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The title of my paper covers a lot of territory, so my remarks will 
tend to be broad rather than deep. Some of the topics I will cover are: 

What is AI? 
A brief history of AI. 
What is Knowledge Engineering? 
What are Expert Systems? 
Why should you care? 
Examples of Expert Systems. 
Opportunities for NDE. 
Selecting appropriate problems. 
Criticisms of Expert Systems. 
Looking ahead. 

WHAT IS ARTIFICIAL INTELLIGENCE? 

Asking for a definition of Artificial Intelligence (AI) is like 
the old story of the blind men describing an elephant (Fig. 1). You 
can get many different definitions, depending on one's point of view. 
Some people would describe AI as general symbolic, i.e., non-numeric, 
computation. The field of expert systems, which receives a lot of attention 
in the media and is frequently equated there (erroneously) with AI, is 
certainly part of the story. Advanced robotics and Vision are major 
areas of research within the realm of AI. Programs have been developed 
that "understand" what they see, in the sense of generat ing a high-level 
description of a video image or an aerial photograph. Natural Language 
understanding is another major area of AI research. Some people re gard 
the activity of understanding actual written or spoken language as the 
fundamental problem of AI. There's also the definition that says AI 
is the leading edge of computer science. In other words, as complex 
problems are solved successfully, they are no longer regarded as AI; 
they're considered instead to be part of some other field, like chemistry 
or mechanical engineering. Therefore, the domain of AI could be defined 
as the residue of unsolved problems in computer science. 

Let me try to make some sense of AI by describing it in terms of 
different types of computing. In Fig. 2 we have a two-by-two matrix 



( AI: Many Things to Many People 

Figure 1. Views of Artificial Intelligence. 
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Figure 2. Types of Computing. 
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in which the type of processing is listed in the rows and the type of 
information, numeric or symbolic, with which the processing deals, is 
in columns. Numeric algorithmic l processing deals with the traditional 
scientific or engineering calculations with which we are alI familiar. 
Algorithmic processing also applies to symbolic data. Retrieving in­
formation from bibliographic data bases, where the data are not numbers 
but text streams, is an example of this kind of activity. Here, too, 
the techniques for retrieving that informat ion are very clearly defined 
in an algorithm, and the process i6 always done the same way. 

II use the term "algorithmic" in the sense of a fixed computational 
procedure that will always solve a well-defined problem having a well-defined 
solution. 
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On the bottom row is a type of processing cal led heuristic. 
Heuristics are techniques which you might think of as rules of thumb, 
used to solve problems by using judgmental or experiential knowledge 
rather than mathematical formulae. A corollary is that one is not 
guaranteed to find the best solution, or even any solution, but using 
heuristics usually works, and can be a very efficient way to reach a 
solution that is good enough. The term was originally coined by the 
mathematician Georg Polya, who defined heuristics as the art of good 
guessing. An example of heuristic computing with numeric informatin 
would be a program that must explore a large space of possible solutions, 
where each candidate involves extensive numeric computation to generate 
and/or test that solution. (Imagine alI the conformations of a complex 
organic molecule, searching for the one conformation that best explains 
a set of x-ray crystallographic data.) Heuristics could be used here 
to guide the search, avoiding unlikely classes of solutions or enforcing 
the presence of certain partial solutions. 

Artificial Intelligence finds its niche in the bot tom right corner 
of the figure: heuristic symbolic computing, where the data are largely 
symbolic and the problems are "ill-structured", requiring heuristic 
techniques to reach a solution. AI makes contributions to the neighboring 
quadrants of the matrix. In the area of numeric heuristic processing, 
AI has provided techniques for searching large solution spaces efficiently. 
With respect to symbolic algorithmic processing, AI has linked natural 
language query techniques with data base retrieval, so that one can request 
information, using the sort of imprecise, ambiguous language that we 
tend to use in ordinary conversat ion , and let the "intelligent front 
end" infer what the user really asked for. 

Although AI itself is primarily a field of academic research, it 
has spawned several subfields that are concerned with practical appli­
cations (see Fig. 3). The subfield of knowledge-based systems, which 
deals with building systems conta in ing large amounts of knowledge for 
specific tasks, will be discussed further below. Natural language under­
standing is just what the name implies. In the subfield of vision and 
robotics, the emphasis is on building sensors and effectors for performing 
intelligent act ion. The fourth subfield is concerned with providing 
the hardware and software environments for building systems that manipulate 
and reason about symbolic information. 

There are now a number of commercial companies that specialize in 
one or more of these subfields. Teknowledge, Inc. (Palo Alto), Intellicorp 
(Mt. View) , Carnegie Group (Pittsburgh) and Inference (Los Angeles) are 
the four major AI companies that are developing knowledge-based systems 
and generic tools for their customers. Artificial Intelligence Corporation 
(Waltham) develops natural language understanding systems, and one of 
its products is marketed by IBM. Xerox, Symbolics, LMI and Texas Instruments 
are marketing computer systems specifically for AI applications. 

A BRIEF HISTORY OF AI 

Figure 4 (for which I thank Teknowledge for an earlier version) 
shows some of the main events in the history of AI. The term "Artificial 
Intelligence" was coined almost exactly 30 years ago by John McCarthy 
who has continued to be one of the field's chief theoreticians. During 
the first decade of its history, which we caII the concept ion phase, 
the emphasis in AI research was on generality, i.e., finding general 
problem-solving techniques for solving symbolic problems. Two areas 
that provided the desired complexity for exploring and testing these 
general techniques were chess and symbolic logic. An early program, 
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called LT (Logic Theorist), could prove theorems from the Principia 
Mathematica by Russell and Whitehead. One of the first AI programming 
languages, called IPL, was developed and used in the late 1950's, and 
GPS (General Problem Solving) was developed at Carnegie-Mellon in the 
early 1960s. McCarthy developed the Lisp programming language dur ing 
this period, also. 

APPLlED 
AI 

I 
I I 

KNOWLEDGE- NATURAL VIS ION HAROWARE& 
BASEO LANGUAGE ANO SOFTWARE 

SYSTEMS UNOERSTANOING UNOERSTANOING ENVIRONMENTS 

Figure 3. Subfields of Artificial Intelligence. 

From about 1966 to about 1973, there was a redirection away from 
the idea of generality. It was clear by then that one could get just 
so far with general (i.e., weak) prob1em solving methods. Most of the 
successes that researchers could point to were what we would today caII 
toy problems. On the other hand, there were two projects in the mid-to­
late 60s that were attacking very significant scientific problems. 

One of them was the Heuristic Dendral project at Stanford, a collabo­
rative effort of computer science, chemistry and genetics. The problem 
is the interpretat ion of mass spectrometric data, reasoning from data 
(a table of the masses of the molecular fragments and their relative 
abundance) and knowledge of analytic chemistry and mass spectrometry 
to derive the chemical structure of the molecule under investigation. 
Without going into details, let me just say that the project, which was 
active for over 15 years, was very successful. One measure of its success 
was the number of technical papers -- on the order of fifty -- that were 
published in refereed chemistry journa1s (not AI journals). The program 
achieved a level of expertise of a fairly advanced graduate student in 
chemistry. A commercial product came out of part of this work -- a program 
cal led CONGEN for generat ing alI molecular structures from the stoichio­
metric formula plus various structural constraints. Dendral was one 
of the very first of what we now caII Expert Systems. 
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Figure 4. A Brief History of AI. 

Another landmark program dur ing this period was a program, developed 
at MIT, for solving mathematics problems symbolically, e.g., solving 
indefinite integrals. That work led to a system cal led MACSYMA, which 
is now used routinely by a large number of scientists and engineers. 

The major theme during the era of redirection was the emphasis on 
achieving high levels of performance by using lots of specialized knowledge 
rather than to rely on general purpose techniques. During the next five 
years, this idea caught on, and there were a number of successful 
knowledge-based systems developed. MYCIN is by now perhaps the best 
known of the classic Expert Systems, and 1 will discuss it in more detail 
later. An important spinoff of the MYCIN effort was EMYCIN, the first 
tool for building rule-based expert systems. Meta-Dendral was a program 
that learned from examples the kind of knowledge that was needed for 
the Dendral program. It was clear early on that a major bottleneck in 
developing Expert Systems is the acquisition of alI the knowledge that 
the program needs to exhibit expert performance. Meta-Dendral was one 
of the first systems capable of learning new knowledge automatically. 

Another major research area during this period of "Success" was 
the Speech Understanding Program, initiated by DARPA. Two systems de­
veloped at CMU -- Hearsay II and Harpy -- achieved at least moderate 
performance in understanding normal speech, in a quiet room, in near 
real time. But perhaps more importantly, these projects produced some 
very interesting problem solving frameworks which have since been used 
in other applications. The whole field of knowledge engineering was 
spawned in this five-year period, when we began to understand how to 
develop these knowledge-based systems on something other than an ad hoc 
basis. 
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For the next four years, starting about 1978, a number of different 
organizations recognized the potential value of this technology, and 
launched their own internally sponsored AI projects. Xerox's Palo Alto 
Research Center had already been active in the field, and built one of 
the first Lisp machines that became a commercial product. Schlumberger 
was one of the first non-computer companies to see the value of expert 
systems in data interpretation, and set up their own research center. 
Carnegie-Mellon and Digital Equipment teamed up to produce the first 
expert system that went into commercial use and demonstrated real value. 
That was Rl, a system for configuring the components of VAX computers. 
VAX systems are highly modular and can be ordered pretty much a la carte. 
Not alI components are compatible, however, and there are many implicit 
interdependencies among components. Thus configuring one of these systems 
is a non-trivial task. Rl, renamed XCON when it was transferred to DEC, 
was used on over 1000 orders per week by the end of 1983. Stanford 
University spun off two companies, Intelligenetics (now called Intellicorp) 
and Teknowledge, that specialized in knowledge engineering. The public 
at large became aware of this technology in the early 80s, with lots 
of publicity appearing in such places as Business Week, Wall Street 
Journal, Time Magazine. 

In 1981, the Defense Science Board recognized AI as one of the most 
promis ing investments for the military. AI soon became a buzzword through­
out the military services, and it seemed like alI new proposal requests 
contained a requirement that any software must contain some artificial 
intelligence! Two years later DARPA,. which had been nurturing the field 
since the early 1970s, stepped up its support significantly when it 
initiated the $lOOM/yr Strategic Computing Program with AI as one of 
the core technologies. 

During the past four years we have witnessed a period of increasing 
industrialization, and hence an increased emphasis on the applied side 
of AI. More new AI companies, like Carnegie Group and Inference Corp. 
have sprung up and are doing well, and many of the familiar names in 
computing, like IBM, Sperry, Digital Equipment, and Texas Instruments, 
now have a large investment of people and money in AI research and de­
velopment. We're still a little too close to current events to identify 
alI the milestones of the current period, but certainly one must include 
the arrival of low-cost workstations and PC-based knowledge systems, 
making the technology affordable to a large segment of the industrial 
and commercial sectors. 

To summarize, the first decade emphasized search, i.e., the idea 
that you can solve any problem by search in a space (usually very large) 
of possible solutions and use a variety of general problem solving tech­
niques to search efficiently. The second decade emphasized the use of 
application-specific knowledge, and demonstrated the power of this idea 
in a number of relatively small systems. The third decade, I believe, 
has been mainly a time of consolidation and a combining of a number of 
different types of problem-solving methods in order to deal with the 
complexity of real-world problems. 

What lessons have we learned? Certainly one important lesson is 
that knowledge powers the solution to complex problems (it's better to 
be knowledgeable than smart is another way to put it). Another is that 
knowledge can be expressed in relatively small chunks, and that a 
knowledge-based system can consist of 100 or 1000 or 100,000 such chunks. 
And we've also learned that the key tasks in building these systems are 
mlnlng the necessary knowledge and molding it so it can be used in an 
actual running system. 
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WHAT IS KNOWLEDGE ENGlNEERING? 

These tasks have given rise to the fie1d ca11ed know1edge engineering, 
which is concerned with the acquisition, representation and use of symbo1ic 
know1edge to solve prob1ems that norma11y require human attention. 2 The 
products of know1edge engineering are ca11ed by many names: 
know1edge-based expert systems, know1edge-based systems, expert systems, 
know1edge systems. For the purposes of this ta1k they are a11 synonymous, 
and 1'11 use the most common term, expert systems. 

WHAT ARE EXPERT SYSTEMS? 

We can describe expert systems on severa1 dimensions to he1p dis­
tinguish them from other kinds of computer programs. One dimension has 
to do with methodo1ogy. Expert systems are members of the fami1y of 
AI programs, and as 1 mentioned ear1ier, they emphasize symbo1ic infor-
mat ion and heuristic processing. A second dimension is qua1ity: expert 
systems are expected to exhibit expert-1eve1 performance in their respective 
app1ication domains. A third dimension is the design dimension: Expert 
systems shou1d be easy to modify or augment, and their behavior shou1d 
be understandab1e. Fina11y, on the imp1ementation dimension, a key element 
of expert systems is that the knowledge base is kept separate from the 
inference procedures, as shown in Fig. 5. In thinking about designing 
an expert system, one shou1d always keep in mind the two parts: a knowledge 
base, which you may think of as a global data base containing facts, 
rules, re1ations, etc., and an inference engine which interprets the 
knowledge and controls the problem solving procedure according to some 
strategy. This design is in sharp contrast with most computer programs, 
in which the knowledge of the domain is embedded direct1y into the program. 

Basic 
Knowledge-Based System 

Architecture 

INFERENCE 
ENGINE 

KNOWlEOGE 
BASE 

Major Architectural Lesson 

Contra/System 

Interpreter 

Global Database 

Figure 5. Separat ion of Knowledge and Inference Mechanism. 

2The question natural1y arises, what sort of problems that norma11y 
require human attention could or should a machine solve? Many of us 
like to think that alI tasks can be automated up to but not including 
our own. As time goes on that threshold keeps moving up. 
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WHY SROULD YOU CARE? 

Two practical reasons for building expert systems is that they can 
reduce costs and/or increase the quality of many decision-making tasks. 
Expertise is always a scarce resource, and costly problems can arise 
when novices are left to solve problems on their own. Another well-known 
dictum is that crises and experts are almost never in the same place 
at the same time. Moreover, experts are not permanent: they change 
jobs or retire, eventually, and quality of performance drops. Expert 
systems can provide the expertise that is typically unavailable to less 
experienced personnel when or where it's needed. Moreover, experts should 
not have to spend valuable time on routine decision-making or bookkeeping 
tasks, and expert systems can be used to automate such tasks. During 
times of crisis, record keeping is of ten inaccurate or incomplete. Expert 
systems are able to keep consistently accurate and complete records of 
their actions. 

EXAMPLES OF EXPERT SYSTEMS 

MYCIN is a rule-based system for medical diagnosis and therapy . 
It was developed at Stanford about twelve years ago. It started as a 
Ph.D. thesis by Ted Shortliffe, who also has an M.D. degree and is now 
on the faculty at Stanford in the Department of Medicine. MYCIN is one 
of the landmark expert systems, not only because it solves an interesting 
problem, but also because it does it in a very clean way. By separat ing 
the knowledge from the program that uses the knowledge, MYCIN is easy 
to understand, replicate, and augment, and its knowledge base can be 
used for purposes other than diagnosis, e.g., teaching. 

Why did he choose to develop this particular expert system? 
Shortliffe, of course, was interested in medicine. Re found some doctors 
at Stanford who are world class experts in the diagnosis and treatment 
of various kinds of infectious diseases, and he focused his attention 
on the problem of diagnosing infect ing organisms in blood and meningitis 
infections. 

The idea behind MYCIN is that you would like to be able to make 
a diagnosis and prescribe an effective antibiotic treatment, using test 
results and information about the patient as supplied by the doctor. 
You would also like to be able to do it early in the treatment when you 
don't necessarily have alI the laboratory data available. Moreover, 
non-expert physicians tend to overuse antibiotics, or use them irrationally, 
and MYCIN is intended to counteract such practice. Finally, MYCIN was 
intended to be an active medium for dis tribut ing expertise in the use 
of antibiotics, as well as the diagnosis of infectious diseases, to a 
broad community of practitioners who normally don't have access to experts 
as you might find at a university hospital. 

Figures 6 and 7 show how MYCIN's diagnosis and therapy recommendations 
might look to a user. The diagnosis stage usually consists of identifying 
certain kinds of infections, and for each of these infections, identifying 
particular organisms that are responsible for them. It tends to be ex­
haustive, not just finding the first thing that might explain the data, 
but to find alI of the possible explanations of the patient's symptoms. 

The next phase, therapy, recommends a set of drugs that will cover 
for each of the five items in the diagnosis. In this case, MYCIN 
recommends some two antibiotics, prescribes the dosage, and includes 
comments for modification of dosage in case of certain complications 
such as renal failure. 
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How MYCIN looks to the user: Diagnosis 

Infection-1 is Cystitis 
<Item 1> Pseudomonas-Cepacia [Organism-SI 
<Item 2> Citrobacter-Diversus [Organism-41 
<Item 3> E-coli [Organism-31 

Infection-2 is Upper-Respiratory-Infection 
<Item 4> Listeria [Organism-21 

Infection-3 is Bacteremia 
<Item 5> Enterococcus [Organism-1] 

Figure 6. Example of a MYCIN Diagnosis. 

How MYCIN looks to the user: 
Therapy recommendation 

[REC-1] My preferred therapy recommendation is as follows: 
In order to cover for items <1 2345>: 
Give the following in combination: 

1: Kanamycin 
Dose: 750 mg (7.5 mg/kg) q12h IM (or IV) for 28 days 

Comments: Modify dose in renal failure 
2: Penicillin 

Dose: 2.500,000 units (25000 units/kg) q4h IV for 28 days 

Figure 7. Example of a MYCIN Therapy Recommendation. 

The Knowledge base in MYCIN consists of about 400 diagnostic rules 
and about 50 therapy rules. A typical diagnosis rule is shown in Fig. 
8. One thing to notice is that it's symbolic. There are no numbers 
(with one exception) in it. It has the typical "if-then" format. The 
conditions have to do with the site of the culture and so forth. So, 
this is symbolic data. Moreover, the conclusion is also symbolic. It 
has to do with the identity of an orgariism that would produce such data. 
The one number appearing in the rule is what is generally cal led a cer­
tainty factor. It's similar to a probability measure, although not used 
exactly that way. MYCIN has a calculus for dealing with these certainty 
factors so that when you chain together several rules, each of which 
may embody uncertain knowledge, in a line of reasoning, one can calculate 
an overall certainty of the conclusion. 
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MYCIN DlAGNOSIS RULES 
IF The site of the culture is blood 

The gram stain of the organism is gram neg 
The morphology of the organism is rod, and 
The patient is a compromised host, 

THEN There is suggestive evidence (0.6) that the identity of the 
organism is Pseudomonas-Aeruginosa. 

Figure 8. Example of a Diagnosis Rule in MYCIN. 

How does MYCIN actually use these? The rule in Fig. 8 is a typical 
chunk of knowledge. You can see that the conclusion of this rule is 
a conclusion about the identity of an organism, and it's clear that this 
is one of the things one needs to know in order to be able to prescribe 
any drugs. So, one of the sub-goals of the program is to identify alI 
of the organisms. In order for this rule to fire, each of the clauses 
in the IF port ion must be true. The truth of the first clause, "if the 
site of the cuI ture is blood," may be determined by simply asking the 
user, or by inferring that fact from other rules whose conclusion part 
says that the site of the cuI ture is blood. To evaluate these rules, 
their IF portion must be evaluated, so the procedure is recursive. We 
caII this procedure "backward chaining" because we start from a goal 
and work backwards by first finding the rules that conclude the goal, 
then generat ing sub-goals from the clauses on the condition side of the 
rule, and so forth. 

Figure 9 shows a therapy selection rule. One can include justifi­
cations to the rules. These are not used by the program, but they help 
establish confidence in the program by indicat ing where these rules come 
from. 
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MYCIN: Therapy Selection Rules 
IF Vou are considering giving chloramphenicol, and 

The patient is less than 1 week old 

THEN It is definite (1.0) that chloramphenicol is contraindicated 
for this patient. 
[Justification: Newborn infants may develop vasomuscular 
collapse due to an immaturity of the liver and kidney 
functions resulting in decreased metabolism of 
chloramphenicol.) 

Figure 9. Example of a Therapy Selection Rule in MYCIN. 



One of the most powerful aspects of MYCIN is its ability to explain 
its line of reasoning, particularly for physicians who are understandably 
suspicious of using computers for such high level decis ion making. It 
is absolutely essential that the system provide not only an answer but 
also the ability to explain why it reached the conclusion it did. So 
MYCIN was developed to create confidence by letting the physician ask 
it several types of questions (see Fig. 10). 

MYCIN frequently asks questions that seem a little baffling to the 
physician; they just don't seem to be relevant to the task at hand. 
So he or she might ask why that question was asked, and MYCIN would 
explain that it's trying to evaluate a particular rule. If the physician 
types "Why?" again, meaning "Why are you trying to evaluate that rule?", 
MYCIN replies that it's trying to evaluate that rule to establish the 
truth of a condition in a higher level rule. By asking why repeatedly 
you can work right back up the chain to what the ultimate goal of the 
consultat ion is. 

After the program has made its recommendations, one may ask "How 
(did you arrive at that conclusion)?" and MYCIN will explain its line 
of reasoning in terms of the rules that were invoked. MYCIN can even 
handle a question of the form, "Why didn't you consider something else?" 
as shown in Fig. 11. The rules in MYCIN have a simple format, which 
makes it relatively easy to translate and display them in fairly standard 
English. 

MYCIN also was significant in that it gave rise to a whole family 
of other systems, as shown in Fig. 12. EMYCIN is really not an expert 
system in itself, but is just the inference part of MYCIN, i.e., MYCIN 
without the medical knowledge. Because of that separation, one can add 
new knowledge in related domains or totally different domains and produce 
different expert systems. And that's what has happened over and over 
in the past few years. This family tree continues to grow and spread 
beyond what's shown in the figure. For example, Texas Instruments sells 
a product cal led "The Personal Consultant" which is a direct descendant 
(if not a twin sister) of EMYCIN. 

How does MYCIN create confidence 
inthe user? 

• Answering "Why?" (Why did you ask me that?) 
• Answering "How?" (How did you arrive at that conclusion?) 
• Answering "Why not X?" (Why did you not consider X?) 

MYCIN's simple rule format and friendly explanations in "English" 
are the key. 

Figure 10. Questions that can be asked of MYCIN. 
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MYCIN Explanation 

User: Why didn't you consider Streptococcus as a possibility 
for Organism-1? 

MYCIN: The following rule could have been used to determine 
that the identity of Organism-1 was Streptococcus: 
Rule33. 
But Clause 2 (''the morphology of the organism is 
Coccus") was already known to be false for Organism-1 
so the rule was never tried. 

Figure Il. Example of an Explanation in MYCIN. 

1975 MYCIN 

'9ro EM~ 
PROSPECTOR 

GUIDON NEOMYCIN 
1981 KS300 

~ 
1982 DRILLING 

ADVISOR 

Figure 12. The MYCIN Family Tree. 

1 won't have time to talk about alI of the systems shown in the 
figure, but 1'11 mention a few. PUFF (PULmonary Function diagnosis) 
analyzes data collected by a pulmonary function machine at Pacific Medical 
Center in San Francisco. It interprets the data and prints out a report, 
in standard format. About 80 percent of the time, the report says what 
the expert interpreter would have written himself, and he just signs 
his name at the bottom. 

GUIDON is a system for teaching students about the medical knowledge 
that is contained in MYCIN. GUIDON also led to a reformulation of MYCIN, 
cal led NEOMYCIN, which made explicit the distinction between the domain 
knowledge (the facts, rules, relations, etc.) and the problem-solving 
strategy knowledge, and that became the basis of other intelligent 
tutoring systems. 

Let me discuss one more expert system with which 1 was involved. 
This application took EMYCIN completely outside the are a of medicine 
and into the domain of structural engineering. By adding knowledge about 
structural analysis, we created a small prototype system called SACON 
(Structural Analysis CONsultant). SACON advises engineers on the use 
of a large structural analysis program cal led MARC. The advice consists 
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of a high 1eve1 ana1ysis strategy to use a10ng with a 1ist of specific 
recommendations. SACON was deve10ped in a very short time, 1ess than 
six months, and was basica11y a demonstration that this techno10gy cou1d 
work in other areas as we11. 

Figure 13 shows how SACON wou1d 100k to the user after he or she 
answers questions about the type of structure (shape, material composition) 
and the type of ana1ysis desired (material behavior, accuracy, etc.). 
SACON conc1udes its consu1tation with two kinds of recommendations. 
One is something called the "analysis c1ass". In this case the recom­
mended analysis class is "general ine1astic", which was one out of about 
36 different kinds of analysis c1asses that he could choose from. The 
second kind is a list of specific recommendations about certain input 
parameters that are provided for the program. 

Since this was a concept demonstration, we didn't actually go as 
far as to generate the actual input data to the MARC program in the form 
of a tape or punch cards or whatever, but that could have been done 
straightforwardly. (1 know of at least one other similar sort of expert 
system, a consultant for a seismic data analysis system, that does generate 
the input data.) 

Figure 14 shows a typical rule in SACON, having to do with the type 
of material in the substructure, the non-dimensional stresses which are 
calculated by the system, loading cycles and so forth, and then concluding 
that fatigue must be considered as one of the stress behaviors. 

The key ideas that carne out of SACON were (a) complex computer systems 
require consultants to help non-expert users, and (2) an expert system 
can be an effective replacement for computer manuals and local "wizards." 
Perhaps this is an appropriate place to allay the fear that these expert 
systems are putting people out of work. In the case of SACON, there 
were a very small number of wizards who thoroughly understood the MARC 
program. They spent a lot of time on the phone talking to customers 
instead of do ing the R&D work that was their primary responsibility. 
For them, an automated consultant was a way to save them time and let 
them focus on more productive tasks. This situation is typical. 

How SACON looks to the user: 
The following analysis classes are relevant to the analysis of your 
structure: generaHnelastic. 

The following are specific analysis recommendations you should 
follow when performing the structure analysis: 

1 Activate incremental stress-incremental strain analysis. 
2 Model non-linear stress-strain relation of the material. 
3 Solution will be based on mix of gradient and Newton methods. 
4 User programs to scan peak stress at each step and evaluate 

fatigue integrity should be used. 
5 User programs to scan stresses, smooth, and compare with 

allowable stresses (with appropriate safety factors) should 
be used. 

6 User programs to scan deflections, calculate relative values, and 
compare with code limits, should be called upon. 

7 Cumulative strain damage should be calculated. 

Figure 13. Examp1e of SACON Output. 
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SACONRULE 
IF: The material compcsing the subslruclure is one of melal, 

The analysis error (in %) Ihal is lolerable is belween 5 
and 30, 
The non-dimensional stress of Ihe substruclure is grealer 
Ihan .9, and 
The number of cycles the loading is 10 be applied is 
belween 1000 and 10,000, 

THEN: It is definile Ihat faligue is one of the slress behavior 
phenomena in Ihe substruclure. 

Figure 14. Example SACON Rule. 

OPPORTUNITIES FOR NOE 

Based on analogy with other areas of science and engineering, I 
can see a number of different opportunities to use expert systems 
technology in NDE. 

Data Interpretation 

A typical problem in this category is, given the location and size 
of a defect, the stress to which the piece is to be subject, and perhaps 
some other physical and/or environmental data; is the defect serious? 
This is clearly an area where judgmental, experiential knowledge plays 
a major role. 

Signal Characterization 

Everyone knows that measuring devices can produce erroneous data. 
It is common, for example, to detect artifacts in signals, induced by 
the geometry of the object under test or by the environment. Signal 
peaks may be spurious, transducers can generate false signals, etc. 
Each source of data has a relative likelihood of credibility. Charac­
terizing signals requires the application of a large number of heuristics. 

Control of Data Collection 

Intelligent control of how data are collected can of ten compensate 
for collecting large quantities of data which must be stored and later 
cuI led through at great cost in time. For example, one might use long 
wavelengths for routine scanning, switching to shorter wavelengths only 
where closer inspection is required because of a higher load in that 
area, or detection of an unusual signal, or because of historical data, 
etc. 

Integrated Sources of Knowledge 

Defects in a material part sometimes can be corrected on the manu­
fac turing line by experienced line opera tors who seem to have an almost 
magic ability to twiddle the right knobs and correct the problem. For 
problems that are new or especially complex (e.g., when the "disease" 
is due to the interaction of multiple failures), the analytical skill 
of well trained engineers or scientists is required. Knowledge based 
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systems can integrate multiple sources of knowledge and achieve better 
problem solving performance than any one source of expertise. This has 
been demonstrated many times, but a classic case is the expert system 
called PROSPECTOR, which combines the knowledge of several expert geo­
logists, each of whom is a specialist in one or more models of ore de­
posits. In 1980, PROSPECTOR became the first expert system to achieve 
a major commercial success in predicting a large molybdenum deposit in 
Washington state. 

Inspection Plan Designer 

Given a new part to be fabricated, how should it be inspected? 
Where should you look for the most likely occurrence of defects? How 
do you totally cover the volume of interest, which involves selecting 
angles, the appropriate transducer (shear waves vs longitudinal waves, 
e.g.)? How do you quantify the size and type of a defect once it's 
located? The seriousness of a defect depends on the applied load--a 
smooth sphere inclusion is not as serious as a defect near a sharp edge, 
which can crack. One may need two or more transducers in a pitchcatch 
relationship, or one may need a different technique, e.g., x-rays instead 
of or in addition to ultrasonics. Clearly, there are numerous issues 
that must be considered, and experiential knowledge, rather than textbook 
procedures, can make the difference between an excellent and a mediocre 
inspection plan. 

Intelligent Front End to Simulation Models 

Quantitative simulations of the behavior of structures under various 
loading conditions provide critical information to NDE analysts. If 
your work is like many other areas of engineering analysis, you now have 
simulat ion packages that are at least a decade old, conta in hundreds 
of options that must be specified before submitting a run. Moreover, 
the program itself contains tens of thousands of lines of code, the 
original authors have disappeared, no one understands why or how the 
program works in its entirety, and the documentation is both too cumber­
some to read and understand, out of date, and doesn't tell you what you 
really want to know. Each organizat ion has a small number of wizards 
to whom you go in order to learn how to set up a simulat ion that applies 
to your specific problem. 

This is an excellent area for using expert systems to help nonexperts, 
and there have been a number of successful demonstrations of intelligent 
front ends to complex software packages. I've had direct experience 
with such systems in the areas of structural analysis and seismic data 
processing. The IFE can conduct a dialogue with the user, querying him 
or her about the specific application in the familiar terms of the domain. 
The conclusions drawn by the IFE are then translated into data processing 
terms -- what values go in which fields of which records. The analyst 
no longer need be a data processing specialist. 

Expert System - Simulation Hybrid 

Carrying the idea of combining a reasoning program with a numerical 
simulation one step further, imagine a closed-Ioop system where an expert 
system generates a hypothesis about the type and location of a defect, 
sets up and runs a simulation program to explore the consequences of 
that hypothesis, and finally interprets and uses the results of the simu­
lation to generate alternate hypotheses. 
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These are just speculations. 
and I'm just going on the basis of 
in other fields. 

I'm certainly a novice in your field 
experience of similar applications 

SELECTING AN APPROPRIATE APPLICATION 

Here are some guidelines in selecting an appropriate application 
for applying this technology: 
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1. The solution to the problem primarily involves symbolic, not 
numerical reasoning. If there's a way to do it algorithmically 
using a numerical method, you should do it that way. Don't 
rely on expert systems. 

2. Since we are talking about expert systems, there has to be an 
expert. I think that's been overlooked, that somehow, these 
expert systems will magically produce expert performance. They 
are based on knowledge obtained from experts. 

3. It has to be a problem where somebody cares about the solution. 
The eventual fielded system has to either save people time 
or money or increase productivity. 

4. The problem needs to be bounded in scope or you'll never 
finish. We have some of our own heuristics about that. If a 

-human expert practitioner can solve the problem in a few 
minutes, it's too easy. If it takes the expert a week or more 
it's likely to be too difficult. So a problem that takes an 
expert a few hours to a few days to solve is appropriately 
bounded. 

5. There should be a vocabulary of the field which is not 
unbounded. There should be no more than a few hundred terms 
that would completely describe alI the objects and 
relationships that exist in the area. 

6. The experts should agree with one another on the solutions to 
the problems. When the experts disagree among themselves, 
there will be a major problem in establishing the credibility 
of the system you develop. 

7. Numerous test cases should be available. Experts generally 
cannot tell you what they know directly, but can impart that 
knowledge indirectly by solving lots of problems. Thus, at 
present, expert systems are developed by analyzing cases. 

8. Combinatorial problems are of ten likely candidates. That's one 
area where it's difficult for humans to perform very well. We 
are generally poor enumerators when there are a large number of 
possible solutions to a problem, whereas machines are very 
methodical about that. 

9. Finally, you ought to be able to show progress in an 
incremental way so that your sponsor doesn't have to wait for 
two or three years before anything comes out the other end of 
the tunnel. 



CRITICISMS 

Critics of expert systems have frequently pointed out that the know­
ledge in them is shallow, that they don't exhibit any common sense, and 
that some problems that would be obvious to you can't be solved by the 
expert system because it only knows what's in its knowledge base; if 
it requires using some piece of knowledge that's not in it, it fails. 
And finally, it doesn't improve with experience. You run the same system 
day after day after day and it solves the same problems but it doesn't 
get any smarter. 

These are alI the areasthat we are aware of and they are alI areas 
of research. Rather than say that we have been overselling the systems, 
I would say that they are not oversold; they are just merely underdeveloped. 

LOOKING AHEAD 

I'd like to conclude with some personal remarks on where I believe 
the field is heading ove~ the next 5 to 10 years. 

Knowledge Acquisition 

Knowledge acquisition is a well-known bottleneck in the development 
of practical expert systems that require very large knowledge bases. 
There are two major problems here. One is the time-consuming process 
of entering thousands of chunks of knowledge into a knowledge base. 
At present we do this more or less manually, one chunk at a time. More­
over, we have to run the evolving system through hundreds to thousands 
of cases in order to verify the knowledge acquired thus far and to see 
what's missing. The second problem is that knowledge bases always have 
a structure to them; that is, the objects in the knowledge base have 
particular interrelationships that are important to solving the problem, 
or at least to solving the problem efficiently. Eliciting that structure 
is a design activity that requires currently creativity and a lot of 
handcrafting. That's why we now have to rely on experienced (and there­
fore scarce) knowledge engineers to build knowledge systems. Thus every 
new system is built from scratch, and there's no economy of scale. 

I think the research now going on at Stanford and other places will 
eventually widen, if not totally break, this bottleneck. Meta-DENDRAL, 
now ten years old, demonstrated that one can acquire new knowledge from 
examples. More recently, one of our Ph.D. students developed a program, 
cal led RL, that uses a rough mode, or half-order theory, of the domain 
in order to guide a systematic search through a space of plausible concept 
definitions and associations. Preliminary results show because of the 
rules and metarules learned. Another mode of learning, learning by 
analogy, is a promising area for constructing KBs. To be successful 
here, we have to learn how to find the appropriate analogies and to use 
the analogies correctly. I wouldn't hold my breath waiting for break­
throughs in this area, but I'd keep my eye on the work of Doug Lenat 
and his colleagues at MCC. I refer you to his recent article on this 
topic in the Winter, 1986 issue of AI Magazine. Lenat is embarked on 
a ten-year project to build an encyclopedic knowledge base, structured 
so that one can search efficiently for analogies and exploit them when 
direct knowledge of a particular domain is incomplete. 
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Multiprocessor Architectures 

I believe we will see an increasing amount of activity in both the 
hardware and the software areas, aimed at speeding up the execution of 
large expert systems. On the hardware side, it's clear that we continue 
to move in the direction of higher performance and lower cost unipro­
cessors, and it's also pretty clear that we will see more and more 
examples of multiprocessor machines with multi-instruction, multidatapath 
architectures on the market over the next decade. The real challenge 
is discovering how to program these beasts to fully realize their potential 
for parallel symbolic computation. My own feeling is that we're going 
to have to take the low road on this for a while, looking at specific 
applications, or classes of applications, finding the parallel problem 
solving tasks that are inherent in that domain, appropriate language 
in which to implement the system and then a specificat ion for a machine 
architecture that can support the whole activity -- in other words, the 
multi-system level approach we're taking on our own advanced architec­
tures project. Only after a few successes will we be able to step back 
and see what generic progress we've made. I don't see any breakthroughs 
here for at least another few years, but I think we can see an order 
of magnitude speedup very soon simply from using several tens of proces­
sors and reasonably intelligent techniques for knowledge and data base 
management. In five years I expect to see two orders of magnitude speed­
up, and in ten years at least three (but that's based only on faith that 
a few geniuses will emerge to crack this problem). 

Workstations and Distributed, Interacting Systems 

Powerful workstations for symbolic computation are rapidly getting 
down to a price where we can start thinking about them like we now think 
about terminals, in other words an ordinary piece of office equipment 
that you might put on every worker's desk. When this happens, I think 
we'll see a quantum jump in the level of work performed by executives, 
managers, administrators and secretarial personnel. High-resolution, 
multiwindow workstations will be as commonplace as the telephone (and 
in fact the telephone may be just one component of it). Having N times 
as much processing power as we now have in our centralized time-shared 
systems will have a payoff not so much in the quantity of computer use 
as in the quality. The key will be in the sophistication of the user 
interface that will be permitted by the enhanced processing power of 
the workstation. Even we executives will be able to understand how to 
retrieve a vital piece of information that we can't describe exactly, 
or get help with a planning or budget ing task, or make marginal notes 
on an on-line document, without having to ask someone for help or read 
a manual, because our workstation can represent and utilize a model of 
what we know and don't know, and draw inferences from our of ten ambiguous 
commands. After alI, the Macintosh can trace its roots to some AI ideas 
in the early 705. More recent work on Intelligent Agent, Knowledge-based 
programming and in language understanding is likely to lead to these 
simple-to-use, intelligent job aids --"White Collar Robotics" as Business 
Week described the field in its February 10th issue. 
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DISCUSSION 

Bill Karp, Westinghouse: 1 would like to make a comment and pose a 
question. At Westinghouse, we have been in the business of arti­
ficial intelligence as it impacts the field of NDE. The comments 
that you made with regard to paying attention to just exactly how 
you de fine and identify your expert application in fact is absolutely 
critical and very of ten is not a specific individual. 

Just to give you a feeI for where I'm coming from, we developed 
some automated systems for the interpretat ion of eddy current data. 
Our experts were, in fact, our scientists and engineers that put 
the concepts together. To get this thing really to work, we found 
out near the end of the program that if we had taken advantage of 
the experts in the field, specifically in the field of the inspectors, 
right up front in the planning of the program, things would have 
gone much more smoothly. So, identification of expert or the experts 
is absolutely critical. 

R. Engelmore: Yes, it really is and they have to be identified early. 
Also, it requires quite a bit of time for the expert to participate 
in such a project and that can be a real problem. Experts are, 
by their nature, scarce. They are always needed elsewhere. 

We found that you usually can't convince an expert's boss to re­
lease him for a task like this for much time, so you have to jump 
over his boss and go to his boss's boss who has a little broader 
or longer-term view of the goals of the organizat ion and is willing 
to tell the expert's boss to make this person available. 

Bob Green, Johns Ropkins: Since even experts or wizards make mistakes, 
what considerat ion is given to false positives or redundancy in 
these programs? And can we expect malpractice suits against 
computers? 

R. Engelmore: It's a good question that comes up alI the time. Yes, 
these expert systems are going to make mistakes because they are 
based on the knowledge of humans, who make mistakes. One should 
not necessarily expect any better performance than you are going 
to get from humans. 

I'd like to think, at least for medical system applications and 
perhaps some other critical ones, that these expert systems will 
be regarded as providers of second opinions. It will still be the 
responsibility of the primary physician or the primary user of 
that system to make the final decision. I think that's the only 
way it's going to make sense for a while. 

The other side of the coin is (again, with analogies to medicine), 
when these kinds of systems which are shown to perform very well 
are available out in the field, will there be malpractice suits 
for people who don't use them? 

Dick Berry, Lockheed: One of the things that we are seeing more and 
more is that the military is interested in getting automatic accept­
reject systems built-in for many of the routine inspections that 
are carried out in the military in ammunition and a variety of other 
things. Ras AI made any inroads in helping to solve this problem? 

R. Engelmore: I'm not aware of any inspection systems, using AI, that 
are actually in use today, but there may very well be some prototype 
efforts going on now, and there may be people in this room who could 
answer that question. 
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Ward Rummel, Martin Marietta: We have one at Martin. 

Steve Ruber, NADC: When you mentioned about the "no improvement" ex­
perience, it comes to mind immediately: Why isn't the feedback 
built in? For example, if a doctor makes a diagnosis and the patient 
dies, he tells the system, "The patient died," and therefore the 
system would refine its statistics. Ras that been done? And if 
it has been done, why has it failed so far? 

R. Engelmore: There actually have been some attempts to do just that. 
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There's a program at Stanford called "RX", which looks over a large 
medical data base and tries to make some interesting statistical 
correlations that people have not made before, thereby learning 
new knowledge from past experience. So that's one attempt. But 
there haven't been very many such efforts to do that. 

Now the whole idea of machine learning is a big research topic, 
getting programs to actually develop knowledge bases, either learning 
from examples or learning from textbooks, or learning by sort of 
looking over the shoulder of the practicing expert as he solves 
the problem, and keeping records of what he or she does. That's 
a research area now, and our lab for one is actively involved in 
it. 




