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Abstract.

The authors have recently developed a soft-elastomeric capacitive (SEC)-based thin

film sensor for monitoring strain on mesosurfaces. Arranged in a network configuration,

the sensing system is analogous to a biological skin, where local strain can be monitored

over a global area. Under plane stress conditions, the sensor output contains the

additive measurement of the two principal strain components over the monitored

surface. In applications where the evaluation of strain maps are useful, in structural

health monitoring for instance, such signal must be decomposed into linear strain

components along orthogonal directions. Previous work has led to an algorithm that

enabled such decomposition by leveraging a dense sensor network configurations with

the addition of assumed boundary conditions. Here, we significantly improve the

algorithm’s accuracy by leveraging mature off-the-shelf solutions to create a hybrid

dense sensor network (HDSN) to improve on the boundary condition assumptions.

The system’s boundary conditions are enforced using unidirectional RSGs and assumed

virtual sensors. Results from an extensive experimental investigation demonstrate the

good performance of the proposed algorithm and its robustness with respect to sensors’

layout. Overall, the proposed algorithm is seen to effectively leverage the advantages

of a hybrid dense network for application of the thin film sensor to reconstruct the

surface strain fields over large surfaces.

Keywords: structural health monitoring, capacitive-based sensor, soft elastomeric

capacitor, flexible membrane sensor, sensor network, signal decomposition, strain

measurement.

1. Introduction

Structural health monitoring (SHM) is the automation of damage detection, localization,

and prognosis of structural systems or components. The monitoring of large-scale
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systems, here termed mesosystems, is especially challenging due to the inherent

geometric size and complexity [1]. Mesosystems, including aerospace structures, energy

systems and civil infrastructures are traditionally inspected and maintained via time-

based or breakdown-based maintenance strategies. The use of SHM to enable condition-

based maintenance (CBM) may lead to strong economic benefits for owners, operators,

and society. Of particular interest is the field of wind energy system, where CBM is

known to have substantial economic benefits [2, 3, 4].

Monitoring solutions for mesoscale structures need to be capable of global (e.g., loss

of stiffness, changing boundary conditions) and local (e.g., localizing material failure,

crack propagation, and fastener loosening) condition assessment over strategic locations.

However, distinguishing a localized change in a structure from a global change is difficult

using existing technologies and methods [5, 6]. The task is often complicated by the

dependence of sensor signals on environmental effects such as temperature and humidity

[7, 8]. The ability to monitor local damage over a global scale necessitates a large array

of sensors [9]. However, the cost incurred in using traditional sensors can be hard to

financially justify [10].

A solution to the local-global monitoring challenge involves the utilization of flexible

skin-like membranes. Such films, often termed electronic artificial skins, e-skins, or

sensing skins are thin electronic sheets that mimic biological skin. Research on sensing

skin has recently gained popularity with advances in the field of flexible electronics

[1, 11]. Dense sensor network applications of skin sensors have also been reported. Lee

et al. [12] demonstrated a flexible capacitive tactile sensor. Experimentally verified using

a 16 × 16 array of tactile cells, this artificial skin has a spatial resolution of 1 mm. Xu

et al. [13] utilized a 36-sensor array of resistive heating elements on a flexible polyimide

film to measure shear stress topography and flow separation on the leading edge of a

delta-wing structure during wind tunnel tests. Recently, research has progressed towards

microelectromechanical systems (MEMS) based flexible skins without the need for rigid

packages [14, 15]. Large sensing sheets of strain gauges with embedded processors on a

50 µm thick polyimide sheet have been proposed, with applications to crack detection

and localization [16, 17].

The use of resistance-based thin-film strain sensors fabricated with carbon

nanotubes has attracted considerable attention in the last decade. Examples of

such sensors include a strain sensor fabricated from single-walled carbon nanotubes

(SWCNT) exhibiting a gauge factor between 1 and 5 [18], a highly sensitive sensor

also using SWCNT but resulting in a gauge factor of 269 [19]. Advanced methods

for constructing flexible membranes reinforced with self-assembled arrays of SWCNT

have been investigated [20] and show great potential for the development of robust

sensing skins. Transparent elastic conductors capable of transducing strain and pressure,

essential in certain electronic and optoelectronic applications, have been fabricated with

conductivities as high as 2,200 S/cm in the stretched state [21]. Integrated sensor-

electronic have been developed from SWCNT-polymer composite patterned onto a

flexible polyimide substrate using optical lithography yielding a gauge factor of 0.77 and
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a resolution of 50 µε [22]. Strain transducers based on SWCNT have been demonstrated

for measuring high strain applications, up to 280%, such as that needed for human-

motion detection [23].

Capacitive-based sensing skins have also been studied for measuring strain [24],

pressure [25], triaxial force [26], and humidity [27]. Capacitive-based sensors offer

the potential to be highly applicable to mesoscale monitoring as they are less affected

by temperature changes and can be manufactured using various techniques, including

high-speed offset lithography printing process [28]. The challenge in the fabrication

of sensing skins for mesosensing lies in the selection of an inexpensive polymer mix

that is robust to environmental conditions [29]. In the same framework of low-cost

sensing skins for mesoscale systems, the authors have previously developed a soft

elastomeric capacitor (SEC). The proposed SEC was designed to be inexpensive with an

easily scalable manufacturing process [30]. The SEC is fabricated from an inexpensive

nanocomposite based on a styrene-co-ethylene-co-butylene-co-styrene (SEBS) block co-

polymer matrix filled with titania (dielectric) and carbon black (electrodes) particles and

is customizable in shape and size [31, 32]. Static [31] and dynamic behaviors [1, 33] have

been characterized, including damage detection applications in wind turbine blades [34]

subjected to random wind loading [35], and the effectiveness of a dense sensor network

for detecting fatigue cracks has been demonstrated [36].

A particular feature of the SEC is that it measures additive in-plane strain, instead

of a traditional measurement of the linear strain along a single direction. When used

in a dense sensor network (DSN) the SEC is able to monitor local additive strain over

large areas. Therefore, the signal can be used to reconstruct strain maps, provided that

the additive strain is decomposed into linear strain components along two orthogonal

directions. The authors presented an algorithm in [37] designed to leverage a DSN

configuration to enable strain field decomposition. The algorithm assumed a shape

function and classical Kirchhoff plate theory and solved for the coefficients of the shape

function using the least squares estimator (LSE). Numerical simulations showed the

promise of the algorithm. However, the proposed technique was limited by sensor

placement along the edge of the plate, and the quality of the assumptions on the

boundary conditions. It follows that boundary conditions can be difficult to assume

for complex geometries and may be time-varying over the monitored structure’ lifetime.

In this work, the authors propose a hybrid DSN (HDSN) to alleviate limitations

of the previously proposed strain decomposition algorithm [37]. The HDSN considered

here introduces resistive strain gauges (RSGs), a mature sensing technology capable

of precise point measurements. However, due to their size, as well as technical and

economic constraints, RSGs lack the ability to efficiently cover mesosurfaces [38]. The

HDSN presented here combines the SECs coverage capacity with the high precision

measurements of RSGs. The LSE algorithm discussed above is expanded to include

RSG readings and virtual sensing nodes at known boundary conditions. The enhanced

LSE algorithm also introduces weighted matrices to the LSE algorithm to concatenate

data, allowing for the enforcement of localized strain conditions and the fusion of
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unidirectional and additive strain sensors. The proposed strain decomposition algorithm

is experimentally verified utilizing an HDSN consisting of 20 SECs and a variable number

of RSGs, from 2 to 46, on a thin composite plate.

The paper is organized as follows. Section 2 provides a background on the SEC

technology, including its electro-mechanical model and derivation of the prior LSE-based

strain decomposition algorithm. Section 3 extends the algorithm to HDSN formulations.

Section 4 illustrates the methodology used in the evaluation and validation of the algo-

rithm. Section 5 reports and discusses algorithm results. Section 6 concludes the paper.

2. Background

The SEC, shown in figure 1(a), is a soft electronic element that transduces a change

in the geometry (i.e. strain) into a change in capacitance. The fabrication process of

the SEC is documented in [1]. Briefly, its dielectric is composed of an SEBS block

co-polymer matrix filled with titania to increase both its permittivity and durability.

Both of its conductive plates are also fabricated from an SEBS, but this time filled with

carbon black particles. All of the components used in the fabrication process are readily

and widely available, and its fabrication process is relatively simple. It results that the

SEC is a highly scalable skin sensor. In this section, the electro-mechanical model of the

SEC is derived and validated, and the basic strain decomposition algorithm previously

developed by the authors reviewed.

2.1. Electro-Mechanical Model

The SEC is designed to measure in-plane strain (x − y plane in figure 2(b)) and is

adhered to the monitored substrate using an off-the-shelf epoxy along the x− y plane.

The sensor is typically installed after some pre-stretching to prevent any warping of

the sensor under compressive loading of the monitored substrate. Assuming a relatively

low sampling rate (< 1 kHz), the SEC can be modeled as a non-lossy capacitor with

capacitance C, given by the parallel plate capacitor equation,
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(a) (b)

Figure 1. (a) Picture of an SEC sensor compared with an RSG; and (b) sketch of an

SEC’s geometry with reference axes.

C = e0er
A

h
(1)

where e0 = 8.854 pF/m is the vacuum permittivity, er is the polymer relative

permittivity, A = d · l is the sensor area of width d and length l, and h is the thickness

of the dielectric. Assuming small strain, the differential of equation (1) is expressed as

∆C

C
=

(
∆l

l
+

∆d

d
− ∆h

h

)
= εx + εy − εz (2)

where εx, εy and εz are linear strains in the x, y and z directions as shown in figure

2(b). An expression relating εz to εx and εy can be obtained using Hooke’s law for plane

stress

εz = − ν

1− ν
(εx + εy) (3)

which gives

∆C

C
= λ(εx + εy) (4)

with

λ =
1

1− ν
(5)

representing the gauge factor of the sensor. For SEBS, ν ≈ 0.49 [39], which gives a gauge

factor λ ≈ 2. Equation (4) shows that the signal of the SEC varies as a function of the

additive strain εx + εy. The linearity of the derived electro-mechanical model holds for

mechanical responses up to 15 Hz [1]. An altered electro-mechanical model has been

derived in [33] for modeling mechanical responses up to 40 Hz, but is not shown here

for brevity.
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2.2. Model Validation

The SEC’s electro-mechanical model has been validated at numerous occasions. A

typical result is presented here. The test setup consists of a simply supported aluminum

plate of dimensions 200 x 75 x 3 mm3 subjected to a four-point load setup to provide

a constant strain field across the SEC, mounted onto the bottom surface of the

plate at half-length. The performance of the SEC is validated using an off-the-shelf

resistive strain gauge (RSG) (Vishay Micro-Measurements, CEA-06-500UW-120) having

a resolution of 1 µε. A quasi-static triangular load is applied using a servo-hydraulic

fatigue testing machine (MTS). Data from the SECs are acquired using an inexpensive

off-the-shelf data acquisition system (ACAM PCap01) sampled at 95.4 Hz. Data

from the RSGs are measured using Hewlett-Packard 3852 data acquisition system at

a sampling frequency of 55Hz. A time series of the measured responses of the SEC and

RSG is plotted in figure 2a, where the signal of the SEC was converted into strain using

the electro-mechanical model (equation (4)) specialized for uni-directional strain. Figure

2b is a plot of the measured strain from the SEC versus the applied strain. Results show

a good agreement of the SEC data with the RSG data, and that the electro-mechanical

model holds. The resolution of the sensor using this particular data acquisition setup is

25 µm.

(a) (b)

Figure 2. (a) Comparison of strain time histories for the SEC and the RSG; and (b)

measured strain by the SEC versus applied strain.

2.3. Strain Decomposition Algorithm

A strain decomposition algorithm was proposed in [37] to decompose the SEC signal

(equation (4)) into linear strain components in two orthogonal directions. It is

summarized in this subsection and later enhanced for HDSN applications.

The algorithm consists of assuming a parametric displacement shape function, from
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which the equations mapping strain in two orthogonal directions, x and y, are derived.

An LSE is then used to estimate the coefficients of strain maps that would best fit the

signals of the SECs, which is done after enforcing boundary conditions. A polynomial

displacement shape function has shown promise for conducting strain decomposition on

a thin plate. Consider a cantilever plate of the type illustrated in figure 3 and an nth

order polynomial to approximate its deflection shape w(x, y) as

w (x, y) =
n∑

i=1,j=0

bijx
iyj (6)

Figure 3. Cantilever plate with 20 SECs.

where bij are regression coefficients and i > 0 to satisfy the displacement boundary

condition on the clamped edge (w(0, y) = 0). Considering a network with m sensors

and collecting displacements at sensors’ locations in a vector W ∈ Rm×1, the following

equation can be written from equation (6)

W =
[
w1 · · · wk · · · wm

]T
= HB (7)

where H ∈ Rm×n(n+1) is called the location matrix and B ∈ Rn(n+1)×1 is the regression

coefficients matrix. After straightforward computations, the following expressions are

obtained for quantities contained in equation (7)

H =

 x1 x1y1 · · · x1y
n
1 x21 x21y1 · · · x21y

n
1 · · · xn1 xn1y1 · · · xn1y

n
1

...
...

...
...

...
...

...
...

...
...

...
...

...

xm xmym · · · xmy
n
m x2m x2mym · · · x2my

n
m · · · xnm xnmym · · · xnmy

n
m

 (8)

B =
[
b10 · · · bij · · · bnn

]T
(9)
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Linear strain functions εx(x, y) and εy(x, y), along x and y directions, respectively,

can be obtained from equation (7) by enforcing Kirchoff plate Theory as:

εx(x, y) = − c
2

∂2w(x, y)

∂x2
= HxBx (10)

εy(x, y) = − c
2

∂2w(x, y)

∂y2
= HyBy (11)

where c is the thickness of the plate. Collecting linear strains at sensors locations along

x and y directions in vectors Ex and Ey, respectively, and making use of equation (6),

the following expressions are derived

Ex = HxBx (12)

Ey = HyBy (13)

where Hx and Hy are the location matrices for sensors transducing εx(x, y) and εy(x, y),

respectively. Furthermore, Bx and By are the corresponding regression coefficients

matrices. Written in terms of sensors’ signals S ∈ Rm×1, the same equation reads:

S =
[
s1 · · · sk · · · sm

]T
= Ex + Ey = HsBs (14)

where, for convenience, the signal sk for the k-th SEC sensor is taken as:

sk =
∆Ck

λCk

= εx(xk, yk) + εy(xk, yk) (15)

where (xk, yk) denote the location of the k-th SEC sensor and Hs and Bs read as

Hs =
[
Hx|Hy

]
(16)

Bs =

[
Bx

By

]
(17)

Using sensors’ readings, the regression coefficient matrix Bs can be estimated as

B̂s via an LSE:

B̂s = (HT
s Hs)

−1HT
s S (18)

where the hat denotes an estimation. It follows that the strain maps can be

reconstructed using

Êx = HxB̂x Êy = HyB̂y (19)

However, in its unaltered form, Hs is multi-collinear because Hx and Hy share

multiple rows, resulting in HT
s Hs being non-invertible. The solution utilized in [37] was

to assume boundary conditions and replace selected rows of Hs with null coefficients or

scaling factors, as determined by the particular boundary conditions. Such a strategy

was numerically validated for the specialized case of a cantilever thin plate. While results

demonstrated the overall promise of the algorithm, the quality of the assumptions on

the boundary conditions limited the performance of the algorithm. In the section that

follows, the algorithm is extended to include uni-directional data from RSGs, with the

objective to minimize knowledge required on the components’ boundary conditions.
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3. Extended LSE-based Algorithm using HDSN

The integration of a limited number of off-the-shelf sensors within an SEC network can

have the advantage to add known strain values at given locations, therefore reducing

or eliminating the reliance on boundary conditions assumptions. With the proposed

HDSN configurations, RSGs are introduced at strategic locations to provide accurate

boundary conditions within the LSE algorithm. Data from SECs and RSGs are fused in

the algorithm using the same mathematical notation, with a prime to denote quantities

that are generalized in the extended algorithm. In particular, the generalized sensors’

location matrix is defined as:

Hs′ =
[
ΓxHx|ΓyHy

]
(20)

where Γx and Γy are appropriately defined diagonal weight matrices, as detailed in the

following. The signal vector S′, including both SEC and RSG signals, is defined as:

S′ =

[
SSEC

SRSG

]
(21)

where SSEC and SRSG are matrices containing SEC and RSG signals, respectively.

equation (18) thus becomes:

B̂′ = (HT
s′Hs′)

−1HT
s′S
′ (22)

Weight matrices introduced in equation (20) are diagonal matrices composed of

scalars, γx,k and γy,k, associated with the k-th sensor. In particular, RSG signals are

incorporated in Hs′ using

γx,k = 1 , γy,k = 0 (23)

when the k-th RSG measures strain along the x-axis only, or, alternatively,

γx,k = 0 , γy,k = 1 (24)

when the k-th RSG measures strain along the y-axis only. Different weight values other

than unity can be selected in the design to add more importance to particular sensors.

For instance, γ > 1 can be selected for RSGs due to their high level of accuracy compared

with the SEC technology, or for SECs installed along a known boundary condition.

The extended algorithm also includes virtual sensors based on knowledge about

the system’s behavior. Virtual sensors are analogous to assumed boundary conditions,

except that they are located at points on the edge of the strain reconstruction map.

In the algorithm, virtual sensors are treated identically to RSGs and can also be used

directly in the reconstruction of the strain maps. For instance, a sensor reading εy = 0

can be added under a clamped fixity that extends along the y axis.

The extended LSE-based algorithm is conceptually illustrated in figure 4. Dotted

boxes in the figure represent the two new features added through the utilization of an

HDSN. Both the virtual sensors and RSG signals can be utilized either fully or partly
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into the LSE or directly in the reconstruction of the strain maps as known points. Strain

maps are decomposed at the sensors’ locations included in matrix Hs′ and reconstructed

elsewhere using C2 continuous biharmonic splines. The algorithm can be specified by

constructing splines that interpolate decomposed strains from equation (19), strains

measured by RSGs and/or strains known at virtual sensors locations.

Figure 4. Modified strain decomposition algorithm.

The described extended algorithm still includes boundary conditions on the SEC

strain readings, as it was the case for the original algorithm, to provide the user with

greater flexibility. For instance, in the case of a cantilever plate, the boundary condition

along the fixity can be assumed as εy(0, ay ≤ y ≤ Ly − ay) = 0, where ay is a positive

constant such that 0 ≤ ay ≤ Ly/2 to account for different boundary conditions at

corners. This assumed boundary condition is enforced for SECs installed along the

fixity using γx,m = 1, γy,m = 0.

4. Methodology

Validation of the strain decomposition algorithm presented in Section 3 is conducted

experimentally on an HDSN. This section describes the methodology used for the

experimental validation.

4.1. HDSN configuration

The HDSN consists of 20 SECs and 46 RSGs deployed onto the surface of a fiberglass

plate of geometry 74 × 63 × 0.32 cm3 fixed along one edge with clamps as shown in
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figure 5(a). Figure 5(b) is a schematic of the SEC and RSG sensor placement. Each

SEC covers 6.5× 6.5 = 42 cm2 in area, laid out in a 4 × 5 grid array. The point node

used in constructing the Hs′ matrix is taken as the center of each SEC. RSGs used in the

experimental setup are foil-type strain gauges of 6 mm length manufactured by Tokyo

Sokki Kenkyujo, model FLA-6-350-11-3LT. They are aligned along the directions of the

plate’s edges, in either a single or double configuration, individually measuring εx and

εy as indicated in figure 5(b) by using circles and squares, respectively. The number of

considered RSGs was purposely very large in order to provide enough measurement

points to assess the performance of the algorithm as a function of the number of

arbitrarily located RSGs.

(a) (b)

Figure 5. (a) Picture of the experimental configuration; and (b) sensor nomenclature.

The plate is subjected to four different displacement-controlled load cases, listed in

Table 1. Load case I consists of an upward uniform displacement along the free edge

BC as shown in figure 5(b). Load case II is a downward uniform displacement along

free edge BC. Load case III is an upward point displacement under point A (directly

under SEC 14), with points B and C restrained in the vertical direction. Load case IV

consists of an upward displacement at point C, with point B restrained in the vertical

direction. The displacement controlled loads were applied using a frame built from

extruded aluminum framing. Each test consisted of three 15-second sets of unloaded,

loaded, and unloaded conditions, for a total of 45 seconds.

Table 1. Loading cases.

loading

case

point of applied

displacement

displacement

(mm)

vertical displacement

restraints

I BC 125 none

II BC -97 none

III A 47 B,C

IV C 47 B
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Different data acquisition (DAQ) hardware is used for the measurement of the

SEC and RSG sensors, as annotated in figure 5(a). SEC measurements are recorded

using a capacitance-to-digital converter, PCAP-02, mounted inside protective boxes and

manufactured by ACAM-Messelectronic GmbH. Capacitance measurement is performed

by measuring the SEC sensors discharge time, in comparison with the discharge time of a

known reference capacitor. This DAQ is capable of reading up to 7 channels, multiplexed

though a single capacitance-to-digital converter. The acquisition of data was performed

using a PCAP-02 evaluation board with ACAM’s evaluation software at a sampling rate

of 25 Hz. RSG measurements are recorded using a National Instruments cDAQ-9174

with four 24-bit 350 Ω quarter-bridge modules (NI-9236) through LabVIEW, sampled

at 100 Hz.

Figure 6 shows an example of SEC signal, ∆C, acquired from a row of sensors (16 -

20) during load case III. Data are presented filtered using a moving average. The sensors

operate as designed under both compression and tension. Given the static nature of the

study, the capacitance signal for the reconstruction of strain maps is taken as the average

of data points between 23 and 28 seconds.

Figure 6. Example of sensor signals: sensors SEC 16-20 under load case III.

4.2. Algorithm Configurations

Validation is performed on different algorithm configurations, as listed in Table 2, to

investigate the effects of the different inputs illustrated in the block diagram of figure

4. Algorithm 1 consists of enforcing boundary conditions through the introduction of

RSGs into the SEC DSN, forming an HDSN. This is obtained by adding RSGs into

Hs′ . Algorithms 2-4 add additional inputs, namely virtual sensors at known boundary

conditions, assumptions on the SEC strain boundary conditions and RSG data directly
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in the reconstruction of the strain maps. Algorithm 5 uses all the inputs.

Table 2. Evaluated algorithm configurations.

algorithm

configuration

virtual

sensing

SEC

assumptions

RSG data in

strain maps

RSGs added

into Hs′

1 x

2 x x

3 x x

4 x x

5 x x x x

For the thin plate under study, virtual sensors are added to enforce the assumptions

on the boundary conditions. On the fixed edge, εy = 0 is assumed for ay ≤ y ≤ Ly − ay
where ay = 5 mm to account for the corner effects. For all loading cases, 5 virtual sensors

are placed along the fixity (x = 0) at y = 5.00, 15.8, 26.6, 37.4, 48.2 and 59.0 mm with

virtual signals εy = 0. For the purpose of enforcing the plates boundary conditions, and

due to low levels of εx along the free edge opposite to the fixity, the assumption that

εx ≈ 0 was made along the free edge. Five virtual sensors are placed along the free edge

(x = 0.74 mm) at y = 5.00, 15.8, 26.6, 37.4, 48.2 and 59.0 mm with signals (εx = 0).

While this assumption is valid only for load cases 1 and 2, it has shown to be convenient

to equate the strain levels to 0 given the low levels of strain at these positions.

For the algorithm cases based on strain assumptions at the SECs locations, different

assumptions were made along the plate’s edges for different load cases in order to be

consistent with the prior form of the algorithm. For the boundary conditions along the

fixity, εy was assumed to be zero for ay ≤ y ≤ Ly − ay, where ay is taken as 20 cm.

This is enforced in the LSE algorithm by setting γy,11 = 0 and γy,16 = 0. A similar

approach was taken for εx at the plate’s free edge (SEC 10 and 15) due to the low level

of strain present, εx was enforced as zero by setting γx,10 = 0 and γx,15 = 0. Under the

asymmetric loads (loading cases III and IV), different assumptions are conducted on

εx and εy. Table 3 summarizes weights used to enforce the assumptions on boundary

conditions for all SECs under different loading cases.
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Table 3. Weight parameters γ used to enforce the assumptions on boundary

conditions.

loading case

I II III IV

SEC γx γy γx γy γx γy γx γy

1 1 1 1 1 1 0 1 1

2 to 5 1 1 1 1 1 1 1 1

6 1 0 1 0 1 0 1 0

7 to 9 1 1 1 1 1 1 1 1

10 0 1 0 1 1 1 0 1

11 1 0 1 0 1 0 1 0

12 to 14 1 1 1 1 1 1 1 1

15 0 1 0 1 1 1 0 1

16 1 1 1 1 1 0 1 1

17 to 20 1 1 1 1 1 1 1 1

For the algorithm cases utilizing RSG data directly in the strain maps, RSG

sensor data are introduced directly into the decomposed strain maps alongside with

the decomposed SEC strains from the enhanced LSE algorithm. Lastly, for all of the

algorithms, a polynomial function (equation (6)) for the deflection shape was assumed.

A fourth order polynomial was selected to improve the ability of the strain decomposition

algorithm in capturing more complex strain features in the y direction. Note that i ≥ 2

and j ≥ 2 to satisfy the boundary conditions of a cantilever plate.

w(x, y) =
4∑

i=2,j=2

aijx
iyj (25)

4.3. Selection of RSGs into the HDSN

Selection of the RSGs is conducted randomly to study the influence of sensor placement

on the performance of the algorithm. A total of 100 sets of randomly selected sensors

constructed from the RSG placement shown in figure 5(b) were generated. Simulations

consist of adding RSGs in the HDSN in the order listed in each random set. Each

algorithm case is ran 100 times, and results show the average value of the LSE

performance. The variance in performance under changing RSGs sensors layout is also

discussed. The special case of 1 single RSG, for which only 46 permutations are possible,

is not considered. Optimal sensor placement for RSGs within the HDSN is out-of-the-

scope of this paper.
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5. Results

Results from the experimental validation are presented and discussed in this section.

The performance of each algorithm configuration (Table 2) is quantified using the mean

absolute error (MAE) between the LSE estimated strain maps and the known strains

at the locations of the RSGs (23 along the x-axis and 23 along the y-axis). The LSE

estimated strain maps are developed for the entire area of the cantilever plate shown

in figure 5. In the subsection that follows, the performance in strain reconstruction is

investigated, for different LSE-based algorithms, as a function of the number of RSGs

used in the algorithm, taken at random locations as discussed in Section 4. Afterward,

the robustness of the algorithm is studied as a function of RSG sensor placement.

5.1. Algorithm Configurations

Figure 7 shows the average performance of the algorithms under each loading case. The

“RSG-only” case is the performance benchmark, and converges to 0 as the number of

RSG augments due to the formulation of the MAE index. As expected, the performance

of each algorithm improves with the number of RSGs used into the HDSN. Using

algorithm 1 as the base line (simplest form), algorithms 2-5 improve on the MAE to

various levels, where adding more inputs to the algorithms helps the reconstruction

of strain maps, except for a few cases (loading case I, for instance) where algorithm

3 underperforms algorithm 1, most likely due to errors on the boundary conditions

assumptions. Algorithm 2 provides a substantial improvement in the MAE compared

with algorithm 1 through the integration of virtual sensors. Algorithm 4 generally

exhibits a slower convergence rate, offering only a marginal improvement to the base

LSE algorithm (algorithm 1). However, algorithm 4 could see substantial improvement

with an optimized sensor placement scheme. Lastly, algorithm 5, which combines all

of the inputs, performs similarly to algorithm 2. Under most loading conditions and

algorithms configurations, the extended LSE algorithm provides a better representation

of the unidirectional strain maps than the equivalent number of RSGs, when less than 20

RSGs are added into the HDSN, demonstrating a net advantage of utilizing an HDSN.

Also, it can be concluded from these results that algorithm 2 offers the best performance

given its simplicity. Another notable advantage of algorithm 2 over algorithm 5 is that

it does not include SEC assumptions, which need to be adjusted depending upon the

peculiar loading condition. It is, therefore, a generally applicable algorithm.
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(a) (b)

(c) (d)
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(e) (f)

(g) (h)

Figure 7. Algorithm results for varying RSGs added to the DSN: (a) load case I for

εx; (b) load case I for εy; (c) load case II for εx; (d) load case II for εy; (e) load case

III for εx; (f) load case III for εy; (g) load case IV for εx; and (h) load case IV for εy.

The decomposed strain maps are presented in figure 8. An HDSN consisting of 20

RSGs was arbitrarily selected to investigate the extended LSE algorithm (configuration

2) when using an equal number of RSGs and SECs. The decomposed strain maps

are compared against the strain maps obtained using 46 RSGs only. The layout of

RSG sensors within the HDSN was selected to provide the best fit from the list of 100

randomly generated sensor placement arrangements discussed in Section 4.3. Results

show similar maps, with slight disagreements for the strain along the y-axis. Obtaining

a more accurate fit for εy would require a higher order shape function. Such strategy

was not investigated due to the low number of SECs along that axis, which would result
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in over-fitting for lower numbers of RSGs used into the HDSN.

(a) (b)

(c) (d)
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(e) (f)

(g) (h)

Figure 8. Decomposed strain maps: (a) load case I for εx; (b) load case I for εy; (c)

load case II for εx; (d) load case II for εy; (e) load case IV for εx; (f) load case III for

εy; (g) load case IV for εx; and (h) load case IV for εy.

5.2. Algorithm robustness to sensor placement

The robustness of the LSE-based algorithm with respect to the layout of RSG sensors is

evaluated by comparing the 95% confidence bound on the MAE over all 100 sensor

placement cases. For the study, algorithm 2 is selected due to its higher overall

performance compared with other algorithm variations. Figure 9 compares the results

with the RSG only case. Except for loading case III, the 95% confidence bound on the

HDSN using algorithm 2 is small compared to the 95% confidence bound using RSGs

only. This is as expected, given that the HDSN always utilizes 20 SECs spread over the

entire plate. The 95% confidence bound is larger for loading case III, most likely due
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to the higher complexity of the strain maps. Overall, the confidence bounds obtained

by the HDSN are tighter than those obtained using RSG readings only, which allows

the authors to conclude that the HDSN has a high robustness with respect to sensor

placement.

(a) (b)

(c) (d)
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(e) (f)

(g) (h)

Figure 9. Algorithm robustness towards sensor placement: (a) load case I for εx; (b)

load case I for εy; (c) load case II for εx; (d) load case II for εy; (e) load case III for

εx; (f) load case III for εy; (g) load case IV for εx; and (h) load case IV for εy.

6. Conclusion

This paper presented a method for the directional decomposition of additive strain

measured by a novel large soft elastomeric capacitor (SEC). The SEC is an inexpensive

strain gauge, designed to cover large surfaces for the purpose of damage detection and

localization. A previously proposed least squares estimator (LSE)-based algorithm

was enhanced to provide boundary condition updating though the use of a hybrid

dense network (HDSN) leveraging mature off-the-shelf technology, in particular, a set

of electrical resistive strain gauges (RSGs). In this HDSN configuration, the SECs’

ability to inexpensively monitor large areas is combined with the RSGs ability to provide

precise, unidirectional local strain measurements. The original LSE algorithm consists

of assuming a shape function in the framework of classical Kirchhoff plate theory and

using an LSE to find the coefficients of the shape function. The enhanced LSE algorithm
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introduces weighted matrices to concatenate and achieve an effective fusion between

signals from both the SECs and the RSGs. Additionally, virtual sensing nodes are

introduced along the plates known boundary conditions to enforce known boundary

conditions outside the HDSN sensing points.

Experimental investigations were conducted on a cantilever plate equipped with

20 SECs and 46 RSGs. For a plate under simple loading cases, the LSE algorithm

successfully produced unidirectional strain maps. However, it showed limitations in

fitting more complex strain fields, possibly due to the limited number of sensors (SECs

and RSGs) used in the investigation that limited the order of the polynomial used

in representing the shape function. Further investigation is needed to validate the

proposed algorithm for use with different HDSN layouts and with an expanded library

of loading cases. While the proposed strategy showed to be robust with respect to

sensor placement, the formal network design, including the optimal placement, type, and

number of sensors within an HDSN needs to be explored. The algorithmic improvements

presented here build a basis for future work in real-time boundary condition updating

and regression fitting of parameters’ weights.
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