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In conventional ultrasonic nondestructive evaluation studies, piezoelectric transducers 
are used to generate sound waves in solids via a couplant that transmits the mechanical 
motions. In recent years, a different method of generating sound in solids, pulsed laser 
heating, was introduced by White [1,2]. This method is noncontacting, requires no coupling 
medium, and operates directly on the surface of the specimen. Noncontacting ultrasonic 
detection using laser interferometers of several types has also been developed [3]. Laser 
techniques can achieve essentially point source and point detection of ultrasonic motion 
through focusing. Laser ultrasonics can, therefore, be used on objects with complex shapes, 
e.g. curved surfaces, and are applicable to material shapes more commonly found in 
industry. Often the goal of ultrasonic measurements is to determine material properties such 
as Lame's elastic constants. The conventional approach measures longitudinal and shear 
wave speeds between two parallel flat surfaces. The work reported here demonstrates the 
versatility of laser ultrasonics by directly measuring the surface motion of asolid sphere 
generated by ablation from a pulsed laser beam. The results compare weIl with 
elastodynamic theoretical calculations, where the ablation source is approximated as anormal 
impulse on the surface. This work suggests that an algorithm could be formulated to 
measure elastic properties of targets with curved surfaces. 

EXPERIMENTAL MEASUREMENTS 

A pulsed laser can generate ultrasonic waves in a target by two methods: the creation of 
a transient subsurface thermal expansion (thermoelastic) and surface evaporation (ablation) 
[4-7]. In this study, a volatile liquid coating was applied to the surface of a sphere and 
ablated by the laser pulse. This method produces a strong ablation SOurce without causing 
surface damage. The experimental measurements of surface waves on a methanol-coated 
type 304 stainless steel sphere are shown in Fig. 1. The out-of-plane motion (radial velocity 
component at the surface) was measured with a confocal Fabry-Perot interferometer [3,8]. 
Detailed discussions of the experimental methodology can be found in reference [8]. 

A similar study [9] reported measurements of Rayleigh waves generated on a sphere by 
a thermoelastic laser source and illustrated the general properties of this wave (e.g. the 
focusing at the poles and the wave dispersion). In the present work, the complete wave train 
of the forward-focusing group is measured (Fig. 1) and analyzed theoretically. This group 
of waves is bounded by the earliest arriving wave LI and the fIrst Rayleigh wave Rl (the 
strongest response in Fig. 1). All the other waves after Rl are not part of the forward-

Review of Progress in Quantitative Nondestructive Evaluation, Vol. 11 
Edited by D.O. Thompson and D.E. Chimenti, Plenum Press, New York, 1992 609 



100 

~ 50 'e 
::::J 

i!' 
g 

Laser Pulse 

~ 0 I-T"v-.-----Jl..--..,JI----

GI 

" = 'ä 
~ -50 

-100 

0 

L1 L2 S1 

Methanol Ablation S ource 

2 4 6 8 

Time (115) 

~S:3 

IR, 

10 12 14 

Fig. 1. Measurements of ultrasonic waves at the detecting pole of the target sphere. 

focusing group. The radius of the solid sphere was 8.73 mm. The laser source and the 
detecting laser interferometer were placed at opposite poles as is illustrated in Fig. 2. As can 
be seen from the geometry, and as is shown in Fig. 1, the earliest arrival at the detecting pole 
is the longitudinal wave directly traversing the sphere (L1). Based on the theoretical 
calculations of angular directivity given in [4], there is no shear wave expected following the 
path of L1 which is confrrmed by measurements shown in Fig. 1. All the other rays, 
bounded by L1 and Rb are due to multiple internal reflections with or without wave mode 
conversions at the surface. The waves due to internal multiple boundary reflection have been 
historicallY called "whispering gallery" waves [10]. For rays of the whispering gallery 
group that do not have wave mode conversion, that are either pure longitudinal (LI) or pure 
shear (SI) from the source pole to the detecting pole, the ray paths PI (1=1,2,3, ... ) can be 
calculated from the geometry by 

PI = laV 2[1-cos(y)] , (1) 

where a is the sphere radius and I =1,2,3, ... . Therefore the time-of-flight tl of LI (or SJ} is 

tl=PI 
C 

(2) 

where the wave speed C is either the longitudinal wave speed, CL, or the shear wave speed, 
Cs. Some identified waves (L2,S2,S3) are indicated in Fig. 1 and Fig. 2. The other waves 
are probably due to wave mode conversions and critical angle surface reflections. The arrival 
time of the Rayleigh wave at any surface point can be approximately computed by using the 
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Fig. 2. Schematic experimental configuration and some geometrical ray paths. 

half-space Rayleigh wave speed, eR, 

(3) 

Similarly to the thick plate case considered theoretically in [11], the Rayleigh wave on a 
spherical surface is strongest while the longitudinal wave is weakest. The ratio of any two 
strengths among the longitudinal, shear, and Rayleigh waves depends on Poisson's ratio. It 
is known that the spherical Rayleigh wave is dispersive due to the surface curvature [9]. As 
seen in Fig. 1, after having traveled half of the spherical surface the Rayleigh wave shows a 
strong resemblance to the analogous flat surface, half-space waveform [4] and exhibits litde 
change in waveform due to dispersion; however, after several passes around the sphere 
significant dispersive effects were observed. 

THEORETICAL ANALYSIS 

In this section, the development follows c10sely the work of Satö and Usami [12,13]. 
The technique is based on Fourier synthesis and summation of normal modes that are 
specified by the combination of indices n and i as discussed in the following. To model the 

ablation effect, a normal stress depending on both the polar angle, S, (Fig. 2) and time, t, is 
assumed at the source pole on the surface together with zero surface shear stresses 

<Yrrlr=a = cIX fJ) F(t) 

<YrEJr=a = <Yr~r=a = Q. 

(4a) 
(4b) 
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Due to the axial symmetry, the responding motions ean be spheroidal only and henee do not 
depend on the azimuthal angle, <1>. Harmonie fields are assumed to ea1culate the 
displaeement eomponents and then the Helmoltz equations are solved using the standard 
teehnique of separation of variables [14]. With Fourier synthesis, the harmonie fields were 
summed to obtain the time domain funetions. Following this outlined method, the surfaee 
radial displaeement ean be written as 

u (rt) = _1 ~ P (cos tJI D 1~ Un(r,m) f(m' ejcot dm 
r, 21r ~ n VJ n E(m) J n _ evaluated at r=a (5) 

wheref(m) is the Fourier transform of F(t), Pn(cos()) is the Legendre polynomial with 
n=O, 1 ,2,... and 

U n(r) = /l [" rr U~(kr) + (n(n+ 1)_2I-n(kr»j~(hr) -" f7i 2n(n+ l)d Un(hr)/(hr» /n(kr)] (6) 
V h (kr)2 V k d(hr) kr 

Dn = 2n+l( cP«() Pn(cosO) d(cosO) 
41r J1 (7) 

with jn denoting the nth order spherieal Bessel funetion of the first kind and h, k being the 
longitudinal and snear wave numbers respeetively. The primes in the above equations denote 
differentiations with respeet to the argument. The denominator E is 

E =/lM~jn(1J)[2n(n -1) - 1'/2 + ~/n+1(~)].[2(n2 -1) - 1'/2 + .2./n:1(T/)] _ 

~ 2 ~ jn@ 1'/2 1'/ Jn(1'/) 

4n(n+ l)/ljn@jn(1'/)[n -1 _1!n+1@].[n -1 _l!n:1 (1'/)] e ~ jn@ 1'/2 1'/ Jn(1J) (8) 

whieh has only simple poles. At these poles, E=O, which gives the normal mode frequencies 
of a traetion-free sphere. 

In the above equations, the longitudinal or shear dimensionless frequencies on the 
surface are denoted as ~ or 1'/ respectively where ~=ha and 1'/=ka. Instead of using direet 
integration to evaluate (5), eontour integration is more desirable and yields 

(9) 

where mn,i are the simple poles of E. As was shown in [13], the fundamental mode i=l and 
n>O forms the Rayleigh wave. For n=O, the sphere vibrates symmetrically with respeet to its 
center and hence these motions are denoted as the compressional modes. The modes with 
i> I and n>O give rise to all the other internal reflections including the whispering gallery 
phenomenon. Fig. 3 shows the dispersion relation for the spheroidal modes in terms of the 

normalized shear frequency (Tl). The compressional modes (n=O) are plotted as x's along the 
vertical axis. The Rayleigh modes (i=l and n>O) are plotted as "plus" signs and the 
whispering gallery modes (i> 1 and n>O) are depieted as circles. These normal mode eurves, 
except when n=O, show undulation for higher modes at small values of n. This irregularity 
is directly related to the corresponding group velocity [13]. The summations of these three 
groups of modes, first individually and then together, are demonstrated in Figs. 4 and 5. 
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Fig. 4. Theoretical synthesis of the normal müdes, with the range of values for n and i are 
shown in brackets. 
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In these figures, all modes with 11 ~ 200 were used (n ~ 200, i ~ 100) and only the 
radial surface velocity motion is plotted as this approximates the experimental measurements 
[8] . To compare the experimental and the theoretical results, both the calculated composite 
wave train and the experimental measurements are repeated in Fig. 5. Other than the 
mismatch of some wave forms (profiles) and a slight time delay in the theoretical predictions, 
the computational result agrees weH with the measured result. The slight discrepancy in 
arrival times is due to the phase velocities CL (= 5.66 mm/Ils) and Cs (= 3.12 mmllls) used 
in the ca1culation, which were taken from standard elastic values rather than direct 
measurements of the target. Since the source laser pulse width was only 10 ns, a Dirac delta 
function in time dependence was used in Eq. 4a. The spatial extent of the boundary loading 
determines the coefficients Dn as given in Eq. 7. These coefficients are proportional to a 
mode number for smaH n, reach a maximum, and eventually decrease for large n. This 
pattern produces a spatialloading function that decreases rapidly with polar angle (8). Such 
a function, with an angular width of about 5 degrees, was used to produce the ca1culated 
results shown in Figs. 4 and 5. Also, the response of the Fabry-Perot interferometer was 
approximated according to reference [15]. Both the interferometer response and the source 
angular distribution are not weH known; this uncertainty may be the cause of the difference in 
bandwidth between the experimental and theoretical results displayed in Fig. 5. 

CONCLUSION AND FUTURE RESEARCH 

The good agreement between experimental measurement and theoretical calculation 
demonstrates the utility of laser ultrasonics for materials with curved surface geometries, 
such as a sphere. Even though there are no simple nondispersive waveforms present with 
which to determine material elastic constants for the sphere, dose comparison between 
analytic calculations and experimental measurements could lead to an ace urate scheme for 
elastic constant determination. This scheme would involve comparison of many waveforms 
(such as the whispering gallery waves) simultaneously. 
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