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GUIDED ELASTIC INTERFACE WAVES FOR CERAMIC JOINT EVALUATION 

INTRODUCTION 
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Oak Ridge, TN 37831-6151 

Because of their excellent thermal and wear properties, structural 
ceramies are finding increasing use in applications that have tradition­
ally been reserved for metals. Since many ceramies remain stable at tem­
peratures well in excess of the melting points of virtually all of the 
common structural metals, one such application is in high-temperature 
engines, where the relatively low weight of ceramies provides an addition­
al advantage over such competitors as refractory metals. Unfortunately, 
with the relatively low fracture toughness and poor machinability of 
ceramics, practical designs, at least for the near future, will probably 
consist of ceramic liners attached to metal substrates, thereby combining 
the wear and thermal properties of ceramies with the strength of metals . 

This configuration introduces new problems, however, since one must 
now guarantee the integrity of the ceramic-to-metal joint as well as that 
of the component parts themselves. The presence of nonbonds can easily be 
detected by high-frequency ultrasonics, but even for joints which exhibit 
no demanstrahle degree of nonbond, it is well known that failure can still 
occur, sometimes at stresses well below the expected failure load. This 
suggests that, while the component parts are indeed bonded and local 
stress is continuous across the interface, the strength of the band is 
reduced. One would therefore like to probe the joint region, preferably 
nondestructively, in a manner such that the local strength of the band, 
not just the simple presence or absence of band, could be assessed. 
Another aspect of this problern is that the properties of either ceramic or 
substrate (or both) may vary in the region adjacent to the band, and the 
techniques described above are poorly adapted to the determination of this 
variation. An example of this behavior is afforded by oxide ceramics, 
which typically exhibit an oxygen depletion region for -1 mm from the bond 
when brazed with certain braze filler metals. The elastic properties in 
the depletion region are currently inferred by diamond indentation; this 
technique is clearly destructive. 

In considering possible nondestructive techniques to achieve the 
goals of band strength determination and assessment of the elastic proper­
ties of the materials in and adjacent to the band, it is clear that con­
ventional elastic bulk waves will be of limited usefulness. However, if 
one could propagate an elastic .wave along the bond layer, and which was 
evanescent in the materials on either side of the band, then both goals 
could possibly be achieved simultaneously . 
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In the case of a ceramic joint, we have a three-layer solid, and it 
appears that the general case has not been previously examined in nonde­
structive testing. We will therefore briefly describe the theory of 
elastic wave propagation in the braze layer of such a structure, and the 
solutions to the equations of motion will be developed numerically from 
the theory. A more detailed treatment of the problern is given 
elsewhere [1]. 

TIIEORY 

Figure 1 shows the geometry of the problem. 
assumed to have no y-dependence and to propagate 
braze layer of thickness 2h. We assume that all 
homogeneous, and isotropic solids. The equation 
in each medium is [2] 

pV 2S + (X + p)V(V•S) = pa 2S/at 2 

The interface wave is 
in the x-direction in a 
materials are linear, 
of motion to be satisfied 

(1) 

where S is the particle disp1acement, p and X the Lame e1astic constants, 
and p the density. Now S can be defined in terms of the usual potentials: 

(2) 

The displacement thus contains an irrotational and a solenoidal component, 
which give rise to compressional and shear waves, respectively. We seek 
solutions whose x-dependence is of the form exp(ikxl and which are inde­
pendent of y. The latter condition requires that ~ = (O,~y,O) = ~. We 
also assume that the solutions aretime harmonic of the form exp(-iwt). 
Thus the potantials satisfy 

(3) 

where ~2 = k 2 - k1 2 , ß2 = k 2 - kt 2 • The solutions to these equations are 
of the form 
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~m = Amexp(±~z)exp[i(kx-wt)] 

~m = Bmexp(±ßmz)exp[i(kx-wt)] 

z 

Fig. 1. Geometry for the guided elastic wave problem. 

(4) 



where the subscript m denotes the region and Am and Bm are arbitrary 
coefficients, and where the positive sign is taken in the lower half space 
and the negative in the upper. 

The displacements and stresses can be written in terms of the 
potentials, and with this simplification the solution in each region can 
be written down straightforwardly. The boundary conditions require that 
both the normal and tangential displacements and stresses must be continu­
ous at ±h. Applying these conditions at each interface, the secular equa­
tion is obtained from an 8 x 8 determinant. This determinant reduces to 
that for two solids in perfect contact when the layer thickness goes to 
zero. Hence, we anticipate that the zero-thickness solution will be a 
Stoneley wave and that no solution will exist in this limit when the 
solids are identical. 

NUMERICAL RESULTS 

As mentioned previously, we solve the secular equation numerically, 
using a general FORTRAN program to locate all roots of the secular 
determinant. In locating these roots, we note that there is a branch 
point associated with each square root which defines the wave vectors a 
and ß [see Eq. (3)]. Thus, the roots of the secular equation will lie on 
several Riemann sheets. In defining the potantials as we have in Eq. (4), 
however, the real roots (corresponding to waves evanescent in the 
surrounding solids) should lie on the sheet corresponding to all positive 
branches of the square root functions. In addition, leaky modes should 
occur on the sheet corresponding to the negative branch of the wave vector 
for the potential ~ in the medium in which the leaky wave propagates. The 
complicated nature of these roots, including the previously incorrect 
identification of the limiting cases of some of the roots, has been 
pointed out for the case of Stoneley waves by Pilant (3]. We emphasize 
that we did not search each Riemann sheet for all possible roots, although 
this could certainly be done. Hence, there may be other modes than those 
we report. 

Roots of the secular determinant for the three-layer solid were 
determined for cases of interest to the ceramic joining program. We began 
by considering the case of zirconia coupans brazed with a commercial 
silver-based alloy. The properties of the zirconia are: p = 5.66 g/cm3 , 

Cl= 7.04 km/s, and Ct = 3 . 74 km/s. Unfortunately, the material proper­
ties of the braze were not available, and the material itself was only 
about 75 pm thick. Since the major constituent is silver, however, we 
simply assumed the properties to be those of silver, viz : 
p = 10.5 g/cm3 , Cl= 3.6 km/s, and Ct = 1.59 km/s. 

We first searched for guided (undamped) waves by restricting the 
analysis to the real velocity axis. The search covered the range 
0 < Cr < 4 km/s. The braze layer half thickness and frequency range were 
chosen to yield a normalized thickness (layer half thickness divided by 
the wavelength of a shear wave in the braze) of 0 < h/A < 2. For a total 
braze layer thickness of 75 pm, the frequency at h/A = 1 would be -42 MHz. 

Figure 2 shows the dispersion curves obtained for guided waves in the 
zirconia joint . The permissible modes are thus alternating pure symmetric 
or antisymmetric waves. Considering first the results for h/A > -0.5, 
there are five possible modes. The high-frequency limit of these modes 
tends toward the phase velocity of a shear wave in the braze material. 
This is to be expected, since the high-frequency limit corresponds to 
i nfinite thickness of the braze layer; hence, the result should approach a 
bulk wave in the braze . For each mode, there is a low-frequency cutoff 
below which the mode cannot propagate. For the first three of these 
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Fig. 2 . Dispersion curves for guided waves in a zirconia-zirconia 
ceramic joint. 

modes, however, there is a small range of the normalized thickness 
(frequency) near CUtoff in which the normalized phase Velocity iS double 
valued. Thus, for the lowest symmetric mode of the five, the region of 
normalized thicknesses 0.5 < h/X < 0.6 (values approximate) yields two 
phaseveloeitles for each thickness (frequency). The difference in these 
waves is not apparent until the group veloeitles are examined. For the 
lower part of each curve, the group velocity is positive and less than the 
phase velocity (normal dispersion). For the upper part of the curve, 
however, the group velocity is negative- the wave propagates backward 
(i.e., opposite to the phase velocity). This decidedly strange behavior 
has been reported for Lamb waves [4], where backward propagating waves 
were theoretically predicted and experimentally observed. 

Below h/X = 0.5, Fig. 2 indicates that two waves are possible. 
However, as h~O, the secular determinant reduces to that for two solids in 
perfect contact, thus the waves, if any, should approach the Stoneley wave 
velocity. Since the material on either side of the braze Joint is 
zirconia in Fig. 2, the distinction of an interface is lost in the limit 
of zero braze thickness, and no wave should exist. This discrepancy is 
resolved by examining the amplitudes of the two low-frequency waves in 
Fig. 2. According to the computer program, as ~0, the symmetric and 
antisymmetric waves both approach a normalized phase velocity of 1.414 
(9{2), and the amplitude of each wave approaches zero. In the limit, both 
waves vanish, and no interface waves exist. 

The group velocities of the two low-frequency waves in Fig. 2 are 
positive and greater than the phase velocities (anomalous dispersion). 
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The simple zirconia joint thus appears to harbor an astanishing panoply of 
possible interface waves. 

Since we would expect the zero-thickness solutions of the three-layer 
problem to reduce to that of Stoneley waves, we next chose a material 
combination which is known to support such waves. We therefore chose the 
case of titanium bonded to iron by a thin braze layer. The existence of a 
Stoneley wave at a titanium-irön interface is known (5], and this material 
combination also occurs in the zirconia transition joint . We assume that 
the braze layer is silver, and the material properties of the titanium are 
p = 4.44 g/cm3 , Cl= 6.11 km/s, Ct = 3.27 km/s, while those of iron are 
p = 7.86 g/cm3 , Cl= 5.89 km/s, and Ct = 3.21 km/s. We again restriet 
the search for roots to the real velocity axis in or~er to determine if 
guided waves may exist. The range for the search was 0 < Cr < 4 as 
before, and the frequency range was chosen to provide a normalized thick­
ness range of 0 < h/A < 2. Figure 3 shows the results, which are quite 
similar to the case of zirconia bonded to zirconia. The two vanishing 
waves are again present, and the zero-thickness phase velocities of these 
waves is again the square root of 2. The curves are different from the 
zirconia joint, however, for finite layer thicknesses. 

The major difference between Figs. 2 and 3 is shown in the inset of 
the latter figure. For the titanium-silver-iron joint, there is an addi­
tional wave which exists at small values of the normalized thickness and 
whose amplitude remains finite as the layer thickness approaches zero. 
The phase velocity approaches the value 3.20865 km/s as the thickness is 
reduced, which is the Stoneley wave velocity for the titanium-iron 
structure. The wave is now dispersive, however, and survives only in the 
range 0 < h/A < -0.04. Above this value, the root leaves the Riemann 
sheet. 
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Fig. 3. Dispersion curves for guided waves in a titanium-iron joint. 
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We next examined the possibility of leaky waves in the braze layer of 
a ceramic joint. We initially chose the zirconia-silver-zirconia joint, 
although we did not expect any leaky modes for this structure. The search 
was limited to the range 0 < Cr < 4 and -0.3 < Ci < 0. As expected, no 
complex roots were found. 

The next configuration chosen was that of a titanium-silver-iron 
joint. The search was carried out in the range described above, and waves 
were found which leaked into the iron, the boundary solid with the slower 
shear velocity. The calculations have not been completed and would 
require a three-dimensional plot for proper display, but the existence of 
leaky waves in a practical attenuation range appears established. We are 
planning to repeat the calculations for various ceramic-ceramic joints. 

BONDING MODEL 

The raison d'etre for the guided wave studies was the possible estab­
lishment of a technique to assess bond strength directly for typical 
ceramic joints. A model which appears to achieve this result for two 
solids with varying degrees of bonding at the interface has been 
presented [6,7]. The results were achieved by introducing a thin visco­
elastic layer between the two solids and computing the interface wave 
velocity as a function of the limiting value of the ratio of viscosity to 
layer thickness as the thickness goes to zero. If this ratio is unbounded 
as the layer thickness goes to zero, the problern reduces to two solids in 
welded contact, and the interface wave velocity is the Stoneley wave 
velocity. If the ratio goes to zero in the limit of vanishing thickness, 
the interface wave velocity is just the appropriate Rayleigh velocity. 
For intermediate values of the ratio, corresponding to a loosely bonded 
interface, the interface wave velocity varies smoothly between the two 
limiting values. The implication is thus that the degree of bonding can 
be inferred from measurement of the interface wave velocity. In addition, 
Murty's results (7] indicate that for the loosely bonded case, the inter­
face wave is leaky; thus, the phase velocity can be determined by 
measuring the critical angle necessary to excite the wave . 

In the present case, we introduced a thin viscoelastic layer between 
the ceramic and the braze layer, thus giving two finite layers between 
semi-infinite half spaces. The secular determinant for this case is thus 
12 x 12 and has been determined. Our intention is to study the effect of 
this layer on the previously computed modes, depicted in Figs. 2 and 3, as 
a function of the bonding parameter defined by Murty, but this work has 
just begun. 

EXPERIMENT 

In order to confirm the results presented in Figs. 2 and 3, which are 
trapped modes confined to the braze layer of the ceramic joint, we 
designed the sample shown in Fig. 4. The ceramic materials are zirconia, 
and the geometry of the sample was chosen to permit surface waves to be 
generated on one of the ceramic coupons, which would then excite guided 
waves in the braze layer, and be detected by a similar surface wave trans­
ducer on the other side of the joint. Before attempting to excite guided 
waves, however, the braze layer was first interrogated with high-frequency 
compressional waves focused at the interface in order to determine whether 
gross nonbonds were present. The results are shown in Fig. 5, where the 
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dark regions are essentially completely unbonded. The sample was thus 
totally unsuitable. Destructive analysis of the joint indicated that the 
problern was due to extreme porosity in the braze layer. 

Fig. 4. Zirconia-zirconia ceramic joint for guided wave studies. 

In the available time, two additional samples of similar design were 
procured. Both were found to have similar problems of porosity and one 
couponwas severely cracked as well. These results are not typical of the 
joints which have been produced on this program, and we do not know why 
there was difficulty in fabricating a suitable specimen. We were thus 
unable to verify experimentally the results given in Figs. 2 and 3. 

SUMMARY 

The secular determinant for elastic waves propagating in the center 
layer of a general three-layer solid was obtained. A FORTRAN program was 
written to find the roots of the secular equation, and both guided and 
leaky waves were found for the case of titanium bonded to iron with a thin 
silver layer. In the case of identical solids bonded by a thin layer, no 
interf~ce waves were found in the limit of vanishing layer thickness. For 
different solids known to have a Stoneley wave at the welded interface, a 
dispersive Stoneley wave was found. A possible bonding model was examined 
by introducing a thin viscoelastic layer between one of the bounding 
solids and the center layer. The secular determinant was obtained for 
this case, but the analysis has not yet been completed. 

2025 



Fig. 5. High-frequency ultrasonic scan of the joint region in the 
sample of Fig . 4. 
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