supp. Table 1). Cluster 4, with
the expressed T cell lineage markers, TCF7, GRB related adaptor protein 2 (GRAP2), and CD247 molecule
(CD247), and was designated cluster 4 as T cells (2) (Fig. 2A and C).

Clusters 5 and 6 were predicted to contain B lymphocytes that we categorized as antigen-presenting and
plasma B cells, respectively. Cluster 5 expressed the B cell markers Bu-1, a B cell marker in chickens21,
and CD79B molecule (CD79B; Fig. 2A; Suppl. Figure 2). Annotation of cluster 6 was based on the marker
genes Ig λ chain (IGLL1), IgM (JCHAIN), and thioredoxin domain containing 5 (TXNDC5; Fig. 2A and D;
Suppl. Figure 2). High TXNDC5 expression suggest cluster 6 represents a plasmablast/plasma cell state.

Myeloid Cells. Among possible myeloid cell types, we identified antigen-presenting cells (cluster 9),
granulocytes (clusters 10 and 11), and two macrophage types (clusters 7 and 8; Fig. 2B). Cluster 9
contains cells involved in antigen processing and presentation as suggested by strong expression of a
MHC class II beta chain genes26 (BLB1 and BLB2; Fig. 2A). Cluster 9 also expresses the Fc fragment of
IgE receptor (FCER1G; Suppl. Table 1), consistent with an antigen-presenting myeloid cell label.

In cluster 10, extracellular fatty acid-binding protein (EXFABP) and pancreatic progenitor cell
differentiation and proliferation factor (PPDPF; Suppl. Figure 2) expression suggests annotation as
granulocyte (1). In chicken spleen, EXFABP is overexpressed in various myeloid cell types when
challenged by Salmonella27, and is constitutively expressed in heterophils28 while PPDPF in humans is
enriched in eosinophils relative to other immune cell populations 29. We predict cluster 11 to be another
granulocyte subtype, which we labelled as granulocytes (2); this is supported by high expression of
cathepsin-G (CTSG), which is expressed in the granules of chicken heterophils28 and histidine
decarboxylase (HDC), associated with basophil or mast cell-like populations30 (Fig. 2A).
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Cluster 7, labelled as macrophages (1), expressed macrophage markers interferon alpha inducible protein
6 (IFI6) and C-type lectin domain family 4 member F (CLEC4F-like; Fig. 2A). Cluster 8 expressed
macrophage markers Spi-C transcription factor (SPIC) and macrophage receptor with collagenous
structure (MARCO) that led us to label them macrophages (2) (Fig. 2A). Additionally, cluster 8 expressed 2
C-X-C motif chemokine ligand 13 (CXCL13), a B cell chemoattract in vitro31. These two macrophage cell
types expressed very few of the same genes that justified their separate identities (Suppl. Table 1).
However, further categorization of splenic macrophage cell types is needed as various spleen
macrophage and dendritic cell populations can be distinguished by other genes including CSFR1 and
CD11c32.

Cell type abundance changes upon MDV infection within line. Upon prediction of putative cell types, we
estimated the proportional changes for each cell type using a Fisher’s Exact test (p < 0.05) when
comparing within susceptible or resistant lines for MDV-infected versus control. Within each line,
generally few cell types showed significant compositional shifts upon MDV-infection (Fig. 3A) with only
MDV-infected resistant birds showing a significant increase in the bulk T cells (Fig. 3A). In both lines, the
proportion of T cells (2) and T cells (γδ enriched) decreased with viral infection. Antigen presenting B
cells were lower in the infected state for both lines, while plasma B cells only increased in abundance
among susceptible birds. Among myeloid cell types, very few significant changes were observed for cell
counts between infected and control within line (Fig. 3A), although granulocytes (1) were lower in the
resistant line upon MDV infection.

General differential gene expression responses to MDV infection within line. The total number of DEGs (p 
< 0.01) upon viral infection across all cell types was 1.9-times greater in the MD susceptible birds than in
resistant birds (Fig. 3B; Suppl. Tables 2 and 3). Hierarchical clustering revealed that the major separation
between cell clusters (except for macrophages (2)) was based on genetic line rather than cell type,
consistent with the large differences in resistance to MD between these lines (Fig. 4A). Along with a
general feature of higher numbers of DEGs seen in the susceptible birds, several cell type-specific
differences were found between lines (Fig. 4B and C). For example, a larger number of down-regulated
DEGs was observed in macrophages (1) but only in the resistant line during MDV infection (Figs. 3B, 4B
and C). The cell types with the most upregulated genes upon MDV infection in the susceptible line were
granulocytes (1) then T cells (1) (Figs. 3B and 4C).

When examining specific genic responses to MDV, granulysin (GNLY) and granzyme A (GZMA) showed
near universal significant changes in expression across cell types in both lines (Fig. 4B and C); however,
some cell type variabilities of these cell perforating genes were observed, such as fewer cell types
increasing expression of GZMA in the resistant line (Fig. 4B and C). More broadly, transcriptomic
responses to MDV in certain cell types also revealed the importance of genes with limited prior
annotation. For example, ENSGALG00000043654 (TCRD) was previously identified based on aligned
mRNA datasets as the TCR δ locus on chromosome 2733,34, and in this study was a DEG in three
lymphoid cell types of resistant birds and five in susceptible birds (Fig. 4B and C). Despite their
importance and significant prior study, the B and T cell antigen receptor loci lack full annotation in the
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chicken genome. Given the enormity of DEG responses across cell types we highlight mostly immune
genes of interest based on our prior studies of MDV in the chicken9.

Bulk T cells. In both lines, TCF7, a transcriptional activator in T cell lymphocyte differentiation35, was
most downregulated in response to MDV. Similarly, in both lines, an additional member of the cytotoxic
serine protease gene family, granzyme K (GZMK; ENSGALG00000013546) was upregulated in MDV-
infected compared to control (Suppl. Tables 2 and 3). Overall, very few genes were downregulated (n = 3
or 13; Fig. 3B; Suppl. Tables 2 and 3) in either line when MDV-infected, with a greater upregulation of
genes (n = 20 or 48; Fig. 3B; Suppl. Tables 2 and 3) in this T cell population.

Effector T cells (γδ enriched). As in the bulk T cell cluster, total DEGs in effector T cells were higher in
susceptible (n = 60 DEGs) than resistant birds (n = 18) (Fig. 3B; Suppl. Tables 2 and 3). Chemokine
receptor genes (C-C motif chemokine ligand 1 (CCL1), C-X3-C chemokine receptor 1 (CX3CR1)) expression
levels were elevated by MDV infection in this cell type only within resistant birds (Suppl. Tables 2 and 3).
Similarly, BLB2 expression was higher only in the resistant line (Suppl. Tables 2 and 3).

T cells (γδ enriched). Upon MDV infection for splenic T cells (γδ enriched), we identified 93 and 73 DEGs
in the susceptible and resistant lines, respectively (Fig. 3B; Suppl. Tables 2 and 3). As in the previous T
cell clusters, multiple cytotoxic serine proteases, not just GZMA, responded to MDV, with increased GZMK
and decreased granzyme G-like gene (ENSGALG00000054174) expression within both lines (Suppl.
Tables 2 and 3). Other immune related genes significantly changed expression within MDV-infected birds,
and when searching protein-protein interaction networks using STRING, we find the expected immune
functions within these T cells’ (γδ enriched) DEGs as well as more generalized molecular processes such
as transcription, glycolysis, and oxidative phosphorylation that may indicate changes in T cell
metabolism and activation state (Fig. 5).

T cells (1 and 2). These T cells represent undefined types. For resistant line T cells (1), 92 and 15 genes
were up or down-regulated, respectively (Fig. 3B; Suppl. Table 3). In both cell types expression of IL7R
was significantly decreased (Supp. Tables 2 and 3). Upon infection in T cells (2), the total number of
DEGs was larger in susceptible compared to resistant birds, 53 versus 32, respectively (Suppl. Tables 2
and 3; Fig. 3B). In susceptible birds, a significant decrease in TCF7 gene expression occurred in T cells (2)
upon MDV infection; we observed this same decrease in both lines for the bulk T cells and effector T cells
(γδ enriched), and specifically in the susceptible line in T cells (γδ enriched) and T cells (1) (Suppl.
Tables 2 and 3).

B cells. In antigen-presenting B cells, the resistant line had a paucity of DEGs (n = 3) in contrast to
susceptible birds (n = 62 DEGs) (Fig. 3A and B). For susceptible birds, IFI6 increased while the IGLL1, and
invariant (class II) chains CD74 and CD79B genes decreased during MDV infection (Suppl. Table 2). In
plasma B cells, a higher number of DEGs was seen in the resistant line, 77 compared to 51 in susceptible
birds with some down regulation events of immune interest in resistant birds such as interleukin 1
receptor associated kinase 2 (IRAK2; Suppl. Table 3).
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Macrophages (1 and 2). Transcriptional responses to MDV infection of susceptible and resistant birds
within macrophages (1) showed 94 and 79 total DEGs, respectively (Suppl. Tables 2 and 3). Within the
resistant line, only 15% of DEGs were upregulated with the inverse seen in the susceptible line, 81%. The
highest upregulated DEG for susceptible macrophages (1) was enolase 1 (ENO1), an emerging gene
involved in cell transformation36 (Suppl. Table 2). The DEG number within macrophages (2) of resistant
birds was much lower (n = 39 genes) than susceptible birds (n = 116 genes; Suppl. Tables 2 and 3).
Protein-protein interactions were predicted, and for macrophages (1), revealed a much larger number of
connections due to susceptible DEGs, especially those involved in transcription, splicing, and oxidative
phosphorylation (Fig. 6). Most DEGs, irrespective of macrophage type and resistant or susceptible line,
were unique.

Antigen-presenting myeloid cells. These cells showed a moderate transcriptional response in both lines,
with 31 and 18 DEGs in susceptible and resistant (Suppl. Tables 2 and 3). In resistant birds, two genes
affiliated with the interferon activation pathway were increased upon infection, TNF alpha induced protein
2 (TNFAIP2) and interferon induced protein with tetratricopeptide repeats 5 (IFIT5). In contrast, JCHAIN is
downregulated in both lines during viral infection (Suppl. Tables 2 and 3). Class II antigen presentation is
decreased as seen with lower BLB2 and CD74 gene expression in only susceptible birds (Suppl. Table 2).

Granulocytes (1 and 2). Among all cell types, transcriptional responses to infection were the most
pronounced (n = 306) in granulocytes (1). Four-fold more DEGs were observed in the susceptible (n = 242)
than in the resistant lines (n = 64; Fig. 3B; Suppl. Tables 2 and 3). GRB10 interacting GYF protein 2
(GIGYF2), a gene putatively involved in regulating tyrosine kinase receptor activity and RAP1B, a member
of the RAS oncogene family, are both upregulated in the resistant line, highlighting the diversity of virally-
induced responses in this myeloid cell cluster (Suppl. Table 3). In granulocytes (2), total DEGs in
susceptible and resistant lines were more modest at 94 and 34, respectively (Suppl. Tables 2 and 3).
Among MDV-infected resistant birds, the largest increase in expression was for the 2’-5’ oligoadenylate
synthetase gene (OASL), known to be indirectly associated with the interferon gamma signaling pathway
and antiviral activity37 (Suppl. Table 3) while decreased expression of the tumor protein D52-like 2
(TPD52L2) gene may suggest some involvement in blunting the tumorigenic properties of MDV38.

Discussion
MDV remains enigmatic, from its ability to continually evolve and evade vaccine protection to the
multiplicity of presentations such as tumor formation, and as a result causes substantial economic
losses to the poultry industry. This avian single cell study of host transcriptional response to a virus
establishes initial criteria for identifying cell types in the chicken spleen, estimating resulting changes in
cell abundance and gene expression by cell type, and presents new molecular networks to study the
resistance phenotype to an avian oncogenic herpesvirus. Several viral infection studies demonstrate the
immense complexity of the immune response39,40 41 42, with which is supported by our chicken scRNAseq
data. Despite generating a multitude of testable hypotheses, we focused on those genes or their networks
are likely the most critical to MD resistance.
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When considering all DEGs in both lines, more genes are upregulated during this stage of infection in MD
susceptible than resistant birds, as seen previously9. We hypothesize that some of this difference is due
to more cells in susceptible birds being infected early9 but surprisingly two genes, GZMA and GNLY, both
associated with apoptosis events in the virally infected cell, dominate innate and adaptive cell lineages
responses across lines. In other species, these granzymes protect against viral infection in noncytotoxic
ways43. Our results suggest their functional role could be an aggressive first step of the immune system
but perhaps less cell-type specific in MD. GZMA is upregulated in response to avian leukosis virus in
chicken peripheral blood leukocytes and was suggested to be an important mechanism for cell-mediated
cytotoxicity for initial control of viral spread44. Sarson et al.45 reported that GZMA expression increased in
splenocytes assayed with an immune-specific microarray after MDV infection in both resistant and
susceptible chicken lines, a finding we recapitulate, now with cell type granularity. Vaccination for MD has
also been shown to increase GZMA and GNLY expression in chicken splenic γδ T cells at 3 and 7 dpi46 as
well as other immunostimulatory gene changes such as increased interferon gamma (IFNG)46 47. Given
the γδ T cells’ importance in human anti-tumor responses48, we speculate chickens use this cell type to
quickly induce cell perforating responses along with an array of other immune system genes when
confronted with MDV.

Chickens have a higher proportion of circulating γδ T cells than many mammalian species49, and
relevant to this study, splenic γδ T cells are effective mediators of MHC-unrestricted cytotoxicity in
chickens50. However, their specific role among T cell types in the context of MDV infection has been
missing49. When T cells (γδ enriched) DEGs in both lines were searched against a protein-protein
interactions database multiple networks associated with immune cell development, T cell selection,
transcriptional regulation, metabolic responses, and mitochondrial energy production were discovered
but, interestingly, some within-network gene regulation is specific to a line (see Fig. 5). Further
measurements of their relative abundances at multiple timepoints will be required to estimate their full
contribution to MD resistance.

A premise in the adaptive B cells defense against viral pathogens is the generation of high-affinity
antibodies requiring longer time periods to contribute to MD resistance. Nonetheless, we show
transcriptomic activation differences by line in both B cell types putatively identified in the spleen. For
antigen-presenting B cells, very few DEGs are observed upon viral infection in the resistant versus the
susceptible line. In contrast, plasma B cells had higher numbers of DEGs in the resistant line upon viral
infection, with some genes garnering interest for their potential contribution to resistance, e.g., IRAK2, a
key component of the toll like receptor complex activation can be subdued by vaccinia virus protein
interactions51. Our data suggest experiments to explore MDV interaction with IRAK2 could be informative
but also a need to look beyond splenic B cell types, e.g., to bursa of Fabricius.

Cells of myeloid origin are additional key players specific to the innate response to early viral infection. In
the mixed-population of antigen-presenting myeloid cells, two subtypes of granulocytes and
macrophages were present. In the antigen-presenting myeloid cells, DEGs overall suggest heightened
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antigen processing activity. Previously an MDV-protein interaction screen identified proteins that overlap
with these DEGs in both lines such as MHC class II beta (BLB), CD74, and complement component Clq-
binding protein (C1QBP)52. But we also find DEGs in our myleloid cell types with unknown association to
MD such as placenta-specific gene 8-like 2 (PLAC8). Of note, PLAC8 research suggests a multifaceted
role in tumorigenesis53, but its contribution in MD is unknown. Macrophages represent another
fundamental means to diminish viral infection12 54 and a RNAseq analysis of in vitro MDV-infected
macrophages showed significant gene expression changes in resistant birds12. Within this study, the role
of macrophages in MD resistance is better revealed with changes depending on line and subtype. The
biological meaning of this in vivo transcriptomic shift toward a susceptible or resistant phenotype merits
further experimentation with macrophage subtypes.

Allele specific expression (ASE) in MDV host response9 and genes embedded within QTLs10 previously
associated with MDV responses offered us opportunities to prioritize gene candidates among our DEGs
by cell type. A previous MDV-challenge study conducted at 4 dpi, identified 20 higher-priority QTL
candidate genes based on various factors10. Two candidates match our DEGs. Plasma B cells of the
resistant line that expressed the ADAM metallopeptidase domain 10 (ADAM10)), which is from the same
gene family, yet had unknown functional similarity to the QTL candidate ADAM metallopeptidase
thrombospondin type 1 motif 5 (ADAMTS5)10 in chicken; the second QTL candidate gene, CD79B, was
down-regulated only in antigen-presenting B cells from MDV-infected susceptible birds (Suppl. Table 2).
Despite few QTL-associated genes overlapping MD DEGs in this study, as a collated candidate gene set,
we expect modules of larger gene regulatory networks could be tested for trait association in the future.
Moreover, many other non-immune genes with possible viral protection roles to play such as the tumor
suppressor RAS and EF-hand domain containing (RASEF) gene, expressed only during the resistant line
response, should be considered.

Unlike prior MDV challenge studies9 12, we find novel cell type specific responses that when taken
together provide more insight into the various immune system components at play. Our results show
distinct gene expression differences, for instance, when in vivo splenic macrophages are exposed to MDV
compared to in vitro infection12. The molecular mechanisms that underlie the multifaceted phenotypes of
MDV response suggest many canonical signaling pathways are affected with varying temporal elements
to each, therefore leaving much to explore and validate with this data set in future experiments.

Methods
Experimental design. Ten birds each from the MD-susceptible (ADOL 72) and -resistant (ADOL 63) lines
were placed into Horsfall-Bauer (HB) units at hatch, five birds per line and HB unit. At one week of age,
five birds of each line (1 HB unit) were challenged interperitoneally with 2,000 pfu MDV (JM/102W
strain). Due to the need to process multiple samples and quickly transport them to an offsite facility,
uninfected control birds and MDV-infected birds were obtained three weeks apart from separate hatches,
but all birds were age-matched at euthanasia to six days after MDV infection. For these experiments we
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used CO2 gas euthanasia, following the current standards for poultry euthanasia provided in AVMA
Guidelines for the Euthanasia of Animals (2020 Edition). All experiments presented herein were carried
out in accordance with the approval of the Institutional Animal Care and Use Committee, USDA, ARS,
ADOL, East Lansing, MI (protocol approval number 2018-01). Moreover, all methods were performed in
accordance with the ARRIVE guidelines.

Library preparation and sequencing. After euthanizing the birds, spleens were aseptically removed,
homogenized, filtered to single-cell suspension through 35 micron cell strainers (Falcon, Inc), enriched for
mononuclear leukocytes over Histopaque-1077 (Millipore Sigma), and transferred the same day on ice for
single-cell capture and library preparation of a targeted 3,000 cells/sample. Single cell capture and cDNA
library preparation were performed on the 10x Genomics Chromium Single Cell 3’ instrument (10x
Genomics, Pleasanton, CA) according to the manufacturer’s recommendations. Pooled libraries were
barcoded by sample and sequenced (2x150 bp length) on an Illumina HiSeq 4000 (Illumina, Inc., San
Diego, CA).

Read alignment and processing. The individual tissue-specific sequenced Gel Bead-In Emulsion (GEM)
libraries were each initially processed with the Cell Ranger (v3.1.0) pipeline (10x Genomics), which
performs demultiplexing, alignment, barcode processing, and sample aggregation to create a cellular
barcode by genomic feature matrix, as described55. The GRCg6a genome reference (GCA_000002315.5)
was used for all sequence alignments, and the accompanying Ensembl gene coordinate files were used
to facilitate gene identification.

Filtering, normalization, and clustering. We used the scanpy platform v1.5.256 to filter and normalize the
cell by feature counts matrix, and to perform all subsequent analysis. First, we loaded the aggregated
filtered feature matrix from the Cell Ranger output and filtered out cells expressing fewer than 200 or
more than 1,000 genes, cells with a total UMI count of more than 2,500, and cells with more than 20% of
counts mapping to mitochondrial genes or more than 50% of counts in ribosomal protein genes. We
normalized counts per cell, logarithmized the resulting matrix, and scaled genes to unit variance and zero
mean, and regressed out total counts per cell and mitochondrial and ribosomal count percentages. We
calculated principal components using only highly variable genes, selected by the
“highly_variable_genes” function in scanpy and batch-corrected the results by sample using Harmony18.
We computed the 10-nearest-neighbor graph with the first 20 corrected principal components, and then
used the Leiden algorithm20 with resolution parameter set to 0.3 to partition the graph into clusters. We
used uniform manifold and approximation projection (UMAP) dimensionality reduction19 to visualize the
results. A Jupyter notebook containing all code used to perform these steps is available in this project’s
software repository and is available upon request.

Cell type identification and proportional change. We computed marker genes for each cluster using
scanpy’s default t-test with overestimated variance. Specific gene biomarkers are not yet known for most
Gallus gallus cell types we expected to identify in the sampled tissue, the spleen; we therefore used a
manual curation approach, starting with known avian cell type-specific gene markers from the literature
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(e.g., CD3E for T cells), and then when necessary indirect inference from orthologous known human or
mouse gene-specific cell type markers that are cataloged in CellMarker57 and PanglaoDB58. In some
cases we used previously identified immune cell types in human and mouse spleen59,60. For each cluster,
we ranked the top 20 differentially expressed genes (DEGs) (p < 0.01 value) when compared to all other
clusters, then used these DEGs to assign cell type identity to each cluster. At this first stage of clustering,
one cluster of cells overwhelming represented by genes involved in cell cycle progression was removed
and clustering was repeated on the remaining cells using identical parameters except for a Leiden
resolution of 0.25. The final top 20 DEGs were again used to finalize our cell type identities as described
above (Supp. Table 1).

Once our final clusters were labelled by cell type, we calculated the proportion of cell types, aggregating
by line and treatment groups. To determine whether a given cell type was proportionally over- or under-
represented after infection compared to control in the susceptible or resistant line, we used a Fisher’s
exact test.

Differential gene expression. We used edgeR61 with the QLF test and cellular detection rate as a covariate
to test for the differential expression of genes by cell type between pairs of groups of birds as in62, which
showed this method to be robust and scalable in the number of genes detected with the fewest false
positives. We performed the following two pairwise comparisons for each identified cell type: infected
versus control within resistant or within susceptible lines. In this study any gene with a log2FC > 1.0 and p 
< 0.01 was defined as differentially expressed. We found the HINTW gene to show differential expression
in some instances due to its multicopy presentation on the W chromosome, so it was removed from
further consideration after completing our statistical tests. The DEGs were also investigated by overlap
with known protein-protein interactvie networks using STRING63 and the most informative networks are
shown (see Figs. 5 and 6).
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Figures

Figure 1

Experimental design to differentiate splenic-derived lymphocyte transcriptome responses to MDV
infection in resistant and susceptible lines of chickens.

Figure 2

Cell clusters and assigned identities. (A) Cluster-specific expression of immune cell marker genes used to
assign cell identities to the 12 clusters. Percentage of cells in a cluster expressing a gene (dot size) and
mean expression intensity (dot shade) are both represented in this plot. We used these data to assign a
cell identity to each numbered cluster, labeled on the right and corresponding to cluster colors in (B). (B)
Uniform manifold approximation and projection (UMAP) plot of all immune cells across samples and
conditions. Cells are partitioned into 12 Leiden clusters, numbered and colored based on cluster
assignment. (C-D) UMAP plots with each cell colored by its level of expression of TCF7 (C) and IGLL1 (D),
demonstrating that some markers are expressed by all subtypes of a more general cell type, such as
TCF7, which is expressed by all T-cell subtypes (C), whereas other markers are specific to a single cluster,
such as IGLL1, which is primarily expressed by plasma B cells, with lower expression in antigen-
presenting B cells (D).
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Figure 3

MDV infection shifts cell type composition and gene expression profiles. (A) Cell type composition by
infection status within the resistant (ADOL 63) or susceptible line (ADOL 72). Each cell type is indicated by
color according to the key. Within each line, significant differences (p < 0.05) in abundance between the
MDV-infected and controls are marked by asterisks on whichever infection status had higher abundance
of that cell type. (B) Summary of significant differentially expressed genes (DEGs; |log2FC| ≥ 1.0, p-adj <
0.01) in MDV-infected compared to control for each cell type within the resistant and susceptible lines
(total n = 964). The number of DEGs increased by MDV are represented by the red bars (right side of the
plot), while DEGs decreased by MDV are shown in blue (left side). The magnitude of log2FC for the DEGs
within each bar is further illustrated by binning into the red-blue color scale.

Figure 4

Genetic lines and cell types differ in their response to MDV infection. (A) Hierarchical clustering of each
cell type in each line based on the log2 fold change (log2FC; MDV-infected compared to control) of all
genes with significant differential expression in at least one contrast (n = 964). (B) Log2FC across cell
types for the top 25 differentially expressed genes (DEGs) in the resistant line (ADOL 63). (C) Log2FC
across cell types for the top 25 DEGs in the susceptible line (ADOL 72). The magnitude of log2FC is
shown according to the red-blue color scale. Cell type and genetic line are also annotated by color on the
dendrogram and heatmaps. Significant log2FCs (|log2FC| ≥ 1.0, p-adj < 0.01) are indicated by an asterisk
and those genes with significance in both lines are shown in bold.

Figure 5

Network of DEGs in T cells (γδ enriched) after MDV infection. Within this cell type, connections between
the significant differentially expressed genes (DEGs) from both lines cumulatively were identified using
STRING (PPI enrichment p = < 1.0e-16). For each DEG, the direction of log2FC (MDV-infected compared to
control) is shown by the fill color for its node. Edges (line thickness) represent the strength of connections
(interaction scores) between DEGs. Background colors represent broad-level functions associated with
the DEGs in each branch of the network.

Figure 6

Network of DEGs in macrophages (1) after MDV infection. Within this cell type, connections between the
significant differentially expressed genes (DEGs) from both lines cumulatively were identified using
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STRING (PPI enrichment p = 1.19e-14). For each DEG, the direction of log2FC (MDV-infected compared to
control) is shown by the fill color for its node. Edges (line thickness) represent the strength of connections
(interaction scores) between DEGs. Background colors represent broad-level functions associated with
the DEGs in each branch of the network.
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