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Abstract

The main objective of this work was to quantify and update the U.S. Midwest agricultural

state of Iowa’s contribution of nitrate-nitrogen to the Mississippi River stream network

against the backdrop of the ongoing problem of Gulf of Mexico hypoxia. To achieve this

objective, we used stream nitrate and discharge data collected from 1999 until 2016 at 23

Iowa stream sites near watershed outlets, along with publicly-available data for sites down-

stream of Iowa on the Missouri and Mississippi Rivers. Our analysis shows that Iowa con-

tributes between 11 and 52% of the long-term nitrate load to the Mississippi-Atchafalaya

Basin, 20 to 63% to the Upper Mississippi River Basin, and 20 to 89% to the Missouri River

Basin, with averages of 29, 45 and 55% respectively. Since 1999, nitrate loads in the Iowa-

inclusive basins have increased and these increases do not appear to be driven by changes

in discharge and cropping intensity unique to Iowa. The 5-year running annual average of

Iowa nitrate loading has been above the 2003 level for ten consecutive years, implying that

Gulf hypoxic areal goals, also based on a 5-year running annual average, will be very diffi-

cult to achieve if nitrate retention cannot be improved in Iowa. An opportunity exists for land

managers, policy makers and conservationists to manifest a positive effect on water quality

by targeting and implementing nitrate reducing-practices in areas like Iowa while avoiding

areas that are less likely to affect Gulf of Mexico hypoxia.

Introduction

Coastal Gulf of Mexico eutrophication driven by nutrient enrichment from the Mississippi

and Atchafalaya Rivers has been observed and documented since at least 1974 [1,2]. Waters off

the coast of Louisiana become degraded as macroalgae and phytoplankton exploit nutrient-

rich water and bacterial consumption of their remains consumes dissolved oxygen (DO) [3].

As a result, marine food webs are altered [4], mobile species flee [5,6] and immobile species

perish [7] in areas where DO levels drop below 2 mg L-1 (hypoxic/hypoxia areas). Economic

consequences include decline of commercial fishing catches and recruitment failure of valu-

able species [8].

In 2001 the Mississippi River/Gulf of Mexico Watershed Nutrient Task Force, a consortium

of tribes and federal and state agencies, issued an Action Plan [9] to serve as a strategy for hyp-

oxic area reduction. The group’s long-term goal was to reduce the Gulf area where DO< 2 mg
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L-1 to 5000 km2 by 2015. A revised plan was created in 2008, and 12 US states draining to the

Mississippi-Atchafalaya River Basin (MARB) continue to implement the 2008 plan. As of

2017, the 5-year running annual average size of the hypoxic area had remained mostly

unchanged since 1994, and the Task Force extended the goal target date to 2035 [9].

Although phosphorous, silica, and physical factors contribute, Gulf hypoxia is largely

driven by nitrogen loads, mainly nitrate-nitrogen (NO3-N) delivered by the Mississippi and its

Atchafalaya distributary [10,11]. The primary source of this NO3-N is row crop agriculture

from the U.S. Cornbelt [12,13]. The 2001 Action Plan estimated that a 30% reduction in nitro-

gen loads would be necessary to reach areal goals; subsequent research demonstrated that 45%

reductions were likely needed [14,15,16]. Because NO3-N delivery to streams is mainly from

widely scattered non-point sources such as shallow groundwater and farm field drainage lines

[12,17], regulations governing its release to the stream network are few. As such, NO3-N load

reductions have been dependent upon the voluntary implementation of best management

practices (BMPs) by farmers in the MARB [16]. Thus far, documenting NO3-N load reduc-

tions linked to policy independent of weather fluctuations has been difficult [18].

The western Cornbelt state of Iowa is a large producer of corn (Zea mays L.) and soybeans

(Glycine max [L.] Merr.) and frequently tops all other U.S. states in the harvested totals of

each of these crops [19]. The state is also the leading producer of eggs and pork and the

fourth largest producer of feeder cattle [19]. Approximately 90% of the state’s stream NO3-N

can be sourced to the 72% of the state’s land area that is in crop cultivation [20]. Previous

research in Iowa has shown that a watershed’s NO3-N load is directly linked to the area por-

tion cultivated for corn and soybeans [21,22]. This intense production of carbohydrates and

protein has resulted in the state being a leading contributor to MARB NO3-N loads and Gulf

hypoxia [23].

Previous researchers have estimated Iowa’s contribution to MARB loading. The Iowa

Nutrient Reduction Strategy (INRS) [20] stated Iowa’s average NO3-N contribution to be

280,000 Mg yr-1, approximately 29% of the MARB load calculated by Turner and Rabalais

[24]. Goolsby et al. [25] used multiple regression models to estimate the combined average

load from Iowa and the neighboring state of Illinois to be 35 percent of the total entering the

Gulf of Mexico from the MARB. Libra [26] used water monitoring data from the 1990s to

report annual Iowa NO3-N loads ranging from 200,000 to 230,000 Mg (25% of MARB total).

More recently, Jones et al. [22] estimated Iowa’s 2016 stream NO3-N load to be 477,000 Mg,

equivalent to 41 percent of that delivered to the Gulf.

Although some recent research has quantified loading trends within a few of Iowa’s larger

interior river basins, e.g. Sprague et al. [18] and Jones et al. [27], and several papers have evalu-

ated concentration trends [28,29,30,31], to our knowledge there have been no recent efforts to

quantify trends of Iowa’s statewide contribution to MARB NO3-N loads and Gulf of Mexico

Hypoxia. Since strategy and policy development designed to achieve the Mississippi River/

Gulf of Mexico Watershed Nutrient Task Force’s objectives are occurring at the state level (i.e.

INRS) [20], assessment of statewide NO3-N loading using empirical water quality and quantity

data is critical to assess the effectiveness of and bring accountability to these efforts. Thus our

research objective was to use long-term (1999–2016) NO3-N concentration and discharge

measurements from 23 Iowa stream sites to evaluate loading trends and Iowa’s contribution to

MARB loads and Gulf of Mexico Hypoxia in an effort to quantify the effectiveness of the INRS

and inform future policy initiatives targeting water quality improvements at the state and

regional scales. As part of that, we also quantified Iowa’s long-term contribution to the Upper

Mississippi (UMRB) and for the first time to our knowledge, the Missouri River Basin

(MoRB).

Iowa nitrate and Gulf Hypoxia
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Methods

Study area

A total of 23 Iowa watersheds was assessed. These sites are shown in Fig 1 and listed in Table 1.

In aggregate they cover 79.8% of Iowa’s area and range in size from 89 (Bloody Run Creek) to

34,751 km2 (Des Moines River). Twelve drain to the Upper Mississippi River and 11 to the

Missouri River. All the major landforms of Iowa [32] were represented.

Crop areas

Areas cropped to corn and soybean in the U.S. Midwest (North Dakota-ND, South Dakota-

SD, Minnesota-MN, Iowa-IA, Nebraska-NE, Kansas-KS, Missouri-MO, Wisconsin-WI, Illi-

nois-IL, Indiana-IN, and Ohio-OH) were obtained from USDA [19]. These data were evalu-

ated to provide insights into why Iowa NO3-N loading may or may not have changed relative

to the Missouri and Mississippi River Basin scales.

Stream discharge and water yield

Daily discharge measurements for the Iowa streams were obtained from the U.S. Geological

Survey (USGS) [33]. For comparison purposes, annual (water years 1999–2016, i.e. 1 Oct

through 30 Sep) water yield for the Iowa watersheds was determined by summing the daily dis-

charge values and dividing by watershed area. For some of these watersheds, the discharge

gauge was not exactly co-located with the NO3-N sampling location. In these circumstances,

discharge and water yield were estimated by extrapolating water yield at the actual discharge

site to the area draining to the nitrate sampling site. Aggregated discharge and water yield for

Iowa in total and areas of the state draining to the Missouri and the Mississippi but not the

Missouri were calculated by area-weighting the watershed data available for each individual

year. An average water yield (mm) was obtained and then extrapolated to the larger basin area

(i.e. Iowa, Iowa areas draining to the Missouri, and Iowa areas draining to the Mississippi but

not the Missouri, Fig 2) to derive the total water volume leaving the delineated areas.

Annual (water year) discharge for the Missouri River at Hermann, MO; the Mississippi

River at St. Francisville, LA and Thebes, IL, and the Atchafalaya River at Melville, LA were

obtained from the USGS NAWQA reports [34]. Discharge for the Upper Mississippi River (i.e.

areas draining to Thebes but not the Missouri River) was estimated by subtracting the dis-

charge at Hermann from that at Thebes. Again for comparison purposes, annual water yield

for these basins was calculated by dividing annual discharge by watershed area.

Nitrate measurement

All Iowa NO3-N data were collected as part of the Iowa Department of Natural Resources’

Water Quality Monitoring and Assessment program [35]. The program’s purpose is to provide

consistent, unbiased information about the condition of Iowa’s surface and groundwater

resources so that decisions regarding the development, management, and protection of these

resources may be improved. A fixed network of about 60 sites is point-sampled biweekly-to-

monthly for a variety of parameters, including NO3-N. We selected a subset of 23 sites based

on their location as a watershed terminus near the Mississippi or Missouri Rivers and the pres-

ence of a nearby USGS discharge gauge. All samples were collected as grab (point) samples fol-

lowing a USEPA-approved Quality Assurance Project Plan and then were immediately

preserved and delivered to the State of Iowa Hygienic Laboratory where they were analyzed

using USEPA Method 353.2 [36]. Sample sites and collection and lab procedures were

unchanged during the period of study. Because NO3-N moves in soluble form [37], and

Iowa nitrate and Gulf Hypoxia
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because fixed-location samples provide a robust proxy for cross-sectional average NO3-N con-

centrations [38] we assumed that NO3-N was well-mixed within the stream at the sample

locations.

Concentration data for non-analysis days were estimated using linear interpolation [37, 39]

and daily loads of NO3-N were calculated by multiplying concentration by daily average dis-

charge while annual water year loads were calculated by summing the daily loads. Not all sites

were sampled every year. As such, aggregated loads and yields for Iowa and areas of the state

draining to the Missouri and the Mississippi but not the Missouri were calculated by area-

weighting the watershed data available for each individual year. An average per hectare

NO3-N yield (kg ha-1) was obtained and then extrapolated to the larger basin area (i.e. Iowa,

Iowa areas draining to the Missouri, and Iowa areas draining to the Mississippi but not the

Missouri).

Fig 1. Iowa stream sites and watersheds evaluated in this study. The red triangle indicates the sample location. Numbers correspond to those listed in Table 1.

https://doi.org/10.1371/journal.pone.0195930.g001
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Table 1. Iowa DNR ambient monitoring sites used in this study.

Watershed

Number�
Discharge

Gauge

Drainage

Area (km2)

Iowa

DNR Site

ID

Nitrate

Monitoring

Site

Drainage

Area (km2)

Latitude Longitude Basin Monitoring

Period

(WY��)

Fraction

of Iowa’s

Total

Area

Average

Row

Crop

Fraction

Average

Annual

Discharge

(mm)

Average

Annual

NO3-N

yield (kg

ha-1)

Receiving

Stream

1 1,994 10030001 1,987 43.4211 91.5086 Upper Iowa

River near

Dorchester

1999–2016 0.014 0.544 318 20.1 Mississippi

2 572 10030002 566 43.1119 91.2650 Yellow River

near Volney

2005–2016 0.004 0.495 328 22.1 Mississippi

3 88 10220003 89 43.0408 91.2064 Bloody Run

Creek near

Marquette

1999–2016 0.001 0.475 244 15.5 Mississippi

4 4,002 10220001 4,023 42.7400 91.2617 Turkey River

near Garber

2000–2016 0.028 0.570 300 21.6 Mississippi

5 1,308 10490001 1,528 42.1644 90.7294 North Fork

Maquoketa

River near

Hurstville

1999–2016 0.010 0.534 317 23.3 Mississippi

6 6,050 10820001 6,045 41.7669 90.5347 Wapsipinicon

River at De

Witt

1999–2016 0.041 0.717 340 22.4 Mississippi

7 20,168 10700001 20,159 41.4092 91.2903 Cedar River

near

Conesville

2000–2016 0.138 0.724 308 21.1 Mississippi

8 11,119 10580002 11,101 41.4239 91.4786 Iowa River

near Lone

Tree

2007–2016 0.076 0.646 379 22.1 Mississippi

9 1,891 10540001 1,646 41.3008 92.2044 North Skunk

River near

Sigourney

1999–2016 0.011 0.613 300 18.0 Mississippi

10 4,235 10620001 4,247 41.3558 92.6572 South Skunk

River near

Oskaloosa

2000–2016 0.029 0.708 295 21.4 Mississippi

11 1,373 10440001 1,379 40.9253 91.6742 Cedar Creek

near Oakland

Mills

1999–2016 0.009 0.614 301 15.1 Mississippi

12 34,639 10900002 34,751 41.0108 92.4111 Des Moines

River

Downstream

of Ottumwa

2001–2014 0.238 0.651 234 13.9 Mississippi

13 1,816 10270001 1,801 41.6403 93.8081 Thompson

Fork—Grand

River at Davis

City

2000–2016 0.012 0.291 233 4.0 Missouri

14 1,974 10730001 2,046 40.7433 95.0142 West

Nodaway

River near

Shambaugh

2000–2016 0.014 0.537 246 12.6 Missouri

15 2,315 10360001 2,645 41.0086 95.2414 East

Nishnabotna

River near

Shenandoah

1999–2016 0.018 0.689 258 16.6 Missouri

16 1,577 10650001 2,508 41.3900 95.3714 West

Nishnabotna

River near

Malvern

2000–2016 0.017 0.771 234 18.3 Missouri

(Continued)
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Annual (water year) NO3-N loads, 1999–2016, for the Missouri River at Hermann, MO,

the Mississippi River at Thebes, IL, and the combined Atchafalaya-Mississippi load were

obtained from the USGS NAWQA reports [34]. Loads for the Upper Mississippi River (i.e.

areas draining to Thebes but not the Missouri River) were estimated by subtracting the

NO3-N load at Thebes from that at Hermann.

Results

Crop area

When considering the U.S. Cornbelt states draining to the MARB (ND, SD, NE, KS, MN, IA,

MO, WI, IL, IN, OH), Iowa had the largest average combined area in corn and soybean pro-

duction (93,340 km2) and the largest average area portion in cultivation for these crops (0.64).

The state also had the most total area in corn production in each year of the study and the

most area in soybean production in 14 of the 18 years. Overall, however, the state’s share of all

corn/soybean area in the region steadily declined (Fig 3) as cropped areas increased in other

states, especially MN, ND, SD and KS. Iowa’s decline in the share of the region’s soybean area

was especially pronounced, dropping from 18.6% in 1999 to 14.5% in 2016. Total corn-soy-

bean area in Iowa ranged from 91,867 (2001) to 95,307 km2 (2014) while these areas ranged

from 484,021 (1999) to 568,644 km2 (2015) in the Cornbelt region as a whole. Thus while

corn-soybean area was increasing approximately 21% across the Cornbelt, this increase

was< 4% in Iowa.

Table 1. (Continued)

Watershed

Number�
Discharge

Gauge

Drainage

Area (km2)

Iowa

DNR Site

ID

Nitrate

Monitoring

Site

Drainage

Area (km2)

Latitude Longitude Basin Monitoring

Period

(WY��)

Fraction

of Iowa’s

Total

Area

Average

Row

Crop

Fraction

Average

Annual

Discharge

(mm)

Average

Annual

NO3-N

yield (kg

ha-1)

Receiving

Stream

17 2,256 10430001 2,357 41.6417 95.7822 Boyer River

near Missouri

Valley

2000–2016 0.016 0.717 203 17.4 Missouri

18 1,054 10430002 1,058 41.8306 95.9311 Soldier River

near Pisgah

1999–2016 0.007 0.723 178 12.8 Missouri

19 1,733 10670002 1,668 42.1569 95.8097 Maple River

near Mapleton

2000–2016 0.011 0.815 196 19.8 Missouri

20 6,475 10970001 6,958 42.4822 95.7925 Little Sioux

River near

Smithland

2000–2016 0.048 0.742 186 13.4 Missouri

21 1,044 10970002 1,042 42.2269 96.0778 West Fork

Ditch at

Hornick

2001–2016 0.007 0.805 166 17.8 Missouri

22 2,295 10750001 2,295 42.5767 96.3111 Floyd River

near Sioux

City

1999–2016 0.016 0.826 148 18.5 Missouri

23 4,123 10840001 4,351 43.2144 96.2942 Rock River

near

Hawarden

2000–2016 0.030 0.791 152 14.2 Missouri

�Watershed number corresponds to Fig 1

��WY: Water year, 1 Oct to 30 Sep

https://doi.org/10.1371/journal.pone.0195930.t001
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Water yield

Annual water yield across Iowa varied from 98 mm in the drought year of 2012 to 605 mm in

2016 with an overall average of 264 mm. Water yield averaged 199 mm in the first half of the

record (1999–2007) and 328 mm the second half (2008–2016). The largest annual water yield

from any Iowa watershed was 1040 mm for the South Skunk River in 2010. Water yield from

Iowa areas draining directly to the Mississippi River was 45% higher than areas draining to the

Missouri (289 versus 199 mm). In the larger receiving basins, average water yield ranged from

57 mm (MoRB) to 203 (MARB) to 307 (UMRB). The largest annual water yield for all three of

these basins occurred in 2010; likewise the lowest water yield year for all three occurred in the

same year—2006. Water yield values for all the Iowa watersheds are shown in Table 1 and Fig 4.

Nitrate loads and yields

Annual NO3-N yield from Iowa (Fig 4) ranged from 4.5 (2012) to 38.8 kg ha-1 (2016), translat-

ing into NO3-N loads of 66,000 to 567,000 Mg. Annual yields to the Missouri River ranged

Fig 2. Areas of Iowa draining to the Missouri River and Mississippi River but not the Missouri River.

https://doi.org/10.1371/journal.pone.0195930.g002
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from 1.6 (2000) to 41.2 kg ha-1 (2016), equivalent to loads of 7100 to 186,000 Mg. Yields from

Iowa areas draining directly to the Upper Mississippi River varied from 4.3 (2012) to 37.7 kg

ha-1 (2016), translating to loads of 44,000 to 379,000 Mg. Between watersheds, average yields

for the entire period ranged from 4 kg ha-1 (Thompson Fork) to 23.3 kg ha-1 (North Fork of

the Maquoketa). The largest one-year yield was 64.4 kg ha-1 in the West Fork Ditch (2016).

In the larger receiving basins annual loads ranged from 539,000 to 1,216,000 Mg (MARB),

21,000 to 650,000 Mg (UMRB), and 35,000 to 319,000 Mg (MoRB) (Fig 5). Meanwhile yields

varied from 1.8 to 4.1 kg ha-1 (MARB), 3.7 to 14.6 kg ha-1 (UMRB), and 0.3 to 2.4 kg ha-1

(MoRB). The lowest yields occurred in 2000 for the MoRB and MARB and 2012 for the

UMRB. The highest yields occurred in 2016 (MoRB) and 2008 (MARB and UMRB). Compar-

ing variations in annual yield, Iowa in aggregate varied over a factor of 8.6; the MoRB 8.0;

UMRB, 3.9; and the MARB, 2.3. Annual yields for the West Fork Ditch in Iowa varied over a

factor of 340.

The Iowa portion of the MARB, UMRB and MoRB load is shown in Fig 6. Iowa’s NO3-N

load portion in the MARB ranged from 11 (2012) to 52% (2016) and averaged 29% for the 18

year period. Iowa areas draining directly to the Upper Mississippi River contributed 20 (2002)

to 63% (2016) of the UMRB load with an average of 45%. Meanwhile Iowa watersheds draining

to the Missouri River delivered 20 (2000) to 89% (2006) of the total MoRB load measured at

Hermann, MO, averaging 55% over the 18-year period.

Using total discharge and total NO3-N load for the period (1999–2016), flow-weighted

average (FWA) NO3-N concentrations were calculated for Iowa, the MARB, UMRB, and

Fig 3. Iowa fraction of combined corn and soybean area from North Dakota, South Dakota, Nebraska, Kansas, Minnesota,

Iowa, Missouri, Wisconsin, Illinois, Indiana and Ohio.

https://doi.org/10.1371/journal.pone.0195930.g003
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Fig 4. Box plots of water yield (top) and NO3-N yield (bottom) for the period of study. Streams draining to the Mississippi but not the

Missouri are shown in blue while streams draining to the Missouri are shown in brown. The overall Iowa averages are shown in green. The

boxes bracket the 25th-75th percentiles; the line in the box indicates the median; the whiskers the 10th and 90th percentiles, and the dots

are data points less than (greater than) the 10th (90th) percentiles.

https://doi.org/10.1371/journal.pone.0195930.g004
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MoRB basins and the non-Iowa portions of these basins. These are shown in Table 2. Iowa

contributions of water and NO3-N nearly double the FWA concentration of the Missouri

River; likewise Iowa contributions raise the UMRB and MARB FWA concentration 44% and

33% respectively. Also shown in Table 2 are the FWA concentrations in the MARB, UMRB

Fig 5. Loads of NO3-N (left) and total discharge (right) for the Mississippi-Atchafalaya River Basin (MARB), Upper Mississippi

River Basin (UMRB) and Missouri River Basin (MoRB). The green lines indicate the entire basin; the blue lines indicate the non-

Iowa portions.

https://doi.org/10.1371/journal.pone.0195930.g005
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and MoRB if Iowa’s total NO3-N load was reduced 45%, the goal for the state set by the INRS.

In this circumstance, FWA concentrations would decline 15, 26, and 33% for the MARB,

UMRB, and MoRB, respectively. These concentrations assume average discharge from 1999–

2016 would remain unchanged in future years.

Fig 6. Iowa portion of the total discharge (blue bars), NO3-N load (green bars) and land area (red line) in the Mississippi-Atchafalaya

River Basin (MARB), Upper Mississippi River Basin (UMRB) and Missouri River Basin (MoRB).

https://doi.org/10.1371/journal.pone.0195930.g006
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Discussion

Iowa’s 18-year average NO3-N load contribution to the MARB was 29% of the total, consistent

with some previous estimates, especially that of the INRS [20] which also estimated a 29% con-

tribution. Libra’s 1998 estimate [26] of 25% is somewhat less than our calculated amount,

while Goolsby’s 2000 estimate [23] of 35% for Iowa and the very similar neighboring state of

Illinois seems likely to be low. We should note that these other estimates were made 20 or

more years ago, near the beginning of our period of record. Recently Jones et al. [22] used a

high-frequency sensor network measuring NO3-N in 13 major Iowa basins to estimate the

2016 calendar year load for the state to be 477,000 Mg and 41% of the MARB load, less than

the 568,000 Mg (52%) calculated here for the 2016 water year. It should be emphasized that

December 2015 was exceptionally wet in Iowa with a large NO3-N load, which would have fig-

ured into the 2016 water year but not the 2016 calendar year. In any case, the Iowa portion for

both the 2016 calendar and water years was very high and implies that Iowa can be a strong

driver Gulf of Mexico hypoxia.

As our data was part of the IDNR ambient monitoring program, it was generated from

point measurements and did not include storm event samples. This is consistent with the other

previous estimations (i.e. [20, 25, 26]) of Iowa NO3-N loading cited here. We believe deliberate

inclusion of storm event samples is not likely to alter our calculated load totals, as up to 80% of

the NO3-N load in Iowa occurs during baseflow [40] and that it is well established that weekly

and biweekly grab samples are adequate for quantifying NO3-N loss at the landscape scale [18,

41, 42]. Lee et al. [37] evaluated several methods and sampling strategies for determining

decadal NO3-N loads. In that study, linear interpolation of point data from a “uniform” sam-

pling protocol (like that conducted here) produced a mean percent error and root mean

squared percent error of -2 and 4 and respectively, only slightly different from errors produced

by high flow sampling (1 and 3% respectively). For these reasons, we believe the data from the

ambient monitoring program is adequate for quantifying Iowa NO3-N loads.

We are not aware of other detailed estimates of Iowa’s NO3-N load to the MoRB and

UMRB. It’s clear that Iowa is a major contributor to both, especially the MoRB. In some years,

the Missouri River would have nearly no NO3-N without contributions from Iowa (e.g. 2003,

2006, 2011) (Fig 6). Because of lower average precipitation, Libra [26] estimated loading from

Missouri River tributaries in western Iowa to be lower than the Iowa tributaries draining to

the east toward the Mississippi, and our analysis confirms this conclusion. To our knowledge,

however, how western Iowa streams draining only 3% of the Missouri Basin can dominate

overall Missouri River NO3-N loading has not been previously reported in any published liter-

ature. This illustrates the importance of implementing NO3-N mitigation strategies that

address not only the level, tile-drained landscapes in northern and eastern Iowa but also the

hillier terrain of western Iowa where constructed drainage is less common. Iowa is also a

strong contributor to the UMRB NO3-N load, with an overall portion of 45% for the period of

record. Similar to the MoRB, we are not aware of detailed estimates of Iowa’s proportional

NO3-N load contribution solely within the UMRB.

Table 2. Flow-weighted average NO3-N concentrations (mg L-1) in the Mississippi-Atchafalaya River Basin (MARB), Upper Mississippi River Basin (UMRB) and

Missouri River Basin (MoRB), the Iowa and non-Iowa portions of each of those basins, and the concentration of the entire basins if the Iowa Nutrient Reduction

Strategy goal of 45% load reduction was met.

Basin Entire Watershed Iowa Portion Non-Iowa Portion Entire Basin if Iowa load declines 45%

MARB 1.34 6.74 1.01 1.16

UMRB 3.05 6.50 2.12 2.43

MoRB 1.61 7.64 0.82 1.21

https://doi.org/10.1371/journal.pone.0195930.t002
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For all three major basins, Iowa’s disproportionate load contribution is not consistent with

its contribution of water. In the MARB, the state contributes 5.9% of the water and 29% of the

NO3-N while occupying 4.5% of the basin area; for the UMRB, 21% of the water and 45% of

the NO3-N with 21% of the land area; and for the MoRB, 12% of the water and 55% of the

NO3-N but only 3.3% of the watershed area (Fig 6). This and related FWA concentrations

(Table 2) indicate that the supply of loss-vulnerable NO3-N on the landscape is much higher

in Iowa than in the rest of the larger basins. Certainly a factor contributing to Iowa’s dispro-

portionate NO3-N contribution is the magnitude of land area committed to crop production.

The state has the largest areas in corn and soybean production and the largest fractions of total

area in production of the Cornbelt states, an important driver of watershed NO3-N loading

[20].

We illustrate both basin-wide NO3-N load and water discharge in the MARB, UMRB, and

MoRB and these same parameters in the non-Iowa portions of these watersheds in Fig 5.

Regression lines highlight how the paired basins (Iowa-inclusive and non-Iowa portion) com-

pared with respect to NO3-N loading and discharge. Although the differences between the

regression lines were not statistically significant due to large year-to-year variations, the lines

nonetheless illustrate how the paired basins have behaved somewhat differently for NO3-N

loading, and similarly for discharge. While NO3-N loads appear relatively unchanged in the

non-Iowa portions of the MARB, UMRB, and MoRB, inclusion of Iowa increases the slope of

a regressed line of basin loads (Fig 5). Since NO3-N loads are highly dependent upon discharge

[18], differences between NO3-N load trends and discharge trends would therefore imply dif-

ferences in NO3-N supply on the landscape and NO3-N concentration in the studied streams

and basins. This implies that changes have occurred in the Iowa landscape (besides increased

discharge) that are increasing NO3-N loads, or that changes are occurring in the non-Iowa

areas of the MARB, UMRB and MoRB, but not in Iowa, that are preventing increases in

NO3-N loading. Interestingly, areas cropped to corn and soybean have not increased much in

Iowa compared to the rest of the Cornbelt (Fig 3), so any landscape changes that are driving

changes in NO3-N loads would necessarily be due to crop/field management, weather pat-

terns, or possibly legacy NO3-N [43], in that much of Iowa’s land area has been committed to

corn and soybean production for many decades. One other possible factor is drainage tile.

Although accurate records are sparse to non-existent, much of Iowa’s farmland requires artifi-

cial drainage to optimize conditions for corn and soybean production. There is anecdotal evi-

dence [44] that improvements in Iowa’s drainage infrastructure have been extensive in recent

years. Since this is the primary NO3-N delivery mechanism for Iowa streams, it would seem

reasonable that this could be affecting NO3-N loads in Iowa more than other states where con-

structed drainage is less common.

Since climate is a contributor to the extent of Gulf of Mexico hypoxia [45], the Gulf Hyp-

oxia Task Force’s goal for area reduction is based on a 5-year moving average that presumably

accounts for year-to-year weather variations that could be expected to be large, especially in

the mid-continental area of the MARB that includes Iowa. Fig 7 shows the 5-year moving aver-

age of Gulf Hypoxia area [46] and Iowa loads calculated for the period of record here. Since

2003 (the first year of our water quality record where the 5-year moving average can be calcu-

lated), the value for the hypoxic area has been far larger than the Task Force’s goal (5000 km2),

although the current value is slightly smaller than in 2003. The Iowa 5-year moving average

NO3-N load value, however, is about 40% higher than 2003 and has been higher than the 2003

value for the last ten consecutive years. With the role of NO3-N as a strong driver of Gulf hyp-

oxia [10,11], focus on reducing loss of this pollutant from its primary source areas like Iowa is

crucial. With the state responsible for as much as half of the MARB NO3-N load, conservation

practices such as cover crops [47], constructed wetlands [48] and restored oxbows [49,50]
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would seem to have the greatest potential to affect Gulf hypoxia if implemented in this area of

large NO3-N loss.

Conclusions

Iowa’s NO3-N load contribution to the MARB, UMRB, and MoRB averaged 29, 45, and 55%

respectively for the water year period 1999–2016, and can be as high as 52, 63 and 89%, respec-

tively. When considering these basins, NO3-N loading from the non-Iowa portions seems to

be stable or increasing at a slower rate than the Iowa-inclusive area while discharge is behaving

similarly between the non-Iowa and Iowa-inclusive areas. This implies that the dynamics of

weather and discharge are not primarily responsible for differences in the NO3-N patterns

that exist between Iowa and the rest of the MARB, UMRB, and MoRB since 1999. These

NO3-N patterns are occurring against a backdrop of slow expansion (< 4%) in Iowa crop area

but much larger expansion in Cornbelt crop areas (21%). Data reported here indicates that if

Iowa can reach its 45% load reduction goal, FWA NO3-N concentrations would decline 15,

26, and 33% for the MARB, UMRB, and MoRB, respectively. Land managers, policy makers

and conservationists should view this as an opportunity to implement NO3-N reducing prac-

tices in areas such as Iowa where they are likely to produce measurable improvements in Mis-

souri and Mississippi River nitrate loads.

Supporting information

S1 Dataset. Raw nitrate concentration and discharge data for the stations used in this

study. (Data A) Upper Iowa River. (Data B) Yellow River. (Data C) Bloody Run Creek. (Data

Fig 7. Five-year running annual average of Gulf of Mexico hypoxic area (blue) and Iowa stream NO3-N loads (green).

https://doi.org/10.1371/journal.pone.0195930.g007
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D) Turkey River. (Data E) North Fork Maquoketa River. (Data F) Wapsipinicon River. (Data

G) Cedar River. (Data H) Iowa River. (Data I) North Skunk River. (Data J) South Skunk River.

(Data K) Cedar Creek. (Data L) Des Moines River. (Data M) Thompson River. (Data N) West

Nodaway River. (Data O) East Nishnabotna River. (Data P) West Nishnabota River. (Data Q)

Boyer River. (Data R) Soldier River. (Data S) Maple River. (Data T) Little Sioux River. (Data

U) West Fork Ditch. (Data V) Floyd River. (Data W) Rock River. (Data X) Atchafalaya River

nitrate loads. (Data Y) Atchafalaya River discharge. (Data Z) Missouri River nitrate loads.

(Data AA) Missouri River discharge. (Data BB) Mississippi River at Thebes nitrate loads.

(Data CC) Mississippi River at Thebes discharge. (Data DD) Mississippi River at

St. Francisville nitrate loads. (Data EE) Mississippi River at St. Francisville Discharge.
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