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The purpose of this work is to present a new methodology for fitting Wiener networks to
datasets with a large number of variables. Wiener networks have the ability to model a wide
range of data types, and their structures can yield parameters with phenomenological meaning.
There are several challenges to fitting such a model: model stiffness, the nonlinear nature of a
Wiener network, possible overfitting, and the large number of parameters inherent with large
input sets. This work describes a methodology to overcome these challenges by using several
iterative algorithms under supervised learning and fitting subsets of the parameters at a time. This
methodology is applied to Wiener networks that are used to predict blood glucose concentrations.
The predictions of validation sets frommodels fit to four subjects using this methodology yielded a
higher correlation between observed and predicted observations than other algorithms, including
the Gauss-Newton and Levenberg-Marquardt algorithms.

1. Introduction

Wiener networks are widely used in modeling complex nonlinear systems. These networks
have the ability to model a wide range of data types, such as gas concentrations [1], blood
glucose concentrations [2], and pH levels [3], and their structure can yield parameters with
phenomenological meaning [2]. In this work, Wiener networks are used to first convert
inputs into their corresponding dynamic responses and then to pass these dynamic responses
through a second-order linear regression function to obtain the fitted output response. The
parameters needed to convert the inputs into dynamic responses are referred to as dynamic
parameters and the parameters of the regression function as static parameters. However,
estimating these parameters can be quite challenging, as the behavior of these networks can
be highly nonlinear in the dynamic parameters, and the number of parameters, which can
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be large, increases rapidly as inputs are added. Overfitting can also be a major issue. Given
that Wiener networks utilize differential equations for the conversion to dynamic responses,
stiffness, which is the situation where the derivative increases or decreases rapidly while the
solution to the differential equation does not [4], is another concern. This phenomenon causes
an algorithm to take very small steps (i.e., progress slowly) in order to reach an optimal
solution. Another issue is that the process being modeled could change over time due to
degradation of equipment, an increase in production, or one of many other reasons. While
this change could be very gradual, this implies that eventually the fitted model can degrade
over time. If this process is online, then a new model will need to be found expediently to
minimize downtime and to take into account the new conditions and inputs.

The basic purpose of this article is to present a new methodology for fitting Wiener
networks to large input datasets which can overcome these challenges. In the process control
literature this is called “process identification.” By fitting subsets of the parameters iteratively,
we can deal with a large number of parameters and their nonlinearity, as numerical instability
in the next iteration is less likely when fitting a subset of the parameters. During optimization,
parameter step size is controlled by the value of the objective function, which deals with
stiffness. To avoid overfitting, we will utilize what is called “supervised learning” in the
statistics literature [5]. In supervised learning, the dataset is broken up into three subsets:
training, validation, and test. The model is fit to the training set with the validation set
used to determine the number of iterations to use to guard against overfitting. The test set
is scrutinized at the end of the optimization process to further evaluate if overfitting has
occurred. While our methodology does not perform the optimization as fast as some of the
other popular algorithms, utilizing parallel computing has sped up the optimization of a
Wiener network using our methodology by roughly 25% in MATLAB [6].

There are other methods for fitting Wiener networks. Due to the Wiener network’s
nonlinear nature, these are iterative techniques. Note that a nonlinear modeling problem
is one with unknown parameters that are functionally nonlinear. Here the objective
is to obtain a set of parameters that minimize the sum of squared residuals (i.e.,
the least squares objective function). Popular techniques for this optimization objective
include the Gauss-Newton algorithm and the Levenberg-Marquardt algorithm [7]. Many
mathematics/statistics software packages, such as Minitab (Minitab, Inc., State College,
PA.), R [8], SAS (SAS Institute Inc., Cary, NC), and MATLAB can implement both of these
algorithms. The Levenberg-Marquardt algorithm, which is given in detail in the appendix,
is a compromise between the Gauss-Newton algorithm and the method of steepest descent.
We have found that fitting all parameters simultaneously using either algorithm can result
in overfitting. Even fitting subsets of parameters with just one algorithm has resulted in a
model that performs worse than our methodology. Given that the Wiener network used here
has a conditionally linear structure since fixing the dynamic parameters yields a linear model,
another potential approach is that of Barham and Drane [9]. They fit four different models
to argue that alternating between using the usual least squares formula for estimating the
linear parameters and a modification of the Gauss-Newton algorithm suggested by Hartley
[10] for the nonlinear parameters will generally perform better than either Hartley’s modified
Gauss-Newton algorithm or the Levenberg-Marquardt algorithm alone. However, using least
squares to fit the linear parameters tended to badly overfit the model irrespective of the
dynamic parameters. A final method we reviewed in this work is the GRG2 algorithm [11],
which is utilized in the Solver program in Microsoft Excel. This was used to fit the Wiener
networks used to model blood glucose concentrations in [2]. It attempts to fit models using
a generalized reduced gradient algorithm, which can handle constraints on parameters and
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Figure 1: A graphical representation of the Wiener model.

is found to be fairly robust. However, for supervised learning with this implementation in
Excel, the algorithm must be paused after each iteration for inspection, which becomes very
time consuming if there are more than a few parameters in the model.

The proposed methodology is presented with the following outline. First a detailed
description of theWiener network for multiple inputs and a single output is given to establish
the problem context. After this section the details of the methodology and an example are
given to illustrate the algorithm in the fourth section. Finally concluding remarks and some
ideas for future work are given in the last section.

2. The Wiener Network

In this section, a detailed description of a Wiener network is given to establish the context
of the problem. These networks have a powerful structure for modeling nonlinear dynamic
systems. A block diagram with p inputs and one output is given in Figure 1.

As shown in Figure 1, each input xi is first passed through a dynamic linear block,
denoted g(xi) and converted into its corresponding dynamic variable vi. Following Rollins
et al. [2], we will use the following second-order plus-lead plus-dead-time differential
equation:

τ2i (t, X)
d2vi

dt2
(t) + 2τi(t, X)ζi(t, X)

dvi

dt
(t) + vi(t, X) = τai(t, X)

dxi

dt
(t − θi) + xi(t − θi), (2.1)

where τi is a time constant, τai is a lead parameter, ζi is a damping coefficient, and θi denotes
dead time. For simplicity, we will assume that the dynamic parameters are time and space
invariant, that is, τi(t, X) = τi, τai(t, X) = τai, and ζi(t, X) = ζi, and for the rest of this
section, fix θi = 0. Also when referring to vi(t, X), we will write vi(t) henceforth. We will
use τ , τa, and ζ to denote all time constants, lead parameters, and damping coefficients,
respectively.
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To find a recursive definition for vi, a forward difference approximation to (dvi/dt)(t)
will be used. First let j = t/Δt and di = θi/Δt so that vi(t) = vij and xi(t − θi) = xi,j−di . Thus,

dvij

dt
≈ vi(t) − vi(t −Δt)

Δt
=

vij − vi,j−1
Δt

, (2.2)

d2vij

dt2
≈
(
dvij/dt

) − (dvi,j−1/dt
)

Δt
(2.3)

≈
((
vij − vi,j−1

)
/Δt
) − ((vi,j−1 − vi,j−2

)
/Δt
)

Δt
(2.4)

≈ vij − 2vi,j−1 + vi,j−2
Δt2

. (2.5)

By substituting (2.2) and (2.5) into (2.1),

vij =
2τ2 + 2τζΔt

τ2 + 2τζΔt + Δt2
vi,j−1 − τ2

τ2 + 2τζΔt + Δt2
vi,j−2 +

Δt(τa + Δt)
τ2 + 2τζΔt + Δt2

xi,j−di

− τaΔt

τ2 + 2τζΔt + Δt2
xi,j−di−1.

(2.6)

Next all of these dynamic variables are passed through a static nonlinear block, denot-
ed f(v) in Figure 1, in order to obtain the predicted value of the response variable at time
t. Following Rollins et al. [2], we use a second-order regression function with linear terms,
quadratic terms, and second-order interaction terms, giving

yj = a0(t, X) +
p∑
i=1

ai(t, X)vij +
p∑
i=1

bi(t, X)v2
ij +

p−1∑
i=1

p∑
k=i+1

cik(t, X)vijvkj + εj , (2.7)

where εj is a normally distributed error term with mean 0 and variance σ2 and that for any
k /= j, εj and εk are independent. Again assume that the parameters are invariant with respect
to time and space, for example, a0(t, X) = a0. The vector of parameters corresponding to
the linear terms will be denoted by a, the quadratic terms by b, and the interaction terms
by c.

3. The Proposed Parameter Estimation Algorithm

In this section the featured algorithm we are proposing to solve the nonlinear regression
problem given in the previous section will be described. Following Rollins et al. [2], the ob-
jective of this modeling problem is to maximize the true but unknown correlation coefficient
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between the measured and fitted glucose concentrations that is defined by ρy,ŷ and estimated
by rfit. More specifically, under this objective a model is declared useful if and only if

ρy,ŷ > 0. (3.1)

The meaning of this criterion is that predictions of blood glucose concentrations from the
model decrease and increase with measured blood glucose concentrations beyond some
degree of mere chance; that is, there is true positive correlation. Notwithstanding, the closer
this value is to the upper limit of 1, the more useful the model. Therefore, to achieve this
objective, one seeks to identify a model with a sufficiently large value of rfit. To this end, the
data are separated into a set for training and a set for validation and/or testing. The training
set is used to build the model, and the validation (or testing) set is used to evaluate the
model against data that were not directly used by the optimization process to estimate the
model parameters. However, due to the highly complex mapping of the parameters into the
response space of rfit, the following indirect criterion is used:

Maximize rfit by minimizing SSE
Θ

=
n∑
i=1

(
yi − ŷi

)2
Subject to : ζi > 0, τi > 0, θi ≥ 0 ∀i,

(3.2)

where Θ is a vector representing the estimated dynamic and static parameters
τ , ζ, τa,θ, a,b, c and n is the number of observations in the training set. The objective criterion
is used under the assumption that minimizing SSE is equivalent to maximizing rfit. While
there is no formal proof for this assumption, experimental evidence supports a strong
tendency for this relationship [2].

A model that is nonlinear in parameters, such as the proposed structure, does not
have the condition that that sum of the residuals equal 0 as in the case of linear regression.
However, under (3.2), the sum of the residuals in the training set should be small and thus
a secondary criterion on the closeness of yi and ŷi for accuracy can be used. This measure of
accuracy, denoted the average absolute error (AAE), is defined as

AAE =

∑ifin
j=iinit

∣∣yj − ŷj

∣∣
ifin − iinit

, (3.3)

where iinit is the initial observation used for calculation of this statistic and ifin is the final
observation used. Hence accuracy is judged to increase as AAE decreases.

Thus, in addition to sufficiently large rfit values for both the training and
test/validation datasets, an acceptable model must also have a relatively small value of
AAE in training. This secondary criterion is not imposed in testing/validation because (3.2)
forces small residuals for training data only. Furthermore, if a model is capable of a high
rfit as demonstrated in training then high accuracy can be obtained with effective feedback
correction or feedback control to reduce or eliminate bias.

To obtain a useful model the proposed method fits a subset of the parameters using an
iterative approach, and the validation set is used to terminate optimization to guard against
overfitting. As mentioned before, this was done because attempts to fit with respect to every
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score = .1 · rfit/.8 + .9 · rVal/.8
for i = 1 to 11 do

repeat
scoreold = score
ai = ai + .2
Update score

untill score < scoreold
if ai = 0 then

Replace addition operation with subtraction operation and repeat the loop.
end if

end for

Algorithm 1: Starting algorithm.

parameter at once tend to overfit the training set. To determine which iteration is best, each
iteration was given a score based on a linear combination of two statistics whose maximum
is 1: rfit and the correlation rVal between observed and predicted response values in the
validation set. To establish notation, one can write the correlation between datasets {xi}Ki=1
and {ti}Ki=1 as

rVal =

∑K
i=1(xi − x)

(
ti − t

)
√∑K

i=1 (xi − x)2
∑K

i=1

(
ti − t

)2 ,

x =
1
K

K∑
i=1

xi,

t =
1
K

K∑
i=1

ti,

(3.4)

whereK is the total number of observations in the dataset. It was used in order to ensure that
the predictions in the validation set are properly tracking changes found in the actual data.

After setting the starting values for the parameters, we then execute Algorithm 1 of
our methodology. Note that we divide rfit by .9 and rVal by .8 before applying the coefficients.
This was done because in practice these values appear to be the maximum attainable values
for rfit and rVal in the example in the proceeding section. These values can be changed if one
has a rough guess as to what the maximum attainable values are. The score is then calculated
as .1·rfit/.8 + .9·rVal/.8. Startingwith a1, wewill successively add 0.2 until the score decreases.
We then subtract 0.2 in order to retain themaximum score. This is done for each ai. If choosing
ai = 0.2 yields a lower score than setting ai = 0, then we successively subtract 0.2 from ai until
the score decreases and readd 0.2 once a decrease is observed.

We then attempt to fit a model using all parameters with the Levenberg-Marquardt
and Gauss-Newton algorithms [7]. The Levenberg-Marquardt algorithm is given in the
appendix, as the Gauss-Newton algorithm used here is simply the Levenberg-Marquardt
algorithm where α = 0. The Levenberg-Marquardt algorithm is fit nine times, each with
the same starting parameters. The only difference between these trials is the values of the
damping parameter α used, which were 100, 10, 1, .01, .0001, 1e − 6, 1e − 8, 1e − 10, and 0.
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Note that α affects the step size of each iteration, as each model responds differently to each
value of α chosen. For each iteration of each trial, a score is calculated as before, and the
parameter estimates corresponding to the iteration with the highest score that satisfies the
parameter constraints among these trials are returned at the end of this loop.

The next stage of this methodology takes the parameter estimates from the previous
stage and proceeds to fit subsets of these parameters at a time. Since using one algorithm
exclusively has generally yielded weaker results, we chose to use three different algorithms
and compare their results. The first algorithm that is attempted by our algorithm is the BFGS
[7] algorithm. This is a quasi-Newton method in that it approximates the Hessian, which
is used in Newton’s method, with a rank 2 matrix that depends on the Jacobian. Note that
we remove the difficulty of finding the inverse of a matrix by using the Sherman-Morrison-
Woodbury formula [12]. We also used a trust-region version of this algorithm, in that we fixed
the maximum step size of this algorithm. However, it is not guaranteed that a step from this
algorithm will result in a decrease in the objective function. Hence the second algorithm we
will use is the conjugate gradient [13] algorithm. This algorithm requires very little storage
and is based on the idea of conjugate directions, although these directions lose conjugacy if
the model is not well approximated by a quadratic approximation. However, the conjugate
gradient algorithm tends to take a large step followed by several small steps, and these large
steps tend to overfit when fitting Wiener networks. On top of this, the derivatives of the
objective function with respect to the dynamic parameters must be approximated and can be
at times unreliable. Thus the final algorithm we use is the Nelder-Mead [12] algorithm. This
algorithm first generates n + 1 points equidistant from one another and from the starting
values, which is called a simplex. It then uses function evaluations to move the simplex
toward a minimum as well as to expand or shrink the simplex. Thus it uses more function
evaluations in place of derivatives. Details on these algorithms are given in the appendix.
Note that to run the Nelder-Mead algorithm, the built-in function fminsearch in MATLAB
was used. The number of iterations that were ran for the Nelder-Mead algorithm per iteration
of this stage and the trust-region radius of the BFGS algorithmwas chosen based on the value
of rfit at the start of each respective algorithm.

As each iteration of each algorithm is determined from a subset of the parameters,
once again a score is calculated, and the parameter estimates with the highest score where
rfit has increased over the value found from the starting parameters and each constraint is
satisfied are chosen as the new parameter estimates. There are four methods of choosing
the subsets in our methodology. For the first method, we fit a first, then b, c, τ , ζ, and
finally τa. This is repeated if the score of the parameter estimates θ̂ has improved by at
least 0.0001 from the score of the parameter estimates used as starting values to fit a up
to three times. For the second method, the first subset of parameters to be fit is the set of
static parameters that depend on the first input, that is, {a1, b1, c12, c13, . . . , c1,11}. The second
subset of parameters is the set of static parameters that depend on the second input, that is,
{a2, b2, c12, c23, c24, . . . , c2,11}. Since we have eleven inputs, there will be eleven such subsets.
The final three subsets of parameters to be fit are τ , ζ, and τa. Again this is repeated up to
three times if a score increase of at least 0.0001 is observed each time. For the thirdmethod, we
will fit the same subsets of static parameters as in stage two. However, we will use different
subsets of the dynamic parameters. We first fit three subsets of τ in this order: {τ1, τ2, τ3},
{τ4, τ5, τ6, τ7}, {τ8, τ9, τ10, τ11}. Then the corresponding subsets of ζ are fit in the same order,
followed by these subsets of τa. For the last method, the first subsets of parameters fit
are {a1, b1}, {a2, b2}, . . . , {a11, b11}. Next we fit subsets of parameters corresponding to the
interaction terms. First we fit the interaction parameters corresponding to the first input,
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{c12, c13, . . . , c1,11}, followed by the second input, {c12, c23, c24, . . . , c2,11}, and so on. After these
parameters we fit the same subsets of dynamic parameters as in the previous stage. Assuming
the value of rfit has increased by 0.002 since the start of the first stage, we will update
the coefficients for calculating the scores and the algorithm will return to the first stage. If
not, then we attempt to fit a model one parameter at a time. If after cycling through every
parameter three times the value of rfit has not increased from the first stage by 0.001, then the
algorithm exits. Otherwise the coefficients are updated, and the algorithm returns to the first
stage. After two iterations through each of the four methods, each stage may only be repeated
twice instead of three times.

Finally we discuss how to update the coefficients of the score. For the first iteration
of this methodology, the score is calculated as before: .1 · rfit/.9 + .9 · rVal/.8. To update
the coefficients, first let w = rfit + 4rVal. Then they are updated to be rfit/w, and 4rVal/w,
respectively. This is done to force the correlation between the predicted and observed values
in the validation set to be weighted heavily. This can be altered depending on how important
it is to the researcher to achieve a high rVal. The weight of rfit is large enough so that a large
increase can be chosen if a small enough decrease in rVal is observed.

4. An Example: Blood Glucose Concentration Prediction of
Type 2 Diabetics

We now illustrate our methodology and compare it to other algorithms mentioned in
this paper. In this study, several subjects who exhibit significant variation in their blood
glucose concentrations participated in a study in order to determine if their blood glucose
concentrations can be adequately predicted from a Wiener network using activity variables,
food consumption, and time of day. Since type 2 diabetes affects each subject differently, a
model was built for each individual. Due to time constraints to meet the submission deadline,
four of the subjects will be evaluated in this work.

In order to obtain blood glucose concentrations, the Medtronic MiniMed Continuous
Glucose Monitoring CGMS System Gold (Medtronic Minimed, Northridge, Calif) was used.
The SenseWear Pro3 Body Monitoring System (BodyMedia, Inc., Pittsburgh, PA)was used to
measure the activity variables used in building this model. From these devices measurements
of activity and blood glucose concentrations were obtained every five minutes. Subjects were
also asked to record the food that they ingested during this time onto a PDA, which used the
Weightmania Pro software (Edward A. Greenwood, Inc., Cambridge, Mass). Other than the
necessary downtime to download the data from these devices, data were collected by these
devices twenty-four hours a day for four weeks. While the SenseWear Pro3 Body Monitoring
System canmeasure over 30 activity variables, it was decided after much trial and error to use
only 7 of these variables for their Wiener network. Of the other four variables, three of them,
carbohydrates, fat, and protein, are food variables that measure the amount of each consumed
in grams every five minutes. The final one, time of day, allows one to capture the Circadian
rhythm of each individual’s body [14]. It assumes values from 0, denoting midnight, to 1439,
denoting 11:59 pm. A table of all inputs is given in Table 1.

Due to the amount of data available for each subject, the first week of a subject’s
data was used to fit an individual model for that subject and the subsequent two weeks
as a validation set. The starting values were set to be 0 for each ai, bi, and ci other than
a0, which was set to yTr. The dynamic variables were set to parameter estimates found
from fitting a pilot model. We have fit models using six different methods. The first method
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Table 1: A table of inputs used in this type 2 diabetes study.

Variable type Variables

Activity
Transverse accel.—peaks Energy expenditure Near body temp.

Longitudinal accel.—average Galvanic skin response Heat flux
Transverse accel.—MAD

Food Carbohydrates Fat Protein
Circadian Time of day

Table 2: Training and validation statistics for Wiener networks fit to model blood glucose concentrations
for four diabetic subjects. Note that PM is the proposed methodology, GN is the modified Gauss-Newton
algorithm, LM is the modified Levenberg-Marquardt algorithm, and ES is the Excel Solver methodology.
Note that ES was fit manually.

Subject Algorithm AAETr(mg/dL) rfit rVal Time (s)

1

PM 12.4 0.60 0.59 4127
GN 12.5 0.40 0.54 347
LM 12.5 0.45 0.56 83
ES 7.2 0.83 0.52 —

2

PM 6.8 0.84 0.56 10592
GN 9.0 0.77 0.43 535
LM 6.2 0.86 0.58 97
ES 6.9 0.84 0.49 —

3

PM 11.5 0.71 0.52 4735
GN 6.8 0.81 0.58 793
LM 7.2 0.80 0.55 96
ES 7.8 0.75 0.48 —

4

PM 11.4 0.82 0.68 7032
GN 11.8 0.81 0.60 1028
LM 11.7 0.81 0.59 79
ES 13.3 0.72 0.51 —

was the proposed methodology (PM). The second method utilized the Gauss-Newton (GN)
algorithm, and another method used the GN algorithm in a method similar to PM. More
specifically, the parameters were fit using the GN algorithm, with the subsets as done
in PM. This particular method is called the modified GN algorithm. The fourth method
utilized the Levenberg-Marquardt (LM) algorithm, and the fifth method was a modified
LM algorithm, where the modifications were made in the same manner as the modified
GN algorithm. Finally models were fit using the Excel Solver (ES) routine. Other than the
ES routine, all models were fit using MATLAB on a computer with a 2.66GHz Intel Core 2
Quad processor and 4GB of RAM. The comparative results are given in Table 2. For each
subject, the correlation between predicted and observed blood glucose concentrations in
the validation set is at least 0.48. Here we desire a high rVal as we wish to track the actual
blood glucose concentration closely, since we do not wish to miss sudden changes in blood
glucose concentration, particularly if it becomes very low (<40mg/dL) due to the health
consequences. This is why we chose the coefficients for the score as stated earlier.

We have split the results into two tables. Table 2 compares the methods that fit subsets
of the parameters, and Table 3 compares the proposed methodology to the generic GN and
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Table 3: Training and validation statistics for Wiener networks fit to model blood glucose concentrations
for four diabetic subjects. Note that PM is the proposed methodology, GN is the Gauss-Newton algorithm,
and LM is the Levenberg-Marquardt algorithm.

Subject Algorithm AAETr (mg/dL) rfit rVal Time (s)

1
PM 12.4 0.60 0.59 4127

GN 12.4 0.30 0.53 1.26

LM 12.5 0.35 0.54 3.36

2
PM 6.8 0.84 0.56 10592

GN 11.1 0.51 0.23 3.08

LM 12.8 0.25 0.33 4.66

3
PM 11.5 0.71 0.52 4735

GN 10.0 0.54 0.37 2.64

LM 11.2 0.51 0.39 4.09

PM 11.4 0.82 0.68 7032

4 GN 18.7 0.28 0.39 1.57

LM 14.7 0.69 0.37 3.68

LM algorithms. Looking at Table 2, we see that themodified GN algorithm had difficulty with
subject 1, as rfit for this subject was 0.40. This indicates that J ′J is ill conditioned for this subject
at the starting values, and since this could happen for other subjects, the Gauss-Newton
algorithm alonewould not be a good choice for fitting aWiener network to these subjects. The
LM algorithm does not typically have such a difficulty due to its damping parameter α, and
the modified LM algorithm generally outperformed the modified GN algorithm. However it
should be noted that α was set depending on the value of R2: it was set to 100 if rfit < 0.3, 1 if
0.3 ≤ rfit < 0.5, 10−3 if 0.5 ≤ rfit < 0.7, and 10−6 if R2 ≥ 0.7. This was done in order to alleviate
ill conditioning and to allow for more aggressive steps when ill conditioning is no longer a
problem. We see that the modified LM and GN algorithms fit much faster than the proposed
method, but this is not a major problem since we are fitting these models offline. As for the
GRG2 algorithm in Excel, it appears to be very competitive with the proposed method for
finding a model with a large rfit value, but the proposed method outperforms this method for
every subject’s validation set.

As for Table 3, we compare the proposed methodology to fitting models under
supervised learning with all parameters simultaneously using either the GN algorithm or
the LM algorithm. Of course these other algorithms will fit much faster as there is only one
set of parameters to be fit. However, we see that rfit and rVal are greater for each subject when
fitting a model with the proposed methodology than either such algorithm.

5. Concluding Remarks

This paper presents amethodology that appears to find better parameter estimates forWiener
networks than other previous algorithms. This methodology uses a score based on two
statistics: rfit and rVal in order to avoid overfitting. It also uses a grid search and the Levenberg-
Marquardt algorithm in order to improve on the starting parameters. Subsets of the
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parameters are then fit using the Nelder-Mead, BFGS, and conjugate gradient algorithms in
order to overcome issues such as stiffness, poorly approximated derivatives, and nonlinearity.
However, we believe there are a few things that can be done to enhance the algorithm.

First, instead of solving the differential equation in order to calculate the dynamic
variables used in the example, they were approximated. If possible, one should obtain exact
values for the dynamic variables, as this will reduce error in the model. In the example
presented, this is not possible since there is no closed-form solution for the differential
equation used in the dynamic blocks due to the ∂xij/∂t term.

Secondly, the parameter θi was fixed for each input. This was done because θi must
be a multiple of 5 due to the fact that measurements were taken every five minutes. Since
the objective function used here would not be continuous with respect to θi, one would be
unable to calculate derivatives. Revising Algorithm 1 such that 5 is added or subtracted from
θ̂i would be one possible method of overcoming this. This could be done at the end of each
stage of the algorithm as this would be done one θ̂i at a time.

Another possible improvement is the elimination of constraints in the parameter
space. Here the parameters τi and ζi must be larger than 0. One way to deal with this
issue is reparameterization, which is suggested in [15]. By setting τi = eλi and ζi = eγi ,
one can optimize with respect to λi and γi instead of τi and ζi. This would eliminate the
need to check whether τi > 0 or ζi > 0 for any iteration of our methodology. The only
concern is that approximating the Jacobian and the gradient will become even more difficult
if this reparameterization is performed. One last thing to discuss is the importance of
starting parameters. While finding starting dynamic parameter values that would yield
useful models regardless of the data would make implementation easier, there may be
properties of the experiment worth exploiting. It is common knowledge that carbohydrates
are digested and metabolized faster than fats. Thus the amount of time that a step change
in carbohydrates affects the system is less than that of fat. This “residence time” can be
calculated for input i to be 2τiζi. For starting parameters, one idea could be to set the starting
values for ζ1 and ζ2 to be equal and choose τ1 to be less than τ2.

Appendix

For these algorithms, let θ denote the vector of all parameters, θ̃ denote the subset of
parameters to be fit, and f(x|θ) denote the model of interest, see Algorithms 2, 3, 4, and
5. Also note that checks for convergence have been left out. First we give a short legend of
the notation used in this appendix.

θ̂: Current estimate of parameters,

f: [f(x1 | θ̂) f(x2 | θ̂) · · · f(xn | θ̂)],

∇F: ∇F(x | θ̂),

F(x | θ̂): ∑(yi − f(xi | θ̂))2,

J : Jacobian of F(x | θ̂).
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Set α.
Let ν = 2
For i = 1 to 5 do

Calculate the Jacobian J .
if i = 1 then

λ = max(J ′J) · α
else

λ = λ ·max(
1
3
, 1 − (2η − 1)3)

end if
G = J ′f

h = (J ′J + λI)−1G

θ̂ = θ̂ + h

η =
F(θ̂ − h) − F(θ̂)

h′(λh −G)
if η > 0 then

ν = 2
else

λ = λ · ν
ν = 2ν
if ν > 128 then

break
end if

end if
end for

Algorithm 2: Levenberg-Marquardt algorithm used.

Let n = number of iterations to be run and σ = 1 × 10−8.
for i = 1 to n do

if i = 1 then
h = −∇F

else

β = max

(
0,

∇F ′(∇F − ∇F(x | θ̂ − h))

∇F(x | θ̂ − h)′∇F(x | θ̂ − h)

)
h = −∇F + βh

end if

k = −∇F ′h

α = −σ · k/(∇F(x | θ̂ + σh)′h − k)

θ̂ = θ̂ + αh

end for

Algorithm 3: Conjugate Gradient algorithm used.
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ChooseN = number of iterations to be run based on starting value of R2 and i = 1.

Generate a simplex around the starting parameters θ̂; denote them (θ̃1, θ̃2, . . . , θ̃n+1).

While i ≤ N

Reorder the points of the simplex such that F(x|θ̃1) ≤ F(x|θ̃2) ≤ · · · ≤ F(x|θ̃n+1).
θ =
∑n

i=1θ̃i

θ̃∗ = 2θ − θ̃n+1

if F(x | θ̃1) ≤ F(x | θ̃∗) < F(x | θ̃n) then
θ̃n+1 = θ̃∗

i = i + 1; next

else if F(x | θ̃∗) < F(x | θ̃1)then
θ̃∗∗ = 3θ − 2θ̃n+1

if F(x | θ̃∗∗) < F(x | θ̃∗) then

θ̃n+1 = θ̃∗∗

else

θ̃n+1 = θ̃∗

end if
i = i + 1; next

else

if F(x | θ̃n) ≤ F(x | θ̃∗) < F(x | θ̃n+1) then
θ̃∗∗ =

3
2
θ − 1

2
θ̃n+1

if F(x | θ̃∗∗ ≤ F(x | θ̃∗) then

θ̃n+1 = θ̃∗∗

i = i + 1; next
end if

else

θ̃∗∗ =
1
2
θ +

1
2
θ̃n+1

if F(x | θ̃∗∗ < F(x | θ̃n+1) then
θ̃n+1 = θ̃∗∗

i = i + 1; next
end if

end if
for i = 2, 3, . . . , n + 1 do

θ̃i =
1
2
(θ̃1 + θ̃i)

end for
i = i + 1
end if

end while

Algorithm 4: Nelder-Mead algorithm used. (Taken from [6, 12]).
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Let n = number of iterations to be run, σ = 1 × 10−12, and B−1 = I.

Choose δ based on current value of R2 and subset of parameters to be fit.

for i = 1 to n do
if i > 1 then

t = J ′Jh + (J − J∗)′f

B−1 = B−1 +
h′t + t′B−1t

t′hh′t
hh′ − B−1th′ + ht′B−1

h′t
end if

F∗ = J ′f

h = −B−1F∗

d =
√
h′h

if d > δ then

h =
δ

d2
h

d = δ

end if

θ̂ = θ̂ + h

ρ =
F(x | θ̂ − h) − F(x | θ̂)
−h′F∗ − (1/2)‖Jh‖2

if ρ < .25 then

δ =
δ

2
else

if ρ > .75 then

δ = max(δ, 3d)

end if

end if

J∗ = J

end for

Algorithm 5: BFGS algorithm used.
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