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We present studies of the magnetic field distribution around the vortices in LuNi2B2C. Small-angle neutron
scattering measurements of the vortex lattice �VL� in this material were extended to unprecedentedly large
values of the scattering vector q, obtained both by using high magnetic fields to decrease the VL spacing and
by using higher order reflections. A square VL, oriented with the nearest-neighbor direction along the crystal-
line �110� direction, was observed up to the highest measured field. The first-order VL form factor, �F�q10��,
was found to decrease exponentially with increasing magnetic field. Measurements of the higher-order form
factors, �F�qhk��, reveal a significant in-plane anisotropy and also allow for a real-space reconstruction of the
VL field distribution.
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I. INTRODUCTION

The magnetic field distribution due to the vortex lattice
�VL� in type-II superconductors depends on the detailed na-
ture of the superconducting state and on the properties of the
host material. Examples of different field profiles are evident
if one considers the results of calculations based on different
theoretical models for the superconducting state.1–4 Experi-
mentally one often seeks to parameterize the field modula-
tion in terms of two characteristic length scales: the penetra-
tion depth ��� and the coherence length ���. Such an
approach provides a simplified method of analyzing the re-
sults of small-angle neutron scattering �SANS�,5 muon spin
rotation ��SR� �Ref. 6�, and nuclear-magnetic-resonance
�NMR� measurements. However, in addition to the simplifi-
cation, such an approach also requires the implicit accep-
tance of a particular theoretical model while, in many cases,
violating its premises by for example using the Ginzburg-
Landau model to extract a field-dependent penetration depth
and coherence length.7,8

In this paper we will describe a more complete, model-
independent analysis of SANS measurements of the VL in
LuNi2B2C, extended significantly beyond the first-order
Bragg reflection, which is customarily the only one mea-
sured. Measurements of a large number of reflections allows
for a real-space reconstruction of the VL magnetic field pro-
file, which will be discussed in relation to the significant
in-plane anisotropy of this material caused by the Fermi
surface9–12 and the anisotropic pairing in the superconducting
state.13–20 To the best of our knowledge only very limited
efforts have been undertaken in measuring higher order VL
reflections, the most notable exception being the work on
Sr2RuO4by Kealey et al.3

II. EXPERIMENTAL DETAILS

LuNi2B2C is a nonmagnetic member of the rare-earth
nickelborocarbide family of superconductors with a critical

temperature of Tc=16.6 K.21 The single crystal used in the
SANS experiment was grown by a high-temperature flux
method,22 using isotopically enriched 11B to reduce neutron
absorption, and subsequently annealed to improve quality
and reduce vortex pinning.23 The sample had a mass of
�1 g and a disklike cryptomorphology with the c axis par-
allel to the thin direction.

The experiment was performed at the D11 SANS instru-
ment at the Institut Laue-langevin. Incident neutrons with
wavelength �n=0.45 nm and wavelength spread of ��n /�n
=10% were used, and the VL diffraction pattern was col-
lected by a position sensitive detector. Measurements were
performed at 2 K in a horizontal magnetic field between 0.5
and 6 T, applied parallel to both the crystalline c axis and the
incoming beam of neutrons. Two different magnetic field-
temperature histories were employed: field cooled �FC� from
a temperature above Tc, and zero-field cooled �ZFC� fol-
lowed by an increase of the magnetic field at 2 K.

III. RESULTS

Here we present SANS imaging of the VL in LuNi2B2C
to an unprecedentedly high field of 5.5 T corresponding to
75% of the upper critical field, Hc2�2 K�=7.3 T.24–26 At all
fields a square VL was observed as shown in Fig. 1�a�. An
indexing of the VL Bragg reflections is shown in Fig. 1�b�.
The different reflections are located at a distance from the
center of the detector which is proportional to their scattering
vector, qhk= �h2+k2�1/2q0; where q0=2��B /�0�1/2 and �0
=h /2e=2070 T nm2 is the flux quantum. With increasing
field, the VL Bragg peaks move out in reciprocal space and
their intensities decrease, and as a consequence fewer peaks
are visible. At 5 T and above only the �10�-reflections are
observed. Measurements performed at 6 T were used for
background subtraction. While this is below Hc2 no scatter-
ing from the VL could be observed at this field. Furthermore,
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the detailed measurement in Fig. 4 show that at q10�6 T�
=0.34 nm−1 the extrapolated �10� intensity is more than an
order of magnitude smaller than that of any observed reflec-
tion at lower fields at the same q.

A. Vortex lattice symmetry and orientation

At low applied magnetic fields the VL in LuNi2B2C un-
dergoes a field-driven symmetry and reorientation
transition.27,28 This two-step transition arises due to the
growing importance of the Fermi-surface anisotropy coupled
with nonlocal electrodynamics as the vortex density
increases.29 At higher fields, it has been proposed theoreti-
cally that thermal vortex fluctuations may lead to a re-
entrance of the square VL phase.30 A similar re-entrance was
also predicted by Nakai et al. who considered a case where
competing superconducting gap and Fermi-surface anisotro-
pies both favor a square VL, but oriented at 45° with respect
to one another.31 In addition to the re-entrance of the square
VL phase stabilized by the Fermi-surface anisotropy, this
model predicts a 45° rotated square VL phase at even higher
fields due to the gap anisotropy.

Experimentally we found that above 5 T the VL reflec-
tions broaden significantly in the azimuthal direction. While
this could be due to the onset of reentrance of the square VL
phase �transition back into a rhombic symmetry�32,33 no split-
ting into two peaks was seen, and therefore the broadening
may also simply be due to a disordering of the vortex lattice.
No indication of a 45° VL rotation was observed. Whereas
this does not exclude such a transition at even higher fields it
significantly reduces the fraction of the HT-phase diagram
where it can occur. This result therefore imposes significant
constraints on the model parameters used in the calculations
described above.

B. Vortex lattice reflectivity and form factor

Measuring the intensity of the VL reflections as the
sample is rotated around the vertical axis to satisfy the Bragg
condition, provides rocking curves as the ones shown in Fig.
2. In addition to the strongest �10� reflection, the figure
shows the �32� rocking curve which was the highest order
reflection visible at a field of 0.5 T. The intensity of these
two reflections differs by a factor of 3000. The longer scat-
tering vector for the �32� reflection, q32=	13q0, is evident by
the larger rotation angle necessary to satisfy the Bragg con-
dition. To obtain the VL reflectivity, the integrated intensity
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FIG. 1. �Color online� SANS diffraction pattern of the VL in LuNi2B2C at 0.5 T and 2 K following a field cooling procedure. The image
�a� is a sum of measurements as the sample is rotated around the vertical axis in order to satisfy the Bragg condition for reflections in the
center-right part of the detector. The data are smoothed and shown on a logarithmic scale. Measurements at 6 T, where no scattering from
the VL could be observed, were used for background subtraction. The axes show the orientation of the crystalline axes. An indexing of the

peaks is shown in �b�, with the cross indicating the origin of reciprocal space. The apparent difference in intensity of e.g., the �1̄2� and �21̄�
reflections compared to �12� and �21� is due to different Lorentz factors, for which the detailed reflectivity analysis have been corrected.
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FIG. 2. �Color online� Rocking curves at 0.5 T and 2 K for the
LuNi2B2C �10� and �32� VL reflections from Fig. 1. Note the dif-
ferent intensity scales for the two reflections. Error bars for the �10�
reflection are not shown since they are smaller than the size of the
data points. The intensity at each angular setting is obtained by
summing the detector counts at the position of the specific Bragg
reflection. The curves are Voigt fits to the data. The shoulder seen
for the �32� reflection is unrelated to the VL, as discussed in the
text.
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was determined by fitting a Voigt function to each rocking
curve and normalizing the area to the incident-beam inten-
sity. Compared to other functional forms �e.g., Gaussian or
Lorentzian� the Voigt was found to provide a significantly
better fit to the data. The difference in the Lorentz factor
�angle between the scattering vector and the vertical rotation
axis� for the two reflections gives rise to a difference in the
width of the two rocking curves, as they are cutting through
the Ewald sphere at different incident angles. The integrated
intensity for all reflections is corrected for this effect. What
ultimately limits how many VL Bragg peaks can be imaged
is the vanishing intensity and imperfect background subtrac-
tion as seen for the �32�-reflection in Fig. 2. Here significant
background variation is clearly evident, even leading to an
apparent shoulder on the VL rocking curve. While this could
be interpreted as being due to a second VL domain, this is
clearly not the case since a similar shoulder is not seen on the
�10� rocking curve.

With the strong VL peaks in LuNi2B2C, especially at low
fields as shown in Fig. 1, it is necessary to consider whether
multiple scattering is affecting the measured intensities. Four
multiple-scattering processes can affect the measured inten-
sity of a given Bragg reflection: �i� extinction by scattering
back into the incident beam, �ii� a diminished incident-beam
intensity due to scattering into other reflections, �iii� scatter-
ing into other reflections �“aufhellung”�, and �iv� scattering
from other reflections �“umweganregung”�.34 The first three
processes decrease the intensity of the specific reflection
whereas the last one increases it. Furthermore for �ii� to �iv�
to occur multiple VL reflections must satisfy the Bragg scat-
tering condition simultaneously. Since the effects of multiple
scattering depend on the magnitude of the reflectivity, the
�10�, �01�, and �11� reflections, which peak at the same
sample rotation angle, are the most likely to be affected.
Following Moon and Shull,34 and taking into account the
simplification presented by the SANS geometry, one finds
that to leading order the corrections due to multiple scatter-
ing are P10 / P0=R10+R10R11 and P11 / P0=R11+R10

2 . Here P10
and P11 are the measured scattered power, P0 is the measured
power of the transmitted incident beam, and R10 and R11 are
the intrinsic VL reflectivities. Taking the peak intensity of the
�10� reflection at 0.5 T from Fig. 2 �
9�106 cts. /std. mon.�
yields P10 / P0=0.3%. Using the measured P11 / P10= �0.6�2


0.4 �see Fig. 5 below� and the above expressions, we find
that the difference between the normalized scattering and the
reflectivity are less than 1% for both the �10� and �11� reflec-
tions and thus insignificant compared to the typical error of
20% with which the scattering powers can be measured.

The reflectivity is proportional to the square modulus of
the VL form factor F�qhk�, which is the Fourier transform at
wave vector qhk of the two-dimensional magnetic-flux modu-
lation of the VL. The reflectivity and the form factor for a
given reflection is related by

Rhk =
2��2�n

2t

16�0
2qhk

�F�qhk��2, �1�

where �=1.91 is the neutron gyromagnetic ratio, t is the
sample thickness, and qhk is the magnitude of the scattering

vector.35 Since the vortex spacing, and consequently q, de-
pends on the magnetic field �q	 	H�, this allows �F�q�� to be
determined continuously over wide range of scattering vec-
tors using SANS. In the following Section we will focus on
the field dependence of the first-order VL form factor,
�F�q10��2, and in Sec. III D on the higher order form factors,
�F�qhk��2.

C. Field dependence of �F(q10)�

Using the integrated intensity obtained from rocking
curves, such as the ones shown in Fig. 2, and utilizing Eq.
�1�, one obtains the field dependence of the VL form factor
of the �10�-reflections shown in Fig. 3. Within the experi-
mental error, field cooling and zero-field cooling produce
identical results; this is indicative of very low pining in the
sample which is due in part to the postgrowth annealing.23

Several models exist for the form-factor field dependence.
By far the simplest model is based on the London model,
extended by a Gaussian cutoff to take into account the finite
extent of the vortex cores5,36

F�q� =
B

1 + ��q�2e−c��q�2
. �2�

Here � and � are, respectively, the penetration depth and
coherence length, and the constant c is typically taken to be
between 1/4 and 2.36 As shown by the solid line in Fig. 3, the
measured form factor is well fitted by this model which cor-
responds to a simple exponential decrease with increasing
field. Since for all the fields applied ��q�2
1 the prefactor in
Eq. �2� reduces to �0 / �2���2. This is in agreement with our
earlier results,5 but here extended to significantly higher
fields. Using c=1 /2 the exponential fit to the form factor
yields �=90.7 nm and �=8.22 nm. This value for the co-
herence length is in excellent agreement with previous re-
sults. The penetration depth is about 15% shorter,5 which is
consistent with an improvement of the sample quality by
annealing. The value of � is also in reasonable agreement
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FIG. 3. �Color online� Field dependence of the VL �10� form
factor for both the field cooled �FC� and zero-field cooled �ZFC�
case. The fitted values of the penetration depth and coherence
lengths are �=90.7 nm and =8.22 nm for the London model ��2

=0.14� �Refs. 5 and 36�, �=61.9 nm and �=12.7 nm for the Clem
model ��2=0.62� �Ref. 37�, and �=104.1 nm and �=7.19 nm for
the Hao model ��2=1.20� �Refs. 38 and 39�.
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with the estimate based on the upper critical field, �c2
=6.7 nm.

A more rigorous model for the form-factor field depen-
dence was obtained by Clem by including an effective core
radius �, and solving the Ginzburg-Landau model.37 This
was later extended by Hao and Clem to include the suppres-
sion of the bulk order parameter due to vortex overlap.38,39

Fits to both of these models are shown in Fig. 3. The most
noticeable difference between the two models is the s-shaped
form factor of the Hao model, and the significant downturn
at higher fields due to the proximity to the upper critical field
Hc2. What is also clear from Fig. 3 is that the form factor is
somewhat better described by the London model ��2=0.14�
compared to either the Clem ��2=0.62� or Hao ��2=1.20�
models, and furthermore that the Clem model returns unre-
alistic values for � and �. In this regard, it should also be
pointed out that the Hao model has in general been shown to
be a poor approximation to exact, numerical solutions of the
Ginzburg-Landau model.4,40 The field dependence of the VL
form factor in LuNi2B2C, which is commonly considered to
be a relatively simple superconductor, emphasize the point
that any analysis of bulk measurements based on a particular
theoretical model for the VL must be done with the utmost
care. Finally, it is clear that measurements of F�q10� alone
provide limited insight into the VL field distribution.

D. Higher order form factors, �F(qhk)�

The VL form factors for all measured reflections and
fields are summarized in Fig. 4. In both the London and
Clem model the only field dependence of �F�qhk�� /H comes
through the magnitude of the scattering vector, qhk, and
therefore the form factors would be expected to collapse onto
a single curve. This is not observed for LuNi2B2C; instead,
the form factor follows a different exponential field depen-
dence, as shown for �F�q10�� /H and �F�q11�� /H. Likewise the
data does not agree with the Hao model, which predicts that
for a given q the form factor should increase with decreasing
field �larger indices h and k� and converge toward the value
given by the Clem model and observed in niobium.38,39

Rather we observe that while �F�q11�� /H does indeed lie

above �F�q10�� /H, other higher order form factors fall in be-
tween these two limiting curves.

The deviation from the theoretical predictions is also evi-
dent if one considers the field dependence of the form-factor
ratio �F�q11� /F�q10�� shown in Fig. 5. At a field of 0.5 T, all
the models predict a value of �0.3, decreasing monotoni-
cally by a factor between 2 and 4 as the field in increased to
4 T. It should however be noted that numerical calculations
for a square VL in an s-wave superconductor predict a
largely field independent value of �F�q11� /F�q10��,2 which is
in agreement with the experimental results presented here.

The failure of the theoretical models to describe the mea-
sured form factors is not surprising when one keeps in mind
that they were all derived assuming the screening current
plane to be isotropic. It is well known that LuNi2B2C, as
well as the other members of the rare-earth nickelborocar-
bide superconductors, posseses a significant in-plane
anisotropy.9–20 The fourfold, in-plane anisotropy manifests
itself most strongly in the experimental data in Fig. 4, when
comparing the �110� and �100� crystalline directions, corre-
sponding to the �10� and �11� VL reflections.

IV. DISCUSSION

While it would be straightforward to incorporate an in-
plane penetration depth anisotropy into the models discussed
above, our emphasis here will be on a model-free determina-
tion of the VL field modulation.

A. Real-space field reconstruction

With the VL form factor being simply the Fourier trans-
form of the magnetic field modulation, the real space field
distribution can be obtained from the measured form factors
by

B�r� = �
hk

F�qhk�eiqhk·r. �3�

In the case of the VL the so-called phase problem, arising
from the fact that only the magnitude �F�qhk�� is measured, is
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field versus scattering vector q for all measured reflections. Curves
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greatly simplified. As the magnetic field variation around any
vortex exhibits inversion symmetry �B�−r�=B�r��, the form
factor must be real and the phase problem thus reduces to a
sign problem. Within the London model the sign on all form
factors is expected to be the same, which will be chosen as
positive and corresponds to having the vortex at the center of
the unit cell. In contrast, the Ginzburg-Landau model pre-
dicts both positive and negative signs for the form factor,
determined by the indices h and k according to −�
−1�h2+k2+hk.41 Note that F�q00� is simply the applied magnetic
field �0H. As shown in Fig. 6�a� and 6�b� the field recon-
struction obtained from Eq. �3� differs significantly depend-
ing on which sign scheme is used. Given that the measure-
ments were performed at a temperature and field much below
both Tc and Hc2, one would expect the London sign scheme
to apply. This is supported by comparing the field depen-
dence of �F�q20� /F�q10��, shown in Fig. 5, to the numerical
work �Fig. 10� by M. Ichioka et al.2 This shows how the ratio

is expected to decrease with increasing field, with the sign
change separating the London from the Ginzburg-Landau re-
gime occurring at H
1 /2Hc2 for their choice of model pa-
rameters. In comparison, the ratio �F�q20� /F�q10�� in Fig. 5
extrapolates to zero at H=1 /3Hc2. Further support for the
choice of all positive form-factor signs is obtained by calcu-
lating the magnetic field distribution function shown in Fig.
6�c�, and comparing the results to muon spin rotation ��SR�
experiments.6 Finally, using the field distribution �Bpeak
−Bmin=1.79 mT� and Eqs. �12� and �13� from Ref. 8 yields
an estimate for the penetration depth �=88.6 nm, in excel-
lent agreement with our fit to the London model.

B. Basal plane anisotropy

As stated earlier LuNi2B2C possesses a substantial basal
plane anisotropy arising both from the Fermi surface9–12 as
well as the superconducting pairing.13–20 Thermal conductiv-
ity measurements indicates a gap minima, or possibly even
nodes, along 
100�,17 leading to theoretical speculations of a
�s+g� pairing symmetry.16 Still the dominating anisotropy
appears to be due to the Fermi surface, as indicated by the
square VL configuration and discussed in Sec. III A.

A measure of the in-plane anisotropy can be obtained
from the SANS results by simply calculating the current flow
around the vortices from the field reconstruction in Fig. 6�a�
using �0J=��B. Figure 7 shows �J�r�� along the VL
nearest-neighbor direction as well as the VL unit-cell diago-
nal. In cases like this, one frequently uses an operational
definition of the coherence length ��J� as the distance from
the vortex center to the maximum current.2,42 From Fig. 7 it
is clear that �J differs for the two directions shown. The inset
of Fig. 7 shows �J in the basal �screening current� plane. It is
striking that the minimum �J is observed along the nodal

100� directions, where one would naively expect the weak-
est pairing and hence the largest �J. It is important to empha-
size that the field reconstruction is robust in the sense that the
anisotropy of �J does not change �although the absolute nu-
merical values do� if one varies the measured form factors
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even well beyond the typical 10% experimental error of their
values. Rather, our result follows directly from the unusually
large ratio �F�q11� /F�q10�� in LuNi2B2C. Finally we also note
that the �J variation cannot be explained by a simple
“squeezing” effect42 since the value along the nearest-
neighbor direction ��110�� is larger than that along the VL
diagonal ��100��.

We speculate that our result may share a common origin
with recent scanning tunneling microscopy measurements on
isostructural YNi2B2C. These measurements showed a
fourfold-symmetric star shaped vortex core extending in the

100�-directions at zero energy but splitting into four peaks
and effectively rotating the vortex shape by 45° at higher
energies within the superconducting gap.43

It is interesting to compare the field reconstruction and
current profiles in Figs. 6�a� and 7 to the numerical work of
Machida and Ichioka et al., who have performed calculations
for a number of VL configurations, pairing symmetries, and
Fermi-surface anisotropies.2,44 From this it is clear that the
best agreement is achieved with an anisotropic superconduct-
ing gap �d wave or anisotropic s wave� combined with a
Fermi-surface anisotropy. Further numerical work to opti-
mize the agreement between the experimental and calculated
results should provide valuable input to calculations of VL
configuration, such as the one in Ref. 31, and result in a more
realistic VL phase diagram for LuNi2B2C.

V. SUMMARY

To summarize we have performed comprehensive SANS
measurements of the VL in LuNi2B2C, thus ending the com-

mon but unsatisfactory practice of discarding all but the �1,0�
reflection. The measurements confirmed the existence of a
square VL up to 75% of Hc2. The first-order VL form factor,
�F�q10��, was found to decrease exponentially with increasing
magnetic field, in agreement with the generalized London
model but not with the supposedly more realistic models for
the VL field distribution. Measurements of higher order form
factors, F�qhk�, and the real-space reconstruction of the VL
field modulation, provide a qualitative measure of the in-
plane anisotropy. This will therefore serve as important input
to future theoretical work.

Similar measurement and analysis should be performed
on other members of the nickelborocarbides; indeed on any
other superconductor where enough higher order reflections
are measurable. In this regard, the results presented here will
serve as a reference for future work.
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