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MULTI-BAND ELECTRICAL CONDUCTION* 
~ • ' ,1 • 

by 

J ohn Browning Gibson and Joseph M. Keller, 

ABSTRACT 

.Scattering amplitudes arising from lattice vibrations are calculated 
for electrons in a transition metal, with special reference to nickel. The 
potential in the . crystal i s ·treated as a deformable potential, with correc­
tions to adjust the zero of potential and to include effects of the redis­
tribution of charge during lattice .vibration • 

. The distinction between normal and Umklapp processes is not a sharp 
one when a deformable potential is assumed. Rather, the scattering gradually 
takes on more of an Umklapp character as the wave length of the phonon decreases. 

The 4s electrons are treated in the weak binding and 3p electrons in 
the strong binding approximation. For s-s scattering, the Umklapp amplitude 
is larger than normal amplitude by roughly the ratio (kinetic energy at the 
bottom of the band) / (Fermi energy), or · about 8; This makes back-scattering 
unreasonably likely, and indicates that the method is probably not accurate 
for large angle scattering. Sca ttering amplitudes for s-d scattering are 
of the same order as for s-s scattering in the forward direction. The 
dependence of s-d amplitude on the various angles is explored. 

*This report is based on a Ph.D. thesis by John Browning Gibson submi ttec;i 
August, 1955, to Iowa State College, Ames, Iowa. This work was done under 
contract with the Atomic Energy Commission. 
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I. INTRODUCTION 

The electr:L.:al co:rtluctivit.J or' J'iono,nlent me-G.:::tls i s fa irly 1vell unu"' r ­
s tood. The more cornmon raultivalent metals are nore complic~teJ, and l ess 
t heoretic:al work has been 1on'.3 on them. The ob,ject of thi:o investig:~ tion 
is to study tho electrical cor1ductivi ty of metals for a simple case of a 
rc"l.A.ltivalent metal such as nickel whose conduction electrons are of two t ;ypes. 
One t ype may be characteri :~eJ as behaving under external forces as i f it had 
an effective mass several time s greater than the free electron mass, the 
other type having a mass nearly eLiual to the free electron mass. When an 
external electric field is applied, the 4s electrons, which have the smaller 
mass, are accelerated proportionally more +.han the 3d electrons, whi ch have 
the larger mass. Thus , the 4s electrons contribute mos t of the electric 
current. 

The external electric fielJ ac celerates an electron untll the electron 
suffers a collision. Collisions can be between electrons or can be caused 
by any lack of periodicity in the metal. Examples of the latter are 
impurities, defects, gr ain boundaries, and thermal vibrations of the ionic 
cores . At ordinary temperatures, thermal vibrations provide the most 
important process limiting conduction. This will be the process considered 
in this investigation. 

The probability of a collision involves two factors: one, the pro­
bability of making a transition to a given f inal state, and two, the density 
of the final states. The 4s electrons, which carry most of the current, 
can scatter into either 4s states or 3d states. These are the only states 
that are possible from energy requirements. The density of 3d states is 
much larger than that of 4s states so 4s to 3d scattering is the dominant 
one in limiting transport phenomena in metals of the type of nickel, 
provided that the transition probability jnto a 3d state is comparable 
with that into a 4s state. 

In the presentation of this work, f irst a survey of metallic conduction 
i s given showing the relation of the probability of scattering with the 
conduction process. Then, the probability for 4s to 4s scattering is dis­
cussed. The probability for 4s to 3d scattering is then calculated and 
the probability of the two types of scattering compared with each other and 
with other workers' results. 
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II. LITERATURE SURVEY 

Houstonl and Bloch2 have investigated, on the basis of quantum 
mechanics, the way in which electrons interact with a crystal lattice when 
an external electric field is applied. Brillouin,3 and Sol'llBerfeld and 
Bethe,4 assumed with Bloch that as ionic cores vib:tate, the electric 
potential deforms with the crystal without changing· magnitude. This type 
of potential is called Jefor~able. Nordheim5 objected t o this assumption 
because he believed that the most important contribution to the Potential 
is near the ionic core. He assumed that the potential consisted of the 
sum of ionic potentials located at displaced ion sites . Bardeen6 performed 
a self-consisten t calculation takinG into account ionic potentials located 
at ion sites and tho potential change due to redistribution of conduction 
electrons when ions are displaced fr om their equilibrium positions . 
Bardeen's method is better .j ustified than e ither tho deformable potential 
or the rigid core potential of Nordheim, but it i s only suitable for 
monovalent metals with nearly free electrons . nf the two methods, the 
deformable potential predicts s - s scatteringmore nearly like that 
calculated by Bardeen than does t he rigid core potential. Thus the 
deformable potential will be used in this work. 

Mott7 was the firs t to suggest that the r educed conductivity of 
transition metals could be attributed to s electronsbeing able to scatter 
into d states as well as s states. He estimated that the probability of 
s - s scattering between definite initial and final states would be about 
the same as t hat of s - d scattering. 

lw. _V. Houston, z. Physik 48, 449 (1928)~ Phys. Rev. 34, 279 (1929). 

2F. Bloch, z. Physik 52, 555 (1928); 59, 208 (1930). 

3t. Brillouin, Quantenstatistik (Julius Sprin.ger, Berlin, 1931). 

-4A. Sommerfeld and H. A. Be the, Handbuch der Physik, Vol. 24, 
Part 2 .(Julius Springer, Berlin , 1933) p. 499. 

St. Nordheim, Ann. Physik 2, 607 (1931). 

6J. Bardeen, Phys. Rev. 52, 688 (1937). 

7N. F. Mott, Proc. Phys. Soc. (London) 47, 571 (1935); Proc. Roy. 
Soc. (London) Al53, 699 (1936). 
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WilsonS used the estimate of Mott for s - d scattering to calculate the 
conductivity of transition metals. 

The importance of electron - electron scattering was recognized by 
Baber.9 He found that the r esistivity of transition metals should have a 
small T2 dependent term added to the usual formula, as is observed in 
platinum. Electron- electron collisions will not affect resistivity in 
metals where all conduction electrons have the same effective mass, as in 
this caso the current carried by two electrGms is proportional to the crys­
tal momentum, and thus is unchanged by -the collision. 

The iJea that conduction electrons can redistribute to equalize the 
Fermi energy anJ thus produce an additional potential was developed by 
Landauer,lO Dexter,ll and Hunter ~nd Nabarro•l2 

. Bhatial3 and Ziman14 discussed the effect of Umklapp scattering · 
processes on the temper~ture dependence of resistance of monovalent metals. 

III. SURVEY OF METALLIC CONDUCTION 

The fundamental property of crystalline structures is their trans­
lational symmetr,y. Thus in a one-electron approximation, each electr on 
would find itself in a~riodic potential. Aecording to Bloch,2-wave 
functions for an electron in a periodic potential can be put in the form 

(3.1) 

where U(r, k) has the periodicity of the cr,ystal in the variable r, the 
electron coordinate, and i~ normalized _in a cell containing one atom. N 
is the number of atoms in the crystal. In this work, one atom per unit 

BA. H. Wilson, Proc. Roy. Soc. (London) Al67, 580 (1938). 

9w. G. Baber, 'Proc. Roy. Soc. (London) A158, 383 (1937) • 
. . -

lOR. Landauer, Phys. Rev. 82, 520 (1951). 

llD. L. Dexter, Phys. Rev. 86, 770 (1952). 

12s. C. Hunter and F. R. Nabarro, Proc. Roy. Soc. (London) A220, 542 
(1953) •. 

13A.. B. Bhatia, Proc. Phys. Soc. (London) A65_, 188 (1952). · 

14J. M. Zi man, Proc. Roy. Soc. (London) A226, 436 (1954). 
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...,. 
cell will be assumed. The vector k is called the propagation vector, and 
iik the crystal momentum; 11 is Planck 1 s canst> nt divided by 2ff. The energy 
of the state will be a function of¥. 

It is well knownl5 that the mean velocity of an electron in a Bloch 
state is given by 

vi= (fi/im)/JP*(cp/~xi)d'l"= ~E(~)[o11ki (3.2) 

If an electrostatic force is applied, Houstonl6 has shown that as a wave 
packet progresses, the time derivative of the crystal momentum is equal to 
that force, that is 

d(flk:)/dt = 7, (3.3) 

where F is the external force. It is a basic law of all mechanics that the 
time rate of change of momentum is equal to the force; for electrons subject 
to periodic potentials, as well as external forces, the time rate of change 
of crystal momentum is equal to the external force. An effective mass can 
be defined in a manner analogous with Newton's law. For 

(3.4) 

so if one defines the effective mass by 

(1/m)ij = dvi/d(~j) = d2E(k)/d(~i)d(~j), (3.5) 

(by equation (3.2)), then the equation of motion will appear in its familiar 
form 

(3.6) 

however, 1/m is a symmetric tensor. Equation (3.6) follows from Houston's 
theorem, equation (3.3). 

Sommerfeld and Bethe4 gi~e an extended formulation of the electrical 
conduction calculation, so only a brief resume of their discussion will be 
given. If fO!~, t) is the probability, at timet, that the state of band 
;e with propagation vector¥, be occupied, then for a steady state 

( 0 f/o t)field + ( ~ f/ 'b t)collisions = 0. (3.7) 

15F. Seitz, The Modern Theory of Solids (McGraw-Hill Book Compan~ Inc., 
New York, 1940) p:-316. 

16w. V. Houston, Phys. Rev. 57, 184 (1940). 
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In a uniform elect ric fie l d in t he x dire ction , Ex, one has 

(3 . 8) 

The first equality i s ag&in nous t on 1 s theorem ; the second i s obta ine d by the 
approxima tion of r§,pla cing f by f 0 , t he equilibrium value, which depends on 
kx only through E( k) . The char ge of an electron is - e . Thus the equation 
fo r f, the Boltzrnann equation , i s as follows: 

-e Ex v x (dfo/dE) = (of/ot)collisions. (3.9) 

The electric current i s the sum of the curren t s of every state, 

(3 .10) 

t he f actor 2 accoun t s f or t he two s p i n ori enta tion s , and t he f actor (?z, 1/)3 
ari se s f ro m the density of s t a t es i n k- spa ce • 

. a/ .. } n oruer to calcula te ( d f/ ~ t)collis ions ' one must first calcuJ.ate 
vr (k _,f, k' .,e.. 1 ), the pr obabili ty per unit time t ha t an e l ectron in s tate 

"Rf makes a transition t o a s tate l(r ~'. For sufficiently long times t his 
is equal to 

(3.11) 

where i indexes the ini t i al state , and f the final state . VP. is the per­
turbi ne potential caus ing the trans itior:. . The expr ession o(Ei - Ef) is 
de lt::1 function of the di fference of t he i n i t i al and f i nal e nergi es . 

Once Wl"k..R, k 1 .)1 ) i s known, ( 2l f/ b t)c9,1li s ions may be de t e-rmi ned 
in Uw following manner . The product of f (1C.f J , the probabilit~ t ha t 
sta te k..P be occup i ed, times ):'v(iL{', 1!1 ..(' 1 ), times [1 - fCk' ~ ')], the 
probJ.l;ility tha t sta te k' _,(r be emp t y , i s the probability per unit time 
tha t an electron makes a transition from st<:Jte Ttl t o sta teR ' .}.1 • This 
vrcJuc t surn..TJJed over bands .J..r a nd integrated over l(r giv e s the ne t .loss 
uer uni G time f'rom state k'.R . The ne t ~ain oc r unit time can b e similarly 
eXTJ·essed . ( of/ 'b t) collis i ons i s the di ffe r ence , thus 

( d i'(k} )/ 0 t ) coll i s i ons • 

~ c .f' ) firrCk' ~ ', -v~) rci7, ~') {1 _ f(k'__e)] 
-h'(k..,.e, "K' .J') r ("k } ) {l- r(k' ,.e' )}] ctk'/( 21'1') 3. (3 . 12 ) 

Substituting equa t ion (3. 12 ) for th e r il),ht hand s i de of equation (3 . 9) , one 
obt:Jins the Boltzmann equa tion fo r f(k ...(', t) . l'o de t e rmine the cur rent and 
thus tlw conJ.uc t ivity , the solution to the Boltzmann equation must be 
substituted into t he expression f or the cur rent , equation (3. 1U) . Before 
thi.s formi dable task can be start ed, the trans ition amplitude fo r sca ttering, 
must be found. 

(3.13) 
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The object of the present investigation is to make a more quantitative 
estimate of integral (3.13) for s - d scattering than that of Mott7 and to 
study the relation between s- sands- d scattering. In particular, · it 
is of intere~t to show the importance of shear modes on electronic scatter­
ing, and to study the angular dependence of scattering, facets that have 
been ignored for the most part in previous work. 

Nickel was chosen as an example because information on its wave 
functions and energy bands is available from recent work of several 
investigators.l7-15 . . 

IV. THE SCATTERING AMPLITUDE 

The scattering amplitude for the perturbation v2 is given by integral 
(3.13). In this case the perturbation Vp is the difference between the 
potential in a static, perfectly periodic crystal lattice and the potential 
in a crystal lattice where the ~onic cores are in thermal vibration. 

If one cpnsiders the potential energy o'f a crystal as a function of 
the displacem~nt of ionic cores from their equilibrium positions, and makes : 
a Taylor's series expansion of the energy in terms of these displacements, 
the first non~constant terms will be the quadratic terms. The linear 
terms will be zero from the equilibrium condition. For small displacements, 
quadratic terlllS give a good approximation to the energy. Then "normal 
modesw,, that is traveling plane wave motion, can exist in which each ion 
undergoes a motion with definite phase relationship to the other ions. --rin 
a normal mode the displacement of the ion with equilibrium position at Rn 
is given by 

= (4.1) 

where for each propagation vector q, there a~e three polarizations 1: and 
in general th~ee frequencies w. rhe polarization . vectors for these . three 
modes are mut"t+ally perpendicuiar. For long wave lengths in an isotropic 
medium, one mode is longitudinal, the other two t~ansverse. In a longi­
tudinal mode, the propagation vector is parallel to the polarization vrctor; 
in each transverse mode it is perpendicular. The amplitude factor, N-2 a, 
is picked for convenience. 

17a. C. Fletcher, Proc. Phys. Soc. (London) A65, . 192 (1952). 

18J. C. Slater and G. F. Koster, Phys. Rev. ~' 1498 (1954). 
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Any gener al notion of the ions can be represented as a line8.r combin­
ation of nornal n:odes (phonons ). The phonons can be quant~d an.] "for m 
a Bose-Eins t ein system. 'rhe displacement ~ of the ion a t Rn can be written 
in general as 

~ • N-~ ~( q , j ) €-qj '[aq.i exp(iq • ~) 
t a~j exp (-i(f · jfn)}-, 

where aqj is the destruction operator for a phonon in t he qj 
a~j is tne crention operator for a phonon in the q.j th mode. 
number of phonons in the qj th mode , and M is the mass of an 
operators hnve the following transition amplitu.ies : 

(Nqj- llaqj iNqj) 

(Nqj + lja~.i INqj ) 

1 
= (i1Nqj /2M ~qj )2, 

1 
• (~( Nqj +- l)/2M v.lqj) 2 • 

(4. 2) 

th mode, and 
If Nqj is the 

ion, the 

(4.3) 

(4. 4) 

Equation (4. 3) is the matrix element of aq,j connecting the initial state , 
with Nqj phonons in the qj th mode , and the final state, with Nq.i - 1 
phonons in the same mode , the content of all other modes remaining the s ume . 
Equation (4.4) has a similar i nterpretation . The matrix elements of the 
a's between all other types of states are zero, thus the content of one 
mode can change by only one phonon at a time . For thermal equilibrium of 
the phonons, the average number i n the qj th mode , Nqj' is given by the usual 
formula , that is 

where k is Boltzmann's constant, and T is the temperature . 

For high temperatures 

and thus 

(Nqj - ljaqjjNqj) ~(Nqj + lla;.i\ Nqj ) ~ 
(kT/2M)~/wqj • 

(4. 5) 

(4.6) 

(4. 7) 

For elastic waves in isotropic materials, ·and elas tic waves traveling along 
princit:>al directions of cubic crystals, waves separate into l ongitudillal 
and transverse modes. In general , longitudinal waves will have a velocity, 
v L, greater than that of transverse waves, Vt• For many ma terialsl9 

(4. 8) 

19G. Joos, Theoretical Physics (Hafner Publishing Co ., New York, 1950), 
second edition, p . 180. 
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Since 

w = v q, (4.9) 

the amplitude of transverse wave s is gr ea te r than that of longitudinal waves 
with the same qby about a factor of 32. 

For the general case o:f elastic waves in a crystal with ' onn atom per 
primitive cell, there will be waves of t hree different (and perpendicular) 
polarizations for each propagation vector q. These wave s will not. in general 
be separable into ,longitudinal and transverse waves. The waves of all three 
polarizations may contribute to scattering between the same initial and 
final state. Because the phase r elations between t hem are random, the total 
transition probability will be obtained from the sum of the squares of the 
transition amplitude for each mode. In the present work, ' the elastic waves 
will be treated as if one polarization is longitudinal and two are transverse 
for ea~h wave vector. An~ t~e amplitude ?f the transver se .wav:!s will 
accordlngly be taken as 32 tlmcs the ampl1tude of the long1tud1nal wave. 

As shown in Appendix A, t he perturbation of electrons by the lattice 
vibratiorrs can be considered as a sum of perturbations, one f or each mode. 
Only mo des of a single .q will sca tter an electron between a r;iven initial 
and final st'lte, so the perturbation potential due to only a s i ngle mode 
need be considered. Thus the scatter i ng process i s that of an ineJastic 
collision, an electron absorbine or emitting a phonon, and changing its 
energy and crystal momentum so as to conserve both energy and crystal 
momentum of the system of electron plus phonons. The conservation of energy 
arises in the time dependent perturbation theory, and the conser va tion of 
crystal momentum i s demonstrated later in thifl section . 

Bloch,2 in his early work on the conductivity of metals, assume d that the 
potential in a deformed metallic crystal is deformable ; t ha t i s , the 
potential in the defo r med crys tal Vdef. (r) is given by 

v def. (r) = v~--:" sen], (4.10) 

where the deforma tion consis ts or t aking a point a t r to a point at r 7.:>C~). 
Thus the potential in the deformed c·rystal at the new point i n equal to 
potential of the undeformed crystal at the old point. Followin~ Bloch, in 
this work it is assumed tha t the fine structure 'of t he potential is as 
given by equation (4.10), but slowly varying functions of the local sta te 
of strain of the crystal are added to the potential for two reasons. The 
first of the se is tha t even in n homogeneously deformed crystal the total 
electronic energy does not change to first orde r in strain. V{i th . a 
correct potential', this stationary pr operty i s automatic; in .:m approximate · 
potential it provides a method of ad.iu,s tinc>; the zero of potential. The 
second reason is that in an in homo geneous deformation, s ome redistribution 
of charge take s place to keep the Fermi l evel constant t hroughout the 
crystal. 
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Appendix B derives the function of strain that mus t be added to equation 
(4.10) to have the total binding energy independent of strain to first order. 
The potential in a homogeneously deformed crystal, Vh~), is then given by 

(4.11) 
-

where A is the dilatation (that is, the volume increase per unit volume). 
(KE)F is the average kinetic energy at the Fermi level, defined by equation 
(B.24). The Fermi energy for the undeformed crystal! , is the difference 
in energy between the highest occupied state and the lowest occupied state 
of the conduction band. A normal band has been assumed, that is, one in 
which the energy above the bottom of the band is proportional to k2. 

For sinusoidal de formations , as is shown in Appendix C in a manner 
similar to that used by Hunter and Nabarro,l2 the potential in the deformed 
crystal can be obtained by adding to the potential of a homogeneously de­
forme d crys tal, deformed with the local deformation, the potential 

- (DEF/DA ) 6(?) (1 + J(.q2-)-l , (4.12) 

due to redis t ributed charge. Here (DEf/DA) is the derivative of the Fermi 
energy with r espect to dilatation keep1ng the crystal everywhere electrically 
neutral. q[ is the propagation vector of the sinusoidal deformation. For a 
band in normal form, "f. is given by 

·• (4.13) 

where kF i s the k of electrons with the Fermi energy, and m* is th~ effective 
mass. a0 is the radius of the first Bohr orbit, a0 -~2/me2. DEF/D~ is 
shown in Appendix B to be - (4/15)~. If one combi nes equation (4.11) and 
term (4.12), one finds for the potential in a sinusoidally deformed crystal, 
Vd(r), the expres~ion 

V ct(1) • V{_r -="S(r)} t 
(2/3) [(KE)F - (2/5) {1 - (1 tt(q2)-l} 5] /1 (r). (h.l4) 

Except for ~ery near the origin, V~r~S(r)} ma~e expanded i n a Taylor's 
series in S keeping only the firs\ t erm s1nce S(r) is small. Thus the 
perturbation potential, Vp(tJ, is as follows: 

Vp(r) = V d(r) -:- V(r) = - s(}) · V V(r) + C(q) A(r), (4.15) 

where 

C(q} = (2/3) BKE)F- (2/5) tl - (1 ... "tq2)-l} 5] (4.16) 

Equation (4.14) is the perturbation potential in terms of a continuous 
def ormation wave. In order to use this equation, an expression for sl}), 
t he conti nuous displacement vector, is still r equired. Equation (4.2) gives 
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t he displa cemen t Sn of a core from its equilibriulT' Dosition ~. It seems 
reasonable to assume for ~) a similar form , 

(4.17) 

f or the qj th mode . This exprl~s sion certainly has the cor,~ect form v:hen ? 
i s near a R;. It wlJ l be shown l ater (in section VII. B) that this expression 
i s satisfactory for l ong wave lengths , but corrections must be npplied for 
wave l engt hs near the minimurr: . 

The s train tensor is defined as follows : 

11 ij - { C~ Sj/bxj) t Co sjlo xi )} /2, (4.1B) 

whil e tho dilatation A i s the tra ce of the strain tensor , that is: 

(h.l9) 

-From equation (4.17 ) i t is seen ' that the J ila t a tion for the qj th mode 
is 

6(7) 

(4. 20) 

Substituting equati ons (J.l), (4.14) and (4.20) into equat ion (J .lJ ), one 
can evaluate the s catter i ng a mplit u de for the qj th mode as follows : 

/P1 Vp ~i dt' 

= N-J/2 aqj ~C(q) q • 
t: ( 77I · ~r) ~ . -,1 exp i \._., c.. qJ 

- N- 3/2 a~j {.iC( q) _q 
r --, ""7 A 

+ jexp (iK_. • r) E.qj 

All t hese integral s are of t he form N-1 / exp ( i'Z · ~) F("t) cl'L, 
F(i!) has the pe rio dicity o f the bttice , i. e ., F(r 7 nn) = F(?) . 
Vari ables can be changed i n each cell so that the integral becomes 

N-1 i(n) exp(iK • ~)..{exr(iK • ( r --:::-'Rn)} F(r -='Rn) d l'" n 
=A N-l'<( n ) (. 7K "-')' '- exp J. • "'n l ' 

'Vhere 

(4. 22) 
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whe re A = _/e:xp ( iK • ?) F(1) d z-0 , an integral over the 0 th cell. The 
sum over the lattice can be performed al ong one t ranslation vector a t a 
time. Each is a 8eome tric series, the ratio o f terms being modulus one . 
Unless K • ~ • 211"'m, where for every n, rr. i s some integer , the sum re­
mains bounded as the size of t he crystal grows i ndefinitely. If K" • R.n = 
21'rm, then th" sum .£! t he series is just the number of a toms in the crys tal, 
and N-1 ~(n) exp (iK • ~) = 1. 

Suppose a '1, a2, aj are the pri mitive vectors of a crys t al, that i s , 
t he a tom positions are gene~ated by~ = n1~1 t n2~ + n~aj, t he n 1 s be i ng 
integers. Rec i procal vec t ors csn be defined so that b1 = a2 x 3]/CBl • a; x 8)) 
and so forth , cyclically . A rec i pr ocal l a tti ce i s then generated bv i!o_ = 

:-?' ~ -:7 -;;? -;:7 -:-:7 ' ~ q .• 

n1b1 t n2o2 + n31:5_3. I n orler tha t l\ • rtn ; 217""m, K : 217- Bp • Unle ss ki + 
q- K'f ... 21)--~1 .: Tn, the in t egro.l/tf'1 Vp f' i d z- will go t owards zero as 
t he v 1l ume of the crysta l i ncreases . The · rea s on for this is that N-1 ~ ( n ) 
exp ( iK" • Rri)~ 0 as rv .. •unl ess j(' .. 21rB'n. 

S ince 1< aru q enter on l y throw~.h the exnonent ial i n the form exp ( ik • t), 
add.i.ng 217"tir:.e s any reciproc.1 l ve c tor t o K or q will no t ch~ng(; its e l'fec t. 
Th., first Brillouin z.one c::.n rjt:~ Jof.'.ned 0- s that pcn·t of k-space as near the 
oe"igi :"1 a;o 217'tirr.e~ any o ther r ec: i pro c>l vector. By adding 21rtimcs sor:;e 
reciproc:-1 1 l att i ce ·rector, 1ny 'i! o.r 7j c ~m be m::- :-le to fall i': ~.h i s first 
zone . This ·w ill be a ssumed t(l t)f) cl O:"l e. s· CG ~' kf and q ::.rrJ '1.11 in tLi ~ 
Z0!1e , K"n i n the expr es s ion k"i + cr- 7f = K n will - be e i thor t he ori gin or 
a nearby K vector. If~ i s not 3ero , t he c,:; ll ision i ·~ cnll ed :m Um!cl .3.r)P 

·1 · ~ ~K ) t l 11· . . "ll ., 1 process , 1, , n e l .:.. n = 1 ~.1o C CJ lSlon l S ca. ~eu a noy·ma p:r-ocess . 

Excent. for tho f ew v.:,. l ues o1 <:;"=1rU:'1, C, ;.:; C<JnJi ~,ivns kit 7 kf' = 
21rR and 1(. - 7?- k': = 21r' Br l cannot be sati sfied simultaneousl y by the 
same' \ aluc of q ~or i.J.~Y ;..ivcr 1cj_ <mv i!f • , ."e will asBUI'le the first relation 
to be satisfied . I f q cause s ·;cattm-h'g .Ln c:~..:u "ltion (4. 21 ), -qwould cause 
s cattering lJrolJor t ioHal tc a.:!.qj im·tc2cl of aqj 1'or scattering be tween 
states with t he same propagatio!1 ve cto ,· s a s t hose considered. I n the first 
case , tha t is when q causes the sc3.ttering, and the scattering amplitude 
is proportional t o a 0 j, the final electro ic enerp-y is greater than the 
initial e l ect ... onic nrier(Sy by the energy of a ~honon. The reason is that 
a9 j dest~oys a pllo ~on Jur in0 the sc: ·(j~e~ing proces s~ Similarly, the final 
electronlc energy l ~-; l ess tnan the lnltB.l el ec tron lc ener gy by the .. energy 
of a phonon for the case of -q caurdng s ca tteri.ng propor! ional to a::q .i. 
The first case will be c3rried al ong ; the second case can be obt3ined from 
th8 f ir c, t by in:sp;:; ction . 

~ --,. 
li'rom t he f A-c t tha t K+ i s some Kn, the scattering amplitu.ie can now be 

written 

(4.23) 
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where ~ = ur exp( iK. -;)' the plus be i ng dropped on' K. Since 

~f • exp(ikf • ~) Uf ~ exp~(k:;:-+ K) • 7} Uf, 

... -:7 --:7 ':7 
Uf corresponds to a k of kf t K = kf· 

(4 .24) 

By partial inte gr a tion , one can convert. the seconJ. integr al of equation 
(4.23) as follows: 

/ U~ Ui; ( ~ V(?)/O s) d?"~ = 

- /vfF) [~ (Uf Ui)/~ s} d!-0 , (4. 2)) 

~ 
where s i s in t he di~ec~ion .of t gj. The surface t~rm.s ~o out s ince tyf, 
Ui, and. V(1) are perwd:LC. .'t'satlsfies the . SchroeJwger equation 

-[_-C112/2m) v2 + V(r) - Fj ¥'<~1) = o, (4 .26 ) 

so ui satisfies the equation 

(112/ 2m) (\12 Ui + 2ii!i • V U:i, - ki 2 Ui) t 

(Ei - V) Ui = O. 

Similarly , U~ satisfies the following equation:­
-::r 

f112/2m) ( V' 2 lf~ - 2ikf • VU'? - 'kf2 if1) t 

(Ef - V) U~ =- 0. 

If one ~,mltiplie s equation (4.27) by (OU~/~ s) an.J equation (4 .2fl ) by 
(o Ui/~s), and adds, t he resultinG equation, integr a ted by parts, is 

- jvCl) ..f? CIT! .ui)/c sj cti0 = -(tl12/m) 

/vui (c Uf/O s) d-t-0 - {::i - Ef ..:.. 

jui C~ u~/c s) ct7: o • 

(ki-::: kf) • 

(fl2/2m) (ki2 - 'kf2)} 

The scattering amplitude can then be written as 

fo~ Vpf'i dZ" = N-t aqj { iC(q)' q· ~j /~1 ui d't" 0 Bl 

t ~i - Ef - (112/2m) (ki 2_ kf2)J fui (a U'f/c s) d T 0 B2 

(1i2/2m) 
,-, 

2jvui · ( C U"lf/o s) d'"Z'" 0 J B3 lq • 

(4.27) 

(4 .28 ) 

(4.29) 

(4. 30) 
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Equation (4.30) ·will be evalua t ed for a 4s initial sta t e and either 
4s or 3d £inal sta tes i n later sections. Parts B2 and B3 are as derived 
by Bethe, while B1 is new, arising from slowly var yipg functions added to 
the deform~ble potential as use d by Bloch2 and Bethe.4 

V. THE 4S BAND IN NICKEL 

In order to evaluate the scattering amplitude as given by equation 
(4.30), .the wave functions and energy values of the electrons must be found. 
The 4s band in nickel is similar to other s bands in metals in being weakly 
bound, t hat i s the wave functions of 4s electrons have appreciable magnitude 
in the region between ions. A standard method of treating bands of this 
type, as discussed by Seitz,20 has been used for the 4s band of nickel. 
The periodic part of the wave function in Bloch form, U(r, iC), satisfies the 
equation, 

- -[(112/2m) ('\{'2 +- 2iV • \7 - k2) 

t E(k) - vCn} U(?, 1() = 0. (4.27)' 

The solution t!(?, i<) can be expanded in terms of U(7, 0) of all bands, by 
using a perturbation energy of 

H' = -(.f12/m) k • i V + ('f12/2m) k2, (5.1) 

s ince the functions ucr, 0) form a complete set of periodic functions. 
Using standard non-JeGenerate second order perturbation theory,21 one can 
expand the energy of the ..J.. th band for small k as follows: 

where 

E./ (k) : E.£ (0) - (-fl2/m) i{ • (j I iVjJ) + (~Z/2m) k2 

+- (11~/m2) i<l!t L(J') <1\iV/~') <i 'liviQ) 

+ ~ 1 (0) - E 1. I (0)}, (5.2) 

/u1 (7, 0) i\,7U.Q. ,(7, 0) dT 0 = (J jiV/l'). (5.3) 

This is only valid if the ~ th state is non-degenerate a t i7 = 0. The effect­
ive mass of the Q th band at K = 0 is obtained by twice differentiating 

20F. Seitz, £E.· ~., p. 352. 

21L. Schiff, Quantum Mechanics (McGraw-Hill Book Company, Inc., New 
York, 1949), p. 149. 
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equation (5.2). 

(1/m)pq = (} E Q (k)/o (1lkp) C (-rikq) = (1/m) d pq 

+ E-fi2jm2')2:( _er) t.Q\rvcdl')(J.'\iVp\Q) + 

(~ /i7p \.Q 1 )(J'\i7q~_,f~/ fE .Q_ (0) - E J. r(0)1. (5.4) 

Similarly for small k' s, U J... (r, k) can be expanded to first order as follows: 

U..o_(i?, ~) ::: _u..t (1, o)- (112/m)k· i..(..Q•)(..Q.~IiV'/.Q)X 

u .Q_ ~ (?, 0) I t E ...t <' 0) - E J.. I ( 0)} 0 
(5.5) 

As seen in equation (5.5), the energy denominator is favorable to appreciable 
mixing only for states of energy ·ne<:i'r E .Q. (0). Further, solutions fork= 0 
can be classified according to their symme~ry, and for crystals of high 
symmetry~such as cubic) this is very useful.22 Wave functions arising 
from s states have full ~ubic cymmetry Crl)• The operator i'V has symmetry 

rl5' and so in first order perturbation can connect s states only with 
states of symmetry r-15· These include p states, ~orne f states, etc. 

The matrix elements 'connecting the 4s state of nickel with the 3p state 
and the 4p state were estimated. The 4s wave function used was that cal­
culated for metallic copper by Fuchs.2.3 Copper and nickel have the same 
crystal structure, face centered cubic. The lattice constant24 for 
copper at room temperature is 3.608 x lo-8 em while that for nickel at 
room temperature is 3.51? x . lo~8 em. The difference between lattice con­
stants is about three percent. The 3p· wave function used was that calcu­
lated by Hartree and Hartree25 for the Cu+ ion. Since the 3p function of 
copper is tightly bound, one expects the wave function of electrons in the 
metal to be nearly equal to those in the free ion. 

221. P. Bouckaert, R. Smoluchowski and E. Wigner, Phys. Rev. 5o, 58 
(1936). This paper will be denoted as BSW in later references. 

23K. Fuchs, Proc. Roy. Soc. (London) Al51, 5'85 (1935)~ 

24c. D. Hodgman, Handbook of Chemistry and Physics (Chemical Rubber 
Publishing Co., Cleveland, OhiO} thirtieth edition, pp 2016. 

25n. R. Hartree and W. Hartree, Proc. Roy. _S_oc. (London) Al57·, 490 
(1936). 
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The 4p wave function W3.S calculated by t he Wi gner-Seitz26-27 method, 
using the potential f or Cut of Hartree and Hartree.25 In this method the 
atomic polyhedron i s approximated by a sphere of Pqual volume . In the facr 
centered cube, thc-1re are four atoms , thus , f or ccpper the volume per atom is 
(3. 608 x lo-8 cm)3/4 = 11.75 x lo-24cm3. The volume of the sphere i s 
41irs3/ 3, so the radius rs = 1.41 x lo-8 em= 2.7 a0 , wher e a0 , t he r adius 
of the first Bohr orbit, is a0 = o.52i3 x lo-8 em. 

Since t he potential anJ the regi on ar e spherical, the solution will be 
in terms o~ spherical har monics : 

U_.em(~ o) = YJCP ,cp) RJ.(r) = YfC,P,'f>)~ (r)/r. 

The r adial part of the wave fur_ction sat i sfies the equation , 

(-tl2/2m) { d2p.J( (r)/dr2 -J. (j + 1) Pi. (r)/r2} + 

{E - V(r )} P.Q..( r ) = 0. 

(5. 6) 

(5.7) 

If distances are measured in ter ms o.f the radius of the firs t Bohr orbit, 
a0 =.-fi2/me2 = 0 . 528 x lo-8 em, and energies i n terms of the Rydberg, t hat 
is, e2/2a0 - 13.6 eV, the above equa tion becomes: 

ct2 Pg(r) 
d r2 

Since spherical harmonics ar e ortho-normal, that is~ 

fiQ (j}, <{)) Y!l ( ...Q , <P ) sin .9 d q. d P = (1'_~ l 1 0 mm 1 , 

(5. 8) 

(5. 9) 

in order that ju* U d't0 = 
~ 

1, the P' s are normalized so that j fJ_ 2 dr = 1. 
0 

Solutions to equation (5.8) are found in the following manner . For 
small r, hydrogenic w~ve functions may be used. These are given, for 
example, by Pauling and ·l~ilson. 28 This solution for small r is extended 
in s t eps by calculating the second derivative of P,t from equation (5. 8) 
for some assumed value of energy. 'fhe change of the firs t derivative in an 
interval i s computed frcxn the second derivative . In the same manner the 

26E. Wigner and F. Seitz, Phys. Hev. 43, 804 (1933). 

27J. Bardeen, J. Chern. Phys. ~' 367 (1938). 

281. Pauling and E. B. Wilson, Introduction to Quantum Mechanics 
(McGraw-Hill Beak Company, New York , 193S), p . lJb. 
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change in P~ in an interval is computed from the new value of the first 
derivative. With the value of the function at a new radius, a new second 
derivative is computed and the process continued, extending the function 
for increasing r. The entire process is repeated wi tl~ other assumed 
energies until an energy is found for which the computed function satis­
fies the appropriate boundary conditions. In the case 'of p functions, 
since Up(~,o) is periodic in the unit cell, and odd with respect to 
either x, y, or z, it must vanish halfway between nearest neighbor ions. 
Thus, the boundary condition on P4p(r) is P4nCr~) = 0. Table l gives 
R4s(r), P3Q(r), and P4p(r) as well a s r(dR4sfdr) at intervals of 0.1 a0 
from 0 to 2.7 a0 • 

From equation (.5 • .5), the rate at which p functions mix with s functions 
as k is increased is 

-(11/m) (p\i\7\s)/~s(O) - Ep(o)}. (.5.10) 

The matrix element can be evaluated as follows: 

(pzlo/ 0 zls) = Jlr Yo ~ R~ ( z/r) d'L 0 = 

3-~ 1~ R' r2 dr, (.5.11) 0 p s 

since Yo ;:: (41'l" )-~, and Y~ :. (3/41T)t ( z/r). The matrix elements were 
calculated from the functions in Table l~ numerically integrating with 
intervals of 0.1 a0 • The trapezoid rule~9 was used; that i s , the integral 
was approximated as the sum of the integrands minus one-half the end point 
values of the integrand, multiplied l)y the interval. The matrix elements 
are given below: 

fu4pz(7,o) ~ U4s(7,o) d:t'" 0 = 0.055/ao, 

/ ~pz (7, o) iz- U4s (7, o) d'Z"' 0 = J. 31/ a0 • 

(5.12) 

(5.13) 

The 4s band of nickel has 0.6 electrons per atom so the number of states 
filled in the 4s band is 41rk?J3 (21/)3 - · o.6N/2V. Sinc.e N/V = (3/411) 
(2.7ao)-3, kF = 0 • .58/a0 • The energies of the three states are: 

E4s(o) = -0.8 e2/2a0 , 

E3p(o) = -7.3 e2/2a0 , 

(.5.14) 

(.5.1.5) 

29w. A. Granville, P. F. Smith, and W. R. Longley, Elements of the 
Differential and Integral Calculus (Ginn and Company, Boston, 1941)~. 24.5. 
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Table l. Normalized wave functions for copper 

r/a0 R4s rR4s P3p P4p 

0.1 -0.772 -3.86 0.607 0.344 
0.2 -0.715 0.82 o.4oo 0.233 
0.3 0.044 l. 79 -0.249 -0.129 
0.4 0.47° 0.93 -0.804 -0.441 
0.5 0.513 -0.12 -1.123 -0.602 

0.6 0.430 - 0.72 -1.235 -0.634 
0.7 0.270 -1.16 -1.212 -0.564 
0.8 0.099 -1.25 -1.115 -0.435 
0.9 -0.044 -1.10 -0.986 -0.261 
1.0 -0.148 -0.87 -0.848 -0.067 

1.1 -0.219 -0.70 -0.717 0.133 
1.2 -0.274 -0.61 -0.598 0.330 
1.3 -0.323 -0.60 -0.494 0.501 
1.4 -0.361 -0.42 -0.405 0.657 
1.5 -0.384 -0.32 -0.350 0.774 

1.6 -0.394 -0.23 -0.296 0.891 
1.7 -0.397 -0.14 -0.236 0.942 
1.8 -0.420 -0.08 -0.176 0.994 
1.9 -0.422 -0.02 -0.145 0.978 
2.0 -0.420 0.02 -0.114 0.963 

2.1 -0.418 0.06 -0.094 0.8132 
2.2 -0.416 0.13 -0.073 0.801 
2.3 -0.409 0.13 -0.060 0.666 
2.4 -0.405 0.06 -0.047 0.531 
2.5 -0.404 0.02 -0.038 0.361 

2.6 -0.403 0.04 -0.030 0.191 
2.7 -0.401 0.04 -0.025 o.ooo 

E -0.8e2/2a0 -7.3e2/2a0 2.2e2/2a0 
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(5.16) 

so the aiOOunt of 3p and 4p states mixed with the 4s state at the Fermi lev~l 
ist ·' . , 

-(112/m) ( 3p \ i" r 4s) kF/ [ E4s(o) . E3p(o)1 = o.o55, (5.17) 

-(-1'12/m) (4p I i9/4s) kF/ {E4s(o) E4p(o)} · :: 0.021. (5.18) 

These calculations indicate that the nearby states do not mix appreciably· 
with the 4s state. 

This result is somewhat surprising because 3p stat'es are presumably 
very tightly bound a,nd thus E3p(l() • E3p(O). In t his. <?ase the 3p functions 
have three-fold degeneracy, since they have l15 symrnetry.223 For state Px 
and1l in the kx direction, the energy 'is the same express~on ° as given for 
the non-degenerate case, equation (5.2'). Equation (5.2) applied to 3p 
states. says that coupling of 3p (k = 0) with other ~ = 0 states must can- , 
eel ·off1f2 k2/2m. 3p - 4s coupling should be the most iniportant single con­
tribution. The same matrix elements and energy denominators are involved 
as in equations (5.12) to (5.16). Evidently the 3p s~ate gets small con- · 
tributions from many different states. Similarly, one might expect many · 
states to mix slightly with the 4s state as k" is increased from k = 0. · 

Slater3l has calculated one-electron energies of s.olids by averaging 
x-ray term values. Band widths have been taken from soft x-ray levels. He 
gives the 4s band width ( § ) of coppe'r as 0.5 e2/2a0 , and the 3p state as' 
located 5.1 e2/2a0 below the bottom of the 4s band. In the case of nickel 
the respecti~e energies are 0.4 and 4.5 e2/2a0 • From the low temperature 
specific heat of copper its~ is estimated to b~ 4. 78 eV or 0. 35 e2/2a0 , 

and its effective mass· to be m* = 1.47 m.32 The difference in energy of the 
3p state of copper and the bottom of the 4s band as given by equation (5.14) 
minus equation (5.15) is 6.5 e2/2a0 • These last energies are one-electron 
values that neglect exchange and coulomb effects, so it is not surprising 
that the agreement with Slater's values is not better. 

· · In calculations of ·scattering amplitudes of electrons in nickel, 
Fuchs'23 wave function · for the k = 0 electronic state of copper will be 
used for U4s(r'; k) for all 17, since no one state appear.s to mix appreciably 
with U4s(r, 0). 'The 4s effective mass used will be that from low tempera­
ture speci.fic heat of copper, m* = 1.47 m • . The value of J · that will be · 

3Gt. Schiff, ££· cit., p. 154. 

31J. C. Slater, Phys. Rev. 98, 1039 (1955). 

32F. Seitz, op. cit., p. 153. 
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used. for nickel is obtained by mult~I?lying the value for copper from low 
temperature specific heat by (0.6)2/~ since nickel has but six-tenths the 
number of 4s electrons that copper has. This giv,es a value of J = 0. 25 
e2/2a0 for nickel. 

The quantities 1 and (KE}F that appear in equation (4.10) can now be 
estimated. The value of 'f. that will be used is 

19 

1- 1Ym/4m*a0 kF = 11 /(1.47)(0.6) = 0.89, (5.19) 

and that of (KE)F is 

(KE) 0 t} = 2. 75 e2/2a0 , 

where (KE) 0 is given .following equation (7.7). 

VI. THE 3D BAND OF rTICKEL 

(5.20) 

Fletcherl7 has calculated the wave function and energy values of the 
3d band of nickel, using the s trong binding method. A Bloch function can be 
formed from the following combination of atomic functions. 

(6.1) 

If each atomic function has appreciable magnitude only in its own cell, then 
the Bloch function will be nearly like the atomic function within that cell. 
Fletcher formed Bloch functions from each of the five 3d atomic functions 
for nickel. The atomic functions were t '1ken in the cubic form, that is: 

1 

fl- (15/kn-)2 (xy/r2) RJd(r), (6.2) 

(/J2 = (15/4-rt)! (yz/r2) R3d(r), (6.3) 

' .. ,, (jJ 3 = (l5/4"Tl")~ (zx/r2) TIJd(r), (6.4) 

rp 4 = (l5/l61t'")! ~x2 - y2 /r2U R3d(r), (6.5) 

(/;5 = (5/1611')! [3z2 - r2 /r2D RJd(r), (6.6) 

where R3d(r) is normalized so tha t ;fR30 (r) r2 dr = l. Linear combi na tions 
of Bloch functions f ormed from these atomic f unctions are made so as t o 
minimize the energy as calculated in the strong bi nding approximation. If p 
= bt If t where 

If' t =· N-! 2:_( n) exp ( iR · ~) q t ( r? Rn) , ( 6 . 7) 
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then minimizing tho erJergy i s 0quivalent to solving the equations . 

( H t t I - E ( k) 0 t t I ) b t' = 0' 

where repeate d inJices are to be summed. Htt' is defined as 

Htt' = ;_~t{:- H~t' d'Z"", 

and Ott' is defined as 

(6.8) 

(6.9) 

(6.10) 

Fletcher neglected the off diagonal te rrrts of Ott', and numerically es tima t ed 
Htt, takinp Rn =- 0 and~ o:!: the neare st neighbors into account . He 
approximated the cu+ potential of Hartre"' an r-1 iiartree25 by the analytic fo rm 

V(r) = --{: t 28 exp (-3r)~ /r, ( 6 .11 ) 

where V(r) is in atomic units and r is in units of the first Bohr -..~adius 
ao. The radial part of" 3d was de -~crn:ined 'c:)" curve fittin ~:; , using two 
hydro genic radial functions. 'l'he normali zed rn,iial part of the 3d functions 
was given by Fletche r a s · 

R3d(r):.: 85 . 8Sr 2 exp(-5r) + l.979r2 exp (-2r). (6.12) 

Fletcr.er evalua ted J~he m1trix e lements b;r keeping r.eo.rest neighbor 
terms ard calculating interaction integr2ls using the functions ( 6 .11) and 

(6.12). The ma trix e l ements ob t ::d nec.i are: 

H11 :=. -4Al COSj cos.,+ 4A2( cos.., cos 7 't cos 7 cos' ) ; 

H22 = -4Al cos") cos'J t 4A2(cosf cos) + cos ' cos~ ); 

H33 = -4Al cos j cos' t h-~2-(cos ) co s r'\ cos "" cos ' ) ; 

H44 = 4A4 cos 5 cos 1"\ - 4A5(cos Y\ cos., t cos '! cos ' ) ; 

H55 - -(4/3)(A4 t hA5) cos 3 cosh t (4/3)(2A4- A5) -

x (cos~ cos J + cos' co s j ) ; 

Hl? = H2l = -4A3 sin) 0 --"in } H23 = H32 = -4A3 sin ) sin ., ; 

HJl = HlJ = -4AJ sin 1 sin ) H14 =- H41 = 0 ; 

H24 = H42 = -4A6 sin Y") sin J HJ4 = H43 = 4A6 s in 7 sin) 
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1 
H15 = H51 =- -(8/J2)A6 sin~ sin~ ;: 

H25 = H52 = (4/3!)A6 sin"\ sin' ; 

H35 = H53 = (4/.3!)A6 sin ' sin j ; 

H45 = H54 = (4/3!)(A4 t As)(cos 1-1 cos?- cos J cosj ); 

21 

(6.13) 

where j = akx/2i 1-'\ = aky/2, and ~ = akz/2. a is the cube edge of the face 
centered cubic attice. The int~raction constants are 

A1 a. O.l928E0 , A2 = 0. 0572E0 , AJ =- 0.0776E0 , 

A4 = O.l348Eo, AS : o.o247Eo, A6 = o.o862Eo, 

where E0 = 4(Al + A2) = 1.349 eV. 

(6.14) 

Along certain directions in k-space, the secular equation (6.8) can be 
solved explicitly as follows~ 

(100) direction. E1,2 = 4A2 t 4(A2- Al)cos ) • 

E3 ::. -4Al t 8A2cos j . 
E4 : 4A4 - 8Ascos j . 

Es = C4/3) {_-A4 - 4As 
+ (4A4 - 2As) cos J .}· 

(110) direction. E1 = 4A4cos2 ~ - 8A5cos J • 
E2,3 =- l.!A-2cos2 :J t- 4(A2 - Al)cosJ 

± J~-3sin2) • 

E4 and E5 are given by the two roots of 

E2' + [{4A1 t (16As/3) t (4A4/3)} q2' 

+ (8As/3 - 16A4(3 - 8A2)~ E 

+ (16q2/3) ~4AlA5 f A1A4)q2 

- (8AcAS + 2A2A4 f 4A1A4 - 2AJAS)q 

~ (8A2A4, - LAzAs)] - 64Agp~/3 = o, 

where p ::.. sin ~ ;: q = cos j . 

(6.15) 

(6.16) 
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(111) direction. E1 = 4 {_(21\.3 + 2A2 Al)c'Os2 S - 2A3]· 

The other four roots occur in two doubl y- de generate 'pairs given by 

E2 - 4 {_(2A2 - A1 +- A4 - 2A5 - -A3)cos2 j t A3 J E 

+ 16 ~A4 - 2A5)(2A2 - A1 - A3) - 2Ag} ·cos4 j 

t i:_AJ(A4 - 2A5) + 4.4 J co/ ,3 '- 2A~] = o. 

j =11'- ; J = 0 ,direction 

El,2 = t 4A(Al + A2)co.s Y\ - 4A2. 

E3 = 4Al• 

E4,5 = (4/3) {2A5 - A4 i 2(A4 + A5) (l t 3cos2n)!j. 

. (6.17) 

(6.18) 

~ 

Electronic wave functions can be written so tha t the k fall s within 
the first Brillouin zone. This zone, f or a face-centere d crystal, is shown 
in Figure l. Following is a description of the zone. 

If the lattice vectors are 

-r (a/2, a/2, 0), al = 

a2 = (a/2, o, a/2), 

8!3 = (0, a/2; a/2), (6.19) 

then the reciprocal vectors are 

~ 

bl = 1/a(l, 1, -1), 

b2 = 1/a(l, -1, l)' 

1?3 = 1/a(-l, l, 1). (6.20) 

These satis~ the relation~ •. l?j : c(ij. The k-space lattice is given by 
K"n = 211'-(nll::il t n2B'2 + n31J'3), for integer n's. The nearest neighbors t o the 
origin in k-space are for the si~ values of thG t ;;rpe n1 = ± l, n2 = ± 0, 
~3 = 0, etc., and for~e two of the t :y"J)e n1: .±. l, n2 :- ± l, n3 = ± l. 
For n1 = n2- n3 = l, K = (21r/a)(l, 1, 1). A plane bisecting thi s vector 
is erected. This forms the hexagonal f ace of the Brillouin zone , the center 
of w~ i rh i.s called L; the center of the zone is culled r. The distance rL 
is 32 TI/ a. l'he next nearest neighbors are given by .the six values of the 
typt:j n1 = ± l, n2 = ±_ l, n3 = 0. For n1 = l, nz = l, n3 = 0, _Jr' = 21t/a(2, 0, 0) • 
A plane bisecting t his vector is also erected. This forms t he square fa ce, 
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Figure 1. The Brillouin zone for a face-centered crystal. 
Points and lines of symmetry are labeled using the 
notatio~ of Bsw.22 
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the center of which is called X. The distance rx is 211'"/a. One sees that 
every vector in this zone is at least as near to the origin as it is to 
any other k-space lattiqe point. For copper a = 3.608 x 10-8 em = 6.84 a0 , 
so the distance rL = 3112 ~/a • 0. 80/a0 and the distance rx = 2"fl"'/a = 
0. 92/ a0 • If one were to approximate the first Brillouin zone by a sphere 
of equal volume, (21t)3 times the reciprocal of the volume of the atomic 
polyhedron, the radius would be 0.90/a0 • k-space distances are three 
percent larger for nickel. 

When EJd(k) is known, equation (6.8) can be solved for bt(k). This 
can be done for the special directions for which the energy values have 
been given. Information concerning bt(]} for some other k's can be deter­
mined from considerations of symme~ry. 

Let O(r) be some operation (rotation, reflection, etc.) on the points 
of configuration, space th_at leave a parti'cula:r:- _point (the origin) unaltered. 
The corresponding operation ·'On., a funption FG) is defined by 

0 F(r) = ~(Q..:l?} •. . . . · (6.21) 

The set of ope:r:ators 0 that leaves the potential function invariant forms 
a group known as the point group (referred to the point chosen as origin). 
Since the Laplacian is invariant to all rotations and reflections, every 
ope~ator of the point group commutes with the Hamiltonian operator 

H = - (11?/2m) ~ 2· + v(r)"' 
,; ' 

(6.22) 

So .. ~fi?' .is an .eigenfunc;:tion of the_ Iiarlliltonian with energy E, 0 Y~· is also 
an. eigenfunction wit·~ the same energy:- · .. 

' . 
H ·p 'fl = 0 H '( = 0 E if' :: E Ojt-1 • '(6.23) 

.kn ope~ator.· O applied to a B;toch function gives 

0 f.//("7, k) = exp(lk • r '1o~1 ·~j U(o-i>r, il). 
· .... 

(6.24) 

Let O(k) define the same operation in k-space as the operator 0(~ does in 
configuration space. · Then 

.ok"'· o?=k"· 7, (6.25) 

from which it follows that 

exp(ioi! • '?') U(o-1 r, R). (6.26) 

Since U(p-l ' r, .ll) . i.q _ peri~dic in the . crystal, ,' O ?V<i,ll) is a Bloch function 
solution with propagation vector ok. ' ';; '' ' . . ' 

The point group referred to an atomic position in a simple face center­
ed cubic lattice such as nickel is the full cubic group m 3 m. 
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That sub-group of the point group that takes K into itself or into an 
equivalent~' that is, a 'It differing from 1C by 2."ir times a reciprocal 
lattice vector, is called the small group of k. For example, suppose k' is 
a general point in the kx, ky plane. The identity operation and z~-z 
form the small group. Since the square of z~-z is the identity operation, 
~ (~ R1 can be found that are even or odd to this operation. When an 

operation is performed on a function in the Bloch form as given by equation 
(6.1), all of the ~'s can be mapped on to other ~ts, so that +,he trans­
form of equation (6.1) is th~ same tyne of sum of transformed J?functions. 
For the odd solution, only 'f2, and <})3, can enter, while for the even 
solution, p:; 1, p 4, and.¢' 5, can e.tter. Thus, wave functions whose k 1 s 
lie on planes XL r , LK r , KX r , and XUW as shown in Figure 1, must be 
either even or odd to the operations z~y, x~y, z~-z, and x~ -x, 
respectively. 

Any ~vector in the Brillouin zone can be generated by operating with 
some member of the point group on some vector in that portion of the zone 
included between these three planes. Thus ifbt(~ is known in this region, 
solutions for the whole zone are known. A plane similar to KL r can be 
obtained as a continuation of XL r , a point similar to K being the inter­
section of the line UL and the center of a hexagonal edge. Some energy 
contours for this plane and the KXr and XUW planes are shown in Figure 2, 
for the highest energy even and odd solutions. Fletcher'sl7 energy values 
were plotted in his units on lines of hi gh symmetry and contours drawn 
between them to obtain these figures. 

According to Fletcherts work, the Fermi energy for ferromagnetic 
nickel is about 0.2 eV below the top of the 3d band, or about 0.62E0 , and 
for paramagnetic nickel, is about 0.18 eV below the top of the 3d band, or 
about 0.67E0 • As states with energy near that of the Fermi energy are those 
of interest, the energy contours plotted in Figure 2 are those for 0.6E0 , 

and 0. 7E0 • A symbol such as X5 0. 771, signifies that for a kat point X, 
there is a wave function with symmetry classification X5 and energy 0.771Eo. 
Since wave functions of propagation vector Y form a basis for an irreducible 
representation of the small group oflC, knowledge of the small group enables 
one to classify the symmetry of wave .functions. The notation is that of 
BSW.22 Figure 3 shows that portion of the Brillouin zone bounded by the 
planes XLr, LKr, KXr, andXIJW. Energy contours forE= 0.6E0 have 
been plotted to show how the constant energy lines on Figure 2 fit together 
in three dimensio"ns. The signs on symmetry planes show whether the wave 
function is even or odd to mirroring in that plane. 

Results on normal 4s to 3d scattering will involve wave functions 
referred to a coordinate system where polar angles are measured from kJd• 
The numbers on the axes of rotation in Figure 3 denote the absolute value 
of the m values of spherical harmonics appearing in the wave function in 
this coordinate system. For instance, on the two-fold axis~ , the wave 
function ~2 has symmetry like z(x - y). In a new coordinate system where 
the z' axis is in the (1 1 0) direction, the y' axis is in the (0 0 1) 
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Figure 2. 3d constant energy contours for high symmetry planes of 
k-space of metallic face-centered nickel. Energy is given 
in units of E0 : 1.349 eV, measured from an arbitrary zero. 
Wave functions for k's in the upper planes are even to mirroring, 
while those in the lower planes are odd. Wave~ function symmetry 
is given in. the notation of Bsw.22 
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Figure ). A portion of the 3d Brillouin zone of face-centered 
metallic nickel showin~ a o.6E0 energy contour. Signs 
in high symmetry planHs denote symmetry und~r mirroring. 
A dot signifies an accidental degeneracy. Numbers on 
axes of rotation denote the absolute magnitucle of m values 
of spherical harmonics appearing in the wave ±unction for 
k:lying on the axis, that axis being the polar axis. 
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direction, and the x' axis is in the (l l 0) direction, this vvave function 
has symmetry like x ' y'. ; In equations (6.2) through (6 .6) f or the 3d func­
tions in polynomia l form , <P5 consists of m = 0 terms, 'P2 and 'PJ m = :!. l 
terms , and tf1 and ~4 m = .:!: 2 terms. Since ~ 2 is in the form 11_, 2 is 
shown on the two-fold axis. 

Since m = ~ terms are even to all mirror pl anes includins the polar 
axis, wave functions with even-odd mirror symmetry can never have m = 0 
parts. Wave functions with even symmetry can have all f ive types. The m 
= 0 solutions have low energy in all special directions, so one would not 
expect them to ·enter appreciably in solutions for energies near the Fermi 

' -
energy . •' 

Fletcher has neglected off-?iagonal terms in the over-lap integral 
given by equation (6.10). Since these will probably be of comparable size 
with respect t o the off-diagonal terms of the Hamilton.1.an given by equation 
(6. 9), t his neglect is serious. I'he work of Slater and Kosterl8 circum­
vents this difficulty by considering the .:l t ,omic functions to be made ortho­
normal to each other by taking suitable linear combinations. Ener r:sy values 
and wave func,tions are determined at points of high symmetry by some accu-

rate method such as the cellular method or th'e orthogo'nalized plane-wave 
method. The str ong · binding me thod is then used as an interpol ation pro­
cedure , the constants Al···A6 being determined so as to fit the accurate 
calculation at points of high symme;t:ry. Slater and Koster Mve used the 
results of Howarth's33 cellular calculation on the 3d band of metallic 
copper to compare the constants thB.t would fit Howa rth's energy values 
at points of hi :,::h symmetry. They find fairly good agreement with Fletcher's 
results except for one constant. 

Howarth34 has also c2lcula ted the d band of copper us ing Slater's 35 
method of augmented pl ane waves. His results are completely ui fferent from 
those of Howarth,33 so i G seems that calculations on stron~ly bound elec­
trons are very sensitive t o slight changes in potentia1. 'Thi's would make 
one rather unconfident of the .. constants as calculated by either Fletcher 
or Slater and Koster. On the other hand, the atomic function s use d by 

33n. J. Howarth, Pro c. Roy. Soc. (London) A220, 513 (1953). 

Juri. J. Howarth, Great Malvern, Worchester, England. (Private commui-
cation). 1955. 

35J. c. Slater, Phys;· Rev • . 92, 603 (1953). 
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Fletcher should be fairly reliable as only small amounts of nearby neighbors 
need be added to make the 3 ~omic functions ortho-normal with the nearby 
neighbors. Fletcher's interactio:-: constants will be used in this work. 

VII. 4S TO 4S SCATTERING 

A. Normal Processes 

The scattering amplitude as given by equation (4.30) will now be 
evaluated for scattering from one 4s state to another. As discussed in 
Section V, the wave functi on calculated by Fuchs23 for the k = 0 state of 
the 4s band of metallic copper will be used for U4s (r,i!) for nickel. First 
non~l porcesse~ will be considered~ that is scattering for which Kn = 0. 
The first term B1 in equati on (4.30) con tributes to the scattering ampli­
tude the followillg term: 

(7 .1) 

since J U~ Ui d"'t""'0 = 1. The second term B2 in equation (4.30) does not 
contribute to scattering because the integral is zero. The reason is that 
the integrand i s the product of an even function and an odJ. function, and 
the region of integration is even to inversion. 

Since U~(r) is assumed to be spherically symmetric, B3 in equation 
(4.30) is 

-N-~ aqj (112/m) iq • firad Ui (6 u;;~ s) d't" 0 

= -N-! aq.i (112/m) iq · 't.qj fio u4s/c sl 2 dT-0 • (7.2) 

The equality follows, as only the part of qin the direction of scan con­
tribute. The integral can be related to the kinetic energy at k = 0, (KE) 0 , 

by noticing that for spherically symme tric ·wave functions: 

(KE) 0 = -(112/2m) fo-~t \72f dr 

= (J112/2m) /lc f/6 xj2 d't"'. (7.3) 

The last equation comes from the use of the divergence theorem, and the 
fact that ~i} ~is periodic. Thus the third term in the scattering ampli­
tude, B3, becomes:: 

(7.4) 
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Combining B1 and B3, one can write the scattering amplitude for regular 4s 
to 4s scattering as 

6 . 
N-~ aqj (2/3) iq • tqj D3 • .5) 

t (2/.5) (1 t 1 q2)-l} ;, (7 • .5) 

since ~ ~ (KE)F (KE) 0 • Bethe,4 by neglecting the effect that the total 
electronic energy must be independent of strain to first order, and the 
effect of charge redistribution, has only the term B3, given by equation 
(7.4). Equation (7 • .5) is similar to the result of Bardeen,6 except that it 
does not fall off as fast for increasing q. 

The kinetic energy is given by the following expression: 

(KE) -= . -("fl2/2m~-~} 7 2 {?d't" = c-n2/2mjfvr1 z dT, (7.6) 

which can be obtained by use of the divergence theore~ . The wave function 
at the bottom of the band is given by lf = YoR4s so V = (7'/r) Yo(dR4s/dr). 
For this case the kinetic energy is given by 

r;rs 
(KE) 0 = J(,"'fl2/2m)(dR4s/dr)2 r2 dr. (7.7) 

This was evaluated by numerical integratio~ for the wave function given by 
Fuchs, with a result of (KE) 0 = 2.80 e2/2a0 • The atomic polyhedron has been 
approximated by a sphere as was done in Section V. T~is will be done in the 
evaluation of all integrals in this work . Steps of 0.1 a0 were too coarse 
for the interval nea~est the origin, so a 4s wave function was calcula ted 
by the Wigner-Seitz2b method using the H~rtree and Hartree2.5 potential for 
Cut, and normalized so as t o join the function of Fuchs at the first max­
imum. The contribution to e4uation (7.7) of the interval from 0 .0 to 0.1 
ao was integrated in finer steps. The value of (KE)o was reduced from 2.8 
to 2.16 e2/2a0 by tl"i is recomputation. As an additional check, the 4s wave 
function was computed for the entire span by the Wigner-Seitz method. The 
value of (KE) 0 found by numerical integra tion for this function was 2.96 
e2/2a0 • The discrepancy between t his value and that from Fuchs' function 
is due to the fact t hat Fuchs took exchange into account and t his was not 
done in the computation of the wavG function in this work. In the follow­
ing work, a value of 2 • .5 e2/2a0 (34 eV) has been used for (KE) 0 • 

B. Umkl?PP Processes 

~ ~ 
For Umklapp processes K is a small non-vanishing K vector. The small-

est is that in the (111) direction, and the next smalle st i s in the (100) 
direction. The scatterin~ amplitude for Umklapp processes will be evaluat­
ed by substituting in equation (4.30) for the scattering amplitude. The 
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integral appearing in B2 can be converted into a function involving the 
Lntegral appearing in B1 as follows: 

fi4s<C'U4s/cs)dT"0 =-~j • /exp(ili. • ;") D4s\7D4s dt-0 

= - ~qj • fexp(iK • -~rV'cu4s2)dT 0 /2 

31 

= Eqj • [u4s2 'V exp(iK • -;) d~0/2 
/). ...., (f. 

= i £qj • K ;D4s U4s d'L 0 /2, (7.8) 

where integration by parts has been done twice. Neglecting Ei - Ef, the 
en~gy of the phonon, one can combine parts B1 and B2 of the scattering 
amplitude as follows~ 

Jr /_\ A -, -
N-~ aqj i t:(q) q. t qj -\- tqj • K (..fi2/2m) (kf2 - ki 2)/2 

fU4s u4s d"t' a}· ( 7. 9) 
':7 --, ~ 

Since kf = kf + K = ki t q, the expression in the brackets may be written 
as 

1:\. 
G(q) t_qj 

""? • ./) 2 --,. ~ _, 
• q + ("T1~/2m) (q + 2ki · CD ( £qj • K/ 2). (7.10) 

The largest value of C(q) is (2/3)(KE)F = 1.83-$2/2a0 • Referring to Figure 
6, it is seen that for Umklapp processes k[, -kf, and q; are all in the 
general direction of~ The largest value of q is about K/2, so the largest 
value of (q2 + 2k:i • q) is l ess than J(K/2)2, sinre ki cannot be as large 
~ K/2. For ~in the (1 1 1) Qirection, K • 21r32/a = 1.6/a, and for 
t.gj in the direction ofqand I(, term (7.10) is less than (8.8/a0 )(1.83 + 
1.92) e2/2a0 = 3.00 e2/2a0 2• 

Equation (D • .5)* gives the value of the integral in equation (7 .9) as 
-0.018 so the maximum absolute value of B1 ~ B2 for Umklapp 4s - 4s 
scattering is 

1 . 

B1 t B2 = N-2 aqj i(3.00)(0.0l8) e~/2a0 2 

= N-! aqj i( 0. 0.54) e2 /2a0 2 .• (7.12) 

Thus B1 + B2 can be neglected compared to B3 as given by equation (D.l4)* 
and the Umklapp 4s - 4s scattering amplitude i s given by 

1 ""'7 ~ 
-N-2= aqj (2/3 ) iq • c:.. qj (0.8) (KE) 0 • (7 .13) 

*Equations (D • .5) and (D.lh), as well as other equations whose numbers 
are preceded by letters A-F, are included in the Appendices of the Ph.D. 
thesis by John B. Gibson. See Appendices, this report, page 47. 
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B1 is large in normal 4s - 4s scattering, but is small for JL~lapp 
4s - 4s scattering. The reason is that B1 is porportional to JDts U4s 
dtt 0 , which equals 1 for normal scattering but equals -0.018 for Umklapp 
scattering. B1 and BJ tend to cancel for normal scattering, but for Um­
klapp scattering B1 is too small to,and of the wrong sign for this can­
cellation; thus Umklapp scattering is much greater than normal scattering. 

Notice that the value of Umklapp scattering ampljtude does not join 
continuously to the regular scattering amplitude when kf~ki lies on the 
Brillouin zone boundary, that i s when normsl processes end and Um~lapp 
processes begin. In order to shbw this condition more clearly, a (1 T 0) 
plane intersecting the first Brillouin zo~e, passing through the kz axis 
and the (111) direction is shown in Figure 4. 

Since ki ~ kf = ~' qnJ ki., Kr and q must all be in the first 
zone , Umklapp cannot take place while ki--="kf lies in the first zone . In 
Figure 4 the case is shown for ki-=-'kf lying on the zone boundary . l''or 
this case q' also lies on the zone boundary. As k~kf crosses the zone 
boundary and Umklapp processes begin , the scattering ~will be continuous . 
The fact that the present calculations show a discontinuity in scattering 
amplitude is an indication of the inadequacy of the calculations as 
carried up to this point. 

The difficulty can be understood by noting that as ki~kf is in the 
first zone and approaches the zone bounJary, Cil causes scattering, while, 
after ki-:7kf crosses the zone boundary, ~ causes scattering. Since~ • 
q1~Kn, the displacements of t he ionic cores are the same for both waves. 
This is not true for the d~.splacement of a general point as given by 
equation (4.17): · 

-...,. 1 ~ s, 
S( r) = N-2 'Z_ ( qj) C.qj ~qj exp ( iq • ?) 

i~ ( .'"'? "':7'\} + aqj exp -lq • r1 , (4.17) 

witn cr restricted to the first .Brillouin z one. In fact the equation can be 
generalized to the form 

1. ~ r. S(r) = N- ·;a· ~(q,jn) £qj Xn Laqj exp(iqtKn • 7) 

t a~j exp -[i(q7Kn) • 7} J (7 .14 ) 

without i 'L any way violating the condition that at the position of the ion 
cores, Er(!rn) i s given by Aquation (4 .2), provided o~ly that fo r the co­
efficients Xn, 

• ;;£(n) Xn = l. (7 .15) 
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Figure 4. A plane intersecting the Brillouin zone in the (0 0 1) 
and (1 1 1) directions. This is the limiting case, in 
which scattering changes from normal to Umklapp. Qi 
will scatter as a normal process, while(f2 will ~catter 
as an Umklapp process. The scattering angle is e. 
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Further, if the Xn are function~ or..l y of \ qt Kn I, whether q i s or is not 
in the fir:>t Brillouin zone can make no difference. Smoothness and conver­
gence (according to equa tion (7.15)) are the only criteri3 at once avail­
able to r es trict the dependence of Xn on q~Kn• In the present work the 
form 

(7.16) 

is assumed. 

For small~ X0~l} and all others are small. On the other hand, when 
([approaches a zone boundary and q~j q" + ~~, for some n, then X0~Xn~l/2, 
and all others are small. Since the scattering amplitude i s linear in the 
waves, scatterinG amplitudes as previously calculated may be added. Figure 
5 shows the same section of the Brillouin zone as Figure 4, for the case 
when k-i----="'kf is in the first Brillouin zone, and Figure 6 shows the case 
when ki~f is outside the Brillouin zone. 

As shown in Figure 5, for the case .when ki?kf is inside the Brillouin 
zorie, the wave with propa~tion vector ([scatters as a normal procesf pr~­
portional to (kf~i) • "'(;qj while the wave ~vith propagation vector q, + K 
scatters as an Umklapp process. The~mklapp amplitude is proportional to 
(kf-yki) • ---€' j = (kf - ki + K) · S j. The wave with propagation qi7K 
rnus t be include~ in the calculations a ~ong with the wave with pr9paga tion 
vector(L as [q?Kj is fairly close in magnitude to q. Other Kn's are of 
very slight importance, since the corresponding vectors q~Kn are much 
larger than q:: 

In Figure 6 the case when ki~kf is outside the Brillouin zone is 
illustrated. The wave with propag.:J.tion vector {l(in th~rst Brillouin 
z:one) scatters as~ Umklapp ~cess proportional to (kf - ki) • ~qj = 
(kf- ki + K) • Sqj, since kf = k~K. Th~ wave ~~K~, where ~=~ 
scatters as a normal process proportional to (kf t Kn- kf) · ~qj = (kf -
ki) • 't,..q.. Thus it is seen that the scatterint; amplitude is continuous 
when ki - ~f crosses the boundary of the Brillouin zone. 

The seat tering a rnpli tude can be writ ten as 

/f1 Vp fi dt 
l ~ 

= :J-2 aqj (2/3) i (k_f7'ki) · £,qj G(u), (7.17) 

where u = si~ &/2 = \k('7kil/2 kf· a2(u) is plotted in Figure 7 as a 
function of the scattering angle e . ki--:7'kf has been assumod to be in the 
?'direction. K has been taken as l. 8/ a0 , double the radius of the sphere 
whose volume equals that of ~he first.Brill~uin zone. The two wave:~.with 
largest Xn have been adged w1th relat1ve we1ght factors of (q~Kn) 4, 



Figure 5. 

ISC-687 

k plane intersecting the Brillouin zone in the (0 0 1) 
and (1 1 1) directions. k~kf lies in the zone. cr 
scatters as a normal process, and qt"K scatters as an 
Urnklapp process. The scattering angle is 6. 

35 
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A plane intersecting the Brillouin , zone in 
the (0 0 1) and (1 1 1 ) directions. k~kf 
lies outside the zone. q scatters as an 
Umklapp process and q 7K scatters as a ··. 
normal process. The scattering angle is e. 
The relation between the vectors is of the 
form k~ki = q-:?'K. 
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teo··~------------------------~~~o· 

Figure 7. A polar plot of hs to hs scattering showing a2(u) 
as a f~ction of scattering angle~. u = sin(~/2), 
and a2(o) = 1. ki~f has been assumed to be in 
the ~direction. Scattering from waves with propa­
gation vectors q~Kn have been combined with relative 
weight factors lq~Knl-4 to obtain G(u). 
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VIIL 4S TO 3D SCATTERIN G 

The amplitude for 4s to 3d scattering may be found by evalua ting 
equation (4.30) for the scattering amplitude using the wave function of 
Fuchs23 for U4srr, KJ and the wave functions of Fletcherl7 for 1fJ )d(r, k). 
It will be assumed that ~3d(r, k) is of the form: 

~3d(?,~) 

(8.1) 

.. Vf,here 

(8.2) 

These atomic functions are expressed in a form diff erent from those in 
equations (6.2) through (6.6). Since ~mt . (r) is small outside of the 
atomic polyhedron for tightly bound electr8W§; the main contribution to the 
wave function in the cell about the oriein will come from the Rn = 0 term, 
and only this term will be considered. 

The first term, l?_;v in equation (4.30) for the scattering amplitude, 
is proportional to J U1d U4s d'T" 0 , where 'O'l!d :;. AXD (if . r) U~d. In terms 
of R3d(r), ~d is given by . . 

UjdG",i{) '"' 2(m) b~(iO Y~\-t9-, tp )exp(i kJd·"i!)R3d(r), (8.3) 

since 

(8.4) 

By expanding the exponential in spherical harmonics, one can evaluate this 
integral as follows: 

JUjd u4s d'Z"" o 

• - 2:_(m)4-n-b~(i(3d)Y~(S , $) ~~(k3dr)R~d U4s r2 dr, (8.5) 

where (6 , ~) ar e the pola r and azimuthal angles of kJd = 
~ 

kJd + K. 

The second term, B2, in the scatter Lng amplitude formula equation 
(4.30) is proportional t9e.-/U4s(c Ujctfo s)d?:" 0 , where s is the direction of 
the P.olarization vector Cgj• Integrating once by parts, one gets 
- lu'l!ctCo U4s/b s)d't" 0 • Let b U4s/b ~ be expanded in spherical harmonics 
as follows: 

0 U4s/b s = 2_(m) CJ:n yf(~ ,(/)) u4s• (8.6) 
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rn the same manner as before, the in tegra l aoove be come s :: 

/ ul.+s< o ujctiO s)d't o; - 2:_(m, m' ,i) b~~ Cm' l Y1-m'{} ( e .• ~ ) 
4-rrJY'f Y1-m' Y~' sirJl u9 l<p £~ -(k3dr luJd u).8 r2 dr . (8 , 7) 

The angular integral s of the Drodrc t of -!-,hreG spheri cal harwon"i.cs are tabu­
lated in Condon and Sho"tley . 36 (qly tc;rms f'or wh i ch). = l or 3 do rot 
van1sh . 

The last t erm, BJ, in the sc; tterin r- <m:plitude formula , equa tion (4 . 30) 
i s prooorti onal to q. _,. (V' Ul1.,~ ( ~ li ]ct/ ~ s )dt'"' 0 • By pa~tial in~.gra tion this 
can be converted to - ~..... . j U)d 'V ( ~ U!lS/~ s ) d't" 0 • .!. he term q • \l ( c U48 /o s) 
can be senarated i n t o a spherical anJ a non-so erical part as f ollows: 

~A /.\ 1 

q E. : \1 \/ JL.s =q· ~ (UJ.+ 8/r) 

+ Bcr · ~ ) \ S · ~/r} ( d/~.tr)U45/r) 
.. Ci t : ~ r I? - 1 r2 I 3) I r} ( d/ ctr) < u 4sl r) 

t q . € { <u4s/r) + ( r/3)(d/dr)(Uh8/r) }· (e . B) 

The non-s pheri cal part can be exDanded i n terms of spherical harmonics of 
se cond oraer, that is 

~ 

-,-r .., 2 2 <: ~ 
(r r - I r /3)/r = ~(m) dm Y~( , tp ). (8 . 9) 

The i.ntegr al can now be expanded in the same manner as those above . 

q · fo U4s . ( 0 'U3ct/O s) cfZ:" o 

= -q 2: (rn, rn' , J. ) dm b~r / y~'-rn~} (8 ,~ ) 

I m '-"" m m' m n () j r$ - {' 
:x. Y2' ·· Y2 Y.t - sinA>' d# d ~ 41/

0 
j t ( kJct r) R)ct 

x ( d/dr )( u48 / r) r3 dr -t "'Cl· f i (rn) b~ Yr} (9 , ~ ) 4 -n-
!S {; 

x / J·/::kJd r) Rjd l ( TJ4 8 /r) .-\ r( d/dr ) (U4/r )/ jr2 dr . (8 .10) 

In this ca se the on l y non-zero terr.w are 1. = 0, 2, and 4. 

In Anpendix E the t hree integr als (8.5), (8 . 7) and ( B.lO ) are evaluated . 
C(q ), a f-,ctor of B1 , ic; aop roximate ly 

(G.ll) 

36r;. U. Gonuon a nu G. H. Shortley, The Theory of Atomic Spectra (Cambridge 
Univorsit~r -)ress, C:mbridge, 1935), p . l7 B. -
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In integral (8.5) the sum can be reduced by takinG 
expansion (8.1) to be ~d· Then 8 = O, and 

~(m) b~ Y~( 6 , I) s b~ (5/4-n-)~ = 

the polar axis in 

* o.63 bo· (8.12) 

Using equations (4.30), (E.l2), and ('E.l5), one can evaluate t he sum of B1 
and B3 as follows: 

(Bl + B3)/(i N-~ aqj) 
A 

= t<l.83)(0.63)(0.147) - . 2(0.?213)Jr b8 q[. ~qj 
t 2q (o.294 do b~ + o.3o6 Q1 t 0.337 ·q2) 

- ~ ? = 0.128 b8 q. vqj e~/2a0 

+ q (0.588 do b~ + 0.612 Ql + 0.674 Q~) e2/2a0 , (8.13) 

where 

. ' 

(8.14) 

Referrine to Figure 3, for 3d states on the Fermi level as calculated by 
Fletcher1~ one notices that bo~ 0. Consequently, the only parts of 
equation (8.13) that .contribute appreciably are t hose proportional to Ql 
and Q2• Ql and Q2 are discussed in Appendix F. 

It will now be shown that for normal 4s - 3d scattering, B2 i s ne g­
ligible compared to B1 t B3. Substituting equation (E.l4) into B2 of 
equation (4.30), one finds · 

1 
B2/iN-2 aqj 

= (1i2/2m)(l<j,d- kfis)(o.o539 c0 b~ to.o4B7 T1 )/a0 , (8.15) 

where 

The energy of the phonon, E1 - Ef, has been neglected. T1 is discussed in 
Appendix F. 

In order to compare expressions (8.13) and ( 8.15), the conditions for 
normal scattering to maximize expression (8.15) and to minimize expression 
(8.13) will be sought. Equation (8.15) is proportional t o the amount of 
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lm( = l state, since bo ~ 0. Referring to Figure 3 it is seen that there 
are states on axes .6 and./\. that are pure lml =- l. The larger k3d for the 
Fermi level is on .A. This k3d is about 0.8/a0 in length. This choice 
maximizes k~d- ktis, and thus equation (8.15'). Equation (8.13) is proP.or­
tiotial to q. The minimum q would be with it4s in the same direction as k3d· 
For this case q = 0.8/ao -o.6/a0 = 0.2/a0 • The angle d-. between k3d and q 
is zero. Referring to equations (F.l6), (F.l8), and (F.38), one sees that 
shear waves cause scattering in both B1 t B3 and B2. For this case the 
values of equations (8.13) and (8.15) are 

l l 
(Bl t B3)/iN-2 aqj = (0.2)(0.612)(41r/l5)2 

= 0.118 e2/2a0 2, (8.17) 

l l 
. B2/iN-2 aqj = (0.0487)(0.64 - 0.36)(411/3)2 

= 0.0278 e2/2a0 2. (8.18) 

Thus for normal scattering, B2 at its l argest is still only 0.24 times as 
large as B1 ~ B3, and therefore B2 will be neglected for normal scattering. 

Suppose k3d is on the ~axis. As shown by Figure 3, this state is 
type lml =- 2. From equa·tions ( 8.13) and (F.26), the normal scattering 
probability to any 4s sta te is given by 

(8.19) 

where o< , ~ 2 are the polar and azimuthal angles of q in a system as described 
in Appendix F. The amplitude of the lon gitudinal mode is aql• F2(~,t?2) 
is defined in equation (F.26), and is plotted in the lower left hand corner 
of Figure 8. 

Suppose instead k3d is on the axis 6. There are three states, two 
type lml = l and one ~I = 2. Scattering from the type \m\ = 2 state is 
the same as described above. From equations (8.13) and (F .19) .the transition 
probability f r om the t ype \ml = l state to any 4s state on the Fermi level 
is given by · 

(8.20) 

where , the angles are similar to thos e above, and Fl(oo(,)9J.) is defined by 
equation (F.l9) and i s plotted in the upper right hand _corner of Figure 8. 

For kJd on the axis A , as well a s at .a general position on the Fermi 
surface, the 3d )Vave function cons.ists of both lm\ = l and 1m\ = 2 type 
functions. If one defines b and <S by the relations 
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(A) Contours of F}(~, t?1) are plotted as a runction 
of o<..and r9, the polar and azimuthal angles of cr' 
relative to 1C3d where the azimuthal angle is measured 
in a special system as discussed in Appendix F. This 
function is proportional to the transition probability 
for normal scattering between a purelml= 1 3d state and 
a 4s state. (B) In like manner contours of F2(ot.., f12) 
are plotted. The probability for scattering between an 
~I = Z 3d state and a 4s state is proportional to F2. 
In each case it is sufficient to plot contours for only 
one octant, because of symmetry. 
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0. 612 'b) ~ b cos ~ ' 

-* 0.674 b1 = b sin ~ , (8.21) 

then the transition probability will be eiven by 

(41i/15) N aq12 b2 {:os2 ~ F1(?<, P\) f sin26 F2(0<. ,/i2) 

+sin 2~ F12 (()(.,(Jl,~21(eU/La04) , (8.22) 

where F12(o<.., fil, (J 2) is defined by equation (F .29) and is discussed in 
Appendix F. Equation (8.22) is obtained by the combination of equations 
(8.13), (8.21) and (F.29). 

For Umklapp process , k3d is much larger than kL;s' and consequently B2 
i s much more important than for normal processes. For \m\ = 1 type 3d func­
tions, B2 will contribute most strongly when <f is on the Brillouin zone 
boundary. This behavior can be understood in the following way. 

Both normal and Umklapp scattering enter when q is near a zone boundary. 
Referring back to the discussion on normal and (mklapp 4s - 4s scattering, 
one finds that normal scattering is caused by (f1 and Umklapp scattering is 
caused by qr2 when qis on the zone boundary. By symmetry requirements, 
waves with q's on the square face and on ~ne LW of the hexagonal face will 
have polarization vectors such that one, E1, will be perpendicular to the 
surface, and the other two, t 2 and ~"t' 3, will be parallel to the surface. 
Now 

(8.23) 

and so, since for these cases normal and Umklapp scattering are added in 
equal amounts, contributions from normal and Umklapp processes tend to can­
cel. Normal and Umklapp scattering will not cancel for the other polari­
zations, but will add and be proportio~l to the sine of the anel e between 
~and the nearby K: Contributions of 'E1 will cancel completely if the 
form of the scattering for normal and Umklapp processes is the same, as it 
nearly is for B1 + B3. Thus for q's on the square face and on lines 
analogous to LW there will be a part of the scattering from B1 t B3 due to 
normal and Umklapp terms, and a part from B2 proportional to the amount of 

.tml = 1 3d wave function. The former is proportional to the sine of the 
angle between q and the nearby K: 

4s - 3d scattering is much more complicated in its angular dependence 
than is 4s - 4s scattering. Axial symmetry, as ?OSsessed by 4s - 4s 
scattering is no longer present in 4s - 3d scattering. 
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In this work it has been convenient to cons ider the scatterinr, from 
some ]d states to relevan t 4s states. For conductivity calculations , it 
would be desirable t o know the scattering from any 4s state on the Fermi 
level to all 3d states satisfying the requirements of ener gy conservation . 
This would require a more extensive knowledge of bm(kJct) than is available 
at this time. 

IX. . DISCUSSION 

A. 4s - 4s Scattering 

The most reliable work on thermally induced electronic scatt ering in 
monovalent metals is that of Bardeen.6 The results of the present 
investigation for 4s- 4s scattering arc shown in Figure 7. They agree 
fairly well with those of Bardeen for long wave length elastic waves. For 
short wave lengths , for example , a Cf on the zone boundary, the large Umkl app 
scattering averaged with the smaller normal scattering, gives a result of 
an amplitude about ten times f,reater than that of Sardeen. The deformable 
potential woul d. not be expected to be very accurate for short wave lengt h 
deformations , since if the charge is carried along with the ions , the 
potential locally is not like tha t of a homogeneously deformed crystal, 
deformed to the local strain. This l ast is one of the fundamental assump­
tions of the deformable potential as used in this investigation. In 
brie,f, the results of this investiga tion would be expected to be fairly 
accurate f or small q's (small angle scattering) but probably not reliable 
for large C:' s. 

This investigation prctlicts that 4s - 4s scattering falls off faster 
with s catter ing angle f or small scattering angles, but is larger for l arge 
scattering angles than Bardeen ' s results indicate. This i s in agr eement 
with the analysis of the experimental temperature dependence of monovalent 
metals· by Ziman.l4 

Dardeen treated the ionic cores as rigid and the s electrons as weakly 
bound to them. Upon deforming a crystal, the potential changes in two ways . 
One, t he ionic core poten tials are r elocated at t he new i on sites. Two, 
there is an aJdi tional change in potential due to t he conduction · electrons 
redistributing themselves in t .he new ion core potential. Bardeen computed 

the latter by a self-consistent field calculation. 

In this work a continuous defo rmation is assumed. Conduc tion electrons 
are first considered to move with the ionic cores so that electrical neu­
trality is maintained. · The local potential is assumed to be t ha t of a 
homogeneously deformed crystal, deformed to the local deformation. The fine 
detail of the potential in the homogeneously deformed crystal i s assumed to 
be that of a deformable potential , that i s , the potential in the de formed 

\ 
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lattice at a deformed position i s equal to the potential at the orieinal 
point in the undeformed lattice. A function of strain, independent of 
position, is added to the potential so that the total electronic energy will 
be a minimum f or the equilibrium lattice spacing. If the conduction Alec­
trans are moved along with the ionic cores so that electrical neutrality is 
pr eserved, the Fermi energy may fluctuate in the crystal if t he deformation 
is not homogeneous. Thus to the potential of a homogeneously deformed 
crystal must be added the potential produced by the charge imbalance when 
conduction electrons redistribute so as to equalize any fluctuation of the 
Fermi energy throughout the cr,ystal. 

B. 4s - 3d Scattering 

Matt? has given a brief discussion of s to d scattering. He assumed 
tha t a 4s electron's wave function is of the form 

(9.1) 

where A)) B)) C. Since all functions are normalized, A is approximately one. 
He used the deformable potential to describe the electron lattice inter­
action. The transition probability for s to s scattering is proportional 
to 

I AB I 'f~ \1 v 'f p d'l" I 2 (9.2) 

while that for s to d scattering is proportional to 

(9.3) 

Since both probabilities depend on the second power of B, and A ~ 1, Matt 
concluded that the probability of scattering an electron from an s state was 
roughly independent of whether the final state was s or d. In the deform­
able potential theory as used by Bethe,4 this would mean a constant G(u), 
or so called isotropic scatteri ng. 

WilsonS car ried through a calculation for the electrical conductivity 
of transition metals using isotropic 4s - 4s and 4s - 3d scattering. For 
high temperatures his results agree fairly well with experiment. The low 
temperature resistance depends on the~ in k-space between the s and d 
parts of the Fermi surface. Since ki - kf = -q for regular processes, a 
phonon with minimum q is r equired before s to d scattering can take place. 
At temperatures low compared to the energy of this phonon, the number of 
modes with q large enough to cause s to d scattering will var,y exponentially 
with temperature. Thus, the contribution to the resistance due to s to d 
scattering will var,y exponentially in this temperature region. Since this 
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effect has never been observed, it seems likely t hat the d band energy 
surface fluctuates sufficiently to have the d band Fermi surface inter­
sect the s band Fermi surface. 

Mott•s work on the probability for scattering is only an order of 
magnitude calculation, so it is not surprising that the present work shows 
a moderately strong angular dependence, where he thought the scattering 
would be mainly isotropic. 

C. Umklapp s - s Scattering 

Bhatial3 has discussed the effect of s - s Umklapp scattering on the 
temperature dependence of resistance of monovalent metals. He finds 
results at high temperatures that agree well with experiment, but predicts 
that at temperatures low enough so that few modes with q greater than 

K - 2k4s (9.4) 

are excited, Umklapp processes would be impossible and thus shear waves 
would not contribute to scattering. The consequent lowering of resistance 
is not observed. The results of the present investigation do not predict 
this sharp cutoff in resistance since Umklapp processes do not cut off 
sharply, being averaged with normal scattering with weight factor some 
function of the magnitude of the propagation vector. 

D. Limitations and Approximations 

Aside from using the one-electron formalism, the major assumption in 
this work is that electron lattice interaction can be represented by a 
deformable potential. Since results on 4s - 4s scattering using the deform­
able potential are more nearly like those of Bardeen6 than are Nordheim•s5 
results, the deformable potential seems preferable to the rigid core method 
of Nordheim. 

Some error was introduced by the use of wave functions for copper for 
a calculation on nickel, but it seems unlikely that this would change the 
major results of the calculations. 

Error has also been introduced by neglecting p and d sta te mixing with 
the 4s state. The neglect of wave functions located at ion sites other 
than the origin in equation ( 8.1) for 3d wave functions introduces small 
error since the overlap of 3d atomic functions is small. 

Uncertainty of interaction integrals for the strong binding calculation 
for 3d electrons in nickel leaves knowledge of bm(~Jd) somewhat uncertain. 
Were different types of 3d states than those predicted by Fletcher on the 
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Fermi level, the 4s - 3d scattering would be different from that described. 
Further work of Fletcher•s34 seems to cast doubt on the interaction inte­
grals. 

TI1e numerical integration of matrix elements, and the spherical 
approximation of the unit cell have both introduced errors into the numeri­
cal factors of this work, but do not seem likely to have aff ected the ma,jor 
results. 

E. Conclusions 

'rhe transition amplitude for 4s - 3d scattering is of comparable size 
to tha t of 4s - 4s scattering . Tilat for 4s - 4s scattering has azimuthal 
symmetry as a function of the final k vector relative to the initial k 
vector, while that for 4s - 3d scattering has moderate angular dependence 
both in polar and azimuthal angles of the final k vector relative to the 

. initial k vector. 

For 4s - 4s scattering when k~ki is in the first Brillouin zone, 
normal scattering is caused by the longitudinal part of elastic waves. 
Umklapp scattering i s caused by both the longitudinal 3.nd transverse parts 
of el as tic waves. For small kf--=-"ki = ~ only norrr..al sca tter ing enters . 
As C[ approaches the zone boundary, Umklapp scattering must be added to 
normal scattering, so that whenC[is on the zone boundary, normal and 
Umklapp scattering amplitudes are averaged with equal weight factors. 

For 4s - 4s scattering when kf --=-"ki is outside the first !Jrillouin 
zone , Umklapp scattering is caused by the longitudinal part of elastic 
waves alone . Normal scattering i s caused by both the longitudinal nnd 
transverse parts of elas tic waves. When kf--:"Pki i s on zone boundary, 
nonnal and Umklapp scattering enter with equal weight factors. As k~ki 
increases further, the weight factor for Umklapp scattering increases at 
the expense of that for normal sca ttering so that when k~ki = -K: 
only Umklapp scattering remains. Tilus as k~ki changes from 0 to - FG 
scattering changes from completely normal to completely Urnklapp. 

All modes cause both normal and Un~lapp 4s - 3d scattering. 

X. APPENDICES 

The details of various mathematical derivations in this report are 
included in the Ph.D. thesis of the same title by John B. Gibson, which 
is on file at the library of Iowa State College, Ames, Iowa. These 
derivations are included in Appendices A-F of the thesis. 
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