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INTRODUCTION 

The detection of cracks with the aid of ultrasonics is 
an important nondestructive evaluation technique. The 
corresponding theoretical problem of the scattering of 
elastic waves by cracks has attracted considerable attention. 
Scattering of time harmonic plane wave by an isolated two 
dimensional Griffith, or an penny-shaped crack in an 
unbounded elastic medium has been studied extensively. 
However, studies of the scattering problem by a three 
dimensional crack other than circular shape have been rather 
limited. Few studies of scattering from an elliptical crack 
in an elastic body of infinite extent can be found in the 
literature. Datta[l] studied the problem using the method of 
matched asymptotic expansion. Gubernatis et al. [2] and 
Budiansky and O'Connell [3] have used the elastostatic 
approximation to determine the scattered field. The 
backscattered field from an elliptical crack has been 
obtained by Kino [4] in the low frequency limit by a formula 
derived from elastodynamic reciprocity theorem. An integra­
differential equation technique was employed by Roy [5]-[6] 
to study the same problem. 

In this paper, a method to obtain the low frequency 
asymptotic solution to the problem of scattering of elastic 
waves by a planar crack of arbitrary shape is described in 
the spirit of the low frequency scattering theory [7]. In 
the low frequency regime, a formal series solution in the 
power of the non-dimensionalized wavenumber is -proposed. 
Each coefficient of this series is the solution to the 
problem of a crack subject to static surface loading. Thus 
the scattering problem is reduced to a sequence of static 
equilibrium problems, which are somewhat easier to deal with. 
Furthermore, this method has the potential to be applied to 
cracks in anisotropic solids. 

The general formulation is developed in section 2. In 
section 3, an elliptical crack under normal incidence of a 
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longitudinal time harmonic plane wave is considered. The 
low-frequency expansions of the crack opening displacement 
and the dynamic stress intensity factor are obtained. 
Explicit expressions are given for the first two non-zero 
terms in these expansions. Plots of the dynamic stress 
intensity factor versus the polar angle for various incident 
frequencies are also presented. 

GENERAL FORMULATION 

Consider a planar crack in an elastic solid of infinite 
extent. Without loss of generality, we can assume that the 
crack occupies a finite region S in the plane x = o. A 
time-harmonic plane wave is incident from infin~ty. The 
equation governing the total displacement field (incident 
field plus scattered field) u. is given, omitting the time 
factor exp(-iwt), by ~ 

( 1 ) 

where e = w~ 112 , w is the angular frequency of the incident 
wave and ~ the mass density of the solid. In (1) C. "kl is 
the elastic constant tensor of the solid. The traction free 
condition on the crack faces implies 

x e s ( 2 ) 

where~= (x1 ,x2 ,x3 ). 

Using Green's formula (or the Betti-Rayleigh reciprocal 
theorem) yields (see [8], p.34) 

ui(~) =vi(~) - ff.T. 3 (x-x )~u (x )ds (3) s ~m - -o m -o o 
where 

~um = um Is+- um Is_ 

Tmij = cijklgmk'l 

( 4) 

( 5) 

in which g is the three dimensional steady state 
elastodynamfc Green's tensor and v. is the displacement field 
of the incident wave. ~ 

Now let's assume that the solution to the boundary value 
problem (1)-(2), considered as a function of e, is analytic 
in a neighborhood of e = 0, so that it can be expanded into a 
convergent power series of &: .. 

(6) 

Similarly, one can also expand the incident displacement vi 
and the traction Green's tensor Tmij to give 
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.. 
v. (x) = I: vi(n) (~)En /n! 
~ - n=o 

T i. (X) 
m J -

.. 
I: 

n=o 

(7) 

( 8) 



It follows from substituting (6) into (1) and (2) that 

C (n) = -n(n-1)u~n-2 ) 
ijkluk'lj 1 

( 9) 

X E S (10) 

The integral relations among the coefficients are obtained by 
substituting (6)-(8) into (3) 

(n) _ (n) n n! (n-m) (m) 
ui (~)-vi (~)-m~0m!(n-m)!~fTij3 (~-~o)~uj (~o)dso 

( 11) 

It is easy to show, by direct substitution, that 

P~o) (x) = o 
l -

(12a,b) 

n-1 (n) _ (n) n! (n-m) (m) 
P. (x)-v. (x}- [ r( )rffT .. 3 (x-x }~u. (x }ds 

1 - 1 - m=om. n-m . 5 lJ - -o J -o o 

n = 2, 3, ... (13} 

are the particular solutions to (9), i.e. 

(n) (n-2) 
cijklpk'lj = -n(n- 1 )ui (14) 

Thus, the solutions to the boundary value problem (1)-(2) can 
be written as 

u~n) = P~n) + 0 ~n) 
l l l 

where U~n)satisfies the following boundary value problem 
l 

, ( n) 
cijkl0k'lj = 0 

(n) (n) 
ci3kl0k'l = -ci3k1Pk'l X E S 

(15) 

(16} 

(17) 

Equations (12)-(17) build up a hierarchy of equations to 

compute u~nl. In fact once (16)-(17) have been solved for 
l 

the n'th step in terms of P~n) (assuming P~n) is known}, 
l l 

P~n+ 1 ) can be calculated from (13}. Since the initial terms 

Pta) and P~ 1 ) are both known from the incident field, one can 
l l 

then find all the coefficients u1n) by repeatedly solving 

(16)-(17). 

Clearly, the feasibility of the above iteration process 
depends on the solvability of the boundary value problem 
(16)-(17). However, it is very helpful to recognize that the 
solution to (16)-(17) is nothing but the one for a planar 
crack ~u~jected to static surface traction of magnitude -
C. 3klpk~l. To illustrate the above formulation, an example 
wfiT be given in the next section. 

As a final remark, we notice that the above formulation 
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was developed for materials that obey the general Hooke's 
law. Therefore, it is valid for to both isotropic and 
anisotropic solids. 

ELLIPTICAL CRACK 

Consider an elliptical crack S, where 

S={ ~ 1 {x1/a) 2 +(x2/b) 2 < 1, x 3=0), 0 < b <a<~ . 

The crack is contained in an infinite isotropic and linearly 
elastic solid, characterized by the Lame constants ~ and u, 
and the mass density p. The incident wave is assumed to be a 
longitudinal time harmonic plane wave whose propagation 
vector is normal to the crack faces: 

where&. is the Kronecker delta function and the 
longitua~nal wave number kL is given by 

kL = w/cL , c~ = (~+2u)/P 

(18) 

(19) 

The Green's tensor for an isotropic solid can be found in a 
variety of sources (see [9]-[10]) 

= 2 -1 2 3 i8x i«x i8x (4n£ x) {8 £ &ije -x[e /x-e /x], 1 j} 

where 

« 2 = 1/(~+2u) 

It follows from (7)-(8) that 

(n) _ 1/2 n 
vj - &j 3 (ix3/cLP ) , 

and 

+ 2(Tn+2 - 1)/(n+2)]x xn-3 &.j + m ~ 

n+2 ~3 
+ [n+2T /(n+2)][xi&mj + xj&mi]x 

n+2 -5 + [2(n-3)/(n+2))[T -1)x1xjxmx } 

where 

T = «/8 < 1 

According to (12) 

P(o) = 0 , 
j iX3«&j3 

1 ( 20) 

(21) 

(22) 

(23) 

(24) 

(25) 

By substituting (25) into 
respectively, we obtained 

q a J - ( 17 } for n = 0 and n = 1, 
u1 = o and 

( 1) 
cijkl0k• lj = 0 (26) 
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C U (1) .• 
i3kl k'l = -~~ 0 i3 x e s ( 27) 

This is the boundary value problem that corresponds to the 
solution of an elliptical crack under uniform loading over 
the crack face. Equations similar to (26)-(27) have been 
solved by Green and Sneddon [11] 

( 1) . 2 -1 2 2 1/2 AU =~~b6i 3 ((1-T )UE(u)] {1-(x1/a) -(x2/b) } , (28) 

where E(u) is the complete ell~Pff2al integral of the second 
kind with modulus u = [1-(b/a) ] . 

Using (13) and (16)-(17), we find for n 2 

P~ 1 )= 6 x 2 /Pc u~ 2 ) = o J - j3 3 L J ( 29) 

For n = 3, (13) gives 

v~ 3 )- 3ff T~ 3 )Au( 1 )ds 
J 5 Jm3 m o 

(30) 

Substituting (30) iy~y (17) yields the following boundary 
value problem for ui 

where 

( 1) 
cijkluk'lj = 0 

ci3klu~~i = -i~06 i3I(x1,x2) 

( 31) 

x e s (32) 

D = b[3(3T4 -4T2+3)][U(1-T2 )E(u)]/4n (33) 

I(x1,x2) = 'f [1-(~)2-Ct)2]1/2[(x-x1)2+(y-x2)2]-1/2dxdy 

2 2 2 =(bn /2)[s1-s2 cx1 /a) -s3 (x2/b) ] (34) 

The definitions of s. (j=1,2,3) are given in the Appendix and 
the details of the irttegration in (34) can be found in [12]. 

[13] 
The solution to (31)-(32) is given by Kassir and Sih 

bs1 

2uE(u) 

2 2 2 
32 4x1 x2 32 x1 

- --3--(1- ~- ~ )A1 + ~(1-
a b a b ab a 2 

• ( 35) 

were A. (i=0,1,2) are constants involving the material 
properiies and the geometry of the crack (see the Appendix). 

Now, by (6) and (15), the crack opening displacement can 
be approximated by the first two non-zero terms in the low 
frequency expansion 

(1) (3) 3 3 = {AUi £ + (1/6)AUi £ }6i3 + o(£ ) (36) 
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with 6U1 1 ) and 6013 ) given by (28) and (35), respectively. 

The stress intensity factors associated with u( 1 ) and 
u1 3 ) can be found in [14] i 

K( 1 ) = [iu/E(a)](b/a) 112 ca2sin2e + b 2cos2e) 114 (37) 
I 

K~ 3 ) = K~ 1 )Db([240uE(a)/ab2 ][A1 (cose/a) 2+ A2 (sine/b) 2 J 

+ 1T2S1/2} (38) 

where e is the polar coordinate defined by 

x 1 = arcose x 2 = brsine 

It follows from (36) that the dynamic stress intensity 
factor is given approximately by 

(39) 

The amplitude of KI given in (39), normalized by the value of 
corresponding stat1c stress intensity factor at e = n/2, is 
plotted in Fig. 1 for an elliptical crack of b/a = 0.7. 

0? 30~ a 6cf. 90~ 

Fig. 1 Normalized amplitude of the stress intensity factor of 
an elliptical crack (b/a=0.7) versus polar angle e for 
normal incidence of a longitudinal wave. 
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A partial check on the low frequency solutions (36} and 
(39} is possible by taking the limit when the ellipse 
degenerates into a circle, i.e., when b ->a. The limiting 
values are 

(7 = 0 

A = a 3 /20un 
0 

E(u} = TT/2 , 

A =A = a 5 /720un 1 2 

The corresponding crack opening displacement reduces to 

2 2 2 2 2 
AU = 2i~£ (a2-r2)1/2{ 1+ £a [3(T -1} + 2T )( 4 - !_}} 

3 TTU(1-T 2 } 36u(1-T 2 } a 2 

and the stress intensity factor becomes 

2i~£a112 {1 + 
TT 

2 2 
a £ 

2 12u(1-T ) 

Equations (40) and (41) are in agreement with similar 
expressions given by Robertson [15} and Mal [16], 
respectively. 

SUMMARY 

(40} 

( 41} 

The problem of elastic wave scattering by a planar crack 
has been considered in the low frequency limit. The total 
displacement field is expanded into a power series of the 
wave number. Each coefficient of the expansion is the 
solution to the same crack under prescribed static loading. 
Thus, the scattering problem is transformed into a series of 
static problems. In the case of an elliptical crack, 
solutions for static loading of polynomial distribution are 
available in the literature. Therefore, the low frequency 
solutions have been easily constructed without the need of 
solving any new equations. 

ACKNOWLEDGEMENTS 

A substantial part of the work was done while the author 
was a graduate student at Northwestern University. 
Discussions with Professor J.D. Achenbach are gratefully 
acknowledged. 

REFERENCES 

1. S.K. Datta, J. Acoust Soc. Am., £1, 1432 (1977}. 
2. J.E. Gubernatis and Domany, J. Appl. Phys., 56, 818 

(1979). 
3. B. Budiansky and R.J. O'Connell, Int. J. Solids Struct., 

g, 81 (1976}. 
4. G.S. Kino, J. Appl. Phys., 49, 3190 (1978}. 
5. A. Roy, Int. J. Engng. Sci., 22, 729 (1984}. 
6. A. Roy, Int. J. Engng. Sci., 25, 155 (1987}. 
7. G. Dassios and K. Kiriaki, Q. Appl. Math., 42, 225 

(1984}. 

67 



8. J.D. Achenbach, A.K. Gautesen and H. McMaken, Ray 
Methods for Waves in Blastic Solids, Pitman, Boston 
(1982). 

9. J.B. Gubernatis, B. Domany and J.A. Krumhansl, J. Appl. 
Phys., 48, 2804 (1977). 

10. B. Budiansky and J.R. Rice, Wave Motion, 1, 187 (1979). 
11. A.B. Green and I.N. Sneddon, Proc. Camb. Phil. Soc., 46, 

159 (1950). --
12. J. Qu, Ph.D. Dissertation, Northwestern University, 

1987. 
13. M.K. Kassir and G.C. Sih, "Three Dimensional Crack 

Problems," in Mechanics of Fracture (ed by G.C. Sih), 
Vol. 2, Noordhoff Int. Pub., Leyden (1975). 

14. R.C. Shah and A.S. Kobayashi, A.S., Eng. Fracture Mech., 
~.71 (1971). 

15. I.A. Robertson, Proc. Camb. Phil. Soc., 63, 229 (1967). 
16. A.K. Mal, Int. 3. Eng. Sci.,~. 623 (1968). 

APPENDIX 

(2/TT)K(a) 2 s 2 = (2/TTa )[K(a)-B(a)] 

A2 = [-s2(312 + 321) + (a/b)2s3(J21 + 5J3o)]a5/288u~ 

A3 = 12 [A1( 311 + 332o> + A2( 3 11 + 33o2)]a2 /(Jo1 + 31o) 

A = 2 
<3 21 + 533o )(J12 + 53o3)- (J12 + 3 21> 

= [(a2 - 1)K(a) + B(a)]a2tb2a 2 

2 ' 2 2 2 2 26 = {(8-9a )K(a) - [10-3a -(2a /b )]B(~i}a /3b a 

{-(8 + a 2 )K(a) + [5 + 2a2 + (3a2tb2 )]B(a)}/3a6 

{-2(1- 2a2 )B(a) + (2- 3a2 )(2a2tb2 )K(a)}a4 /3b4a 4 

where K(a) and B(a) are the complete elliptical integrals of 
the first and second kind, respectively. 
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