
Situation-Oriented Software Requirements
Specification and Model Generation

1st Nimanthi L. Atukorala
Department of Computer Science

Iowa State University
Ames,USA

nimanthi@iastate.edu

2nd Carl K. Chang
Department of Computer Science

Iowa State University
Ames,USA

chang@iastate.edu

Abstract—In this paper, we present a semi-automated software
requirements specification (SRS) and model generation method-
ology in order to formally represent the requirements elicited in
human-centered fashion presented in our earlier study. The term
situation is defined as a 3-tuple < d,A,E > where d denotes
human desire, A denotes the action vector, and E denotes the
environment context vector. The probabilistic, timed situation-
transition structure was derived using the observational data
and was proposed to use as a source of new human-centered
requirements elicitation. We illustrate the proposed methodology
through some test cases with open access data sets and a
comparison between existing SRS and the proposed SRS is given.

Index Terms—Situation, Discrete-time, Markov chain.

I. INTRODUCTION

A well-defined software requirements specification (SRS)
and a model is the backbone of any successful software de-
velopment process. Over the past few decades, many research
studies have been conducted on providing more effective
SRS format and, procedures including software tools and
development environments where some are even commer-
cially available. However, the main objective behind most
of these approaches is limited to providing unambiguous
specification formats to the users. In this paper, we propose a
semi-automated software requirements specification and model
generation methodology in order to formally represent the
requirements elicited in human-centered fashion presented in
our earlier study.

In an earlier study [1], we provide a human-centered
definition for the term situation as a tuple < d,A,E >
where d represents the human desire, A represents a set
of actions and E represents the environmental context. A
probabilistic, timed transition structure between situations was
then derived using the observational data. In [2] we proposed a
methodology to elicit new software requirements by analyzing
the existing dependency patterns in the derived. In this paper,
we are extending our previous study to formally define the
elicited requirements including possible assumptions, con-
straints, alternative requirements, and fit criteria. Finally, we
propose a software model generation methodology based on
the derived SRS in order to support the software designing
and implementation phrase.

II. PROBABILISTIC TIMED SITUATION-TRANSITION
STRUCTURE (PTST STRUCTURE)

In 2009, [1] proposed a computational framework called
Situ which includes a machine learning technique to infer
human desire by considering human actions and environmental
contexts. The term situation refers to a clear computational
unit, which by this peculiar definition includes the human
desire, behavioral and environmental contexts for a predefined
time period. Traditionally, desire refers to a motivational
mental state of a human subject [1]. Although a human desire
is not visible, an earlier study, it is believed that the human
behavior is related to their desire. Therefore, the desire can
be inferred to some extent [3] through monitoring the user’s
activities and the environment where the developed system is
operating within.

Definition: A situation at time t, is a 3-tuple {d,A,E}t in
which d is the predicted human desire (mental state), A is a
set of human actions to achieve a goal which d corresponds
to, and E is a set of environmental context values with respect
to a subset of the context variables at time t.

According to the above definition of the situation, for a
particular person, if we know the desire, set of actions and
environmental context values with time, it is possible to pair
them as situation tuples and generate a sequence of situations
with time. This sequence of situations may also include con-
current situations since a person might have multiple desires
at a given time t, in which case the actions reflect multiple
desires. One important observation is that some situations
are leading to one or more future situations in the sequence
with higher probability than others. We call this property as
situation transition. Hence, it is possible to derive a situation-
transition structure from the sequence of situations.

As a result of the possibility of concurrent situations, each
node in the situation transition structure refers to a unique
subset of situations. Our earlier study [2] describes a process of
deriving situation-transition structure from observational data
and existing causal relationships to elicit new requirements of
the system.

In order to elevate this earlier study to next level, we
proposed an enhanced version of situation-transition structure
which we would like to call as Probabilistic Timed Situation-

Transition structure (PTST structure). The PTST structure is a
domain-specific directed graph where each node represents a
unique subset of situations and each directed edge represents a
most likely transition from one node to another similar to the
situation-transition given in [2]. However, each edge is now
accompanied with a probability of the transition such that the
sum of probabilities of transitions from a particular node to its
successor nodes equals to one. Moreover, an edge also contains
a time parameter that represents the average transition time1.

III. BASIC DEFINITIONS

We first formally define six basic entities that will be used
in generating formal SRS of the system-to-be.

A. End-user

We use the term “end-user” to represent any human being
who actually uses the system-to-be at the end. We assume
that there are multiple end-users who use system-to-be si-
multaneously to perform different tasks. Each end-user has
finite sets of frequent desires and actions. Moreover, end-users
may divide into different categories based on one or more
factors. These factors may range from different corporate titles
corresponds to a company to age groups of family members.
Hence, any end-user can be represented as,
End− user : u =< ID,Category,Desires,Actions >

Where,
ID – Unique identification
Category – Specific group
Desires – Finite set of desires
Actions – Finite set of actions. Each action can be uniquely
identify through the observation.

However, as mentioned in the previous study, the individual
end-users may or may not be uniquely identified during the
requirements situation-transition structure generation phrase
and so do their categories. Hence, the value of two parameters
ID and Category can be null. In addition, the desires and
actions included Desires and Actions sets may or may not
be related to the system-to-be.

Note that we only consider the end-users as the human
factors in this approach although there are other stakeholders
involved in the requirements engineering process.

B. Object

A material thing that can be seen and touched by the end-
users is referred to as an object. We assume that each object
has a finite set of properties such as dimension, location ...
etc. Objects may have a set of possible states either finite or
infinite and each state of an object is measurable. Further, an
object may change its’ state to another state with time. Based
on the cause of the change of states, all possible objects can
be divided into two types as follows:

1Transition time of a transition from node A to node B is defined as the
time interval between start of situation subset in node A to start of situation
subset in node B.

Type1: Objects that change their states due to human action
or human involvement.

Type2: Objects that change their states without any human
involvement.

Therefore, any object can be represented as,
Object : o =< P,ST, TY PE >

Where,
P – Finite set of properties
ST - Set of possible states; discrete, finite/infinite, measurable
TY PE – One of the two types of objects

C. Environmental factor:

Human behavior is sometimes affected by the environmental
factors such as location, temperature, humidity,... etc. We
assume that the value of any environmental factors related
to human behavior is measurable with time. However, the
possible values of an environmental factor can be either
discrete or continues. Hence, the environmental factors can be
divided into two types based on the possible values as follows:

Typed: Set of possible values are discrete. For example,
location.

Typec: Set of possible values are continuous. For example,
rainfall.

Therefore, the environmental factors are represented as,
Environmental factor : e =< TY PE, V AL >

Where,
TY PE – One of the two types of environmental factors
V AL – Set of possible values (If the TYPE equals Typed,
then this includes all the possible discrete values; If the
TY PE equals Typec, this includes a finite number of equal
width ranges between upper and lower bound of the possible
values. E.g. Fig. 1.)

Fig. 1. Sample possible values in Typec environmental factor

D. Data collecting components:

Data collecting components such as sensors are a subset of
objects that used to record, end-user actions, states of other
objects and the values of environmental factors in the domain
with time. The type of these components (that is Type1 or
Type2) depends on the type of recorded data. For example,
data collecting components that record end-user actions and
the states of Type1 objects belongs to Type1 whereas the data

collecting components that record states of Type2 objects and
environmental factors belong to Type2.

In addition, a single data collecting component can be used
for multi-purposes. For example, a data collection component
aimed to record the states of objects that change their states
due to human action (Type1) could also be used to record the
existence of that particular user action.

E. Domain:

In domain engineering literature, the term domain is de-
fined as an area of knowledge that scoped to maximize the
satisfaction of the requirements of its stakeholders which
includes a set of concepts and terminology understood by the
practitioners in that area and the knowledge of how to build
software systems (or parts of software systems) in that area.[4]
The proposed approach represents the domain as,
Domain : dom =< U,OBJ,ENV >

Where,
U – Finite set of End-users; Each user in U has the form
< ID,Category,Desire,Actions >
OBJ – Set of objects; Each object in OBJ has the form
< P,ST, TY PE >
ENV – Set of environmental factors; Each environmental
factor in ENV has the form < TY PE, V AL >

Note that this definition includes the assumption that only a
finite number of end-users, user desires, actions, and environ-
mental context values are possible within a domain. Multiple
end-users in the domain can use system-to-be simultaneously
to perform different tasks which imply simultaneous user
desires and actions may occur. Similarly, simultaneous change
of environmental factors is also possible.

F. Situation:

In [1] the term Situation is defined as a computational unit
that encapsulates the human mental states, related behaviors
and influenced environmental factors at a given time instant.
Therefore, we represent any situation in a specific domain dom
at a time instant t as,
Situation : S =< d,A,E >t in domain dom

Where,
d ∈

⋃
u∈Set of end−users in dom

Desires of u

A ⊆
⋃

u∈Set of end−users in dom

Actions of u

E = States of objects in OBJ in dom ∪
V alues of environmental factors in ENV in dom
at time t.

Based on this definition, recording of situations in a partic-
ular domain means the recording of parameters d, A and E.
However, as we assume in [1] that d can be inferred from the
A and E, the recording of situations is narrowed down to the
recording of A and E. According to the definitions of domain
and situation, multiple situations can occur simultaneously at
a given time instant.

IV. SITUATION-ORIENTED SOFTWARE REQUIREMENTS
SPECIFICATION

This section describes the methodology of deriving software
requirements specification based on the situations and the
properties extracted from the PTST. The proposed method
encapsulates four hierarchical specifications: domain specifica-
tion, situations specification, situation-causal specification, and
software requirements specification; where each specification
is derived using the definitions and properties given in the
lower level specifications as given in Fig. 2.

Fig. 2. Hierarchical specifications. Upper-level specifications are derived
using lower-level specifications.

A. Level 1: Domain Specification

Domain specification is the baseline of the hierarchical
specifications. As mentioned earlier, we represent any domain
as,
dom =< U,OBJ,ENV >

Where,
U – Finite set of End-users
OBJ – Set of objects
ENV – Set of environmental factors

We use simple propositional logic to formally define a
domain as a set of atomic propositions as follows:

1) Introduce individual constants for each of the following
attributes in the domain.

a) All possible end-users – U1, U2, ... (Only if the
individual users can be uniquely identified. Other-
wise, all end-users are considered as one constant)

b) All possible end-user desires – D1, D2, ...
c) All possible end-user actions – A1, A2, ...
d) Set of related objects including data collecting

components – O1, O2, ...
e) Two types of objects – TY PE 1, TY PE 2
f) Set of environmental factors – ENV 1, ENV 2, ...
g) Two types of environmental factors –

TY PE D, TY PE C
h) All possible states of objects – ST1, ST2, ...
i) All possible states of environmental factors –
ENV 1RANGE1, ENV 2LOC1, ...

2) Define set of predicates to represent the properties and
relationships of the individual constants as follows.

a) CURRENT USERα – α is the current user
b) CURRENT DESIREα – α is the current de-

sire
c) STATEαβ – α is the state of object β
d) ACTION OCCUREDα – action α occurred
e) V ALUE OFαβ – α is the value of environmental

factor β

3) Define possible atomic propositions using the individual
constants and the predicates as follows.

a) CURRENT USER(U1) – U1 is the current
user

b) CURRENT DESIRE(D1) – D1 is the current
desire

c) STATE(ST1, O1) – ST1 is the state of object
O1

d) ACTION OCCURED(A1) – action A1 oc-
curred

e) V ALUE OF (ENV 1RANGE1, ENV 1) –
ENV 1RANGE1 is the value of environmental
factor ENV 1

Domain specification provides the definition of individual
constants, predicated and the possible atomic proposition
derived from them. We use the term domain properties to
represent the set of all atomic propositions.

B. Level 2: Situation Specification

Each node in the PTST structure represents a unique
situation subset. Hence, we can define the union of situations
represented in PTST structure (SIT) as follows.

Let, NODES be the set of nodes in PTST structure and
SSi is the situation subset represented by node i in NODES.
Then,
SIT =

⋃
SSi ∀i ∈ NODES

We present the situation specification as a mapping be-
tween each situation in SIT to a set of atomic propositions
defined in domain specification. Since, a situation contains
at most one desire, but any number of related actions and
the contexts, this mapping is defined such that each situation
maps to exactly one CURRENT DESIRE but multiple
ACTION OCCURED, STATE and V ALUE OF for-
mat atomic propositions. Note that the Situation Specification
acts as a labeling function (say SL) from SIT (set of
situations in the PTST structure) to the domain properties
in domain specification (Fig. 3.).

C. Level 3: Situation-Causal Specification

Situation-causal specification formally specifies both ob-
servable causal relationships and the possible derived rela-
tionships among the situations in the PTST structure. Note
that, the PTST structure along with situation specification
can be considered as a discrete time labeled Markov chain

Fig. 3. Situation specification acts as a labeling function from set SIT to
domain properties in the domain specification

(Probabilistic deterministic system) with < S, T, L > format
where the set of nodes and edges in PTST structure represent
the set of states S and the set of transition based probability
function T respectively. A labeling function L for each state
can be defined using the situation specification as follows.

Suppose state S is corresponds to node i in PTST structure.
Let SSi be the situation subset represented by node i. Then,
L(S) =

⋃
SL(si) ∀ situations si in SSi

Hence, the causal relationships extracted from PTST
structure can be represented using the Probabilistic Real-Time
Computational Tree Logic (PCTL) [5]. First, note that the
following equivalences in the statements.

• Si |= Q or “State S satisfies property Q”
⇐⇒ Q ∈ L(S) and the PTST structure node
corresponds to state S represents situation(s) where Q is
an element of their domain properties.

• Si |= Q ∧ R or “State S satisfies two properties Q and
R” ⇐⇒ Q ∈ L(S) and R ∈ L(S) and the PTST
structure node corresponds to state S represents some
situations where either Q,R or both are elements of
their domain properties.

In other words, Q and R may satisfy in a single situation
or in different situations. In general,

Si |= Q1 ∧ Q2 ∧ ... ∧ Qn or “State S satisfies properties
Q1,Q2,. . . Qn ” ⇐⇒ Q1, Q2, . . .Qn ∈ L(S) and the
PTST structure node c corresponds to state S represents
some situations where either Q1, Q2, . . . , Qn or subsets of
Qi′s are elements of their domain properties.

1) Observable causal relationships: We consider
the causal relationships directly extracted from the
PTST structure as the observable causal relationships.
This subsection provides the definitions and the formal
representation of the five observable causal relationships
included in the situation-causal specification.

Let Q and R be two subsets of domain properties.

• Direct cause:
Q direct causes R implies that almost surely the end
of any state that satisfies Q but not R (say Si) always
coincides with the start of a state that satisfies R with at
least probability p.

Q direct causes R ⇒ P1((Si |= Q ∧ ¬R) → (Si |=
P≤1−p(X¬R))
Where,
P≤1−p(X¬R) implies PrSi{π ∈ Paths(Si) | π |=
X¬R}
π ∈ Paths(Si) such that π[0] = Si, π[1] =
nodes proceed Si

π |= X¬R implies π[1] |= ¬R or R * L(π[1])

• Leads to:
Q leads to R implies that almost surely paths start from
any state that satisfies Q but not R (say Si) is always
contains a state that satisfies R within ti time units with
at least probability p.

Q leads to R ⇒ P1((Si |= Q ∧ ¬R) → (Si |=
P≤1−p(trueU

≤ti¬R))

• Terminate:
Q terminates R implies that surely the end of any state
that satisfies Q and R (say Si) always start a state
that satisfy not R within ti time units with at least
probability p.

Q terminate R ⇒ P1((Si |= Q ∧ R) → (Si |=
P≤1−p(trueU

≤tiR))

• Sustain:
Q sustains R implies that almost surely any state that
satisfies Q and R (say Si) is always followed by a state
that satisfies R.

Q sustains R ⇒ P1((Si |= Q ∧ R) → (Si |=
P≤1−p(X¬R))

• Prevent:
Q prevents R implies that almost surely any state that
satisfies Q (say Si) is not satisfies R and start of a state
that satisfy R will not occur within ti time units with at
least probability p.

Q prevent R ⇒ P1((Si |= Q) → (Si |= ¬R) ∧ (Si |=
P≤1−p(trueU

≤tiR)))

2) Derived causal relationships: The observable causal
relationships only based on the observed situation transition
patterns in the domain within a period of time. However, it is
possible to derive new causal relationships using a combina-
tion of those observable causal relationships. We believe that

these relationships are useful in predicting the possible but
yet unobservable situation transitions. The following derived
causal relationships are inherited from Armstrong’s axioms [6]
in functional dependency in relational databases.

• Causal relationships based on transitivity:
If Q direct cause Q′ with probability p1 and Q′ direct
cause R with probability p2 then almost surely Q leads
to R with probability p1 × p2.

If Q leads to Q′ with probability p1 and Q′ leads to
R with probability p2 then almost surely Q leads to R
with probability p1 × p2.

If Q terminates Q′ within t1 time units with probability
p1 and Q′ terminates R within t2 time units with
probability p2 then almost surely Q terminates R within
t1 + t2 time units with probability p1 × p2.

• Causal relationships based on reflexivity:
For any relation among five observable causal
relationships, if a relation holds between Q and R
properties, then the same relation holds between Q and
any subsets of R.

E.g. Let Q direct causes R with probability p and let R′

be any subset of R. Then, Q direct causes R′ with at
least probability p.

Note that, the probability of the derived relation must be
greater than or equal to the original relation.

• Causal relationships based on augmentation:
For any relation among five observable causal
relationships, if a relation holds between Q and R
properties, then the same relation holds between
Q∪Kand R∪K, where K is a set of domain properties.

E.g. Let Q direct causes R with probability p then,
Q ∪K direct causes R ∪K with at most probability p.

Note that, the probability of the derived relation must be
less than or equal to the original relation.

D. Level 4: Software Requirements Specification (SRS)

Software requirements specification (SRS) contains a list
of proposed new requirements of the system-to-be along with
possible assumptions, constraints and alternative requirements
derived using the causal relationships given in the situation-
causal specification.

As the first step of defining SRS, requirements engineers
must analyze the domain specification and categorized the
domain properties into two groups as the domain proper-
ties that can and cannot be controlled by the system-to-be.
Note that the new requirements are derived by only using
the domain properties that controllable by the system-to-be.

TABLE I
SITUATION SPECIFICATION

Situation Domain Properties
Situation A d1,d2
Situation B d2, d7
Situation C d1,d3,d4, d8
Situation D d5
Situation E d4,d6,d7
Situation F d1,d3, d8

However, the remaining domain properties can be used to
identify the domain assumptions and constraints.

In order to derive the new requirements from controllable
domain properties, we define a set of requirements construc-
tion terms based on one or more causal relationships in the
situation-causal specification.

Let Q and R be two subsets of domain properties.

• Achieve:
Achieve[R] [If Q hold in the current situation; Q leads
to R then] sooner-or-later R

• Maintain:
Maintain[R] [If Q hold in the current situation; Q
sustains R then] always R

• Avoid:
Avoid[R] [If Q hold in the current situation; Q prevent
R then] always not R

• Demote/Reduce/Minimize:
Demote/Reduce/Minimize[Q] [If Q hold in the current
situation; Q terminate R then] sooner not R

V. GENERATING SOFTWARE MODEL USING
SITUATION-TRANSITION STRUCTURE

According to our definition, the proposed SRS specifies the
domain properties that can be controlled by the software-to-be.
In this section, we describe a procedure to derive the software
model using the situation-transition structure.

A. Identifying the components of the software-to-be

First, the components of the software-to-be must be identi-
fied by analyzing the domain properties in SRS. This can be
done by grouping those domain properties by assuming that
each group of domain properties can be completed, handled
or controlled by a single component in the software-to-be.

For example, suppose for a particular domain there are
eight domain properties {d1, d2, ..., d8} defined in the domain
specification and the mapping between these properties and
the possible situations defined in the situation specification is
as given in the TABLE I. Fig.4. shows the situation-transition
structure for this domain.

Fig. 4. Situation-transition structure of the domain

TABLE II
SOFTWARE-TO-BE COMPONENTS AND THE CONTROLLING DOMAIN

PROPERTIES BY EACH COMPONENT

Sub-component of the
software-to-be

Controlling Domain
Properties

SC X d1
SC Y d3, d6, d8
SC Z d5

Suppose the software-to-be can control the domain prop-
erties {d1, d3, d5, d6, d8} and it can be done using three
components as given in TABLE II.

B. Identifying the relations between components of the
software-to-be

In order to identify the relations between components of
the software-to-be, we introduce a new transition structure
that embeds the software-to-be components into the situation-
transition structure. The process of deriving the new transition
structure may be required decomposition of situations in the
original transition structure in order to replace them with the
proposed software components. Fig. 5. shows derived new
transition structure based on the original situation-transition
structure in Fig. 4. and the defined components of the software-
to-be in the previous section. Note that the resulted situation-
transition structure now contains both possible human and
software relations.

The software model can be obtained by filtering out the
software components and the relations among them from the
new transition structure. Fig. 6. shows the software model
derived using the new transition structure in Fig. 5. This model
can be modified further by deleting the redundant nodes and
replacing the relations as given in Fig. 7.

Note that the derived software model can be used to further
decompose the software components into smaller components
as well as to identify new software components. For example,

Fig. 5. Derived transition structure that includes both human and software
relations

Fig. 6. Software model derived from the new transition structure in Fig. 5.

Fig. 7. Modified software model

we can decompose the software component SC Y with do-
main properties {d3, d6, d8} into two smaller components as
SC Y 1 with {d3, d8} and SC Y 2 with {d6}.

REFERENCES

[1] C.K. Chang, J. Hsin-yi, M. Hua and K. Oyama, “Situ: A Situation-
Theoretic Approach to Context-Aware Service Evolution”, Proc. IEEE
Transactions on Services Computing, 2009, pp. 261 – 275.

[2] N.L. Atukorala, C.K. Chang and K. Oyama, “Situation-Oriented Re-
quirements Elicitation”, Proc. IEEE Computer Society International
Conference on Computers, Software & Applications (COMPSAC) 2016,
pp 233–238.

[3] J. Dong, C. K. Chang, and H. Yang, “Identifying Factors for Human
Desire Inference in Smart Home Environments”, Proc. Int. Conf. on
Smart Homes and Health Telematics, 2013, pp. 230 – 237.

[4] K. Czarnecki and U. Eisenecker, “Generative Programming: Methods,
Tools, and Applications”, Boston: Addison Wesley, 2000.

[5] C. Baier and J.P. Katoen, “Principles of Model Checking”, The MIT
Press Cambridge, Massachusetts London, England, 2008.

[6] W. Armstrong, “Dependency Structures of Data Base Relationships”,
TIFIP Congress, 1974, pp. 580-583.

