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Abstract. We study a simple model of dynamic networks, characterized by a set

preferred degree, κ. Each node with degree k attempts to maintain its κ and will add

(cut) a link with probability w(k;κ) (1 − w(k;κ)). As a starting point, we consider

a homogeneous population, where each node has the same κ, and examine several

forms of w(k;κ), inspired by Fermi-Dirac functions. Using Monte Carlo simulations,

we find the degree distribution in steady state. In contrast to the well-known Erdős-

Rényi network, our degree distribution is not a Poisson distribution; yet its behavior

can be understood by an approximate theory. Next, we introduce a second preferred

degree network and couple it to the first by establishing a controllable fraction of

inter-group links. For this model, we find both understandable and puzzling features.

Generalizing the prediction for the homogeneous population, we are able to explain the

total degree distributions well, but not the intra- or inter-group degree distributions.

When monitoring the total number of inter-group links, X , we find very surprising

behavior. X explores almost the full range between its maximum and minimum allowed

values, resulting in a flat steady-state distribution, reminiscent of a simple random walk

confined between two walls. Both simulation results and analytic approaches will be

discussed.

http://arxiv.org/abs/1307.7094v1
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1. INTRODUCTION

Networks are ubiquitous, emerging in natural structures as well as man-made artifacts.

Examples of the former range from the microsopic, e.g., neuron architectures, to the

cosmic, e.g., galactic filaments. For the latter, they include critical infrastructures, e.g.,

power or transportation grids, as well as virtual webs, such as Facebook and LinkedIn.

Understanding their characteristics and behaviors is clearly important [1, 2, 3, 4, 5].

In recent years, the statistical properties of complex networks such as their topology

[6, 7], their evolution over time [3, 8], and dynamical processes on them [9, 10] have

been widely investigated. However, most of these studies have focused on single isolated

networks. By contrast, networks in the real world are often intimately intertwined. At

the cellular level, drastically different networks, from the cytoskeleton to regulation and

signaling, form intricate patterns of interdependence. Similarly, infrastructure networks

such as airlines, ground transportation, power grids, and telecommunications are highly

interdependent. Meanwhile, the internet plays a critical role by interacting with all

of them. In the last few years, the significance of interacting networks is coming

onto center-stage, and many scientists and engineers turn their attention to various

aspects of such interactions. Examples of these studies include critical infrastructure

interdependencies [11, 12, 13, 14], and approaches such as the multilayer method for

modeling traffic flows on an underlying infrastructure [15].

Since real interacting networks are extremely complex, even building good models

for them is already challenging, not to mention developing reliable analytic approaches.

Our goal here is to introduce a model that is sufficiently simple so that analytic solutions

are within our reach. Further, in deference to realistic interacting networks, our links will

be dynamic. Specifically, our model is motivated by social networks in which the nodes

are individuals and the links represent contacts between them. As social connections are

made and broken, links are added or cut, resulting in a dynamically evolving network

structure. In the long term, the goal is to investigate not only the interactions between

such dynamic networks, but also to include the degrees of freedom associated with the

nodes, e.g., opionion, wealth, health, etc. [9, 10, 16, 17, 18, 19, 20, 21, 22]. In such

models, the network structure and the attributes of the nodes co-evolve, coupled by

nontrivial dynamic feedback.

In a series of papers, we present a model of dynamical links which we believe

reflects natural and typical human behavior, i.e., a network with preferred degrees. In

any society, individuals have their preference for associating with a certain number of

friends. We model this preference by a ‘preferred degree’ (κ) for each node. Of course,

κ depends on the ‘personality’ of the individual and varies from person to person.

Further, it may change intrinsically with time; perhaps slowly as one ages and the

need for contacts changes. κ may also adapt to varying external circumstances, such as

moving to a different neighborhood, joining a workplace or escaping a raging epidemic

or a war. Many authors have tried to model such dynamic networks by introducing a

‘rewiring’ of links [9, 10]. While this has the (technical) advantage of keeping the total
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number of links constant, in some circumstances, it might be more realistic to remove

this constraint. For example, in the 2003 SARS epidemic outbreak [23], the Singapore

government closed all schools which drastically cut down interactions among children.

Obviously, the students did not ‘rewire’ to O (100) new contacts in order to replace the

classmates lost by this decree. Instead, such a situation can be modeled by a κ which

drops by an order of magnitude (e.g., from 100 classmates to 10 family members). A

more detailed discussion of epidemic spreading on preferred degree networks is beyond

the scope of this paper but can be found in [16].

In this first paper of a series, we focus exclusively on the dynamics of links, i.e.,

the number of nodes and their degree κ remain fixed, and the nodes carry no degrees of

freedom. Since interacting networks are complex, we will begin with a ‘baseline study,’

namely, the simplest possible preferred degree network – a homogeneous population –

in which all individuals have the same κ and do not discriminate against, or in favor

of, any other individual when adding or cutting links. We will introduce rules on how

an individual node decides to add or cut a link and discuss the degree distribution

after the system has settled into a stationary state: ρss (k). Despite the appearance of

randomness (with mean degree κ), our steady-state degree distribution ρss (k) differs

significantly from the Poisson form found in the standard Erdős-Rényi random network

[24].

Then, we will introduce two such networks and couple them with arguably the

simplest of couplings: When an individual adds or cuts a link, this action is performed

on a inter-network link with fixed probability χ. Such a deceptively simple generalization

leads to remarkably rich behaviors, as we extend the characterization to distributions

of intra- and inter-network degrees. In particular, we begin with networks which differ

by only one of the three parameters, (N, κ, χ), where N is the number of nodes. We

find that the total number of crosslinks between the two networks, X , plays a key role

in characterizing the interactions, while its stationary distribution, P ss (X), displays

highly non-trivial behavior.

This paper is organized as follows: In section 2, we present the specifications

of our model, first for a homogeneous population with a single preferred degree and

then a heterogeneous one consisting of two different groups. We also introduce several

quantities that serve to characterize the interaction between the two groups, e.g.,

the distribution of crosslinks. In section 3, we present the results from Monte Carlo

simulations along with an approximate mean field theory which allows us to understand

some of the remarkable behaviors. We close with a summary and outlook in section 4,

while deferring some technical details to the Appendices.

2. SPECIFICATIONS OF THE MODELS

Since our goal is the behavior of interacting networks with preferred degrees, we begin

with a detailed description of a network with a single preference, namely a homogeneous

population. Thereafter, we will describe a simple way to induce interactions between
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such networks and study their properties. Such interacting networks can be considered

as a highly idealized model of a society with inhomogeneous populations.

2.1. Homogeneous populations

Though the notion of a preferred degree network has been introduced previously by the

present authors and their collaborators [26, 27, 16, 25] , let us recapitulate the main

ingredients here. We consider a network consisting of N (static) nodes (with no degrees

of freedom) and a dynamically evolving set of links. Each node is endowed with the

same fixed attributes: w+ (k) and w− (k), the probability that it will create and destroy

a link, respectively, given that it has k links. For simplicity, we restrict our study to the

special case w− = 1−w+ and denote w+ (k) by w (k). Starting from an empty network,

we generate links as follows. In each time step (attempt), we select a node at random

and find its degree, k. Then, with probability w(k), this node creates a new link to a

randomly chosen node, which is not already connected to it. Otherwise, this node cuts

one of its existing links at random, with probability 1 − w(k). Self-loops and multiple

connections are not allowed. To model an individual’s natural preference for some finite

number of contacts, κ, we choose a w to be close to 1 when k ≪ κ, crossing over to ∼ 0

when k ≫ κ. The simplest w with this property is the step function Θ(κ−k) (i.e., 1 for

k ≤ κ and 0 otherwise), as a good model for a very ‘rigid personality,’ adding or cutting

links as soon as the preferred degree is unmet or exceeded. We have also considered

more moderate ‘personalities,’ modeled by a Fermi-Dirac function:

w(k) =
1 + e−βκ

1 + eβ(k−κ)
(1)

where β plays the role of an individual’s ‘rigidity.’ Although there are innumerable ways

to choose the form of w(k), we restrict our analysis to the form in Eq. (1). Studying the

details of w(k) is not the primary goal here. Instead, our interest focuses on universal

statistical properties of the collective behavior of many individuals, such as the degree

distribution, which we denote by ρ (k).

2.2. Heterogeneous populations with two groups

Keeping in mind that our distant goal is the interaction between networks of possibly

distinct types, our next step in that direction is modest: the study of two networks of

the same type, namely, two preferred degree networks. Needless to say, in a typical

heterogeneous society, individuals will have a range of preferences and flexibilities.

As a first attempt, we will focus on a population with just two different preferences

(κ1 < κ2), but the same personality (rigid). In particular, we will refer to the first group

as ‘introverts,’ since these individuals prefer fewer contacts, while group 2 consists of

‘extroverts.’ We will also allow the groups to have different sizes in general, with N1 6=

N2 nodes, i.e., a total of N ≡ N1 +N2 nodes.

If there is no contact between two such groups, the above forms a complete set of

specifications. But, as soon as we wish to model their interactions, many possibilities
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Figure 1. The nodes of the two groups are denoted by open blue (1) and closed

red (2) circles. The intra-group links are shown as blue dashed and red solid lines,

while the inter-group links are dot-dashed lines (black). For this network, the

sets of k’s are: k∗1 = {2, 1, 2, 1, 2}, k×1 = {1, 0, 2, 1, 0}, k×2 = {0, 0, 1, 3, 0, 0}, and

k∗2 = {2, 2, 2, 1, 3, 2}. Thus, the non-vanishing contributions to the distributions are

ρ∗1 (1) = 2, ρ∗1 (2) = 3, ρ×1 (1) = 2, ρ×1 (2) = 1 and ρ×2 (0) = 4, ρ×2 (1) = 1, ρ×2 (3) =

1, ρ∗2 (1) = 1, ρ∗2 (2) = 4, ρ∗2 (3) = 1.

arise. In this first study, we restrict ourselves to only one mechanism, by introducing a

new parameter χ ∈ [0, 1], the probability that a node interacts with an inter-group node.

In an attempt, a random node from the entire population is chosen. Given the chosen

node’s degree, k, w(k) will determine if a link is to be added or cut. Whether adding or

cutting, the action will be executed on an inter - or an intra-group link with probability

χ or 1− χ. In other words, χ is the chance that the action (adding or cutting) is taken

on a crosslink. In general, the two groups can be assigned different values: χ1 6= χ2.

In a sense, these are associated with how strongly the networks interact, since χ1 =

χ2= 0 corresponds to a system consisting of two independent, homogeneous networks.

At the other extreme, χ1 = χ2 =1 models a system with crosslinks only. Meanwhile,

it is natural to expect the most ‘symmetric’ case, N1 = N2, κ1 = κ2, χ1 =χ2 = 1/2

to correspond to a single, homogeneous population. Yet, surprising differences emerge

when simulations are carried out.

Given that we are dealing with two networks, a variety of degree distributions can be

defined. Specifically, in addition to ρα, the distribution of the total number of contacts

associated with a node in group α (α = 1, 2 in this study), we will study four other

degree distributions, namely, the intra- and inter -group degree distributions of each

network. Let us introduce the notations in the following. Let k∗
α and k×

α be associated

with, respectively, the intra-group and inter-group degrees of a node in group α. A

specific example is provided in Figure 1, with (k∗
1, k

×
1 , k

∗
2, k

×
2 ) specified explicitly in the

caption. In this way, for each group, we will study two distributions, ρ∗α (k
∗
α) and ρ×α (k×

α ).

With this notation, it is clear that generically, ρ×1 6= ρ×2 . We should emphasize that,

though the ‘total degree’ is just the sum (kα = k∗
α+k×

α ), the distributions ρα, ρ
∗
α, and ρ×α

contain very different information. For example, in the next section we will demonstrate
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that ρ∗α and ρ×α are typically Gaussian-like, while ρ1,2 are simple two-tailed exponential

distributions.

A more global quantity of interest is X , the total number of crosslinks in the system.

It is natural to consider its distribution, which we denote by P (X). Of course, there is

no a priori reason to expect P and the ρ’s to be related in a simple way. Indeed, we

will find that they are generally quite different. Nevertheless, when the system settles

in a stationary (steady) state, their averages must obey the equalities

〈X〉 = N1

〈

k×
1

〉

= N2

〈

k×
2

〉

(2)

where 〈X〉 ≡
∑

X XP ss (X) and P ss is the steady-state distribution, etc. In this paper,

we will show that P ss (X) is a rather unusual distribution. In particular, even for

populations of O (103), we observe that X (t) wanders so slowly that its distribution

cannot be reliably measured. Instead, only by restricting ourselves to systems of O (100)

are we able to find P ss (X) with confidence. In the next section, more details and our

findings will be presented.

3. SIMULATION RESULTS AND THEORETICAL CONSIDERATIONS

With the models clearly specified, we can compute all quantities of interest, in principle,

and predict the behavior of this system. In practice, the mathematical challenges are

insurmountable and, to gain insight into the statistical properties, we perform Monte

Carlo simulations on the one hand and on the other, formulate approximation schemes

which can capture the main features.

3.1. Statistical properties of a single network

We first establish a baseline for our study, by investigating a homogeneous population.

We choose reasonably large N (1000) and κ (250), as well as three different w’s

(β = 0.1, 0.2,∞, shown in Fig. 2(a)). To facilitate comparisons between the different

cases of β, we actually use half integer κ’s, e.g., 250.5. Starting with an empty network,

we follow the stochastic rules above and generate a new configuration with each attempt

(at adding/cutting links). Defining a Monte Carlo step (MCS) as N updates, we ensure

that each node has one chance, on the average, to update its links in a MCS. We discard

the first 1K MCS, which appears to be sufficient here for the system to reach steady

state. Thereafter, we measure the quantities of interest every 100 MCS and compile

averages from 104 measurements (i.e., runs of 1M MCS). Denoting the number of nodes

with k links in each measurement by nk, we find ρ (k) through

ρ(k) =
〈nk〉

N
, (3)

as illustrated in Fig. 2(b).

For the well known Erdős-Rényi random network, ρss(k) is a Poisson distribution

with mean being the average degree. In our network, we clearly expect 〈k〉 ∼= κ, and,
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Figure 2. (a) Three different Fermi functions w(k) = (1 + e−βκ)/(1 + eβ(k−κ)), for

κ = 250: The green dash-dotted line, red dashed line and blue solid line represent

β = 0.1, 0.2 and ∞ respectively. (b) The data points represent the corresponding

degree distributions of a system with N = 1000. The solid lines are theoretical

predictions.

given that links are created and destroyed at random, we may also expect a Poisson

distribution. However, as illustrated in Fig. 2(b), our simulations show otherwise. In the

simplest case (w being a step function), ρss(k) is consistent with a two-tailed exponential

distribution, ∝ e−µ|k−κ| (blue circles in Fig. 2(b)). For less rigid populations, ρss(k)

depends on the details of w(k) for k ∼ κ, (green squares and red triangles) but crosses

over to the same exponential tails. Our data indicate µ = 1.08 ± 0.01. In the next few

paragraphs, we will present an approximate theory, shown as solid lines in the figure,

which provides excellent agreement with this data.

The full description of the stochastic dynamics of our network requires writing

down and solving the master equation for the probability of each configuration. Since

the mathematical details are quite involved, we present the main results here and leave

the technicalities to Appendix A. In particular, we find that the dynamics violates

detailed balance so that it is essentially impossible to solve for the exact stationary

probability distribution, let alone to compute a quantity like ρ (k). Thus, finding a

reliable approximation scheme is crucial for progress. One possibility is to postulate

an equation for ρ (k, t) directly and compare its predictions with simulation data.

Approximating the evolution of ρ (k, t) by a Markovian birth-death process, we write

an expression for ρ (k, t+ 1)− ρ (k, t):

W [k, k + 1] ρ (k + 1, t)−W [k + 1, k] ρ (k, t) (4)

− {W [k − 1, k] ρ (k, t)−W [k, k − 1] ρ (k − 1, t)} (5)

where W [k, k′] specifies the rate for a node with degree k′ to change to k. Since k is

non-negative, Eq. (5) is absent for the k = 0 case. Note that we have cast this expression

as the difference of two (probability) currents: Eq. (4) being the net current from k+1

to k and (5), from k to k − 1. The advantage of this form is that, in the stationary
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state, all these currents must vanish, leading to

W [k − 1, k]ρss(k) = W [k, k − 1]ρss(k − 1). (6)

Thus, once the W ’s are given, the stationary ρss(k) can be found explicitly.

Next, we approximate W by the following arguments. Focusing on a particular

node i, we note that the contributions to W [k − 1, k] come from two processes. In one

process, node i is chosen and a link is cut with probability 1 − w (ki). In the second

process, one of the other nodes, j, connected to i is chosen and cuts its link to i. To

account for this rate exactly is quite involved, since there are ki such nodes, all having

varying degrees. Further, once j is selected, the probability that it cuts its link to i

is 1/kj. Thus, we propose the following rough estimate. We expect that, in a steady

state, half of the nodes have “too many” links and, when chosen, will cut. This provides

a factor ki/2, which we approximate by κ/2. Meanwhile, we approximate the various

1/kj’s by 1/κ. The result is that the probability of this second process is simply 1/2, so

that

W [ki − 1, ki] ∼ {1− w (ki) + 1/2} /N (7)

A slightly more sophisticated scheme, along with a more carefully detailed argument,

can be found in Appendix B. Since the results are not significantly different, especially

in cases with moderate κ’s, we will continue to rely only on the simple picture here.

A similar argument leads toW [ki, ki−1] ∼ {w (ki − 1) + 1/2} /N , so that we obtain

ρss(k)

ρss(k − 1)
=

w(k − 1) + 1/2

1− w(k) + 1/2
(8)

in this approximation. For ‘rigid’ personalities, the solution is trivial,

ρss(k; β = ∞) ∝ 3−|k−κ| (9)

In other words, this crude scheme predicts µ = ln 3 ∼= 1.0986, a value remarkably close

to the one observed. For more ‘flexible’ individuals, the w’s vary gently around κ, but

cross over to 0 or 1 for k ≫ κ or k ≪ κ. Thus, the kink in ρss (k) for k ∼= κ softens,

crossing over to tails governed by the same exponential. For the two cases with finite

β we simulated, we solve Eq. (8) numerically and show the resultant as solid curves in

Fig. 2(b) [16]. Clearly, despite its crudeness, this approximation captures the essense of

the steady-state degree distribution.

3.2. Interacting networks with different characteristics

With the statistical properties of a single preferred degree network reasonably well

understood, we turn to a system with just two networks and focus on the effects of

coupling them in a particular manner (i.e., through χ > 0 described in Section II). Even

with this restriction, the varieties of having two networks are limitless. Thus, we further

restrict ourselves to studying only ‘rigid’ individuals (β = ∞), and groups which are
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Figure 3. (a) The markers without and with cross show simulation data for ρss1
and ρss2 , respectively, with N1 = N2 = N/2 = 1000, κ1 = κ2 = 250 and fixed

ǫ = χ1 −χ2 = 0.2. The solid lines represent the analytic results. (b)Simulation results

for internal and cross degree distributions for the system with χ1 = 0.5 and χ2 = 0.3

in (a). Solid diamonds and triangles represent ρ∗1 and ρ×1 , and empty diamonds and

triangles stand for ρ∗2 and ρ×2 .

identical except for N1 6= N2, κ1 ≤ κ2, and, in some cases, χ1 6= χ2. In other words, we

attempt to model the interactions between ‘rigid’ introverts and extroverts, albeit in a

very simplified fashion. To simulate the model described above, one MCS is defined as

N = N1 + N2 updates. Thus, each node is again given one chance, on the average, to

take action.

3.2.1. Equal N ’s and κ’s, but χ1 6= χ2. Following our study of the homogeneous

population, we begin with two identical groups (N1 = N2 = 1000 and κ1 = κ2 = 250)

interacting via various χα’s. Using a similar scheme – discarding the first 2K MCS

and taking 104 measurements separated by 100 MCS, we first consider the total degree

distributions in the steady state, ρssa . Not surprisingly, these are indistinguishable from

the ρss above, namely, exponential distributions. A more interesting scenario appears

when the two groups differ only by their χ’s, so that ε ≡ χ1 − χ2 6= 0. In particular,

our simulations show that the ρssα are still two-tailed exponentials, but with ε-dependent

tails. Fig. 3(a) illustrates this effect, as we see that results of various χ’s collapse into

two sets. Intuitively, such a difference can be attributed to ‘frustration’ (in the common

psychological sense). If χ1 ≫ χ2, members of the first group will make frequent attempts

to ‘reach out’ to those in the second group. Since this behavior is not reciprocated, we

may expect this difference to be manifested in ρss1,2.

Whether we label the observed difference as ‘frustration’ or not, the significant

message here is the following. Since the 1/2 in (7) accounts for the actions by all the

other nodes, we must modify it to reflect the different contributions arising from inter -

vs intra-group nodes. Thus, when considering a node in, e.g., group 1, the former

contribution is χ2 and the latter is 1 − χ1. The result of such considerations is the
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equation
ρss1 (k)

ρss1 (k − 1)
=

w(k − 1) + (1− ε) /2

1− w(k) + (1− ε) /2
(10)

and a similar one for ρss2 . These lead to

µ1 = ln
3− ε

1− ε
; µ2 = ln

3 + ε

1 + ε
(11)

showing that the exponential decay rates deviate from ln3 in opposite directions.

Remarkably, this simple generalization of the argument advanced above provides a

satisfactory explanation, as illustrated by the black lines in Fig. 3(a).

Next, we turn to the separate distributions ρ∗,× (also in the steady state, but we

suppress the superscript ss for simplicity). Here we encounter several surprises. The first

is that these distributions appear to be Gaussians, despite the total ρssα being two-tailed

exponential! To illustrate this finding, we provide four distributions ρ∗,×1,2 in Fig. 3(b),

for the case χ1 = 0.5, χ2 = 0.3. To resolve this quandary, we turn to a better quantity

for describing the connectivity associated with a node in a system with two groups,

namely, the joint distribution Φ (k∗, k×). (There should be no confusion, as we dropped

the subscript α.) Representing the probability that a node has k∗ intra-group links and

k× inter-group links, it is related to the ρ’s by projections

ρ (k) =
∑

k∗,k×

δ
(

k∗ + k× − k
)

Φ
(

k∗, k×
)

(12)

ρ∗ (k∗) =
∑

k×

Φ
(

k∗, k×
)

; ρ×
(

k×
)

=
∑

k∗

Φ
(

k∗, k×
)

. (13)

In the above case, we can describe Φ as a relatively sharp ‘ridge,’ situated along

k∗ + k× ∼= 250 and descending very steeply (exponentially) to the ‘valley floor.’ As we

move along this ridge, the variations are more gentle, but as we venture further from the

summit, Φ begins to descend as a Gaussian) . Thus, both of the simple projections show

the Gaussian profile, while the special projection reveals the exponential distribution.

Examining these Gaussians closer, we see that both ρ×’s have means around 100,

while both ρ∗’s are spread around 150. Further all are typically much broader, O (10),

than the two-tailed exponential distributions whose width is O (1). Further, it is

remarkable that the ρ× and ρ∗ data can be described, very roughly, by the binomial

distributions
(

250
k

)

(0.4)k (0.6)250−k and
(

250
k

)

(0.6)k (0.4)250−k respectively. This näıve

picture comes from partitioning κ = 250 links into 100 crosslinks (average of χ1κ1

and χ2κ2, as a rough guess) and 150 intra-group links. We should caution the reader

that, despite repeated reference to Gaussians and binomials, these distributions are of

course, not precisely so. To study their details, such as skewness and kurtosis, is beyond

the scope of this work. Instead, we will discuss a more serious challenge in the next

paragraph.

The second discovery is more intriguing, namely, the emergence of two very different

time scales. While it takes only O (103) MCS for an initially empty network to ‘relax’

into systems with 〈k〉 ∼ κ = 250, we find that O (104) MCS is sufficient for us to
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Figure 4. (a) ρss, (b) ρ⋆ and ρ× for network one and network two, with parameters

N1 = N2 = N/2 = 1000, κ1 = 100, κ2 = 250, and χ1 = χ2 = 0.5. Solid squares and

triangles represent ρ∗1 and ρ×1 . Empty squares and triangles stand for ρ∗2 and ρ×2 .

collect good data for ρssα . We will refer to this as the short time scale: τshort. During

this period, the distributions ρ×,∗ appear to settle into the Gaussians noted above.

However, when examined at much later times (e.g., O (105) or O (106) MCS), the

centers of these Gaussians appear to wander slowly (though their widths are essentially

unchanged). In other words, there is a much larger time scale, after which the system

finally relaxes into the true steady state. Denoted by τlong, it appears to be much

greater than O(100N) MCS. Such behavior is observed even for the most symmetric

case N1 = N2, κ1 = κ2, χ1 =χ2 = 1/2! We will return to this puzzle later. Here let us

turn to other parameter choices for our two interacting networks.

3.2.2. Equal N ’s and χ’s, but κ1. 6= κ2 As indicated above, one main motivation for

studying two groups is the general perception that there are introverts and extroverts

in our society. Thus, we explore a simple initial step: all parameters being equal

except the κ’s. We expect that such a system should display ‘frustration’ (again, in

the psychological sense). The ‘introverts’ are ‘frustrated’ since the ‘extroverts’ reach

out to them, generating more links than the introverts prefer; in turn, the extroverts

are also dissatisfied by seeing their links constantly cut by the introverts. However, by

exploring systems with only moderate differences, specifically, κ1 = 100 and κ2 = 250,

we detect no conspicuous signs of such frustration. Indeed, we find no new surprises

here. Illustrated in Fig. 4 are degree distributions (obtained from short runs, τshort) for

the case with N1 = N2 = 1000 and χ1 = χ2 = 0.5. In Fig. 4(a), we see the familiar two-

tailed exponential distributions for the total degree distributions – with means at the

two different κ’s and tails of µ ∼= ln 3. The remaining distributions, shown in Fig. 4(b),

are also similar to the above, i.e., being essentially Gaussians. The most prominent

feature here is that their means and widths appear quite disparate. Of course, we must

have N1

〈

k×
1

〉

= N2

〈

k×
2

〉

since both equal the average total number of crosslinks in

the systems. If we use the ad hoc scheme above – declaring the average crosslinks for
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Figure 5. (a) ρss, (b) ρ∗ and ρ× for network one and network two, with parameters

N1 = 500, N2 = 1000, κ1 = κ2 = 250, and χ1 = χ2 = 0.5. Solid squares and triangles

represent ρ∗1 and ρ×1 . Empty squares and triangles stand for ρ∗2 and ρ×2 .

each node to be (χ1κ1 + χ2κ2) /2, we arrive at 87.5. The complements are intra-group

links, i.e., 12.5 and 162.5 here. As can be seen in the figure, these values are roughly

acceptable. The binomials, depicted above, give similarly rough portraits of these ρ’s.

The main challenge, as described earlier, remains to be the understanding of the slow

wandering of these ρ’s at much longer time scales.

3.2.3. Equal κ’s and χ’s, but N1 6= N2. To complete the skeletal picture, let us report

some findings of systems with unequal group sizes. In particular, we simulated a system

with N1 = 500, N2 = 1000 (κ1 = κ2 = 250, χ1 = χ2 = 0.5), again for short periods of

time (τshort). The various degree distributions are shown in Fig. 5. Not surprisingly,

the totals have settled into two-tailed exponential distributions, though with different

µ’s. Since the χ’s are the same, the simple argument leading to Eq. (10) is modified

only by the different number of nodes in each group. Specifically, if we again focus on a

node in group 1, then the (adding/cutting) actions of the inter -group nodes would be

enhanced by a factor of N2/N1. If the χ’s were also different, then the 1/2 in Eq. (7)

would become
1

2

{

N2

N1

χ2 + (1− χ1)

}

. (14)

In case χ1 =χ2 = 0.5, this factor becomes N/4N1, so that we can use

ρssα (k)

ρssα (k − 1)
=

w(k − 1) +N/4Nα

1− w(k) +N/4Nα

(15)

to predict approximate distributions (black lines in Fig. 5(a)). Again, we find very good

agreement with the data here.

Meanwhile, for the separate distributions ρ∗,×1,2 , we again observe Gaussians, though

the N1

〈

k×
1

〉

= N2

〈

k×
2

〉

but the means are now located at four distinct values. As above,

it is possible to provide rough estimates for these results. Since N1

〈

k×
1

〉

= N2

〈

k×
2

〉

, we
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are not surprised that ρ×1 peaks at ∼ 185, a value twice that for ρ×2 , ∼ 90. Arguably, we

may regard these mean degrees as the result of an effective χ, i.e., 〈k×
α 〉 = καχ̃α, giving

us χ̃1 = 2χ̃2. If we further impose an ad hoc assumption – namely, that the average of

these χ̃’s should not change – then we arrive at χ̃1 = 2/3 and χ̃2 = 1/3. Remarkably,

such rough arguments differ only about 10% from the simulation results. While this

approach cannot be taken as a good understanding of the phenomena observed, it may

provide a stepping stone towards a more reliable theory.

3.3. Statistical properties of the total number of crosslinks, X.

Though degree distributions are standard quantities for characterizing networks, we

have seen that, in a system with just two groups, additional challenges arise when we

consider distributions of different types of links. The puzzles uncovered can be traced to,

we believe, a single characteristic of such systems, namely, X , the total number of links

between the two groups. In particular, the slow wanderings of the means in ρ×α can be

related to the slowly varying X (t), while at shorter time scales, ρ×α (k) is well described

by a random distribution of X among the Nα nodes. This subsection is devoted to a

few initial steps towards the understanding of the behavior of X .

To connect with the results from the last subsection and to emphasize the challenge

we face, we show the data associated with an apparently symmetric system: N1 = N2 =

1000, κ1 = κ2 = 250, χ1 =χ2 = 0.5. These parameters are chosen to be comparable

to those studied in the previous subsections. In Fig. 6, four runs of X (t) over 3M

MCS are not inconsistent with the traces of random walkers. Note that, in all cases,

0 1 2 3
0
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100

150

200

250

2.00 2.01

168

170

172

 

 

F

X (in 103)

t (in 106 MCS)

Figure 6. Four independent time traces X(t) for a system with N1 = N2 = N/2 =

1000, κ1 = κ2 = 250 and χ1 = χ2 = 0.5. In the inset, we show a small section (105

MCS) of the red trace, to illustrate how little X varies at this time scale. Note the

scale for X here spans just 4K, compared to the 250K in the main figure.
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Figure 7. Three time traces of X (red, green, and black), for a system with

N1 = N2 = N/2 = 100, κ1 = κ2 = 25 and χ1 = χ2 = 0.5.

X (0) = 0 (we start with empty networks) and at early times, X (τshort) ∼ 125K, a

number consistent with the simple estimate Nακαχα. Thereafter, X wanders widely.

Of course, this random walk is bounded, by 0 from below and ∼ Nακα (=250K here)

from above. The latter is an estimate, assuming that every node has all of its O (κ)

connections as crosslinks. From the figure, we see that these 4 runs have not yet reached

these boundaries. In other words, it would take τlong ≫ 3M MCS for this system to

finally settle in the true steady state. Meanwhile, as the inset shows, X is relatively

constant within any interval of τshort ∼ 10K MCS, while the fast mixing of crosslinks

between the nodes allows an individual ρ×α to relax into an approximate Gaussian.

Indeed, given X , these quasi-stationary distributions fit quite well to another binomial,

namely,
(

X

k

)

(N−1
α )

k
(1−N−1

α )
X−k

.

The next natural step is to probe deeper into the hypothesis that X (t) is indeed

an unbiased random walk, between some ‘soft walls’ Xmin and Xmax . But, to reach

steady state after say, 10M MCS, we must consider much smaller systems (along with

smaller κ’s). For example, with a system an order of magnitude smaller, Nα = 100

and κα = 25, we expect a random walk to traverse the full range of . 2500 in about

(2500)2 steps. Since a step in X will occur in just a few attempts, a good estimate of the

traversal time is (2500)2 /200 ∼ 6000 MCS. Thus, we can expect the system to settle

over runs of τlong ∼ 107 MCS. When Monte Carlo simulations are carried out (using

the most symmetric case: Nα = 100, κα = 25, χα = 0.5), these expectations are indeed

borne out. In Fig. 7, we display three short sections (each 105 MCS long), obtained

from partitioning a single long run (107 MCS). Note that X (t) indeed traverses the full

range in each case.

With confidence that the system has reached steady state, we compile a histogram,
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Figure 8. This figure shows the histogram of X for two networks with N1 = N2 =

N/2 = 100, κ1 = κ2 = 25 and χ1 = χ2 = 0.5 (olive squares), as well as the histogram

of X for a randomly labeled single network (red circles) with N = 200 and κ = 25.

P ss (X), from this trace and show the result (olive squares) in Fig. 8. Note that this

distribution is relatively flat, around the mean of approximately 1250 (i.e., Nακαχα) with

soft cutoffs at both ends. Such a wide and fairly flat ‘plateau’ in P ss (X) is consistent

with the idea that X (t) executes a simple random walk between two soft walls, located

approximately at Xmin ∼ 600 and Xmax ∼ 1900.

In the next paper, we will provide other measures which strengthen our hypothesis.

Here, let us end with addressing a natural question: Is there any difference between

our ‘most symmetric’ case (Nα = 100, κα = 25, χα = 0.5) and a single homogeneous

network of 200 nodes with κ = 25? In particular, what can be expected if we arbitrarily

label half of the latter nodes as ‘red’ and the rest ‘blue,’ and compile a histogram

for the total number of red-blue links in the system? Simulations show a remarkably

different picture. Illustrated with solid red circles in Fig. 8 this distribution is much

sharper than P ss (X) and well described by a Gaussian, with mean close to 1275 and

standard deviation σ ∼ 25. The value of the mean is not surprising, especially if we

recall that, in our simulations, the effective κ is 25.5. As for σ, it is precisely the value

of the most näıve expectation, from applying the central limit theorem to adding 100

random variables distributed according to
(

25
k

)/

225. It is remarkable how two models

which appear to be so similar exhibit such drastically different behavior. In particular,

by modeling interactions between two identical groups with a single parameter, χ, we

encounter counter-intuitive phenomena.
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4. SUMMARY AND OUTLOOK

In this paper, we introduced the idea of a stochastically evolving network with preferred

degrees. The key feature of our models is that each node can add or cut one of its links,

depending on whether it finds itself with too few or too many (compared to some built-

in ‘preferred’ number of) contacts. To establish a baseline, we focus first on a single

homogeneous isolated network, in which every node ‘prefers’ degree κ. Specifically,

when chosen, a node (with degree k) will create or destroy a link with probability

w±(k; κ). For simplicity, we only studied models with w− = 1 − w+, while modeling

how ‘intolerant’ an individual is, when it finds k 6= κ, by the expression (1). We

showed that even in such simple models, the dynamics violates detailed balance, so

that the long-time limit is a non-equilibrium steady state. With generally unknown

probability distributions and non-trivial probability currents, an exact and analytic

approach is all but impossible. Instead, we explore the statistical properties by Monte

Carlo simulations and a variety of mean-field approaches. Simulating mainly the most

rigid (β = ∞) population, we discovered that an initially empty network of 1000 nodes

(with κ = 250) settles into a steady state quite quickly (∼ 104 MCS). The degree

distribution is a double exponential, around κ: ρss(k) ∝ e−µ|k−κ|. A simple mean-field

argument, in the context of an approximate master equation, leads to µ = ln 3, which

agrees well with data. For more flexible populations, ρss(k) is Gaussian-like around κ

and, for large |k − κ|, crosses over to the exponentials above. Our mean-field theory can

be generalized appropriately and provides similarly good agreement with the simulation

results. Of course, the system will not display this type of behavior for extreme values

of N , κ and β (e.g., near zero) and we believe the theory will break down in those

limits. Nevertheless, for generic points in parameter space, we are confident that the

main features of this adaptive network are not difficult to understand, both intuitively

and quantitatively.

We then introduced a second preferred degree network and coupled it to the

first, through χ, the probability that a node adds or cuts a crosslink (between the

networks). With two networks, the parameter space is already so large that a completely

systematic study is beyond our scope. We focused on three cases where the two

networks differ by only one of the three parameters (N, κ, χ). Seemingly a simple

extension of the homogeneous case, this model provides a rather wide range of interesting

results, from the mundane and comprehensible to the surprising and puzzling. The

total degree distribution of each network is not seriously affected by the interaction

and can be reasonably well explained by extending the approximation scheme for the

single network case. By contrast, serious challenges emerge when we consider the

more detailed distributions: ρ∗ and ρ×, associated with intra- and inter-group degrees,

k∗ and k×, respectively. Though both total ρ’s remain two-tailed exponentials, all

these new distributions are roughly Gaussians, with means and widths that are yet

to be clearly understood. More importantly, we studied a global quantity which is

suitable for characterizing the inter-network interactions, namely, the total number of
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crosslinks in the system, X . Remarkably, it displays a very slow dynamics, as well

as extensive fluctuations. For example, even after 106 MCS, all of our runs for X (in

the ‘most symmetric’ case of Nα = 1000, κα = 250, χα = 0.5) exhibit what appears

to be an unbounded, unbiased random walk! By lowering the system parameters to

Nα = 100, κα = 25 and running up to 107 MCS, we finally observed a stationary

distribution for X . Being almost flat and broad, this P ss (X) is also not well understood

yet.

These initial findings provide us with first steps in this study of interacting networks.

The next steps will be presented in the next three papers of this series. Let us provide

a preview of the rest of the series. In a second paper, we will present a more systematic

study of the statistical properties of X as a function of the parameters of the two

preferred degree networks: (Nα, κα, χα), α = 1, 2. Since the underlying dynamics does

not obey detailed balance, an explicit expression for the the microscopic stationary

distribution through equilibrium statistical mechanics is not possible. As a result, we

rely mostly on Monte Carlo simulations. A certain level of theoretical understanding

can be obtained from various approximation schemes for a master equation governing

the evolution of P (X, t). In the third paper, we will consider an extreme limit: κ1 = 0

and κ2 → ∞. We coin the name ‘XIE’ model for this case of ex
¯
treme i

¯
ntroverts and

e
¯
xtroverts, in which every introvert prefers zero contacts (and only cuts links) and

every extrovert prefers as many friends as possible (and always adds links). This limit

is interesting for several reasons. The only relevant parameters left are N1 and N2.

Meanwhile, detailed balance is restored in this limit and so, an explicit microscopic

stationary distribution of the system can be obtained. Nevertheless, P ss (X) cannot be

computed analytically, though a mean field approach seems to be quite adequate for

predicting its key features. Most surprisingly, there is an extraordinary transition in the

system (χ1 = χ2), as the ratio N1/N2 is varied through unity [25]. Further, using a self-

consistent mean field approximation, we are able to predict (with no fit parameters!)

ρssα (k), except for the case N1 = N2. In the last paper, we will present results for

models involving several other forms of interaction. Perhaps more realistic, these will

include letting an individual have two κ’s, to differentiate actions taken with inter- and

intra-network contacts. Clearly, our primary focus for this series rests on the statistical

properties of systems in steady states. The full time-dependent behavior of dynamic

networks, clearly much richer and more complex, will be considered in the future.

We conclude with a few comments on how to extend our model to more realistic

cases. First, there is typically a full spectrum of ‘preferences’ in every society, and so

one should really consider a set, {κi}. Second, in our model here, every individual can

connect with every other one, which clearly fails to capture the more complex structures

of a real society, from simple spatial proximities to social status and subtle ethnic divides,

etc. Third, we should explore more realistic models of real phenomena, where nodes

(individuals) are endowed with dynamic degrees of freedom, e.g., opinions, wealth, or

health. These degrees of freedom in turn determine the connections (links) between

individuals in a society, leading to a fully co-evolving model of node and link dynamics.
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Beyond social networks, a worthy goal would be the understanding of the

interactions between dramatically different networks, such as those listed in the

Introduction. Clearly, achieving such a goal would have significant and long-term impact

on both network science and the welfare of our species.
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Appendix A. Stochastic dynamics of a single network: Exact master

equation and violation of detailed balance

A single network can be described by an N ×N adjacency matrix A (symmetric in our

case, as the links are undirected), where the elements Aij = 0 (1) indicate the absence

(presence) of the link between nodes i and j. Since self-loops are not allowed, Aii = 0

for all i ∈ [1, N ]. A complete analytical description of the stochastic evolution of our

model is provided by P(A, t |A0, 0), which is the probability of finding configuration A

at time t, given an initial configuration A0. Since our focus is on a dynamics without

memory, i.e., a Markov process, we can write down the discrete master equation for P

as follows. The change over one attempt, P(A, t + 1)−P(A, t) is

∑

{A′}

[R(A,A′)P(A′, t)− R(A′,A)P(A, t)] (A.1)

where R(A,A′) is the rate for configuration A
′ to change to A. Note that, since each

A has L ≡ N (N − 1) /2 elements, the configuration space in which P(A, t) evolves

consists of the 2L vertices of a unit cube in L-dimensional space. In this setting, each

attempt is seen to be just a step from one vertex to another along an edge of this cube.

Explicitly, R consists of a sum over terms, each corresponding to an attempt at

changing the state of a link. We begin with the probability to choose a particular node,

i: 1/N . Next, we need its degree, ki, which is obtained by summing up all elements

along, say, the row i : ki =
∑

j Aij . From here, we attempt to add a link with probability

w (ki), or cut with probability 1−w (ki). Consider first a cutting action, which can occur

for one of the ki existing links, so that the total probability for, say, Aij to change from

1 to 0 (by node i) is [1− w (ki)] /[Nki]. Meanwhile, none of the other links changes in

this attempt. Thus, the term describing this action is

∆
1− w (ki)

Nki

(

1−A′
ij

)

Aij (A.2)

where

∆ ≡ Πkℓ 6=ijδ (A
′
kℓ, Akℓ) (A.3)
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A similar term can be written to describe the adding action. All together, we have

R(A,A′) =
∑

i

∆

N

∑

j 6=i

[

1− w (ki)

ki

(

1− A′
ij

)

Aij +
w (ki)

N − 1− ki
A′

ij (1−Aij)

]

. (A.4)

Once the rates are known explicitly, we can check if they satisfy detailed balance

or not. The Kolmogorov criterion [28] states that a set of R’s satisfies detailed balance

if and only if the product of R’s around any closed loop in configuation space is equal

to that around the reversed loop. In our case, all loops can be regarded as sums over

“elementary closed loops,” i.e., ones which goes around a plaquette (or face) on our

L-cube. Thus, we only need to focus on such elementary loops. Clearly, such a loop

involves two links, e.g., by adding two links from a given A, followed by cutting them

to return to the original A. As a specific example, suppose we start with an A which

has neither an ij link nor an im one. Then the sequence
(

Aij

Aim

)

=

(

0

0

)

→

(

1

0

)

→

(

1

1

)

→

(

0

1

)

→

(

0

0

)

(A.5)

denotes adding these two and cutting them, while the rest of A is left unchanged. Apart

from an overall factor of N−4, the product of the R’s associated with this loop is
(

w(ki)

N − 1− ki
+

w(kj)

N − 1− kj

)(

w(ki + 1)

N − 1− (ki + 1)
+

w(km)

N − 1− km

)

×

(

1− w(ki + 2)

ki + 2
+

1− w(kj + 1)

kj + 1

)(

1− w(ki + 1)

ki + 1
+

1− w(km + 1)

km + 1

) (A.6)

Now, the reversed loop can be denoted as
(

Aij

Aim

)

=

(

0

0

)

→

(

0

1

)

→

(

1

1

)

→

(

1

0

)

→

(

0

0

)

(A.7)

associated with the product
(

w(ki)

N − 1− ki
+

w(km)

N − 1− km

)(

w(ki + 1)

N − 1− (ki + 1)
+

w(kj)

N − 1− kj

)

×

(

1− w(ki + 2)

ki + 2
+

1− w(km + 1)

km + 1

)(

1− w(ki + 1)

ki + 1
+

1− w(kj + 1)

kj + 1

) (A.8)

Of course, we can find the difference explicitly and verify that it does not vanish

in general. To appreciate this fact more easily, note that, e.g., the factor w(ki)w(km)

appears in (A.6) but not in (A.8). From these considerations, we conclude that detailed

balance is violated here.

We should re-emphasize the following. In our case, the products of R’s around many

elementary loops are the same as those of the reversed loops (e.g., two links involving 4

different vertices). However, detailed balance is satisfied only if all loops are ‘reversible.’

So, showing just one ‘failed loop’ is sufficient for us to conclude that detailed balance is

violated, the consequences of which are quite serious (see, e.g., [29] for further details.).
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Appendix B. Approximation schemes for the transition rates, W

We provide the simple arguments used for the transitions rates appearing in Eqns. (6).

These lead to slightly more sophisticated versions of the expressions (7,8,10,15) in the

main text.

First, we consider the single network case and argue as follows to obtain a simple

expression for W [k − 1, k], the probability that a node with degree k will lose one of its

links. We focus on a particular node (l) with degree kl. In each attempt, the probability

for the node itself to be chosen is just 1/N and then for it to cut a link is 1−w(kl). In

addition, node l can lose a link if one of the other kl nodes connected to it (say node

m) chooses to cut a link, and to cut the link to node l (i.e., the ml link here). Now, the

probability is kl/N for one of these nodes to be chosen. Assuming all nodes are equally

likely to have too many or too few links, we approximate the probability for cutting to

be 1/2. Finally, if m were chosen, then the probability it cuts the ml link is 1/km, which

we replace by 1/κ, by invoking a mean-field approximation. Combining these factors,

the chance that node l will lose a link due to the action of others is (kl/N) (1/2κ). Thus,

we have

W [kl − 1, kl] ∼=
1

N

{

1− w(kl) +
kl
2κ

}

. (B.1)

A further approximation assumes kl ∼= κ and we arrive at (7). Clearly, a similar

argument leads to the probability for adding links, W [kl, kl − 1], yielding a slightly

different version of (8). In the specific cases we studied, these two versions are so similar

that both predictions are consistent with the simulation data. If κ were O (1), then we

can expect more discernable differences. Investigations along such lines remain to be

undertaken.

Turning to systems with two populations, let us first consider those with equal N ’s

and κ’s but χ1 6= χ2. Let us focus on a node l in group 1, so that the probability for it

to be chosen is 1/N and for it to cut is again 1 − w(kl). The new aspect here is that

there are two groups of nodes which may be connected to l, corresponding to a total

of k∗
l + k×

l links. Each of these has some probability that it will cut its link to l. The

chance of choosing from the k∗
l (intra-group) nodes is k∗

l /N . As before, we assume that

1/2 is the probability such a node (m) will cut. Now, the novel feature is that with

probability (1− χ1) it will cut an intra-group link while ∼ 1/ 〈k∗
m〉 is the chance it will

cut the ml link. If we make the further approximation k∗
l
∼= 〈k∗

l 〉 = 〈k∗
m〉 (since both are

in group 1), then these considerations lead to (1− χ1) /2N . A similar argument for the

actions of a node in group 2 leads to χ2/2N , so that we have

W [kl − 1, kl] ∼=
1

N

{

1− w(kl) +
(1− χ1) + χ2

2

}

. (B.2)

Combining a similar argument for W [kl, kl − 1], we arrive at (10). A pattern for such

considerations begins to emerge, so that expressions such as (14) and (10) can be easily

derived.
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However, we should point out that it is much more unreliable to develop arguments

like these for the case of κ1 6= κ2, which is the reason for using ad hoc schemes such as

“average of χ1κ1 and χ2κ2.”
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