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INTRODUCTION 

This work is a first step in detecting and characterizing defects in an automatic way 
by using artificial intelligence. Transient thermal NDE by IR thermography is the method used 
for such a purpose. Data are processed by Neural Networks. 

Objectives: 1) avoiding participation of an expert operator in selecting a reference 
zone (non-defect area); 2) improvement in dealing with the problern ofuneven heating (both 
the different absorptivity and the non uniformity of the heating source); 3) taking into account 
the case of a strong 2D diffusion, as it is for CFRP where the thermal diffusivity along the 
carbon fiber texture (generally parallel to the surface ofthe object) assumes values two times 
greater than the in depth diffusivity. 

EXPERIMENTAL SET UP 

Equipment 

The experimental set up, shown in Figure 1, consists of a heating system, an 
acquisition system and a trigger box synchronizing all the devices. The heating system 
consists of two banks with 8 IR lamps each one with a total power of 32 kW. The acquisition 
system is the Thermovision™-900 imager from AGEMA Inc. (Sweden) that may record 
images or sequences of images in the IR LW band (8-14 ~m) in digital format 272 x 136 
pixels with resolution of 12 bit/pixel. The experiments on the CFRP specimen were carried out 
using a heating time of 5 s and acquiring a sequence of 80 images with a sampling time of I s. 

Specimen characteristics 

The CFRP specimen was prepared and provided by the ltalian Air Force. lt contains 
a set of 9 defects whose occurrence could be considered very likely in real cases. The 
specimen, composed of 20 plies of carbon fibers, measures 300 x 300 x 5 mrn. The defects 
are organized in row and columns as it is shown in Figure 2. They were made inserting pieces 
ofTeflon™ between two successive plies. 
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Figure 1. Experimental set up. 
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Figure 2. Scheme of CFRP specimen. 

In the first column three defects with dimensions 12 x 12, 6 x 6 and 4 x 4 mrn were 
insertedunder the first pl~ (at a depth of 0.25 mrn). Other 3 defects with the same dimensions 
were located under the 5' ply (at a depth of 1.25 mrn) and the last 3 defects under the I Oth ply 
(at a depth of 2.5 mrn). See Table I. 

It is worth noticing that the specimen presents an area with different absorptivity due 
to a writing on the surface. During the heating, such a zone absorbs a different amount of 
energy and its temperature differs from the surroundings. Since a defect could behave at the 
same way, a variation of absorptivity represents a source of false alarms. 

THERMAL TOMOGRAPHY 

Thermal tomography (1] consists in the characterization of defects inside opaque 
materials, recovering the internal structure of the body layer by layer. Thermal tomography 
algorithm works on sequences of IR images grabbed during the thermal evolution of a heated 
surface. It implies the following steps: 

- space domain analysis to locate a sound area as reference; 
- time domain analysis to compare the temperature evolution of any point or area 

with the reference one. 

Several informative parameters [2] may be defined to combine the reference 
temperature evolution with the temperature evolution of any other zone on the surface. For 
instance a widely used parameter, called "normalized contrast", is defined as: 
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Table I. Depths and dimensions of defects with reference to the scheme ofFigure 2. 

A B c 
I depth = 0.25 mm depth = 1.25 mm depth = 2.5 mm 

size = 12 x 12 mm size = 12 x 12 mm size = 12 x 12 mm 
2 depth = 0.25 mm depth = 1.25 mm depth = 2.5 mm 

size= 6x 6mm size=6 x6 mm size = 6 x 6 mm 
3 depth = 0.25 mm depth = 1.25 mm depth = 2.5 mm 

size=4x4mm size=4x4 mm size = 4 x 4 mm 

(1) 

where r is time, T,J ( r) and T"1 ( r) are the temperature evolution of the pixel ( i, j) and the 
reference area and ymax is the temperature value at the end of heating. 

A defect will produce a contrast curve with a maximum value which occurs at a time 
depending on the depth. Calibration functions, obtained trough numerical simulation or 
recovered analytically, allow to relate the time of maximum to the defect depth. 

Figure 3 shows two images selected from the experimental sequence. A few defects 
are visible in the first image taken at the beginning of heating; other defects appear in the 
second one which relates to the very beginning of the cooling stage. Generally, the operator 
scans the whole sequence trying to find a suitable reference zone and then he proceeds with the 
thermal tomography algorithm. 

In Figure 4 three tomograms are shown. They refer to different layers of material. 
Defects Aland A2 arevisible in the first one, Bland B2 in the second one and Cl and C2 in 
the third one. The fourth image is calibrated in depth units and each gray Ievel represents the 
defect depth. 

From Figure 4, it is clear that noise and artefacts due to uneven heating and 2D 
diffusion require experience to be distinguished from real defects. 

NEURAL NETWORKS 

The capability of a Neural Network (NN) to learn basing on experimental data is 
helpful in solving problems caused by uneven heating and 2D diffusion. In fact, all the 
parameters involved in the experiment (properties of sound material, defect effects, hardware 
performance, etc.) contribute to design the NN during the training phase. This allows to 
develop the heat transfer model which could be hardly achieved using analytical or even 
numerical methods. 

• 
• 

1=1s; T= 37.0-34.0"C 1=6s; T = 55.5-52.5"C 

Figure 3. IR images selected from the experimental sequence. Different defects appear at 
different times. Temperature range is reported. 
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tomogram 0-0.25 mm tomogram 0.3-1.36 mm 

tomogram 2.4-3.15 mm depth map 

Figure 4. Tomograms obtained from the raw IR sequence by using Thermal Tomography 
procedure. Different layers present defects at different depths. A defect depth map of the 
whole specimen is presented too. 

Neural Network scheme 

We developed two Neural Networks: one for the detection of defects and the other 
for the characterisation. The second NN operates only on pixels of defects detected by the first 
one. 

The input of the network is a contrast profile in time. A first attempt of training the 
network with pure temperature profiles did not give satisfying results. The reference value Tref 

necessary to compute the normalized contrast, is simply the average temperature of the whole 
sample surface. This avoids the need of an operator to select a suitable non-defect area. 

The topology of the network is the result of previous experiences, made on plastic 
materials [3] [4], and some new improvements. We used feed forward NNs where each layer 
of neurons (the basic block of a Neural Network) feeds the following one. A NN maps a 
certain set of input in a set of output, creating a transfer function that is tuned during the 
training phase. Each elementary block, or neuron, consists of a non-linear sigmoid function. 
The output of one layer is summed with suitable weights and passed through the sigmoid 
function. During the training phase the weights are adjusted in order to rninirnize the global 
square error between the NN output and the desired one. Because the error is propagated from 
the output layer back to the previous one, the method of rninirnization of the error is called 
Back Propagation. 

Figure 5 shows the scheme of the NN used in the defect detection phase. In this 
specific case the first layer, composed of 37 input neurons, is fed with a contrast profile. The 
so called hidden layer is composed of 30 neurons and the output layer consists of 20 units for 
the first NN (detection phase) and 1 unit for the second one (characterisation phase). 

Output Layer Structure 

There are several possibilities to define the output structure of a NN. To solve 
identification problems we may have one output neuron with a continuous value from 0 to 1, 
where 0 means "non-defect" and 1 means "defect"; or we may have two neurons with values 
from 0 to 1. The first neuron represents the "non-defect" dass and the second one the "defect" 
dass. The value of each neuron represents the probability of one pixel to be "defect" or "non
defect". In critical cases, as in the detection phase where a defect and asound area could have 

776 



a similar behaviour, we found that it is better to have many output dasses and distribute the 
expected output as a gaussian function. The optimal standard deviation may be chosen basing 
on the NN response during the training phase. This solution is more suitable in the presence of 
noise and when dasses of examples are partially overlapped. See Table II. 

For the detection NN we used a 20 neuron output layer and we centered the 
gaussian function on the 7'h neuron for the "non-defect" dass and on the 13th neuron for the 
"defect" dass. The optimum standard deviation to distribute statistically the outputwas found 
to be around three dasses. In the recall phase (i.e. using the trained network for the real 
experiment), the value accepted as outputwas the center of mass (weighted mean) of all the 20 
dasses. 

Training Set for the Detecting Neural Network 

From a sequence of 80 images, originally grabbed during the experiment, many 
contrast profiles were extracted. Two sets of examples corresponding to the profiles in defect 
(Figure 6a) and non-defect (Figure 6b) zones were sampled producing the training set for the 
NN. The examples were selected from different experimental sequences where the position of 
the sample in the camera field of view was changed. This to take into account the uneven 
heating distribution. Several pixels corresponding to the writing on the sample surface were 
used as weil. This to introduce examples of signals due to different absorption coefficients in 
the non-defect training set. In a such a way the NN learns to interpret absorptivity variations as 
non-defect. 

Thermal contrast 

' . 
' : . 

y 

Figure 5. Structure of the neural network used to detect defects. Each input neuron is fed 
with one value of the thermal contrast profile. Each output represents the probability of a 
certain dass. 
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Table II. Output structures for the detection NN. 

I neuron with continuou value from 0 (non-defect) to I 
(defect). 

2 neuron with continuou alue from 0 to I. Cla i given 
by the index of the neuron with Lhe maximum value. 

neuron with continuous value · from 0 to I. Each clas 
identilied by a gau ian di tribution with a given tandard 
deviation (training pha e) . Cla e timation (recall pha e) i 
given by 

the index of the neuron with the maximum value· 
- the center of ma of the out ut di tribulion. 
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Figure 6a. Training set containing 64 
contrast profilesrelative to defects Al, A2 e 
A3. 

Figure 6b. 100 contrast profilesrelative to 
non-defect areas; the whole training set is 
composed of 2774 profiles. 

Figure 7a. Output produced 
by the detecting NN. 
Output Ievel 1-20. 

Figure 7b. Image result after 
the application of a 
morphological filter (top hat 
transform). 

Output of the Detecting Neural Network 

Figure 7c. Binarization of 
the previous image after 
thresholding. 7 detected 
defects. 

Figure 7a was obtained applying the detecting NN to all the contrast proflies related 
to the whole sample surface and rearranging the results as an image. Since the network 
response is the weighted mean of all the 20 output values, Figure 7a appears as an image with 
gray Ievels potentially ranging from 1 to 20. Although defects are Iocally weil distinguishable 
from the surrounding background, some defects and non-defect areas have the same gray 
Ievel. In such a condition it is not possible to use a global threshold to split the output in two 
classes of "defect" and "non-defect". The use of a morphological filter (top hat transform) [5], 
with an opportunely sized mask, makes it possible to separate the background histogram from 
the defect one (Figure 7b ). The choice of the filter mask size is based on the maximum size of 
defect being looked for. Afterwards, the visibility and location of defects can be enhanced by a 
simple thresholding (Figure 7c). 

Input Data for the Characterising Neural Network 

After the detection phase a binary image that represents a map of defect locations is 
available. Foreach defect a region of interest is considered (see Figure 8). It is used as a mask 
to compute the contrast on the original sequence of images. Being the T"1 zone selected very 
close to the defect, effects of uneven heating become negligible. Moreover the processing time 
is reduced since the NN works only in this more or less small region. 

Figure 9 shows some examples obtained with the procedure described above. These 
contrast profiles represent the new training set for the second (characterizing) NN. 
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Concerning the output we may say that this phase is less critical than the previous 
one. Classes of examples coming from defects of different depths are weil separated. In this 
case using the NN as a statistical estimator with multiple output is no more necessary. One 
output neuron is sufficient indeed. Its Ievel isareal value within the interval [0, 3], even 
though only the figures 1,2 and 3 represent the depth dasses relative to 0.25 mm, 1.25 mm 
and 2.5 mm respectively. Non-defect points belonging to the region of interest are associated 
to the 0 value. 

Output of the Characterisin& Neural Network 

Figure I 0 shows the results of the characterising phase after rounding the real output 
value to its nearest integer. The NN characterises correctly the defects Al, A2 and A3 in dass 
I corresponding to 0.25 mm. Notice some spikes, more critical in the smailest defect, 
indicating how strong the 2D diffusion effect is for shailow defects. Defects Bland B2 are 
also weil characterized in dass 2 (at a depth of 1.25 mm). Defect B3 contains so few 
examples, due to its smail size and deeper location, that it was not possible to train the net for 
its recognition. Defect Cl is also recognized in dass 3 corresponding to a depth of 2.5 mm. 
The other two defects were not detected in the first phase. 

Mask of defects location 
provided by the detecting 
network 

Transition area 
{not considered) 

~ ~k of sound area 

Region of interest 
around the defect 

Figure 8. Characterization phase: data extraction. 
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Figure 9a. Al defect (36 profiles). Figure 9b. A2 defect (20 profiles). 
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CONCLUSION 
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Figure 10. Output of the characterization phase. 

In conclusion we may state that the NN could leam to identify and characterize 
defects in CFRP. The results are comparable to those obtained by an expert operator working 
with some Thermal NDE procedures. 

Future works will consist in optimizing the NN to reduce the number of neurons. 
This will speed up the computation. Other works, more theoretical, regard a deeper 
understanding of the NN output structure conceming its capability to be a statistical (bayesan) 
estimator. In field utilization of NN is being developed. 
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