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Summary 
 
Effective biosecurity practices in swine production are key in preventing the introduction and 
dissemination of infectious pathogens. Ideally, on-farm biosecurity practices should be chosen by 
their impact on bio-containment and bio-exclusion, however quantitative supporting evidence is 
often unavailable. Therefore, the development of methodologies capable of quantifying and ranking 
biosecurity practices according to their efficacy in reducing disease risk have the potential to 
facilitate better informed choices of biosecurity practices.  

Using survey data on biosecurity practices, farm demographics, and previous outbreaks from 
139 herds, a set of machine learning algorithms were trained to classify farms by porcine 
reproductive and respiratory syndrome virus status, depending on their biosecurity practices and 
farm demographics, to produce a predicted outbreak risk. A novel interpretable machine learning 
toolkit, MrIML-biosecurity, was developed to benchmark farms and production systems by predicted 
risk, and quantify the impact of biosecurity practices on disease risk at individual farms.  

Quantifying the variable impact on predicted risk 50% of 42 variables were associated with 
fomite spread while 31% were associated with local transmission. Results from machine learning 
interpretations identified similar results, finding substantial contribution to predicted outbreak risk 
from biosecurity practices relating to: the turnover and number of employees; the surrounding 
density of swine premises and pigs; the sharing of haul trailers; distance from the public road; and 
farm production type. In addition, the development of individualized biosecurity assessments 
provides the opportunity to better guide biosecurity implementation on a case-by-case basis. Finally, 
the flexibility of the MrIML-biosecurity toolkit gives it the potential to be applied to wider areas of 
biosecurity benchmarking, to address biosecurity weaknesses in other livestock systems and industry 
relevant diseases. 
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Introduction 
 
Porcine reproductive and respiratory syndrome virus (PRRSV) is the most economically relevant 
endemic disease for the North American swine industry (Neumann et al., 2005; Holtkamp et al., 
2013; Pileri and Mateu, 2016), and widely endemic in Europe (Zimmerman et al., 2019; Renken et 
al., 2021). PRRSV infection is associated with reproductive losses, and reduced growth performance 
from birth to market (Pileri and Mateu, 2016; Renken et al., 2021), with an estimated cumulative 
incidence in U.S. breeding herds of between 20-40% from 2010 to 2014 (Tousignant et al., 2015), 
and an estimated economic burden of more than $664 million/year in the U.S. (Holtkamp et al., 
2013), and between €100 and €570 per sow in Europe (Renken et al., 2021). 

Unfortunately, recent efforts directed at regionally controlling or eradicating PRRSV in the 
U.S. have not been fully successful, which may be attributed, in part, to low enrollment in such 
projects and a lack of understanding of regional pig dynamics (Corzo et al., 2010; Valdes-Donoso et 
al., 2016). In contrast, countries such as Sweden, Norway, and Switzerland have successfully 
controlled the virus through total depopulation/repopulation strategies, and other European countries 
such as Denmark controlling PRRSV with a combination of biosecurity measures and immunization 
strategies (Baekbo and Kristensen, 2015; Rathkjen and Dall, 2017). Whilst effective biosecurity 
practices may lead to significant improvements in productivity (Rodrigues da Costa et al., 2019; 
Kruse et al., 2020), in some cases they can be cost-prohibitive. Therefore, when choosing biosecurity 
practices, producers and veterinarians commonly balance their effectiveness against pathogen 
transmission with cost; however, the most effective practices are not necessarily the most 
economically efficient (i.e., depopulation, farm closure) (Corzo et al., 2010; Pileri and Mateu, 2016; 
Nathues et al., 2018; Jurado et al., 2019; Silva et al., 2019). 

Fortunately, the selection and implementation of biosecurity practices can be facilitated by 
the use of biosecurity assessments, which are often able to highlight biosecurity practices with 
potential for improvement (Holtkamp et al., 2012; Gelaude et al., 2014; Silva et al., 2018, 2019; 
Rodrigues da Costa et al., 2019; Sasaki et al., 2020; Alarcón et al., 2021). While traditionally this are 
performed through rigorous but time-consuming surveys (Rodrigues da Costa et al., 2019; Alarcón 
et al., 2021), recent developments in swine health management software, such as Biocheck.UGent 
(Gelaude et al., 2014; Ghent University, 2021), BioAsseT (Sasaki et al., 2020), and ASF combat 
(Boehringer Ingelheim, 2018), have allowed the incorporation of biosecurity information to guide 
the implementation of biosecurity practices, through weight based analyses. Alas, these analyses are 
prone to subjectivity and often precluded by the lack of quantitative measures which could provide 
insight on the impact of on-farm biosecurity practices on infection risk (Silva et al., 2019; Jara et al., 
2020; Alarcón et al., 2021; Galvis et al., 2021).  

With the recent advancements of interpretable machine learning that allows for an improved 
understanding of model reasoning (Barredo Arrieta et al., 2020; Lucas, 2020; Molnar, 2021), there 
has been an emergence of research into Explainable AI (XAI); which has led to an increased 
development of machine learning methodologies with more explainability (Yang et al., 2021). By 
offering accessible and interpretable explanations regarding machine learning mechanisms, XAI 
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allows researchers to better understand and better apply the insights gained from their models. In 
swine health management, there is a clear potential to apply such explainable and interpretable 
methodologies to on-farm biosecurity to help overcome the lack of quantitative analysis and 
benchmarking applied to biosecurity assessments (Silva et al., 2019; Kruse et al., 2020; Alarcón et 
al., 2021). Such data-driven approaches allow for straightforward benchmarking, including risk 
comparison between farms and quantification of the impact of biosecurity practices on the risk of 
new pathogen introduction and propagation (Fountain‐Jones et al., 2019; Silva et al., 2019; Lucas, 
2020; Biecek and Burzykowski, 2021; Ezanno et al., 2021; Fountain-Jones et al., 2021; Molnar, 
2021). In particular, the application of local interpretation methods -- model agnostic techniques 
used to explain the predictions made by the model for individual data points (Carvalho et al., 2019; 
Molnar, 2021) -- may allow for the precise assessment and ranking of biosecurity practices by its 
importance to the infection risk of individual farms (Ribeiro et al., 2016; Lucas, 2020; Molnar, 
2021). Furthermore, the ability to interpret relationships between biosecurity practices and disease 
outbreaks may be directly applied in the prevention of disease spread, through the prioritization of 
effective biosecurity measures and identification of common differences between farms experiencing 
outbreaks and those which are not (Silva et al., 2019; Neethirajan, 2020; Fountain-Jones et al., 
2021). 

In this study, we developed and applied an interpretable machine learning methodology to 
assess the impact of on-farm biosecurity practices on the predicted risk of PRRSV outbreaks. We 
achieved this through extending our previous interpretable machine learning framework and R 
package, MrIML (Fountain-Jones et al., 2020; Machado, 2021), creating MrIML-biosecurity, a new 
specialized machine learning toolkit. MrIML-biosecurity is capable of predicting and benchmarking 
PRRSV outbreak risk based on biosecurity practices and farm demographics through i) “global 
benchmarking”, which allows for the identification of the most important variables and estimation of 
PRRSV predicted risk at both the farm and production system level1; and ii) “local benchmarking”, 
which allows for the estimation of variable contribution to PRRSV risk predictions at a single farm.  

 
Material and Methods 
 
The data used in this study were collected from 139 breeding farms across 11 swine production 
systems in 15 U.S. states, through a single survey comprising 42 questions (Silva et al., 2019), 
implemented in 2019. Each pig production system consented to share information regarding the 
number of PRRSV outbreaks from the previous five years, their biosecurity practices, farm location, 
and information about their neighborhood (i.e., number of farms within a three-miles radius; 
capacity of pigs within a three-mile radius). Further details of the data collection and the selection of 
the 42 variables have been previously described (Silva et al., 2019).  
 

 
1 Pig production systems are defined here as farms which are managed, owned or associated with the same 
company or integrator 
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Figure 1  
 
The machine learning pipeline 
 
The interpretable machine learning, MrIML R package, available in GitHub (Fountain-Jones et al., 
2021; Machado, 2021), was expanded to allow for the stacked generalization of multiple algorithms 
(Breiman, 1996). In addition, new functionalities were developed under the MrIML-biosecurity R 
package module, to allow for: i) “global benchmarking”, which encompasses the identification of the 
most important biosecurity practices and farm demographics, and estimation of PRRSV predicted 
risk at both the production system and farm level; and ii) “local benchmarking”, which includes the 
estimation of biosecurity practice and farm demographic contribution to PRRSV risk predictions at a 
single farm. Innovatively, as part of the local benchmarking functionality, biosecurity practice and 
farm demographic contributions were aggregated and ranked to summarize their impact at a local 
level (Figure 1).  
  
Model implementation 
 
Within the proposed machine learning framework we considered three candidate algorithms: 
Support Vector Machine (SVM) (Boser et al., 1992); Random Forest (RF) (Breiman, 2001); and 
Gradient Boosting Machine (GBM)(Friedman, 2001). Each algorithm was tuned to balance over and 
underfitting, and trained using 75% of the dataset, labeled as training data, and evaluated against the 
remaining 25% of the dataset, labeled as test data (Figure 1). These datasets were resampled 10 
times from the original dataset through 10-fold cross-validation, randomly splitting the data into 
equal size folds (Machado et al., 2019). Further details of model tuning are presented in the MrIML-
biosecurity vignette (Machado, 2021). In addition, under-sampling methodologies were employed to 
balance the data due to unequal distribution of the outcome, the presence or absence of historical 
cases of PRRSV. Under-sampling methods have been proposed as a good means of increasing the 
sensitivity of a classifier to the less represented outcome, referred to as the minority class (Machado 
et al., 2019; Silva et al., 2019). In MrIML we provide wrappers for one down-sampling and two 
common up-sampling routines: (1) Synthetic Minority Over-sampling Technique (Chawla et al., 
2002)  and (2) Random Over-Sampling Examples (Lunardon et al., 2014). In this study, we 
evaluated the above three approaches, where down-sampling presented the best performance and 
was subsequently used to balance the study dataset.  

 A model consensus was created from the above candidate machine learning algorithms 
through a stacked generalization approach (Polikar, 2012). Stacking is a regularized linear model 
approach that can reduce the generalization error by training multiple primary learning algorithms 
and combining their predictions (Dietterich, 2000; Polikar, 2012). Here we used the random forest as 
the base model to which the SVM and GBM algorithms were stacked. The performance of the 
stacked model was then compared against the individual algorithms, using Matthew’s correlation 
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coefficient (MCC), the area under the curve (AUC), sensitivity, and specificity. For more details on 
these metrics see Supplementary Material Section “Performance metrics''. The best performing 
algorithm or ensemble was re-applied to the full dataset to produce predicted PRRSV outbreak risk 
values. 

 
Global benchmarking: Model interpretation 
 
Variable importance, partial dependence, and feature interaction were generated for the best 
performing model to interpret the overall impact of biosecurity practices and farm demographics on 
the risk of PRRSV outbreaks. Here, variable importance can be defined as the dependence between 
PRRSV outbreak risk prediction, and the biosecurity practices and farm demographics. In this study 
variable importance was implemented through the Gini Index, which ranks variables according to 
their upscaled node impurity (Wright et al., 2016) (Figure 2). The top four biosecurity practices and 
demographics ranked here were further analyzed through partial dependence profiles (Friedman, 
2001) (Figure S1 to S11). Partial dependence profiles are a methodology that allows the direct 
visualization of the relationship between values of a predictor variable, such as a biosecurity practice 
or farm demographic, and the outcome, such as predicted risk values, after accounting for other 
predictors (Friedman, 2001; Elith et al., 2008; Molnar, 2021). Finally, to detect interactions between 
biosecurity practices and farm demographics, interaction strengths across all pairs of variables were 
calculated through Freidman’s H statistic (Friedman and Popescu, 2008) and ranked according to 
their importance, via the “mrInteractions'' function of MrIML (Biecek and Burzykowski, 2021; 
Fountain-Jones et al., 2021; Molnar, 2021) (Figure S12).  
 
Global benchmarking: Comparison of predicted risk of PRRS outbreak among and within 
production systems 
 
To further interpret risk, a discretization methodology (Kuhn and Wickham, 2021) was applied to 
predicted PRRSV risk values, which used percentile breaks to generate three equally sized risk 
categories: low, medium, and high-risk. Using the MrIML-biosecurity function “mrBenchmark”, 
production systems were benchmarked via their distribution of predicted outbreak risk for farms 
reporting outbreaks and farms with no reported outbreaks (Figure 3). In addition, “mrBenchmark” 
was used to also benchmark each farm within the production system (Figure S13). Finally, the 
density distributions of biosecurity practices and farm demographics within each risk category were 
presented (Figure 4 and Figures S14 to S23). 
 
Local benchmarking: Quantifying biosecurity practice and farm demographic contribution at 
individual farms  
  
To identify which biosecurity practices and farm demographics contributed the most to predicted 
PRRSV outbreak risk at individual farms, a local model-agnostic explainer, breakDown (Staniak and 
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Biecek, 2019), was implemented via the MrIML-biosecurity function “mrLocalExplainer”. Briefly, 
breakDown is used to explain the influence of individual variables, such as biosecurity practices and 
farm demographics, over the outcome or prediction at a single data point, such as an individual farm. 
“mrLocalExplainer” implemented the breakDown model via the “broken” function of the 
breakDown package (Staniak and Biecek, 2019), which identifies variables in the data instance, x, 
which cannot be altered without a change in the prediction, f(x). breakDown achieves this by 
searching for the combination of variables, vars, which will change the value of the prediction to its 
expected value, E[f(x)]. The distance between these predictions, presented in equation 1 below, can 
be used to calculate the contribution, phi, of each variable on the change in prediction: 
 

𝑑(𝑓 !"#$(𝑥), 𝑓(𝑥)) 	= 	𝑓 !"#$(𝑥) 	− 	𝑓(𝑥)                          (1) 
 

The size of phi can be further interpreted as the importance of the variable to the predicted 
outbreak risk at data instance x (Staniak and Biecek, 2019). Briefly, biosecurity practices and farm 
demographics with a phi > 0 contribute to an increase in predicted PRRSV outbreak risk , while 
practices and demographics with a phi < 0 contribute to a decrease in predicted outbreak risk. The 
overall distribution of these individual contribution values across farms reporting outbreaks and 
farms with no reported outbreaks was summarized as box plots (Figure 5 and Figure S24). We then 
further explored these contributions, by plotting phi values against the observed values of the 
practice or demographic in question, to understand how contribution varies as variable values change 
(Figures S25 to S35). Finally, we presented individual biosecurity practice and farm demographic 
contributions as waterfall plots for two example farms (Supplementary Figure S36 and S37).  
 
Results 
 
Overall, 116 (83.5%) farms were commercial sites and 23 (16.5%) were genetic multiplication sites 
(primarily raising genetic breeding replacements). In total, 89 farms reported at least one outbreak in 
the last five years, and the remaining 50 reported no outbreaks during this time frame. Of the farms 
reporting outbreaks, 89.9% reported between one and three outbreaks (Figure S38). A summary of 
the biosecurity practices and farm demographics are presented in Supplementary Tables S1-S3. 
  
Model performance 
 
Due to the imbalance between farms reporting at least one outbreak and farms with no reported 
outbreaks, model performance was compared between the original dataset and a dataset balanced via 
down-sampling. In three out of four performance metrics, the model trained with the unbalanced 
dataset out-performed the model trained with the down-sampled dataset. Higher values of AUC 
(0.93), and specificity (92%) indicate better diagnostic accuracy of the unbalanced model, while a 
higher MCC (0.72) indicates a better correlation between the observed outcomes in the data and 
predicted classifications. 
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Global benchmarking: Model interpretation 
 
The classification of farms and prediction of PRRSV outbreak risks were primarily driven by 
biosecurity practices rather than farm demographics, though location of other farms and distance to 
the public road appeared to be particularly important demographics (Figure 2). The top four 
biosecurity practices and farm demographics identified during variable importance were: i) raising 
genetic replacements; ii) yards to the nearest public road; iii) capacity of breeding females within a 
three-mile radius, and iv) annual turnover of on-site employees. In contrast, the least important 
practices and demographics were: i) topography of the surrounding area; ii) capacity of boars within 
a three-mile radius; iii) the number of dead animal removals per month, and iv) capacity of show 
pigs within a three-mile radius.  
 
Figure 2 
 
The relationships between predicted PRRSV outbreak risks and the individual variables were further 
explored through partial dependence profiles in Figures S1 to S11. Farms raising genetic breeding 
replacements (multiplication sites) appear to have a clear reduction in predicted PRRSV outbreak 
risk compared to farms raising commercial pigs (commercial sites) (Figure S1A). There was also 
evidence of a clear linear relationship between distance to the nearest public road and PRRSV 
outbreak risk, with predicted risk decreasing as distance from the road increases, eventually 
plateauing above approximately 700 yards (Figure S1B). In contrast, as the capacity of breeding 
females in the surrounding three miles increases, there is a notable increase in predicted PRRSV 
outbreak risk (Figure S1C). However, above a capacity of 8000 breeding females, the predicted risk 
appears to reduce again indicating a potential non-linear relationship between the surrounding 
capacity of breeding females and predicted risk. Similarly, there appears to be a non-linear 
relationship between annual turnover of on-site employees and predicted PRRSV outbreak risk, with 
an initial decrease in predicted risk until an employee turnover of 35%, above which the predicted 
risk begins to increase (Figure S1D).  

Additionally, interactions within the biosecurity practices and farm demographics were 
investigated. The top interactions were between raising genetic replacements and: PRRSV positive 
animals being hauled on the same trailer used for weaned animals; monthly propane/fuel deliveries; 
the number of daily entries and exits into the barns by employees; the number of on-site employees; 
and the number of other premises using the same trailer for hauling breeding replacements (Figure 
S12).  

 
Global benchmarking: Comparison of predicted risk among and within production systems  
 
Using a discretization method to generate risk categories, farms with PRRSV predicted risk values 
below 0.46 were considered low risk, between 0.46 and 0.86 were considered medium risk and 
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above 0.86 were considered high risk. These thresholds were then used to benchmark the predicted 
risk among production systems (Figure 3). Briefly, farms of systems one, six, 10 and 11 appear to be 
at a heightened risk, as the majority of farms reporting outbreaks in these systems have predicted 
risk values that are well above the high-risk threshold, suggesting that those sites are very likely to 
experience continued PRRSV outbreaks (Figure 3). In contrast, system seven seems to have a lower 
overall risk compared to other production systems, as the majority of farms reporting no outbreaks 
are below the low-risk threshold. In addition, the farms reporting at least one outbreak have a much 
lower predicted risk compared to similar farms of other systems, suggesting that new PRRSV 
outbreaks are less likely to occur in this system (Figure 3). Additionally, an example of within-
system benchmarking is presented in Figure S13. In the example, the majority of farms reporting no 
outbreaks are within the low-risk category while the majority of farms reporting at least one 
outbreak are within the medium and high-risk categories (Figure S13), suggesting that farms with no 
reported outbreaks in this system are less likely to experience outbreaks compared to farms with at 
least one reported outbreak.  
 
Figure 3 
 
Finally, we described the distribution of the biosecurity practices and farm demographics in relation 
to the three defined risk categories (Figure 4 and Figures S14 to S23). The majority of multiplication 
sites were in the low-risk category, while all farms in the high-risk category and the majority of 
farms within the medium-risk category were commercial sites (Figure 4A). As for the distance from 
the public road, the majority of farms in all risk categories were between 0 and 500 yards from the 
public road, however, farms in the high-risk category appear to peak in number at shorter distances 
to the road, compared to the low and medium-risk categories (Figure 4B). In contrast, the capacity of 
breeding females in the surrounding three miles appears to be much lower in the low and medium-
risk categories, with most farms having between 0 and 5000 breeding females in the area, compared 
to the high-risk category in which most farms have between 0 to 10000 breeding females in the area 
(Figure 4C). Finally, for annual turnover, all three risk categories peaked around 35%, however the 
high-risk category also had a significant number of farms with a turnover proportion of up to 100% 
(Figure 4D). See Supplementary Figures S8 to S17 for the description of all other biosecurity 
practices and farm demographics. 
 
Figure 4 
 
Local benchmarking: Quantifying biosecurity practice and farm demographic contribution at 
individual farms 
 
The breakDown explainer was used to identify and rank the contribution of biosecurity practices and 
farm demographics to the predicted PRRSV outbreak risk at individual farms. Using 
“mrLocalExplainer”, the phi values for farms reporting at least one outbreak and farms with no 
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reported outbreaks were aggregated and used to rank variables by their prediction reliability across 
all farms (Figure 5 and Figure S24). Here, the top four ranked biosecurity practices which had the 
largest contribution to PRRSV risk at individual farm-level were: i) the number of other premises 
using the same trailer to haul breeding replacements ii) the number of daily on-site employees; iii) 
the number of other premises with the same trailer for hauling cull animals; and iv) the annual 
turnover of on-site employees (Figure 5). Within the ranked farm demographics, the variables with 
the greatest contribution to predicted PRRSV outbreak risk at individual farm-level were: i) capacity 
of breeding females within the surrounding three-miles; ii) whether the premise is primarily raising 
genetic replacements; iii) yards to the nearest road; and iv) and the number of premises in the 
surrounding three-miles (Figure S24).  

Following the aggregate ranking of variables, “mrLocalExplainer” was used to explore the 
directionality of contribution for all biosecurity practices and farm demographics, to investigate the 
change in contribution as the observed values of the variables change. For simplicity, we will only 
discuss the results for the top biosecurity practices identified within the aggregated breakDown plot 
(Figure S25). Individually, lower numbers of farms using the same trailer for hauling breeding 
replacements (Figure S25A) and lower numbers of on-site employees (Figure S25B) appear to 
contribute to a decrease in predicted risk. However, as these values rise above five and 10, 
respectively, they begin to contribute towards an increase in predicted risk (Figure S25A and Figure 
S25B, respectively). In contrast, as the number of other premises using the same trailer for hauling 
cull animals increases above two, there is a substantial contribution to a decreased predicted risk 
(Figure S25C). Finally, the annual turnover of on-site employees appears to have minimal 
contribution to predicted risk at lower proportions, however as turnover increases past 50%, there is 
an increasing contribution to increased predicted risk (Figure S25D). Supplementary Material 
Figures S26 to S35, present the directionality of local contribution for the remaining biosecurity 
practices and farm demographics. 

Under the local benchmarking functionality, our MrIML package, vignette 
(https://nfj1380.github.io/mrIML/articles/Vignette_biosecurity.html) and shiny app 
(https://machado-lab.github.io/Software/) we also produced reliable individualized contribution 
ranking at each farm, examples of which are presented in Figure S37 and S38. Briefly, Figure S37 
presents the results of a farm with at least one reported outbreak, in which having zero farms and 
zero breeding females in the surrounding three miles contributes towards a lower predicted risk. In 
contrast, having an annual turnover proportion of 90% and being situated only 42 yards from the 
main road appears to contribute to an increased predicted outbreak risk. Similarities can be seen 
within the farm with no reported outbreaks presented in Figure S38. Consistently, having zero farms 
and zero breeding females in the surrounding three miles is contributing to a decreased predicted 
risk, while sharing a semen delivery vehicle with six other premises and not raising genetic 
replacements (i.e., a commercial site) is contributing to an increased predicted outbreak risk.  
 
Figure 5  
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Discussion 
 
Through MrIML-biosecurity, a specialized branch of the interpretable machine learning toolbox in 
the MrIML R package (Fountain-Jones et al., 2021), we developed and implemented a novel 
interpretable machine learning methodology. The MrIML-biosecurity methodology compares 
predicted PRRSV outbreak risk among and within pig production systems, and ranks on-farm 
biosecurity practices and farm demographics by their impact on predicted risk. We demonstrated 
significant agreement in the directionality of PRRSV outbreaks risk between average partial 
dependence plots (Figures S1 to S11) and aggregated breakDown results (Figures S25 to S35), 
identifying the variables most relevant to reporting a new PRRSV outbreak as: raising genetic 
breeding replacements; the surrounding density of farms and breeding females; the sharing of haul 
trailers for breeding replacements and cull animals; the annual turnover and number of on-site 
employees; and distance to the public road. Quantifying the relative effect of on-farm biosecurity 
practices on the probability of new outbreaks demonstrated that up to 50% of features were 
associated with fomites, such as sharing haul trailers and other vehicles, while 31% of features were 
associated with local transmission (i.e. aerosol and mechanical transmission), such as a high 
surrounding density of swine farms and pig capacity (Otake et al., 2002, 2003, 2010; Dee et al., 
2004, 2009; Otake et al., 2004; Pitkin et al., 2009; Arruda et al., 2019; Jara et al., 2020; Galvis et al., 
2021). Our new methodology demonstrated the potential application of the interpretable machine 
learning framework to support veterinarians and production companies in identifying key biosecurity 
aspects associated with PRRSV outbreaks in breeding herds. More importantly, this is the first 
proposed methodology that allows for individual farms to identify their most relevant biosecurity 
practices, thus allowing individualized biosecurity plans to be developed in a case-by-case fashion 
(https://nfj1380.github.io/mrIML/). 

Previous investigations have identified associations between the access and sharing of 
vehicles and employee movements, with an increased risk of PRRSV infection (Evans et al., 2008; 
Lambert et al., 2012; Silva et al., 2019; Black et al., 2021). This is in support of our findings in 
which increases in sharing of trailers for hauling breeding replacements and increases in the number 
of on-site employees contributed to an increased PRRSV outbreak risk (Figure S25). On the other 
hand, we identified associations between decreases in predicted PRRSV risk and increases in the 
number of farms sharing the same trailer for hauling cull animals (Figure S25). This was surprising 
as we would expect to observe an increase in risk as access to the premise by vehicles increases, due 
to the rising potential for the introduction of PRRSV via fomites (Romagosa, 2017; Black et al., 
2021). However, it is possible that the presence of a high-risk practice such as sharing haul trailers 
increases the producer awareness of disease risk and influences the implementation of other 
biosecurity practices to mitigate possible disease introduction (Pudenz et al., 2019; Lee et al., 2021).  

In addition to the number of on-site employees, employee turnover was also identified as a 
particularly important variable in the prediction of the PRRSV outbreak risk, with predicted risk 
increasing as the proportion of annual turnover increases. High turnover rates are a widespread and 
well-known issue in the U.S. swine industry due to changing rural demographics and immigration 
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policies which affect the labor supply (Boessen et al., 2018). Biosecurity protocols utilized in the 
swine industry are often complex and must be completed in sequence, which could lead to a lack of 
biosecurity compliance in new untrained or inexperienced employees (Racicot et al., 2012). This has 
been discussed previously by Racicot et al., (2012), who identified an association between a lack of 
experience in workers and a decrease in biosecurity compliance. It was suggested that individuals 
with a lack of experience may not be fully aware of the consequences of non-compliance and 
therefore may not perceive the importance of following biosecurity protocols (Racicot et al., 2012; 
Rabinowitz et al., 2013). These results highlight the substantial impact of high turnover in the swine 
industry on the health, and consequently the productivity, of swine production systems. However, 
resolving high turnover is a difficult challenge requiring inter-sectoral cooperation between 
government and industry, and further research into the underlying factors leading to voluntary and 
involuntary turnover (Racicot et al., 2012; Rabinowitz et al., 2013; Boessen et al., 2018).  

Furthermore, we identified a substantial contribution of farm demographics to an increased 
predicted PRRSV outbreak risk, primarily driven by decreases in the proximity of farms to the 
public road, and increases in the density of surrounding swine farms and the surrounding capacity of 
breeding females. Previous studies have identified similar demographic variables as risk factors for 
the local transmission of PRRSV, which includes mechanical and aerosol transmission (Mortensen 
et al., 2002; Evans et al., 2008; Lambert et al., 2012; Velasova et al., 2012; Arruda et al., 2019; Jara 
et al., 2020; Galvis et al., 2021). Several experimental studies have succeeded in producing results to 
support the hypothesis of local transmission, showing viable PRRSV in air samples up to 9.7 km 
from an infected herd and in the guts of houseflies (Otake et al., 2003; Otake et al., 2004; Otake et 
al., 2010; Dee et al., 2009; Arruda et al., 2019). However, there are still questions regarding the 
effectiveness of local transmission under field conditions (Arruda et al., 2019). Moreover, the farm 
demographics identified here are unfeasible to alter, highlighting a need to identify biosecurity 
practices which could be adopted to mitigate local spread instead (Galvis et al., 2021).  

Another contributing farm demographic identified as significantly important, was whether 
the farm primarily raised genetic breeding replacements, also referred to as multiplication sites, or 
whether they raised commercial pigs, referred to as commercial sites. There is often a heavier 
emphasis on effective biosecurity at genetic multiplication sites due to the large number of farms 
they supply with replacement breeding animals, which would be at risk if an outbreak occurred 
(FAO et al., 2010; Ramirez and Zaabel, 2012; Pudenz et al., 2019). While we observed a notable 
contribution of this demographic variable overall to an increased predicted risk (Figure 5), there was 
little difference in PRRSV outbreak risk when multiplication sites were compared with commercial 
sites (Figure S27). However, it is worth noticing that we found interactions between raising genetic 
breeding replacements and many other biosecurity practices and farm demographics, which could be 
masking unmeasured risk factors (Figure S12). When we consider only the marginal effect of the 
variable in the partial dependence plots (Figure S2), we found a much clearer difference in the 
dependence between multiplication and commercial sites. To further explore the association of 
production type and predicted PRRSV outbreak risk, there is a need for the continued development 
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of improved machine learning methodologies that are capable of accounting for such interactions 
explicitly within the modelling pipelines.  

  We observed good agreement between global and local interpretation methods, with 
similarities in the top biosecurity practices and farm demographics identified between variable 
importance and the aggregated breakDown plots (Figure S24). Both interpretation methods can be 
advantageous, however, local methods provide the opportunity to individualize biosecurity 
assessments, capturing nuances in variable contribution which may not be detected in the global 
importance (Goldstein et al., 2015; Greenwell, 2017; Kopitar et al., 2019; Molnar, 2021). The use of 
local explanation methods in this study is in line with recent work in the field of explainable 
machine learning, to improve the explanation of model reasoning to make it understandable by 
stakeholders and other participants without the need for machine learning training (Ghai et al., 
2021). Although local explainable machine learning is a relatively new approach to veterinary 
epidemiology, local interpretation methods have previously been applied to the agricultural sector to 
quantify the importance on of hydro-climatic factors on crop evapotranspiration, detect estrus in 
cattle, and predict peach fruit ripeness (Fauvel et al., 2019; Ljubobratovic et al., 2020; Chakraborty 
et al., 2021).  

In addition to supporting an individualized approach to biosecurity practices, the machine 
learning methodology presented here also allows for the benchmarking of predicted outbreak risk 
among and within pig production systems. This allows production systems to assess performance 
compared to their peers and identify farms within their systems that are particularly at risk of 
PRRSV outbreaks. Benchmarking of farms according to their biosecurity practices is not a novel 
application; in 2011 the American Association of Swine Veterinarians released their Production 
Animal Disease Risk Assessment Program (PADRAP) to assess a farm's risk of the clinical outbreak 
by their biosecurity strategy (Holtkamp et al., 2012). Similar tools have been developed by several 
institutions and organizations including Biocheck.UGent at Ghent University (Gelaude et al., 2014); 
the ASF focused tool “ASF Combat” at Boehringer Ingelheim (Boehringer Ingelheim, 2018); and 
BioAsset created by the PRRS-Japan Elimination team (Sasaki et al., 2020). However, these tools 
are built upon qualitative methodologies such as multi-criteria decision analysis and the assignation 
of weights or values to biosecurity practices based on expert opinion (Gelaude et al., 2014; Silva et 
al., 2018; Sasaki et al., 2020; Alarcón et al., 2021), which could potentially introduce bias into the 
risk estimates (Alarcón et al., 2021). In contrast, the machine learning-based methodology proposed 
in this study has no reliance on opinion. Instead, it uses only the data provided to quantify and 
predict risk and interpret complex and non-linear relationships which may not be captured otherwise 
(Silva et al., 2019). Additionally, as further farm data is collected, our approach will continue to 
develop its understanding of these relationships, improving its predictive performance (Rabinovich 
et al., 2021).  

 
Limitations and future directions 
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Despite the advantages over parametric models in relation to predictive performance, there are 
several relevant limitations to the machine learning methodology utilized here (Elith et al., 2008; 
Machado et al., 2015; Lucas, 2020; Rabinovich et al., 2021) including the presence of interactions 
among variables which may not be identified, potentially impacting model performance and leading 
to spurious interpretations (Strobl et al., 2009; Boulesteix et al., 2015; Wright et al., 2016; Oh, 
2019). The implementation of methods such as interaction forests and pairwise importance 
techniques improve the identification of interactions in machine learning algorithms (Wright et al., 
2016; Hornung and Boulesteix, 2021), while Individual Conditional Expectation (ICE) plots and the 
iBreakDown model are capable of accounting for known interactions in their post-hoc interpretations 
(Goldstein et al., 2015; Biecek and Burzykowski, 2021). This is an avenue of improved 
interpretation which should be explored in future studies to account for interactions.  

Similarly, the use of partial dependence profiles (PDP) for global interpretation may not be 
ideal, given that PDP are based on averaging the variable effect which may lead to heterogeneous or 
small effects being overlooked and create a distribution for the variable of interest that is not 
accurate (Goldstein et al., 2015; Greenwell, 2017; Molnar, 2021). Through the implementation of 
Individual Conditional Expectation (ICE) plots (Goldstein et al., 2015; Greenwell, 2017) it is 
possible to mitigate potential oversight; however, to fully observe small or individual effects, local 
interpretation methods are recommended (Molnar, 2021). Alas, our results should be interpreted 
with caution as local interpretation techniques have limitations regarding a large diversity of 
methodologies and lack of consensus about the use of specific approaches (Carvalho et al., 2019; Li 
et al., 2021). Fortunately, in a recent work, MrIML has used simulated data in which the ground truth 
of non-linear relationships between outcome and variables was known, and was able to fully explain 
the relationship between the predictors and the outcome of interest (Fountain-Jones et al., 2021). 

Caution should also be taken in interpreting the results presented here, owing to the 
unrepresentative sample of herds included in the study. Unfortunately, due to time constraints only 
large industrial breeding farms were included in the data collection, reducing the external validity of 
the results, in particular their applicability to other industrial stages or smaller backyard herds. In the 
near future, we aim to expand the number and diversity of herds incorporated into the machine 
learning methodology.   

Regardless of the limitations, the potential benefits of the methodology described here are 
wide-reaching. The data driven approach combined with a user-friendly interface 
(https://nfj1380.github.io/mrIML/articles/Vignette_biosecurity.html), has the potential to expand the 
use of quantitative methodologies to infer disease risk from on-farm biosecurity practices. 
Furthermore, we provide an online tool and a user-guide, based on this methodology, to assist 
veterinarians and farm managers in prioritizing biosecurity practices and visualizing their 
improvement in outbreak risk over time. Briefly, in the proposed interpretable machine learning tool 
(vignette and publicly available shiny app), veterinarians and managers can upload or update farm 
data for analysis and download the outputs to provide guidance when designing on-farm biosecurity 
plans. Additionally, the expansion of MrIML (Fountain-Jones et al., 2021) to include the MrIML-
biosecurity R functions for global and local benchmarking, creates a practical and streamlined 
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approach for the wider scientific community to apply a similar machine learning methodology to 
other areas of biosecurity research. Moreover, in the future there is the potential to incorporate 
multiple pathogens within the MrIML framework, allowing for the analysis of on-farm biosecurity in 
relation to other industry-relevant pathogens such as porcine epidemic diarrhea virus (PEDV), 
porcine circovirus 2 and 3 (PCV 2 and PCV 3), influenza A virus, classical swine fever virus 
(CSFV) and African swine fever virus (ASFV). This is especially pertinent for ASF, which is an 
imminent threat to the U.S. pork industry with potentially devastating consequences (Jurado et al., 
2019; Carriquiry et al., 2020; USDA:APHIS: VS, 2020).  
 
Conclusion 
 
In this study, we developed and deployed a new interpretable machine learning methodology capable 
of benchmarking PRRSV outbreak risk for production systems and individual farms based on 
biosecurity levels, identifying contributions of key biosecurity aspects on the risk of PRRSV 
outbreaks in sow farms which can ultimately guide the implementation and enhancement of 
biosecurity practices. Our findings demonstrate that sharing hauling trailers, increasing numbers and 
turnover of employees, and a high density of swine in the surrounding area had particularly strong 
influences on the predicted risk of new PRRSV outbreaks, highlighting the importance of biosecurity 
practices to mitigate fomite spread, local transmission and improvements in biosecurity training. 
This study also displayed reasonable agreement in the interpretation of variable contribution in 
predicting PRRSV outbreak, between the global and local interpretable machine learning models. 
Importantly, through the local model we developed an individualized approach to assess and guide 
biosecurity implementation at farms on a case-by-case basis. This novel approach provides each 
farm with an explanatory view of which biosecurity practices and farm demographics are 
contributing to their predicted risk of PRRSV outbreak. Furthermore, the MrIML-biosecurity 
methodology described here has the potential to expand the applications of machine learning within 
biosecurity throughout the agricultural sector to tackle other industry relevant diseases.  
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Figures 
 

 
Figure 1. Flow chart of the implemented machine learning pipeline and related outputs. (a) 
Data regarding biosecurity practices and farm demographics and the number of PRRSV outbreaks in 
the past five years were collected via a 42-question survey (Silva et al., 2019). (b) Balancing 
techniques were implemented due to the uneven distribution of outcomes and followed by data 
partitioning to create test and training data. (c) Individual machine learning models and an ensemble 
model were trained, employing cross-validation techniques to reduce overfitting. Using performance 
metrics, the most appropriate model was selected and used to produce all results. (d) Global 
benchmarking consisted of predicted risk benchmarking among (left panel) and within systems, and 
model interpretation via variable importance (right panel), partial dependence profiles, and feature 
interaction. (e) Local benchmarking consisted of the interpretation and benchmarking of biosecurity 
practice and farm demographic contribution to the predicted PRRSV outbreak risk at individual 
farms, shown by the phi value, presented as aggregated summary box plots (left panel) and 
individualized waterfall plots (right panel).  
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Figure 2. Cumulative importance of biosecurity practices and farm demographics. The y-axis is 
(top to bottom) in descending order of importance. Cumulative importance values calculated through 
the Gini Index are represented by the x-axis. Higher cumulative importance values indicate a higher 
order of importance in relation to PRRSV outbreaks. 
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Figure 3. Distribution of farms reporting PRRSV outbreaks (none versus at least one) by 
production system in relation to the risk of a new outbreak. The x-axis represents the production 
system identification and the y-axis represents the predicted PRRSV outbreak risk produced by the 
machine learning model. Farms below the dashed line are considered low risk, between the dashed 
line and the solid line are considered medium risk, and above the solid line are considered high risk. 
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Figure 4. Distribution of observed biosecurity practice and farm demographic values by 
PRRSV outbreak risk category. The predicted PRRSV outbreak risk values were categorized by a 
tidymodels discretization method to create categories for low, medium, and high predicted outbreak 
risk (Kuhn and Wickham, 2021). (A) distribution of farms raising genetic breeding replacements (p < 
0.000); (B) distribution of farm distance from the public road (p = 0.37); (C) distribution of the number of 
breeding females in the surrounding three-miles (p < 0.05); and (D) distribution of annual turnover 
of employees shown via a proportion (0% to 100%) (p < 0.05). 
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Figure 5. The rank of biosecurity practices produced by local model agnostic interpretation 
methods. The boxplots represent a summary of the breakDown values generated for each 
biosecurity practice per farm, ordered by mean phi value. The current status of farms is presented 
having reported at least one outbreak (red) or having reported no outbreaks (gray). The axis 
represents the contribution of the practice to PRRSV outbreak prediction. Values above zero are 
contributing to an increased risk prediction and values below zero are contributing to a decreased 
risk prediction.  
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Table S1. Descriptive statistics of numerical biosecurity practices and farm demographics   
 
Mean and standard deviation values of numeric biosecurity practices and farm demographics 
collected through the biosecurity survey and included as predictor variables within the machine 
learning algorithm.  
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Table S2. Descriptive statistics of numerical biosecurity practices and farm demographics 
(continued) 
 
Mean and standard deviation values of numeric biosecurity practices and farm demographics 
collected through the biosecurity survey and included as predictor variables within the machine 
learning algorithm 
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Table S3. Descriptive statistics of categorical biosecurity practices and farm demographics 
 
Frequency values for the categorical biosecurity practices and farm demographics collected through 
the biosecurity survey and included as predictor variables within the machine learning algorithm.  
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Figure S1. Partial dependence plots showing the marginal effect of the top four important 
biosecurity practices and farm demographics on the model. The following biosecurity practices 
and farm demographics are presented here: (A) raising genetic replacements; (B) yards to the nearest 
public road; (C) capacity of breeding females in the surrounding three-miles; and (D) annual 
turnover of on-site employees. Higher partial dependence values, represented by the y-axis, indicate 
a large marginal effect of practice or demographic. The x-axis represents the observed values of the 
practice or demographic.  

 



6 

 

 

Figure S2. Partial dependence plots showing the marginal effect of biosecurity practices and 
farm demographics on the model. The following biosecurity practices and farm demographics are 
presented here: (A) downtime required for manure equipment; (B) number of swine farms in a three-
mile radius; (C) capacity of nursery pigs in a three-mile radius; and (D) capacity of finishing pigs in 
a three-mile radius. Higher partial dependence values, represented by the y-axis, indicate a large 
marginal effect of practice or demographic. The x-axis represents the observed values of the practice 
or demographic.  
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Figure S3. Partial dependence plots showing the marginal effect of biosecurity practices and 
farm demographics on the model. The following biosecurity practices and farm demographics are 
presented here: (A) capacity of wean-to-finishers in a three-mile radius; (B) capacity of gilts in a 
three-mile radius; (C) capacity of boars in a three-mile radius; and (D) capacity of show pigs in a 
three-mile radius. Higher partial dependence values, represented by the y-axis, indicate a large 
marginal effect of practice or demographic. The x-axis represents the observed values of the practice 
or demographic. 
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Figure S4. Partial dependence plots showing the marginal effect of biosecurity practices and 
farm demographics on the model. The following biosecurity practices and farm demographics are 
presented here: (A) whether the surrounding farms are owned or associated with the same system; 
(B) whether the disease status of the surrounding farms is known; (C) downtime required for 
veterinarians and managers; and (D) number of vehicle entrances on the premises. Higher partial 
dependence values, represented by the y-axis, indicate a large marginal effect of practice or 
demographic. The x-axis represents the observed values of the practice or demographic. 

 



9 

 

 

Figure S5. Partial dependence plots showing the marginal effect of biosecurity practices and 
farm demographics on the model. The following biosecurity practices and farm demographics are 
presented here: (A) topography of the surrounding area; (B) whether the surrounding area is 
forested; (C) number of other swine premises with the same semen delivery/vehicle; and (D) number 
of breeding replacement deliveries per year. Higher partial dependence values, represented by the y-
axis, indicate a large marginal effect of practice or demographic. The x-axis represents the observed 
values of the practice or demographic. 
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Figure S6. Partial dependence plots showing the marginal effect of biosecurity practices and 
farm demographics on the model. The following biosecurity practices and farm demographics are 
presented here: (A) number of other premises with the same trailer for hauling breeding 
replacements; (B) number of hauls for cull breeding animals per month; (C) number of other 
premises with the same trailer for hauling cull animals; and (D) whether PRRSV positive animals 
are hauled on the trailer used for cull breeding animals. Higher partial dependence values, 
represented by the y-axis, indicate a large marginal effect of practice or demographic. The x-axis 
represents the observed values of the practice or demographic. 
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Figure S7. Partial dependence plots showing the marginal effect of biosecurity practices and 
farm demographics on the model. The following biosecurity practices and farm demographics are 
presented here: (A) number of hauls of weaned pigs per month; (B) number of other premises with 
same trailer for hauling weaned animals; (C) whether PRRSV positive animals are hauled on the 
trailed used for weaned animals; and (D) whether dead animals are disposed of on site and which 
method is used. Higher partial dependence values, represented by the y-axis, indicate a large 
marginal effect of practice or demographic. The x-axis represents the observed values of the practice 
or demographic. 
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Figure S8. Partial dependence plots showing the marginal effect of biosecurity practices and 
farm demographics on the model. The following biosecurity practices and farm demographics are 
presented here: (A) number of dead animal removals per month; (B) number of feed/feed-ingredient 
deliveries per month ; (C) frequency of fuel/propane deliveries per month; and (D) number of 
garbage collections per month. Higher partial dependence values, represented by the y-axis, indicate 
a large marginal effect of practice or demographic. The x-axis represents the observed values of the 
practice or demographic. 
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Figure S9. Partial dependence plots showing the marginal effect of biosecurity practices and 
farm demographics on the model. The following biosecurity practices and farm demographics are 
presented here: (A) number of daily on-site employees; (B) number of exit and reentries unto the 
barns by employees; (C) number of visits from repair personnel per year; and (D) number of visits 
from veterinarians and production managers per month. Higher partial dependence values, 
represented by the y-axis, indicate a large marginal effect of practice or demographic. The x-axis 
represents the observed values of the practice or demographic. 
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Figure S10. Partial dependence plots showing the marginal effect of biosecurity practices and 
farm demographics on the model. The following biosecurity practices and farm demographics are 
presented here: (A) frequency of grass mowing per month; (B) frequency of snow removal per 
month; (C) number of time pork/food products enter the site per month; and (D) number of manure 
or effluent removals per month. Higher partial dependence values, represented by the y-axis, indicate 
a large marginal effect of practice or demographic. The x-axis represents the observed values of the 
practice or demographic. 
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Figure S11. Partial dependence plots showing the marginal effect of biosecurity practices and 
farm demographics on the model. The following biosecurity practices and farm demographics are 
presented here: (A) length of downtime required for manure removal personnel; and (B) whether 
incoming air is filtered. Higher partial dependence values, represented by the y-axis, indicate a large 
marginal effect of practice or demographic. The x-axis represents the observed values of the practice 
or demographic. 

 



16 

 

 

Figure S12. Cumulative interaction importance of biosecurity practices and farm 
demographics. Interaction strengths were calculated through Friedmans H statistic and ranked 
according to importance by the function MrIMLInteractions. Raising genetic breeding replacements 
(i.e. being a multiplication site) was identified to interact with: PRRSV positive animals being 
hauled on the same trailer used for weaned animals; monthly propane/fuel deliveries; the number of 
daily entries and exits into the barns by employees; the number of on-site employees; and the 
number of other premises using the same trailer for hauling breeding replacements. Interactions are 
ordered by cumulative interaction importance (represented by the x-axis). Higher cumulative 
interaction importance values indicate a stronger importance of this interaction in the model. 
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Figure S13. Distribution of farms within a single production system example in relation to 
their predicted PRRSV outbreak risk and previous number of PRRSV outbreaks. The x-axis 
represents the number of PRRSV outbreaks the farm has experienced in the previous five years -- 
red indicates at least one previous outbreak and grey indicates no previous outbreaks. The y-axis 
represents the predicted PRRSV outbreak risk produced by the machine learning model. Farms 
below the dashed line are considered low risk, between the dashed line and the solid line are 
considered medium risk, and above the solid line are considered high risk. 
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Figure S14. Distribution of observed biosecurity practice and farm demographic values by 
PRRSV outbreak risk category. The predicted PRRSV outbreak risk values were categorized by a 
tidymodels discretization method to create categories for low, medium, and high predicted outbreak 
risk (Kuhn and Wickham, 2021). Distributions for most important biosecurity practices and farm 
demographics, identified by the Gini Index, are presented here: (A) number of exits and re-entries by 
workers per day (p = 0.18); (B) the number of veterinarian/manager visits per month (p = 0.48); (C) 
frequency of grass mowing per month (p = 0.24); and (D) frequency of snow clearing per year (p = 
0.42).  
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Figure S15. Distribution of observed biosecurity practice and farm demographic values by 
PRRSV outbreak risk category. The predicted PRRSV outbreak risk values were categorized by a 
tidymodels discretization method to create categories for low, medium, and high predicted outbreak 
risk (Kuhn and Wickham, 2021). Distributions for most important biosecurity practices and farm 
demographics, identified by the Gini Index, are presented here: (A) downtime required for manure 
equipment (p < 0.05); (B) downtime required for veterinarians and managers (p = 0.41); (C) number 
of swine farms in a three-mile radius (p < 0.000); and (D) number of repair personnel visits per year 
(p < 0.05).  



20 

 

 

Figure S16. Distribution of observed biosecurity practice and farm demographic values by 
PRRSV outbreak risk category. The predicted PRRSV outbreak risk values were categorized by a 
tidymodels discretization method to create categories for low, medium, and high predicted outbreak 
risk (Kuhn and Wickham, 2021). Distributions for most important biosecurity practices and farm 
demographics, identified by the Gini Index, are presented here: (A) number of weaned pigs in a 
three-mile radius (p < 0.000); (B) number of premises with the same breeding replacement delivery 
(p < 0.05); (C) number of nursery pigs in a three-mile radius (p = 0.79); and (D) number of 
farrowing pigs in a three-mile radius (p = 0.16).  
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Figure S17. Distribution of observed biosecurity practice and farm demographic values by 
PRRSV outbreak risk category. The predicted PRRSV outbreak risk values were categorized by a 
tidymodels discretization method to create categories for low, medium, and high predicted outbreak 
risk (Kuhn and Wickham, 2021). Distributions for most important biosecurity practices and farm 
demographics, identified by the Gini Index, are presented here: (A) number of premises with same 
semen delivery (p = 0.58); (B) the number of breeding replacement deliveries per year (p = 0.06); 
(C) number of gilts in a three-mile radius (p = 0.06); and (D) number of boar in a three mile radius (p 
= 0.36).  
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Figure S18. Distribution of observed biosecurity practice and farm demographic values by 
PRRSV outbreak risk category. The predicted PRRSV outbreak risk values were categorized by a 
tidymodels discretization method to create categories for low, medium, and high predicted outbreak 
risk (Kuhn and Wickham, 2021). Distributions for most important biosecurity practices and farm 
demographics, identified by the Gini Index, are presented here: (A) number of premises with the 
same trailer for hauling cull animals (p < 0.01); (B) number of wean hauls per month (p < 0.05); (C) 
number of premises with the same trailer to haul weaned animals (p = 0.26); and (D) number of cull 
hauls per month (p = 0.74).  
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Figure S19. Distribution of observed biosecurity practice and farm demographic values by 
PRRSV outbreak risk category. The predicted PRRSV outbreak risk values were categorized by a 
tidymodels discretization method to create categories for low, medium, and high predicted outbreak 
risk (Kuhn and Wickham, 2021). Distributions for most important biosecurity practices and farm 
demographics, identified by the Gini Index, are presented here: (A) number of feed deliveries per 
month (p = 0.18); (B) the number of dead removals per month (p = 0.57); (C) number of garbage 
collections per month (p < 0.01); and (D) number of employees on-site daily (p = 0.7).  
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Figure S20. Distribution of observed biosecurity practice and farm demographic values by 
PRRSV outbreak risk category. The predicted PRRSV outbreak risk values were categorized by a 
tidymodels discretization method to create categories for low, medium, and high predicted outbreak 
risk (Kuhn and Wickham, 2021). Distributions for most important biosecurity practices and farm 
demographics, identified by the Gini Index, are presented here: (A) number of show pigs in a three-
mile radius (p = 0.99); (B) number of vehicle entrances (p = 0.2); (C) whether dead are disposed in 
site and which method is used (p = 0.25); and (D) whether incoming air is filtered (p = 0.29).  
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Figure S21. Distribution of observed biosecurity practice and farm demographic values by 
PRRSV outbreak risk category. The predicted PRRSV outbreak risk values were categorized by a 
tidymodels discretization method to create categories for low, medium, and high predicted outbreak 
risk (Kuhn and Wickham, 2021). Distributions for most important biosecurity practices and farm 
demographics, identified by the Gini Index, are presented here: (A) frequency of pork products 
entering the premises per month (p < 0.01); (B) downtime required for manure personnel (p = 0.15); 
(C) whether the surrounding farms belong to the same system (p = 0.05); and (D) frequency of 
manure removals per month (p = 0.66). 
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Figure S22. Distribution of observed biosecurity practice and farm demographic values by 
PRRSV outbreak risk category. The predicted PRRSV outbreak risk values were categorized by a 
tidymodels discretization method to create categories for low, medium, and high predicted outbreak 
risk (Kuhn and Wickham, 2021). Distributions for most important biosecurity practices and farm 
demographics, identified by the Gini Index, are presented here: (A) whether the surrounding area is 
forested (p < 0.05); (B) whether the disease status of the surrounding farms is known (p = 0.29); (C) 
the topography of the surrounding area (p = 0.14); and (D) whether PRRSV positive animals are 
hauled on the cull trailer (p = 0.14).  
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Figure S23. Distribution of observed biosecurity practice and farm demographic values by 
PRRSV outbreak risk category. The predicted PRRSV outbreak risk values were categorized by a 
tidymodels discretization method to create categories for low, medium, and high predicted outbreak 
risk (Kuhn and Wickham, 2021). Distributions for most important biosecurity practices and farm 
demographics, identified by the Gini Index, are presented here: (A) the number of gas/fuel deliveries 
per month (p < 0.01); and (B) whether PRRSV positive animals are hauled on the cull wean trailer (p 
= 0.08).  
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Figure S24. The rank of farm demographics produced by local model agnostic interpretation 
methods. The boxplots represent a summary of the breakDown values generated for each farm 
demographic per farm. The current status of farms is presented as having reported at least one 
outbreak (red) or having reported no outbreaks (gray). The axis represents the contribution of the 
demographic to PRRSV outbreak prediction. Values above zero (right of the dashed line) are 
contributing to an increased risk prediction and values below zero (left of the dashed line) are 
contributing to a decreased risk prediction. Demographics are ordered in relation to their absolute 
mean contribution.   
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Figure S25. Dispersal plots showing the directionality of the contribution of the top four 
important biosecurity practices and farm demographics on predicted PRRSV outbreak risk at 
individual farms. The following biosecurity practices and farm demographics are presented here: 
(A) Number of other premises using the same trailer for hauling breeding replacements; (B) number 
of daily on-site employees; (C) number of other premises using the same trailer to haul cull animals; 
and (D) annual turnover of on-site employees. Contribution values, represented by the y-axis, 
indicate the contribution of the practice or demographic on predicted PRRSV risk. Values above 
zero are contributing to an increased risk prediction and values below zero are contributing to a 
decreased risk prediction. The x-axis represents the observed values of the practice or demographic.  
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Figure S26. Dispersal plots showing the directionality of the contribution of biosecurity 
practices and farm demographics on predicted PRRSV outbreak risk at individual farms. The 
following biosecurity practices and farm demographics are presented here: (A) capacity of breeding 
females within a three mile radius; (B) capacity of boars within a three mile radius; (C) whether 
surrounding farms owned by the same production system; and (D) whether the surrounding area is 
forested. Contribution values, represented by the y-axis, indicate the contribution of the practice or 
demographic on predicted PRRSV risk. Values above zero are contributing to an increased risk 
prediction and values below zero are contributing to a decreased risk prediction. The x-axis 
represents the observed values of the practice or demographic.  
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Figure S27. Dispersal plots showing the directionality of the contribution of biosecurity 
practices and farm demographics on predicted PRRSV outbreak risk at individual farms. The 
following biosecurity practices and farm demographics are presented here: (A) capacity of finishing 
pigs within a three mile radius; (B) capacity of gilts within a three mile radius; (C) whether farm is 
primarily raising genetic breeding replacements; and (D) capacity of nursery pigs within a three mile 
radius. Contribution values, represented by the y-axis, indicate the contribution of the practice or 
demographic on predicted PRRSV risk. Values above zero are contributing to an increased risk 
prediction and values below zero are contributing to a decreased risk prediction. The x-axis 
represents the observed values of the practice or demographic.  
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Figure S28. Dispersal plots showing the directionality of the contribution of biosecurity 
practices and farm demographics on predicted PRRSV outbreak risk at individual farms. The 
following biosecurity practices and farm demographics are presented here: (A) capacity of show pigs 
within a three mile radius; (B) topography of the surrounding area; (C) capacity of wean-to-finishers 
within a three mile radius; and (D) yards to nearest public road. Contribution values, represented by 
the y-axis, indicate the contribution of the practice or demographic on predicted PRRSV risk. Values 
above zero are contributing to an increased risk prediction and values below zero are contributing to 
a decreased risk prediction. The x-axis represents the observed values of the practice or 
demographic.  
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Figure S29. Dispersal plots showing the directionality of the contribution of biosecurity 
practices and farm demographics on predicted PRRSV outbreak risk at individual farms. The 
following biosecurity practices and farm demographics are presented here: (A) whether the incoming 
air is filtered; (B) number of breeding replacements deliveries per year; (C) number of hauls for cull 
breeding animals per month; and (D) whether animals are disposed on-site and the method used. 
Contribution values, represented by the y-axis, indicate the contribution of the practice or 
demographic on predicted PRRSV risk. Values above zero are contributing to an increased risk 
prediction and values below zero are contributing to a decreased risk prediction. The x-axis 
represents the observed values of the practice or demographic.  
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Figure S30. Dispersal plots showing the directionality of the contribution of biosecurity 
practices and farm demographics on predicted PRRSV outbreak risk at individual farms. The 
following biosecurity practices and farm demographics are presented here: (A) number of feed/feed-
ingredient deliveries per month; (B) whether the disease status of the surrounding farms is known; 
(C) number of daly exit and reentries into the barns by employees; and (D) number of times 
pork/food products enter the site per month. Contribution values, represented by the y-axis, indicate 
the contribution of the practice or demographic on predicted PRRSV risk. Values above zero are 
contributing to an increased risk prediction and values below zero are contributing to a decreased 
risk prediction. The x-axis represents the observed values of the practice or demographic.  
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Figure S31.  Dispersal plots showing the directionality of the contribution of biosecurity 
practices and farm demographics on predicted PRRSV outbreak risk at individual farms. The 
following biosecurity practices and farm demographics are presented here: (A) length of downtime 
required for manure removal personnel; (B) monthly gas/fuel deliveries; (C) number of manure 
removals per month; and (D) number of other premises with the same trailer for hauling weaned 
animals. Contribution values, represented by the y-axis, indicate the contribution of the practice or 
demographic on predicted PRRSV risk. Values above zero are contributing to an increased risk 
prediction and values below zero are contributing to a decreased risk prediction. The x-axis 
represents the observed values of the practice or demographic.  
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Figure S32.  Dispersal plots showing the directionality of the contribution of biosecurity 
practices and farm demographics on predicted PRRSV outbreak risk at individual farms. The 
following biosecurity practices and farm demographics are presented here: (A) number of garbage 
collections per month; (B) frequency of grass mowing per month; (C) whether PRRSV positive 
animals are hauled on the cull breeding animal trailer; and (D) whether PRRSV positive animals are 
hauled on the cull wean animal trailer. Contribution values, represented by the y-axis, indicate the 
contribution of the practice or demographic on predicted PRRSV risk. Values above zero are 
contributing to an increased risk prediction and values below zero are contributing to a decreased 
risk prediction. The x-axis represents the observed values of the practice or demographic.  
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Figure S33.  Dispersal plots showing the directionality of the contribution of biosecurity 
practices and farm demographics on predicted PRRSV outbreak risk at individual farms. The 
following biosecurity practices and farm demographics are presented here: (A) number of dead 
animal removals per month; (B) number of other swine premises with the same seme delivery; (C) 
number of visits from veterinarians and managers per month; and (D) number of hauls of weaned 
pigs per month. Contribution values, represented by the y-axis, indicate the contribution of the 
practice or demographic on predicted PRRSV risk. Values above zero are contributing to an 
increased risk prediction and values below zero are contributing to a decreased risk prediction. The 
x-axis represents the observed values of the practice or demographic.  
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Figure S34.  Dispersal plots showing the directionality of the contribution of biosecurity 
practices and farm demographics on predicted PRRSV outbreak risk at individual farms. The 
following biosecurity practices and farm demographics are presented here: (A) length of downtime 
required for manure removal equipment; (B) length of downtime required for veterinarians and 
managers; (C) number of swine premises in a three-mile radius; and (D) number of visits from repair 
personnel per year. Contribution values, represented by the y-axis, indicate the contribution of the 
practice or demographic on predicted PRRSV risk. Values above zero are contributing to an 
increased risk prediction and values below zero are contributing to a decreased risk prediction. The 
x-axis represents the observed values of the practice or demographic.  
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Figure S35.  Dispersal plots showing the directionality of the contribution of biosecurity 
practices and farm demographics on predicted PRRSV outbreak risk at individual farms. The 
following biosecurity practices and farm demographics are presented here: (A) frequency of snow 
removal per year; and (B) number of vehicle entrances on the premises. Contribution values, 
represented by the y-axis, indicate the contribution of the practice or demographic on predicted 
PRRSV risk. Values above zero are contributing to an increased risk prediction and values below 
zero are contributing to a decreased risk prediction. The x-axis represents the observed values of the 
practice or demographic.  
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Figure S36. The rank of biosecurity practices and farm demographics produced by local model 
agnostic interpretation methods for an individual farm reporting at least one outbreak. Each 
bar on the waterfall plot represents the contribution of the biosecurity practice or farm demographic 
to the PRRSV predicted risk at the farm. The contribution value, phi, is represented by the axis. 
Values above zero (right of the dashed line) are contributing to an increased outbreak risk prediction 
and values below zero (left of the dashed line) are contributing to a decreased risk prediction. 
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Figure S37. The rank of biosecurity practices and farm demographics produced by local model 
agnostic interpretation methods for an individual farm reporting no outbreaks. Each bar on the 
waterfall plot represents the contribution of the biosecurity practice or farm demographic to the 
PRRSV predicted risk at the farm. The contribution value, phi, is represented by the axis. Values 
above zero (right of the dashed line) are contributing to an increased outbreak risk prediction and 
values below zero (left of the dashed line) are contributing to a decreased risk prediction. 
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Figure S38. Distribution of frequency of PRRSV outbreaks in the previous five years. Each 
farm provided data regarding PRRSV outbreaks five years previous to the survey. Farms with no 
outbreaks in the previous five years and farms with at least one outbreak in the previous five years.  

 

Performance metrics 

             MCC presents the correlation between the observed outcomes in the data and predicted 
classifications provided by the model. The value can range from 0 to 1, with values closer to 1 
indicating a higher degree of correlation (Chicco and Jurman, 2020; Chicco et al., 2021). Specificity 
indicates the model’s ability to correctly classify individuals as having reported no outbreaks, while 
sensitivity indicates the algorithm’s ability to correctly classify individuals as having reported at 
least one outbreak. These values, at different classification thresholds, can be used to construct a 
receiver operating curve from which the AUC can be calculated, to indicate the overall accuracy of 
the algorithm (Mandrekar, 2010).  

 


