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a b s t r a c t 

Genomic selection (GS) is a technique that plant breeders use to select individuals to mate and pro- 

duce new generations of species. Allocation of resources is a key factor in GS. At each selection cycle, 

breeders are facing the choice of budget allocation to make crosses and produce the next generation of 

breeding parents. Inspired by recent advances in reinforcement learning for AI problems, we develop a 

reinforcement learning-based algorithm to automatically learn to allocate limited resources across dif- 

ferent generations of breeding. We mathematically formulate the problem in the framework of Markov 

Decision Process (MDP) by defining state and action spaces. To avoid the explosion of the state space, an 

integer linear program is proposed that quantifies the trade-off between resources and time. Finally, we 

propose a value function approximation method to estimate the action-value function and then develop 

a greedy policy improvement technique to find the optimal resources. We demonstrate the effectiveness 

of the proposed method in enhancing genetic gain using a case study with realistic data. 

© 2022 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Over the past decades breeding methods have evolved from 

raditional phenotype-based selection to marker-assisted selection 

ethods. Genomic selection (GS), which was initially proposed by 

euwissen et al. (2001) , is a special form of marker assisted selec- 

ion that estimates the effects of genome-wide markers in a train- 

ng population consisting of genotyped and phenotyped individu- 

ls. Different statistical and machine learning models are proposed 

o develop prediction models based on the genotypic and phe- 

otypic data of the training population ( Chen et al., 2014; Crossa 

t al., 2017; Dong et al., 2016; Li et al., 2015; Liu et al., 2018;

iu and Wang, 2017; Mahendran et al., 2020; Montesinos-López 

t al., 2018; Neves et al., 2012; Pryce et al., 2011 ). Then, the pre-

iction model is used to derive the genomic estimated breeding 

alues (GEBVs) for all individuals of the breeding population (BP) 

rom their genomic profile by calculating the sum of the estimated 

arker effects. Given the genotype information and the estimated 

arker effects of individuals in a breeding population, there are 

ifferent decisions that should be made within each breeding cy- 

le. These decisions include selection, mating, and resource alloca- 

ion which must be made in every generation with the objective 
∗ Corresponding author. 
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f continuously improving individuals subject to deadline con- 

traints ( Moeinizade, 2018; 2021; Moeinizade et al., 2021; 2020a; 

020b ). 

Recently, Moeinizade et al. (2019) presented the look-ahead se- 

ection (LAS) method by applying operations research techniques 

o optimize selection and mating strategies. A new time-dependent 

echnique was invented to anticipate the consequences of selec- 

ion and mating decisions through several generations, which was 

chieved by quantitatively taking into account recombination fre- 

uencies. Recombination, the main source of uncertainty in re- 

roductive biology, is the phenomenon that occurs during meiosis 

nd creates different combinations of alleles in the resulting ga- 

etes ( Lobo and Shaw, 2008 ). In Moeinizade et al. (2019) , we con-

ucted a case study using realistic maize data and compared LAS 

ith other published selection methods. Simulation results sug- 

ested the superiority of LAS to other selection methods. How- 

ver, the LAS method was unable to optimize resource allocation 

ecisions, e.g., how should the budget be distributed over time? 

hould it be spent evenly or should more investment be made in 

arlier generations before genetic diversity deteriorates? how many 

rosses should be made and how many progeny should be pro- 

uced? These resource allocation decisions should be optimized 

ystematically, given the cost of making a cross and genotyping 

rogeny, under budget and deadline constraints, considering the 

ncertainty in recombination in each generation. 
 under the CC BY-NC-ND license 
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In this study, we develop a reinforcement learning-based al- 

orithm to automatically learn to allocate resources across dif- 

erent generations of breeding. The proposed new method inte- 

rates the LAS approach in a reinforcement learning framework. 

he LAS method is capable of anticipating the consequences of 

he selection and mating decisions under uncertain recombina- 

ion events efficiently and accurately, whereas the reinforcement 

earning framework is capable of making a trade-off between 

ost and time which is necessary to make resource allocation 

ecisions. 

Reinforcement learning (RL) is one of the most important re- 

earch directions of machine learning, which has been widely used 

n different fields like social sciences, natural sciences, and engi- 

eering and has significantly impacted the development of Arti- 

cial Intelligence (AI) over the last years ( Dayan and Niv, 2008 ). 

utton and Barto (2018) define Reinforcement learning as learning 

hat to do -how to map situations to actions- so as to maximize a 

umerical reward signal. There is a growing body of literature ap- 

lying reinforcement learning methods to existing operations re- 

earch (OR) problems ( Hubbs et al., 2020; Li, 2017; Mazyavkina 

t al., 2021 ). Powell (2007) discusses RL techniques from an opera- 

ions research perspective and presenets several solution method- 

logies for solving large-scale problems in supply chain, inven- 

ory management, resource management, etc. Bertsekas (2012) dis- 

usses large-scale dynamic programming based on approximations 

hich intertwines with the current field known as reinforcement 

earning. Gambella et al. (2021) surveys the underlying optimiza- 

ion problems in machine learning by presenting mathematical 

odels for regression, classification and deep learning. Further- 

ore, reinforcement learning methods have been used to solve 

ombinatorial optimization problems such as Traveling Salesman 

roblem (TSP), KnapSack, and Vehicle Routing Problem (VRP), to 

ame a few ( Bello et al., 2016; Khalil et al., 2017; Kool et al., 2018;

azyavkina et al., 2021; Nowak et al., 2018 ). 

The main characters of RL are the agent and the environment. 

he environment represents the outside world to the agent and 

he agent interacts with the environment by taking actions and 

eceiving a reward signal. The goal of the agent is to maximize 

he cumulative reward, named return. To do that, the agent should 

earn the optimal policy which is an optimal strategy to behave 

n the environment. RL problems can be formulated mathemati- 

ally in the framework of Markovian Decision Processes (MDPs) 

y defining states, actions, transition probabilities, and rewards 

 Szepesvári, 2010 ). The transition and reward functions in MDPs 

re called the model of environment. A known MDP can be solved 

y dynamic programming which relies on simplifying a compli- 

ated problem by breaking it down into simpler sub-problems in a 

ecursive manner ( Bellman, 1966 ). However, we often do not have 

he transition and the rewards of the MDP. This class of problems 

ith unknown MDPs are called model-free. While model-based 

ethods rely on planning as their primary component, model- 

ree methods rely on learning ( Sutton and Barto, 2018 ). Model-free 

ethods can be applied to both prediction and control problems. 

n model-free prediction, the goal is to estimate the value function 

f an unknown MDP where as model-free control aims at optimiz- 

ng the value function. The value function represents how good it 

s for an agent to be in a given state. 

In recent years, different solution methods have been proposed 

o solve model-free RL problems ( Hausknecht and Stone, 2015; 

eess et al., 2017; Mnih et al., 2013; Schulman et al., 2015a; 2015b; 

017; Tucker et al., 2018; Van Hasselt et al., 2015; Wang et al., 

016 ). These solution methods include two main types of algo- 

ithms, value-based and policy-based. Value-based algorithms iter- 

tively update the value of a state to finally learn an optimal pol- 

cy. Policy-based algorithms learn a parameterized policy that can 

elect actions without consulting a value function. 
2 
Q-learning, a value-based RL algorithm, is one of the most pop- 

lar solution methods in reinforcement learning. This algorithm 

ses Q-values (an estimation of how good it is to take an ac- 

ion at a given state) to iteratively improve the behaviour of the 

earning agent ( Watkins and Dayan, 1992 ). However, for large- 

cale problems with an enormous number of state-action pairs, 

t is difficult to explicitly store all the Q-values. To overcome this 

hallenge, function approximation methods are used where value 

unction is represented by mapping a state description to a value 

 Arulkumaran et al., 2017; Gosavi, 2009; Kaelbling et al., 1996 ). 

any implementations of RL in real-world problems have used 

eural networks as function approximators ( Hausknecht and Stone, 

015; Mnih et al., 2013; Van Hasselt et al., 2015; Wang et al., 2016 ).

ne of the examples is the achievement of AlphaGo in 2016, where 

 deep Q-network was implemented and trained to predict to- 

al reward ( Silver et al., 2016 ). Other approximation methods in- 

luding kernel methods, nearest-neighbor algorithms, and decision 

rees can be used to estimate the Q-values ( Chapman and Kael- 

ling, 1991; Friedman et al., 2001; Howe and Pyeatt, 1998 ). Policy 

radient algorithms learn in a more robust way by approximating 

olicy and updating it according to the gradient of expected re- 

ard with respect to the policy parameters ( Sutton et al., 1999 ) 

ithout the need to construct a value function. 

In this study, we mathematically formulate the resource allo- 

ation in genomic selection problem in the framework of MDP by 

efining state and action spaces and then propose a value-based 

lgorithm with function approximation and introduce a backward 

reedy policy approach with respect to the estimated values (i.e., 

he policy that selects the action with highest estimated value in 

ach state). The idea of the backward approach is to learn the opti- 

al action in a backward manner starting from the final generation 

o the first generation given that the optimal strategy in the final 

eneration is allocating all remaining resources. One of the major 

ontributions of this study is the definition of state space to avoid 

ormidable dimensions given the genotypic information. We tack- 

ed this challenge by proposing an integer linear program which 

aptures the important information of the population by quantify- 

ng the trade-off between resources and time. 

In the remainder of this paper, we formulate the resource allo- 

ation problem in an RL framework, discuss the solution methods 

nd finally present a case study to compare our proposed alloca- 

ion strategy with even allocation using computer simulation. 

. Methods 

In this section, we first define the genomic selection resource 

llocation problem and then formulate the proposed problem 

athematically in the context of Markov Decision Process (MDP), 

here reinforcement learning algorithms can be used. Finally, we 

rovide a solution method to solve the proposed MDP and find the 

ptimal policy. 

.1. Problem definition 

A classical plant breeding process starts with an initial popu- 

ation and iteratively goes through the selection and reproduction 

teps until getting the final population. In addition to the selec- 

ion decisions, in each generation, the breeder should decide how 

o allocate resources (i.e., the number of crosses to be made and 

he number of progeny to be produced from each cross). The fo- 

us of this study is optimizing the resource allocation strategy in a 

reeding program. 

Let G t ∈ B 

L ×M×N represent the genotype of the population at 

eneration t , where L is the total number of alleles, M indicates the 

loidy of the plant ( M = 2 for diploid species) and N is the total

umber of individuals in the population. For all l, let β denote the 
l 
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Fig. 1. The architectural diagram for look-ahead selection (LAS) and the proposed reinforcement learning for genomic selection (RLGS) algorithms. 
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dditive effect of allele l, which is assumed to have been reason- 

bly estimated. Given β and G , the look-ahead selection (LAS) al- 

orithm can optimize the selection and mating steps with a time- 

ependent approach ( Moeinizade et al., 2019 ) by maximizing the 

xpected GEBV of the best offspring in the terminal generation ( T ) 

here GEBV of an individual can be calculated as the sum of all 

arker effects across the entire genome. 

Let the cost of producing one progeny be one unit of budget. 

hen, spending b units of resources in the current generation will 

roduce b progeny. Given a fixed amount of total budget of B 0 
nits of resources over T generations, the goal is to find the opti- 

al budget or population size for each generation, ( b 1 , b 2 , . . . , b T ),

n order to maximize the performance of individuals in the final 

eneration. Similar with selection and mating, resource allocation 

ecisions should be made in a dynamic manner after observing the 

enotype of progeny from previous generations, while considering 

he total budget constraint over T generations: 
∑ T 

t=1 b t ≤ B 0 . 

Fig. 1 demonstrates the architecture of the proposed reinforce- 

ent learning algorithm for genomic selection (RLGS) and high- 

ights the differences between RLGS and the previously proposed 

ook-ahead selection (LAS) algorithm. The inputs to the LAS algo- 

ithm are the genotype of the population at generation t ( G t ), al- 

ele effects ( β), and recombination frequency ( r). The outputs are 

he selection ( x ) and mating ( y ) decisions. The RLGS algorithm uses

AS to optimize the selection and mating decisions and focuses 

n optimizing the resource allocation decisions. As presented in 

ig. 1 , the RLGS algorithm takes B 0 , G t , β and r as inputs and

utputs the optimal resources for each generation in a backward 

anner. 

.2. Problem formulation 

Here, we present the MDP formulation for the genomic selec- 

ion resource allocation problem. An MDP process is described by 

 finite set of states (S), a finite set of actions (A), transition proba-

ilities (T), and a reward function (R). Due to the stochastic nature 

f the environment, in this problem, we cannot derive the tran- 

ition probabilities and the reward is delayed until the terminal 

eneration. Hence, we use learning to understand the behavior of 

he environment by simulating different scenarios of resource allo- 

ation ( Section 2.3 ). In this section, we define the state and action

paces for the MDP. 
3 
We mathematically formulate the problem in the framework 

f Markov Decision Process (MDP) by defining state and action 

paces. To avoid the explosion of the state space, an integer lin- 

ar program is proposed that quantifies the trade-off between re- 

ources and time. Finally, we propose a value function approxima- 

ion method to estimate the action-value function and then de- 

elop a greedy policy improvement technique to find the optimal 

esources. 

.2.1. State space 

To capture the full information in each generation, the popula- 

ion genotype would be necessary to define the state space, but 

t would make the resulting model unsolvable. For example, for 

 small population of 200 individuals and only 10,0 0 0 pairs of 

enes, the dimension of the state space would be 3 2 , 0 0 0 , 0 0 0 with 

ach pair of genes taking three possible combinations of two vari- 

nts of alleles (AA, aa, or Aa). To avoid formidable dimensions, we 

eed to simplify the state space by presenting a compact defini- 

ion that captures the important information by considering the 

urrent genetic value of the population and quantifying the trade- 

ff between time and resources. 

At generation t , we define the state by 
(
g max 

t , C t , B t−1 

)
, where 

 

max 
t is the highest GEBV of the N individuals at generation t cal- 

ulated as follows: 

 

max 
t = max n ∈{ 1 , 2 , ... ,N} 

( 

L ∑ 

l=1 

2 ∑ 

m =1 

G 

l,m,n 
t β l 

) 

(1) 

In this state space definition, C t ∈ R 

K×M measures the specific 

ombining ability, and B t−1 is the available budget to be spent in 

enerations t to the end. Specifically, C k,m 

t is the highest possible 

EBV of a gamete that could be assembled from G t using at most 

 individuals with recombination events that are more likely than 

p k , where p ∈ (0 , 1) is an adjustable parameter, depending on the

ensitivity of recombination frequency and available resources. The 

alue C k,m 

t measures the potential of the genotype G t to create a 

amete with the highest possible GEBV subject to resource and 

ime constraints. The first dimension k reflects the constraint of 

robabilistic recombinations afforded by remaining resources, and 

he second dimension m indicates the number of founding parents 

hat the gamete needs to collect alleles from, which would require 

 

log 2 m � generations of breeding. Value C k,m can be obtained using 
t 
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Fig. 2. The reinforcement learning system representation. The environment is the breeding simulation which provides the next state to the agent. At each time step, the 

value of the current state is evaluated using a pretrained nonlinear function for a given action. Finally, the policy function determines the optimal action which is passed to 

the simulation. 
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he following integer linear program. 

ax 
x,y,z 

C k,m 

t = 

∑ 

i 

∑ 

c 

∑ 

j βi G 

i,c, j 
t x i,c, j (2) 

 . t . 
∑ 

j 

(
x i, 1 , j + x i, 2 , j 

)
= 1 ∀ i (3) 

∑ 

i 

(
x i, 1 , j + x i, 2 , j 

)
≤ Ly j ∀ j (4) 

x i,c, j − x i +1 ,c, j ≤ z i ∀ i, c, j (5) 

∑ 

j y j ≤ m (6) 

∏ 

i 

(
r i 

1 −r i 

)z i ≥ p k (7) 

x, y, z binary (8) 

Here, x i,c, j is a binary variable that indicates whether allele 

i, c, j) is selected 

(
x i,c, j = 1 

)
or not 

(
x i,c, j = 0) to assemble the 

amete, y j is a binary variable that indicates whether individual j

s used 

(
y j = 1 

)
or not 

(
y j = 0 

)
, and z i is a binary variable that in- 

icates whether there is a recombination between loci i and i + 1 

 

z i = 1 ) or not ( z i = 0 ) . 

The objective value (2) is the maximum possible GEBV of a 

amete that can be assembled from the current population. Con- 

traint (3) ensures selection of one chromosome for each locus in 

n individual to assemble the gamete. Constraint (4) requires that 

o alleles from unselected individuals can be used to assemble the 

amete. Constraint (5) detects whether a recombination is neces- 

ary between loci i and i + 1 . Constraint (6) limits the selection of

t most m parents among all individuals. Finally, constraint (7) re- 

uires that the likelihood of necessary recombinations be no less 

han p k , which equivalently limits the amount of resources needed 

o afford such recombination events. Take for example, for very 

mall r i values, the value of 

(
r i 

1 −r i 

)
becomes very small, hence we 

eed more resources (larger k ) to make that recombination hap- 

en. 

.2.2. Action space 

The decision maker should take an action in each generation 

nd decide the amount of resources and the selection strategy for 

hat generation. In Moeinizade et al. (2019) , we demonstrated the 

ffectiveness of look-ahead selection (LAS) against conventional se- 

ection methods. Here, we focus on optimizing the resource alloca- 

ion and use LAS algorithm to determine the selection strategy. 

A common way of obtaining approximate solutions for contin- 

ous action spaces is to discretize the action space. In a discrete 

ction space, the agent decides which distinct actions to perform 

rom a finite action set. In this study, we discretize the action 

pace. Specifically, we assume allocating b amount of resources in 
4 
ne generation is equal to producing b total number of progeny 

n that generation (making one progeny costs one unit of bud- 

et). Hence, action is a discrete value representing the number of 

rogeny in the population. 

We define the action space as time dependent set of 

b 1 , b 2 , . . . , b T ) values such that 
∑ T 

t=1 b t = B 0 where b t is the

mount of resources to spend in generation t , T is the total num- 

er of generations, and B 0 is the amount of total budget. 

.3. Proposed solution technique 

Fig. 2 represents the reinforcement learning system. As shown 

n this figure, there are two main components in the system: agent 

nd environment. The goal of the agent is to find the optimal pol- 

cy (i.e., the optimal action to take at time t) where policy is de- 

ned as a function mapping states to the actions ( π : S −→ A ). The

nvironment is the breeding simulation which provides the next 

tate to the agent. The agent evaluates the value of performing ac- 

ion b in state s using a pretrained value function and then acts 

reedily to find the best policy. The agent then decides to take 

he optimal action at time t + 1 and this process continuous un- 

il reaching the deadline. 

Suppose we have an MDP defined as state-action pairs and 

iven some policy π . First, we predict the value function by con- 

tructing the action-value function 

ˆ Q (s, b, θ ) to represent the ob- 

ective value for a given state-action pair. Then, we can pre- 

ict the value of a state given all possible actions and find the 

ptimal policy, π ∗(s ) , that maximizes the action-value function. 

ection 2.3.1 describes the value function approximation technique 

nd Section 2.3.2 elaborates on policy improvement. 

.3.1. Value function approximation 

The value function demonstrates how good each state and/or 

ction is by calculating the expected cumulative reward in long- 

erm. In this problem, the immediate rewards are considered to 

e zero and the objective is to maximize the genetic gain in fi- 

al generation. Hence, the value here represents the GEBV of the 

est offspring in the final generation, where GEBV of individual 

 is calculated as the sum of effects across the entire genome 

GEBV (n ) = 

∑ L 
l=1 

∑ 2 
m =1 G 

l,m,n β l ). 

The simplest way of representing a value function is by the use 

f a lookup table, with the values of each state-action pair stored. 

owever, when the state-action spaces are large, storing and re- 

rieving values become a problem, as it takes up large amounts of 

omputational resources. To solve this problem, function approxi- 

ators can also be used instead of a lookup table for represent- 

ng value functions, thereby limiting the memory being used and 

peeding up the learning process. Therefore, to estimate the value 

unction, ˆ Q (s, b, θ ) , efficiently, we should use a function approxi- 
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ation method (e.g., nonlinear regression, support vector machine, 

ecision tree based models and neural network). 

The parameters ( θ ) need to be learned for each time period, 

, separately. We employ a backward approach by optimizing re- 

ources from the final generation to the first generation. Given that 

he objective is to maximize the maximum GEBV in the target gen- 

ration, ( g max 
T 

), the optimal strategy in the final generation is to 

llocate all the remaining budget ( b ∗T = B T −1 , where B T −1 is the re- 

aining resources for the final generation). 

To find optimal budget, b ∗t , for earlier generations t ∈ { 1 , . . . , T −
 } , we take advantage of simulation to learn how different bud- 

et allocation scenarios impact the final performance by gener- 

ting learning data as described in Algorithm 1 . This algorithm 

lgorithm 1 Learning data generation. 

Start with initial population G 0 and total budget B 0 
for t := 1 to τ − 1 do 

b t = Action (t, T , B t−1 , A ) 

[ S] = Select (G t−1 , r, n, b t ) 

[ G t ] = Reproduce (G t−1 , S, r) 

end for 

for b τ ∈ A do 

for t := τ to T do 

if t = τ then 

Record (g max 
τ , C τ , B τ ) and b τ

else 

if t = T then 

b t = B T −1 

else 

b t = argmax b∈ A ˆ Q t (s, b, θ ) 

end if 

end if 

[ S] = Select (G t−1 , r, n, b t ) 

[ G t ] = Reproduce (G t−1 , S, r) 

Record g max 
T 

end for 

end for 

resents data collection process for a given generation, τ , which 

oes backwards from T − 1 to 1. For generation τ , we record state- 

ction pairs, (g max 
τ , C τ , B τ ) and b τ , and the objective value, g max 

T 
.

hen, we estimate the value function to map state-action pairs to 

he objective value. We first define the three functions used in 

lgorithm 1 for data generation and then discuss the value func- 

ion approximation technique. 

efinition 2.1. Selection function is defined as: [ S] = 

elect (G t−1 , r, n, b t ) . The input parameters are the population 

enotype at generation t − 1 , G t−1 ∈ B 

L ×2 ×N , recombination fre- 

uency vector, r ∈ [0 , 0 . 5] N−1 , the number of crosses n , and

mount of resources for generation t , b t . Note that the re- 

ources correspond to the progeny population size. The output 

 = 

⎡ 

⎢ ⎣ 

s 1 , 1 s 1 , 2 b 1 t 

s 2 , 1 s 2 , 2 b 2 t 

. . . 

s n, 1 s n, 2 b n t 

⎤ 

⎥ ⎦ 

contains the indices of selected parents 

n the breeding population and the number of progeny produced 

rom each cross (here, row 

[
s i, 1 s i, 2 b i t 

]
means that the i th 

ross in generation t is made using parents s i, 1 and s i, 2 , which 

roduces b i t progeny. The numbers of progeny satisfy the budget 

onstraint that 
∑ n 

i =1 b 
i 
t = b t ). 

efinition 2.2. The reproduction function is defined as follows: 

 G t ] = Reproduce (G t−1 , S, r) . The input parameters are the popula-

ion genotype at generation t − 1 , G t−1 ∈ B 

L ×2 ×N , selection matrix, 

, and the recombination frequency vector, r ∈ [0 , 0 . 5] N−1 . The out-
5 
ut is the genotype of the progeny population. The genetic infor- 

ation are inherited from parents to progeny according to the in- 

eritance distribution defined in Han et al. (2017) . 

efinition 2.3. Action function is defined as: [ b t ] = 

ction (t, T , B t−1 , A ) . The input parameters are the current gener-

tion, t , total number of generations, T , the available resources 

o be spent in generations t to the end, B t−1 , and possible set of 

ctions, A . The output is resources or progeny size for generation 

. We choose an action randomly from a finite set of values 

˜  ∈ A, A = { a 1 , a 2 , . . . , a k } . We produce at least α progeny for

ach generation ( α = min 

k 
i =1 a i ). Therefore the output, b t , can be 

alculated as follows: b t = min ( ̃  a , B t−1 − α × (T − t)) . 

Generating learning/training data in complex stochastic envi- 

onments can be time consuming. Neural networks usually need 

ore training data and thus are not the best approach here since 

he learning process is considerably time-consuming. After explor- 

ng three function approximators including generalized additive 

odel (GAM), support vector machine (SVM), and random forest 

RF), we decided to choose random forest considering both effi- 

iency and computational time. The inputs to the random forest 

odel are the data generated using Algorithm 1 with km + 3 fea- 

ures including the maximum current GEBV ( g max 
t ), the potential 

atrix ( C t ), remaining budget ( B t−1 ), and action ( b t ) where k and

 are the dimensions of the potential matrix. The output is the 

EBV of best individual in the final generation, g max 
T 

. More detailed 

nformation is provided in the Appendix section. 

.3.2. Greedy policy improvement 

The ultimate goal of the agent is to find an optimal policy π ∗

hat maximizes the value function. After learning the value func- 

ion, we employ a greedy approach to improve the policy by se- 

ecting the action with the highest estimated value in each state. 

et ˆ Q t (s, b, θ ) represent the approximated value function for each 

eneration except final. We can calculate the optimal policy for all 

enerations from 1 to T − 1 as follows: 

∗
t (s ) = argmax b∈ A ˆ Q t (s, b, θ ) , ∀ t ∈ { 1 , 2 , . . . , T − 1 } (9)

Moreover, the optimal policy in the final generation is to allo- 

ate all the remaining budget. Therefore π ∗
T 
(s ) = B T −1 , where B T −1 

resents the remaining resources for the final generation. 

. Results 

.1. Simulation settings 

The genotypic data, marker effects and recombination rates are 

ased on Moeinizade et al. (2019) . The genotypic data contains 

enotypes of 369 maize inbred lines consisting of L = 1 . 4 M SNPs 

istributed across ten maize chromosomes. To reduce the dimen- 

ion, we define haplotype blocks. The resulted data has L = 10 , 0 0 0

arkers. 

Let’s assume there exist 5 total generations of breeding ( T = 5 ) 

nd the amount of total budget is 10 0 0. We consider seven possi- 

le action values as follows: A = { 50 , 100 , 150 , 200 , 250 , 300 , 350 } .
ote that the amount of budget in each generation indicates the 

otal number of progeny produced in that generation. Additionally, 

e consider that no more than 10 crosses are made in each gener- 

tion. 

Fig. 3 demonstrates the simulation flowchart. We start with 

he initial population by randomly choosing 200 individuals out of 

69. The state is observed by calculating the tuple 
(
g max 

t , C t , B t−1 

)
. 

he C t matrix is generated by solving the optimization prob- 

em presented in (2) - (8) . Here we choose k = 5 , and m = 5 .

hese are parameters and can be changed according to the data 

nd time required for solving the optimization problem. Fig. 4 
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Fig. 3. The simulation flowchart. The process starts with the initial population and goes through resource allocation, selection and reproduction steps until getting to the 

deadline. To find the optimal resources, we first calculate the current state and then take the action with highest value according to the optimal policy. The action represents 

the number of progeny to be produced for that generation. 

Fig. 4. Heat map for one sample C matrix where k = 5 , and m = 5 . Each square demonstrates the best achieved GEBV value considering different levels of time and resources. 

The bottom right square has the highest potential GEBV value since it considers having the most time and resources. 

s

d

b

m

b

i

t

m

g

s

t

d

g

hows the heat map for one sample C t in a simulation. The x- 

imension of this plot is representing the possibility of com- 

ining more alleles from multiple individuals in case of having 

ore time. Moreover, the y-dimension is representing the possi- 

ility of allowing more recombination to happen in case of hav- 

ng more resources. As expected, the performance becomes bet- 

er towards the right and bottom of the plot by considering 
6 
ore time and resources. In addition, this C matrix indicates that 

iven the current generation, potential genetic gain is more sen- 

itive to resources than to time constraint, which is helpful for 

he reinforcement learning algorithm to make resource allocation 

ecisions. 

Next, the optimal policy will be calculated using the current 

eneration action-value function in a greedy approach. Then, can- 
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Fig. 5. Cumulative distribution functions of population maximum in the final generation (A) and average performance among top 50 individuals in the final generation (B) 

for two strategies of resource allocations among 300 independent simulations. The black dashed curve represents the even allocation strategy and the green curve represents 

the optimal allocation strategy. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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idates are selected according to look-ahead selection as parents 

o produce next generation. This continuous till reaching the dead- 

ine. Finally, we evaluate the performance based on the GEBV of 

ndividuals in the final population. 

.2. Simulation results 

To approximate the action-value function, we first generated 

earning data including state-action pairs using simulation and 

hen trained a random forest algorithm for each generation sep- 

rately to estimate the objective value. The size of training obser- 

ations that were generated in the simulation vary between 1500 

o 60 0 0 for each generation, and there were a total 28 predictors

ncluding the action ( b), maximum current GEBV ( g max ), remaining 

udget ( B ) and 25 values from the potential matrix, C. For train-

ng the random forest model, we did a search grid over three pa- 

ameters including the number of selected features, minimum leaf 

ode size, and maximum number of splits. The set of parameters 

ith the least out of bag error were selected. The out of bag mean
7 
quare errors for the first generation until the fourth generation 

re 2.39, 2.41, 2.31, 2.25, respectively. 

We compared the optimal resource allocation strategy with the 

ven allocation strategy (i.e., allocating resources equally across all 

enerations). Three hundred independent simulations were con- 

ucted for each strategy using MATLAB (R2021-a). 

Fig. 5 (A) demonstrates the cumulative distribution functions 

CDFs) of the population maximum in the final generation. The 

erformance becomes better as the CDF moves towards the right 

irection. Take for example, point (60, 92) means 92% of the sim- 

lations achieved maximum GEBV less than or equal to 60. As 

emonstrated in this figure, the optimal allocation strategy outper- 

orms even allocation strategy in almost all percentiles. Although, 

his improvement is not by a high margin, but it is considerable 

iven that the improvement is across almost all percentiles for 5 

enerations of breeding. More improvements can be achieved for 

onger-term breeding. Moreover, if we compare the average perfor- 

ance of top 50 individuals instead of top 1, we can see a wider 

ap between the two curves as shown in Fig. 5 (B). 
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Fig. 6. Histograms of resource allocation across 5 generations for the optimal resource allocation strategy. The amount of resources that can be spent in all generations till 

one before final is chosen from a predefined set of actions. Here, we have seven different possibilities (50, 100, 150, 20 0, 250, 30 0, 350) for generations one till four and the 

remaining budget will be spent in the final generation. Note that for the even allocation strategy the action is deterministic which is b = 200 for all generations. 
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So far, we have observed the improvements of our proposed op- 

imal allocation strategy with respect to the even allocation strat- 

gy. Thus, the question arises: what is the behavior of the opti- 

al allocation strategy and why that behavior results in improve- 

ents? To understand this better, we examined the histograms of 

esource allocation among 5 generations for the optimal strategy. 

s illustrated in Fig. 6 , three different behaviors are observed. In 

he first generation, the optimal strategy tends to be around the 

verage, in the middle generations, there is more tendency towards 

pending less resources, and in the final generation almost half of 

he total budget is spent. 

In this case study, we demonstrated the effectiveness of our 

roposed method against evenly allocating resources across breed- 

ng cycles. Our optimal strategy suggests investing in the first gen- 

ration and then spending moderate amount of resources in the 

iddle generations and finally investing more in the final genera- 

ion to exploit the best performance that can be achieved. 

. Conclusion 

This study provides a framework to find the optimal resources 

hat should be allocated throughout different generations in a 

reeding program by integrating the recently proposed look-ahead 

election algorithm for genomic selection and reinforcement learn- 

ng techniques. Look-ahead selection is capable of estimating the 

onsequences of selection and mating decisions under uncertain 

ecombination events. Reinforcement learning is able to balance 

he trade-off between cost and time but its performance is sen- 

itive to the definitions and dimensions of the state and action 

paces. Therefore, look-ahead selection is integrated into the rein- 

orcement learning framework to optimize resources in addition to 
8 
he selection and mating steps and new solution techniques are 

roposed to battle the curse of dimensionality. 

We considered MDPs with very large and continuous state 

paces, and we used random forest to construct an approximate 

unction to store the value functions used by the algorithms. We 

mplemented a greedy policy improvement to learn optimal pol- 

cy in a backward manner. We benefit from the structure of the 

enomic selection problem and assume the best policy in the 

arget generation is known (which is spending all the remain- 

ng budget). Then, we approximate the value function from the 

ast generation to the first one and use it to improve the pol- 

cy in a greedy way. Numerical results suggested the improvement 

f the proposed optimal allocation strategy versus even allocation 

trategy. 

The RL framework presented in this work has two major contri- 

utions. The first contribution is the definition of the state space. 

t is analytically and computationally challenging to simplify the 

tate space definition for a large scale stochastic environment. To 

void the explosion of state space, we propose an integer linear 

rogram that captures the genomic information of the population 

y considering the trade-offs between time and resources. The sec- 

nd one is integrating the look-ahead selection and reinforcement 

earning. Given the optimal allocation strategy, look-ahead selec- 

ion further improves the genetic gain by optimizing the selection 

nd mating steps. 

Future research is needed to address the limitations of this 

tudy. First, the current paper considers a sparsely discrete action 

pace with predefined values. Future research should consider a 

ore complete action space and investigate algorithms to optimize 

olicy in such space. Second, here we assume the budget is propor- 

ional to the total number of progenies. In certain situations, how- 
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Fig. 7. True value versus predicted values for three function approximation meth- 

ods including generalized additive model (GAM), support vector machine (SVM) and 

random forest (RF). Results are for 10 fold cross validation (CV). The root mean 

square error (RMSE) is reported for each case. 

Table 1 

Root mean squre error (RMSE) values 

for three function approximation methods 

across all generations during the backward 

learning process. 

Generation GAM SVM RF 

4 1.771 1.748 1.603 

3 1.705 1.675 1.548 

2 1.641 1.609 1.516 

1 1.595 1.591 1.505 

R

A  

B
B  

B

ver, it is also possible that genotyping or crossing must be per- 

ormed in batches that contain up to a certain number of plants, 

hen the cost is not proportional to the number of individuals, but 

he number of batches, making the cost function a step function; 

his would certainly cause additional complexity to the model. Fu- 

ure research can investigate extending this work to those cases 

here cost is not proportional to the number of individuals. Fur- 

hermore, deep neural networks can be used for function approx- 

mation if we generate more learning data by making the simula- 

ion more efficient. Finally, the case study presented here is for a 

ingle data set from a single crop organism. Future research con- 

idering more species is necessary to demonstrate the generaliza- 

ion of our proposed method. 
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ppendix 

In this section, we provide detailed descriptions about the func- 

ion approximation method used in this study. The objective is to 

stimate the GEBV of best individual in the final generation, g max 
T 

iven maximum current GEBV ( g max 
t ), the potential matrix ( C t ), re-

aining budget ( B t−1 ), and action ( b t ). This function should be up-

ated during the backward learning process as more data is gener- 

ted and added to the training information. For example, we first 

enerate learning data for generation T − 1 (generation 4 where 

 = 5 ) and learn function 

ˆ f to map the state-action pairs to g max 
T 

.

hen learning data is generated for generation 3 and therefore 

unction 

ˆ f should be updated to include training data from both 

enerations 3 and 4. This process continues until getting to the 

rst generation. 

Fig. 7 presents the predictions versus true values of g max 
t for 

eneration 4 given three different function approximators includ- 

ng generalized additive model (GAM), support vector machine 

SVM) and random forest (RF). The root mean square error (RMSE) 

etric is used to find the best approximator. As shown in this fig- 

re, random forest has achieved the least RMSE, outperforming the 

ther two methods. 

Table 1 presents the RMSE values for generations 4 to 1 given 

he three function approximation methods. As expected, moving 

rom generation 4 to 1 results in a decrease in RMSE since the 

odel has more learning data. Overall, the random forest method 

chieved better RMSE values and therefore was selected as the 

unction approximation method in this study. 
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