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MULTI-BAND ELECTRICAL CONDUC TION¥
by
John Browning Gibson and Joseph M. Keller
ABSTRACT

Scattering amplitudes arising from lattice vibrations are calculated
for electrons in a transition metal, with special reference to nickel. The
potential in the crystal is treated as a deformable notential, with correc-—
tions to adjust the zero of potential and to include effeots of the redis-
tribution of charze during lattice vibration.

.The distinction. between normal and Umklapp processes is not a sharp
one when a deformable potential is assumed. Rather, the scattering gradually
takeson more of an Umklapp character as the wave length of the phonon decreases.

The Ls electrons are treated in the weak binding and 3p electrons in
the strong binding approximation. For s-s scattering, the Umklapp amplitude
is larger than normal amplitude by roughly the ratio (kinetic energy at the
bottom of the band) / (Fermi energy), or-about 8, This makes back-scattering
unreasonably likely, and indicates that the method is probably not accurate
for large angle scattering. Scattering amplitudes for s-d scattering are
of the same order as for s-s scattering in the forward direction. The
dependence of s-d amplitude on the various angles is explored.

@

*This report is based on a Ph.D. thesis by John Browning Gibson submitted
August, 1955, to Iowa State College, Ames, Iowa. This work was done under
contract with the Atomic Energy Commission.
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I. INTRODUCTION

The oloctrical coniastiviigy o conovalens nesalsy 1e Talrly well una r-
ctood. The more cormon rultivolent metals are rore complicated, and less
theoretical work has Leen .onz on them. The object of thie investigition
is to stuldy the electrical conductivity of metals for a simple case of a
nultivalent metal such azs nickel whose conduction electrons are of two types.
One type may be characteri:ed 2s behavirg undsr exlerral Jorces as if it had
an effective mass several times greater than the free electron mass, the
other type having a mass nearly cyual to the free e¢lectron mass. When an
external electric field is applied, the Ls electrons, which have the smaller
mass, are accelerated proportionally more than the 3d electrons, which have
the larger mass. Thus, the Ls electrons contribute most of the electric
current.

The external electric field accelerates an electron until the clectron
suffers a collision. Collisions can be between electrons or can be caused
by any lack of periodicity in the metal. Exarples of the latter are
impurities, defects, grain voundaries, and thermal vibrations of the ionic
cores. At ordinary temperatures, thermal vibrations provide the most
important process limitinz conduction. This will be the process considered
in this investigation.

The probability of a collision involves two factors: one, the pro-
batility of making a transition to a given final state, and two, the density
of the final states. The Ls electrons, which carry most of the current,
can scatter into either Ls states or 3d states. These are the only states
that are possible from energy requirements. The density of 3d states is
much larger than that of Ls states so Ls to 3d scattering is the dominant
one in limiting transport pheromena in metals of the type of nickel,
provided that the transition probability into a 3d state 1s comparable
with that into a Ls state.

In the presentation of this work, {irst a survey of metallic conduction
is given showing the relation of the probability of scattering with the
corduction process. Then, the probability for Ls to Ls scattering is dis-
cussed. The probability for ULs to 3d scattering is then calculated and
the probability of the two types of scattering commared with each other and
with other workers' results.
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II. LITERATURE SURVEY

Houstonl and Bloch? have investigated, on the basis of quantum
mechanics, the way in which clectrons interact with a crystal lattice when
an external electric field is applied. Brillouin,3 and Somrerfeld and
Bethe,4 assumed with Bloch that as ionic cores vibrate, the electric
potential deforms with the crystal without changing magnitude. This type
of potential is called Jdeformable. Nordheim’ objected to this assumption
because he believed that the most important contribution to the notential
is near the ionic core. He assumed that the potential consisted of the
sum of ionic potentials located at displaced ion sites. Bardeen® performed
a self-consistent calculation takin - into account ionic potentials located
at ion sites and thc potential change due to redistribution of conduction
electrons when ions are disnlaced frem their equilibrium positions.
Bardeen's method is better justified than cither the deformable potential
or the rigid core potential of Nordheim, but it is only suitable for
monovalent metals with nearly free electrons. OFf the two methods, the
deformable potential predicts s - s scatteringmore nearly like that
calculated by Bardeen than does the rigid core votential. Thus the
deformable potential will be used in this work.

Motf7was the first to suggest that the reduced conductivity of
transition metals could be attributed to s electrond being able to scatter
into d states as well as s states. He estimated that the probability of
s - s scattering between definite initial and final states would be about
the same as that of s - d scattering.

1w, V. Houston, Z. Physik 48, LL9 (1928); Phys. Rev. 3L, 279 (1929).

2F. Bloch, Z. Physik 52, 555 (1928); 59, 208 (1930).

31. Brillouin, Quantenstatistik (Julius Springer, Berlin, 1931).

La. Sommerfeld and H. A. Bethe, Handbuch der Physik, Vol. 2L,
Part 2 (Julius Springer, Berlin, 1933} p. L99.

5L. Nordheim, Ann. Physik 9, 607 (1931).
65, Bardeen, Phys. Rev. 52, 688 (1937).

N, F. Mott, Proc. Phys. Soc. (London) 47, 571 (1935); Proc. Roy.
Soc. (London) A153, 699 (1936).
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W’ilson8 used the estimate of Mott for s - d scattering to calculate the
conductivity of transition metals.

The importance of electron - electron scattering was recognized by
Baber.” He found that the resistivity of transition metals should have a
small T2 dependent term added to the usual formula, as is observed in
platinum. Electron - electron collisions will not affect resistivity in
metals where all conduction clectrons have the same effective mass, as in
this case the current carried by two electrons is proportional to the crys-
tal momentum, and thus is unchanged by the collision.

The idea that conduction electrons can redistribute to equalize the
Fermi energy and thus produce an additional potential was developed by
Landauer,l Dexter,11 and Hunter und Nabarro.l2

Bhatial3 and Zimanlh discussed the effect of Umklapp scattering
processes on the . temperature dependence of resistance of monovalent metals.,

I1I. SURVEY OF METALLIC CONDUCTION

The fundamental property of crystalline structures is their trans-
lational symmetry. Thus in a one-electron approximation, each electron
would find itself in a-periodic potential. Aecording to Bloch,z—wave
functions for an electron in a periodic potential can be put in the form

FFD = ek - 7 UGB, (3.1)

where U(F, k) has the periodicity of the crystal in the variable T, the
electron coordinate, and is normalized in a cell containing one atom. N
is the number of atoms in the crystal. In this work, one atom per unit

84. H. Wilson, Proc. Roy. Soc. (London) Al67, 580 (1938).
9W. G. Baber, Proc. Roy. Soc. (London) A158, 383 (1937).
10r, Landauer, Phys. Rev. 82, 520 (1951).
. L. Dexter, Phys. Rev. 86, 770 (1952).

125, ¢. Hunter and F. R. Nabarro, Proc. Roy. Soc. (London) A220, 5L2

134, B. Bhatia, Proc. Phys. Soc. (London) A65, 188 (1952).

sy, Ziman, Proc. Roy. Soc. (London) 4226, L36 (1954).
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cg}l will be assumed. The vector k is called the propagation vector, and
fik the crystal momentum; A is Planck's constant divided by 27]. The energy
of the state will be a function of K.

It is well knownl® that the mean velocity of an electron in a Bloch
state is given by

vi = (ﬁ/im)/p *QP/x1)dT = SE(X) /0 ks .  (3.2)

If an electrostatic force is applied, Houston16 has shown that as a wave
packet progresses, the time derivative of the crystal momentum is equal to
that force, that is

d(KR)/at = F, (3.3)

where F is the external force. It is a basic law of all mechanics that the
time rate of change of momentum is equal to the force; for electrons subject
to periodic potentials, as well as external forces, the time rate of change
of crystal momentum is equal to the external force. An effective mass can
be defined in a manner analogous with Newton's law. For

dvi/dt = dvy/d(tky) dlfiks)ds, (3.4)
so if one defines the effective mass by
(U/m)yy = avi/d(fk;) = d2E(K)/d(hki)d@ik;), (3.5)

(by eguation (3.2)), then the equation of motion will appear in its familiar
form

dvi/dt = (1/m)ij Fj; (3.6)

however, 1/m is a symmetric tensor. Equation (3.6) follows from Houston's
theorem, equation (3.3).

Sommerfeld and Betheu gi%e an extended formulation of the electrical
conductior calculation, so only a brief résumé of their discussion will be
given. If f(KA, t) is the probability, at time t, that the state of band

with propagation vector X, be occupied, then for a steady state

(2£/3 t)rie1q + (9£/¥t)co11i5i0ns = O- (3.7)

15, Seitz, The Modern Theory of Solids (McGraw-Hill Book Company Inc.,
New York, 19L0) p. 316.

16y, v. Houston, Phys. Rev. 57, 184 (19L0).
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In a uriform electric field in the » direction, Ly, one has

]

/ Y \ ) 3
(df/ bt)field = eBy (3 £/0 (Ak,)) = ety vy (dfo/dE). (3.8)
The first equality isagain iouston's theorem; the second is obtained by the
avproximation of replacing f by £, the ecuilibrium value, which .icvnends on
—7 i .
ky orly through E(k). Tha charxe of an clectron is -e. Thun the equation
for £, the Boltawann eguaticr, is acs follows:

-6 By vy (df/dB) = (3 f/9 t)collisions. (3.9)

The electric current is the sum of the currents of cvery state,
Dy = 2Z (L) [ vy (R AE/ (273 (3.10)
rd

the factor 2 accounts for the two spin orientatiors, and the fuctor (%7?53
arises trom the density c¢f states in k- space.

In order to calculate ( bi,h t)vulll‘lons’ one must first calculate
)w/(k,é7 K A ), the procability ver unit time that an electreon in state
kl’nakes a transition to a s 1tOTZ {'. J¥or sufficiently long times this
is equal to

Wi, f) = (Qﬂ'/ﬁ),ﬁ”?’ a d't'jz d(E; - Eg), (3.11)

waere i indexes the initial state, end £ the finzl state. V. is the ver-
turlin, potential causing the trarsiticr. The expression o(E; - Ef) is
dolt function of the differcnce of thoe initial anld Tinal cnerglas.

uncao )VTE,P k',(' knowr, (3L/d t)ey 11J10ns may be delermined
rr nhe following mannar, b “oduct of (& the probability thet
stoun kf be occuwled, tines M?,( )4 L), tlfnes {1 - f(}z',Q ), the

nean oL i1lity that state ' 4" be emnty, is th- Urobdblllty ner unit time

-
N
-
L

thiit an electron makes a2 trarsition Trom abate kg? to shate k'/k' This
=, et summed over bands ,(' and interatod over B' sives the net loss
cround s time from state k,f fhe net zuin oer unit time can be similarly

o orasds (0D/ D U)C01¢1ﬂlmhs is the difference, thus

( b 5‘\—‘: )/// b L) ‘1j_iui(‘lrlo
24 [h/(k L, 7L (0L {1 - 2K}
S GA LT ) TR - ] e, (3.12)

Surstituting cquation (3.12) for the risht hund siue of equation (3. 9, onc
sutoing the oeltassmm equation for £k ,t). Lo determine the current an

"

L v consuctivitby, the scolution o ULQ 3eltzmarm cquation must be
substituted inte e expression for the current, equation (3..10). Before
this formiaable task can be starteuw, the transition amplitude for scattering,
muist be found.

[V/P v, i AT (3.13)
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The object of the present investigation is to make a more gquantitative
estimate of integral (3.13) for s - d scattering than that of Mott7 and to
study the relation between s - s and s - d scattering. In particular, it
is of interest to show the importance of shear modes on electronic scatter-
ing, and to study the angular dependence of scattering, facets that have
been ignored for the most part in previous work.

Nickel was chosen as an example because information on its wave
functions and energy bands is available from recent work of several
investigators.17-1

IV. THE SCATTERING AMPLITUDE

The scattering amplitude for the perturbation Vi, is given by integral
(3.13). In this case the perturbation V, is the difference between the
potential in a static, perfectly periodic crystal lattice and the potential
in a crystal lattice where the ionic cores are in thermal vibration.

If one considers the potential energy of a crystal as a function of
the displacement of ionic cores from their equilibrium positions, and makes
a Taylor's series expansion of the energy in terms of these displacements,
the first non-constant terms will be the quadratic terms. The linear
terms will be zero from the equilibrium condition. For small displacements,
quadratic terms give a good approximation to the energy. Then "normal
modes™, that is traveling plane wave motion, can exist in which each ion
undergoes a motion with definite phase relationship to the other ions. _In
a normal mode the displacement of the ion with equilibrium position at Rp
is given by '

g

S, = N-3 a f?cos(a’- Ry -wt +4 ), (L.1)

where for each propagation vector d, there are three polarizations’giand

in general three frequencies w. The polarization vectors for these three
modes are mutyally perpendicular. For long wave lengths in an isotropic
medium, one mode is longitudinal, the other two transverse. In a longi-
tudinal mode, the propagaticn vector is parallel to the polarization vector;
in each transverse mode it is perpendicular. The amplitude factor, N—2 a,
is picked for convenience.

17G. c. Fletcher, Proc. Phys. Soc. (London) A65, 192 (1952).

185, C. Slater and G. F. Koster, Phys. Rev. 9k, 1L98 (195L).



IsC-687 7

Any veneral rotion of the lons can he renressented as 2 lineur cowbin-
ation of rornal rodes (phonons). The phonons can b quantized ani Torm
a Bose-Binstoin syster. The displacement Sy of +the ion at Rp can be written
in gencral as '

{

A -
5:1 - N-F 2(q,]) %qj {aqj exp(ig * Ryp)
+ azj exp(~-iT - ®u) ¥, (L.2)

where a g is the destruction operator for a phonon in the qj th mode, and
3¢ 3 3 » s . s

ags 1s the creation operator for a phonon in the gj th mode. If Ngy is the
nuimber of phonons in the gj th mode, and M is the mass of an lon, the

operators have the followingz transition amplitu iess
. 1
(Ngy - LlagsllNgy) = (fingj/2M wWoy)Z, (1.3)
; * 1
(Ng3 + 1|agiiNgy) = (H(Ngj + 1)/28 wgi)= . (L))

Equation (4.3) is the matrix element of agj connecting the initial state,
with qu phonons in the gj th mode, and the final state, with qu -1

phonons in the same mode, the conient of all other modes remaining the same.
Bquation (4.L) has a similar interpretation. The matrix elemsnts of the

a's between all other types cf states are zcro, thus the content of one

mode can change by only one phenon at a time. For thermal equilibrium of

the ohonons, the average number in the gj th mode, qu, is Fiven by the usual
forrula, that is

N'qj = {_exp(‘ﬁwqj/kT)’ - l}"l s (4.5)
where kK is Boltzmann's constant, and T is the temperature.

For high temperatures

and thus
N —_ T N *. N Pl
(g = laqy[Ngs) == (Ngy + 1|aqs|Nqy) ==
(kT/2IvI)'2'/wqj . . (L.7)
For elastic waves in isotropic materials, and elastic waves traveling along
orincipal directions of cubic crystals, waves separate into longitudinal

and transverse modes. In pensral, longitudinal waves will have a velocity,
Vg greater than that of transverse waves, vg. For many materialsl?

vp /vy A= 35, (4.8)

19G. Joos, Theoretical Physics (llafner Zublishing Co., New York, 19%0),

second edition, p. 1CO0.
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Since
w = vy q, (J.Lo9)

the amplitude of transverse waves is greater than that of longitudinal waves
with the same g by 2bout a factor of 3=.

For the general case of elastic waves in a crystal with'one atom per
primitive cell, there will be waves of three different (and perpendicular)
polarizations for each pronagation vector q. These waves will not in general
be separable into longitudinal and transverse waves., The waves of all three
polarizations may contribute to scattering between the same initial and
final state. DBecause the phase relations between them are random, the total
transition probability will be obtained from the sum of the squares of the
transition amplitude for each mode. In the nresent work, the elastic waves
will be treated as if one volarization is longitudinal and two are transverse
for each wave vector. Any the amplitude of the transverse waves will
accordingly be taken as 33 times the amplitude of the longitudinal wave.

As shown in Appendix A, the perturbation of electrens by the lattice
vibrations can be considered as a sum of perturbations, one for each mode.
Only modes of a single g will scatter an electron between a given initial
and final state, so the perturbation potential due to only a single mode
need be considered. Thus the scattering process is that of an inelastic
collision, an electron absorbing or emitting a phonon, and changing its
energy and crystal momenrntum so as to conserve both energy and crystal
momentum of the system of electron plus phonons. The conservation of encrgy
arises in the timc dependent perturbation theory, and the conservation of
crystal momerntum is deronstrated later in this section.

Bloch,? in his early work on the conductivity of metals, assumed that the
potential in a deformed metallic crystal is deformabley that is, the
potential in the deformed crystal Vyer, (F) is given by

Vaor, (B = V{r 5@ (4.10)

- - T i~y
where the deformation consists of taking a voint at ¥ to a voint at r + 3(F).
Thus the potential in the deformed trystal at the new point i equal to
potential of the undeformed crystal at the old noint. Followin: Bloch, in
this work it is assumed that the fine structure of the potential is as
given by equation (L.10), but slowly varyirg functions of the local state
of strain of the crystal are added to the potential for two reasons. The
first of these is that even in a homogeneously deformed crystal the total
electronic energy does not change to first order in strain. With 2
correct potential, this stationary proverty is automatic; in an anproximate
potential it provides a wethed ol adjustin: the zero of notential. The
second reason is that in an inhomogencous dcformation, some redistribution
of charge takes place to keep the Fermi level constant throughout the
crystal. ‘
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Appendix B derives the function of strain that must be added to equation
(L.10) to have the total binding energy independent of strain to first order.
The potential in a homogeneously deformed crystal, Vh(?), is then given by

T(E) = VTS )+ (2/3) {(KB)p - (2/5)8 LA, (L.11)

where A is the dilatation (that is, the volume increase per unit volume).
(KE)p is the average kinetic energy at the Fermi level, defined by equation
(B.2ﬁ). The Fermi energy for the undeformed crysta].;', is the difference
in energy between the highest occupied state and the lowest occupied state
of the conduction band. A normal band has been assumed, that is, one in
which the energy above the bottom of the band is proportional to k2.

For sinusoidal deformations, as is shown in Appendix C in a manner
similar to that used by Hunter and Nabarro,12 the potential in the deformed
crystal can be obtained by adding to the potential of a homogeneously de-
formed crystal, deformed with the local deformation, the potential

- (DEF/DA) A(T) (1 + Xg?)™1, (L.12)

due to redistributed charge. Here (DEF/DA&) is the derivative of the Fermi
energy with respect to dilatation keeping the crystal everywhere electrically
neutral. d is the propagation vector of the sinusoidal deformation. For a
band in normal form, X is given by

K = (MA2/lm* kp €2) =Trao m/bkp m* , .(h.13)

where kp is the k of electrons with the Fermi energy, and m* is the effective
mass. agy is the radius of the first Bohr orbit, a, -‘ﬁz/mez. DEp/DA is
shown in Appendix B to be - (4/15)% . If one combines equation (L.11) and
term (L.12), one finds for the potential in a sinusoidally deformed crystal,
V4(F), the expression

Va(F) = V{_r_—’S('r"')}f
(2/3) [(kE)p - (2/5)°{1 - (1 #%a®D) 1Y F]AD. (L.11)
Except for very near the origin, V r—:vé(;) may be expanded in a Taylor's

series in S keeping only the first term since S(¥) is small. Thus the
perturbation potential, Vp(iq, is as follows:

Vp(B) = V(P - V() = - s(®) - VV(F) + cq) AP, (L.15)
where .
o(a) = (2/3) [(kB)F - (2/5) {1 - (L + X1V S ] . (L.16)

Equation (L.1lh) is the perturbation potential in terms of a continuous
deformation wave. In order to use this equation, an expression for S(¥),
the continuous displacement vector, is still required. Equation (L4.2) gives



10 1SC-687

the displacement Sy of a core from its equililsmiw~ cosition Rn Lt ceems
reascnable 4o assume for S(®) a similar formn,

-\ (\
\

~ 1_ .- — < e )
S(F) = N- qu {3q,j exp(id . 7) + a:;j exp(-1i; . T L.

-J

)

. . . . . -~
for the gj th mode. This exprossion certainly has the correct form when v

. e~ 4 . . . ——— . .

is near a Rp. It will be shown later (in section VII. B) that this exnrossion
is satisfactory for long wave lengths, but corrections must be annlied for
wave lengths near the minimum,

The strain tensor is defined as follows:
n 15 = {5/ 0xp) + (dsy/2x) /2 (4.10)

while the dilatation A is the trace of the strain tensor, that i

[&]
os

A ="'"\11 +V\?2 +V\33. (ll.19)
. From equation (L.17) it is seen ﬁhat the {il~tation for the qj th mode
is .
g LA > 7
A = N-si qu . ?{?qj exp(iqg-r)
- af; exp(—ia'-?)} . (4.20)

Substituting equations (3.1), (L.1L) anl (L.20) into equation (3.13), onec
can evaluate the scatterin; amplituce for the gj th mode as follows:

A
= N-3/2 ag; iC(q)Aa' . Equ exp(il:':. . 7) U Uy aT
exo(i, -+ B) Ty vv(") Ut Uy dT}
_y-3/2 af;‘j {ic(q) q - qu /:x{o(JK- - 7) U% Uy 4T

r g o ,
+ Jexp(iK. « B Eg5 VIR UE U d’Z‘}, o (h.2)
whare K+ = E’i + Z—E’f.
A1l these intesrals are of the form N1 /eﬂm\l.L . —Z) i(7) JdT, “ere
F(¥) has the Sariodied by o* the 1.ttice, i.c., F(r :7Tn) = (7).
Variables can be changed in each cell so that the integral becomes

g e

N1 E(n) exp(i? . %)/exr-‘k}l{ . (r - R, )L F(r - 'ln) a7,
= A1 S(n) ep(iK - T, (L.22
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whipe A = //exp(i? « 7)) F(F) dT,, an integral over the O th cell. The
sum over une lattice can be norformed along one translation vecter 2t a
time. Egch_}s a geometric series, the ratio ot terms heinz moilulus onc.
Unless K « Ry = 27rm, where Tor °V°PV n, T is some integer, thq_fhw re-

mains bounded as the size of the crystal rrows indefinitely. If K =
27rm, LJLF the sum of L series is }ust the nambsr of ators iIn the PVAtal
ani N7 ii(n) exp(iK - 7)) = 1.
Sapoos.: ], Ao, @3 are tihe orinitive vectors of 2 crystal, that is,
the ator positions ars generiated by R —;' = N3] + Nodb # n3ay, the n's being
integers. Reciprocal vectors can be defired so that DY = 2@ X'EE/(EE . 3; X 53
precol lattice is then senera ated by EL_ i

an J 30 Lu“tﬁ, cl1callv. A reci
nlbl + n2b2 + n3b In orier tha n o= 27m, K = 2ﬂ'7 . Unlh,s kg
T-Tr = 275, = KG, tus 7.!\.1,«”‘"1*:11/"/* Ve dT will oo bom “ero as
tihe q:}urﬁ_gg Lhe crystal lﬂc*cqggs. Bﬁ’ reasen for this is that N“lzi (n)
cxp(iK” « Rp)=»0 as Ndesinless K = 2L,

1+

ooonential ir the forr cxo(ik - ?5,
T will not change its o lect.

Since K !
adu vy 27 tives any i
The- Tivet Deillouilr son. cov _ nnt ot of k-space as near the
ovrigin an 27t nes 2wy other re < vector. Sy alding 277tinres sore

bxd
an. @ enter only

rocinrocsl 1anhloe wochoe, o oode o Ml T
song, _This will b~ assumedbe 2 E:,.E} and o o L L B e
o 14, hn imotho oxoreeion -I?i n will © either thie origsin or
a nearovy K e ctor._,lf'?% is nob erc cotlision 211led un Unklanp
J“OCCﬁg, wolle AT K o= 0 the died s “OCESS .

= ’T’an S 5ions Ry + oo e =

1 s -

c”tlfileu elrultM“LoLvlv Uy the
", w113 cssure the flrs+ relation

Lo g cuovion. (Le2l), -7 would cause
scattering pr
states with t Yosc considered. iu the first
cere, ohut 1 wuon ErcauSLs iy, and the scattering amplitude
is provorticnal to acjs i@ _ﬂnal electroric ererry 1 greater than the
initial clectronic ntegy Ly the energy ol 2 uhonon. The reason is that
agj destroys & plonon durin, !le scablerin, nrocess. Similarly, the final
ectronic cneryzy i less than the Inltizl clectronic energy by the energy
of 2 phonor for tha case of -4 causin: scatierin: aronor®ional o aiq e
The first ouse will Lo curried alor: the =ecend cise can be obhsinel from
the [ired Ly insooctiom,

I'\ :’ N T L)

cuerLionni e g ivr scattering between
Y

he: same prosos

s

-8
[

the scattering amplituie c2m now be

From the fact thnat Ky is
ritten

4 1 , PN —
/Vﬂf Vp 1 dT = W2 ’*qj{lc(Q) T Eqy f TR Uy AT,
2 =5 ~
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; -
where U? = U§ exp(ii’.-g), the plus being Jdrovped on K. Since
/43 - exp(iz} ‘.;) Up = exp i(k;—z K) - ?{}T&u (L.2k)

=7

Tp corresponds to a X of -E’f + K = kf.

By partial intearation, onz can convert the second integr:l of eguation
(L.23) as follows:

it -
ST U (D V(®/Ss) a7 =
- J1®) {b (0} v3)/ s} T, _ (L.25)
. - - A
where s is in the direction of & .:. The surface torms Jo out since U}{,
Ui, and V(®) are periodic. #satisfies the Schrocuinger equitien
{-t2/2n) v2 + V@ - E}P(gz) = 0, (1. 26)

so Uj satisfies the cquation

(62/2m) (V2 Ui + 2iK; - WU;j - ki2 Ui) +

(Ei - V) Ui = 0. (h.??)

Similarly, ﬁ% satisfies the following equation:
— e 4 - - 5 =
¢i2/2m) (v 2 Tf - 2ikr - VUF - kp? UF) +

If one -ultiplies equation (L.27) by (bﬁ')f/é s) and equation (L.28) by
(dUi/¥s), and adds, the resulting equation, integrated by parts, is

- 1 1‘:5 (T% v1)/a s:} 4T, = ~(#2/m) (ki ZKp) .
/YUy @ Ti/ds) 4T, - {Bs - Bg = (8/2m) (5 -Ef2)}
Jus (2T/ds) aT o - (4.29)
The scattering amplitude can then be written ar
/b}* Vpfi dZ = N-% agj {_iC(q) q - /éqj /ﬁ?‘ Ui a7 By
+ By - B - 0%/2m) (2 KD fs @ TRR 5) a7, B,
- h2/2m) 1T . 2/VU; (D TH/>s) d’Z‘o} . Bs
(4.30)
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Equation (L4.30) will be evaluated for a Ls initial state and either
bs or 3d Einal states in later sections. Parts By and B3 are as derived
by Bethe,“ while By is new, arising from slowly varying functions added to
the deformable potential as used by Bloch? and Bethe.

V. THE LS BAND IN NICKEL

in order to ev=luate the scattering amplitude as given by equation
(L.30), the wave functions and energy values of the electrons must be found.
The Ls band in nickel is similar tc other s bands in metals in being weakly
bound, that is *the wave functions of Us electrons have appreciable magnitude
in the region between ions. A standard method of treating bhands of this
type, as discussed by Seitz,20 has been used for the Ls band of nickel,
The periodic part of the wave function in Bloch form, U(T, K), satisfies the
equation,

- {@%/2m) (92 + 2K 'y - k2
+ E®) - v(?{} uT, ¥ =o. (L.27)

The solution U(¥, ¥) can be expanded in terms of U(T, 0) of all bands, by
using a perturbation energy of

H' = -(A2/m) K - iV + (f2/2m) k2, (5.1)
since the functions U(¥, 0) form a complete set of periodic functions.

Using standard non-derenerate second order perturbation theory, 21 5ne can
expand the energy of the £ th band for small K as follows:

E) (k) = By(0) - @2/m) ¥+ (f]iv|4) + (#2/2m) K2
+ (/) BE £ L)1y 4) (L ]ivl)
—:-{D/e (O) - EA ! (O)}, (5.2).
where . »
i g (%0 AT, = & |19/ 4" (5.3)

This is only valid if the f th state is non-degenerate at K = 0. The effect-
ive mass of the { th band at ¥ = 0 is obtained by twice differentiating

ﬁ* (r; 0) iU

20F, Seitz, op. cit., p. 352.

ely, Schiff, Quantum Mechanics (McGraw-Hill Book Company, Inc., New
York, 1949), p. 149.
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equation (5.2).
(1/m)pq = 2 E g (k)/D Ufkp) D (fikq) = (1/m)dpq
LA DRITE ATDIS U IR

« 17514 '>(12'\ivq|,()}/{Ei(o> - Eﬁ'(oq. (5.L)
Similarly for small k's, U, (¥, K) can be expanded to first order as follows:
U @F B =Uy (7 0) - (B2/mF - £(L (R iv] X
Uy (7, 0)/ {Ei (0) - Ei|(o)}. (5.5)

As seen in equation (5.5), the energy denominator is favorable to appreciable

mixing only for states of energy near Eg (0). Further, solutions for k =

can be classified according to their symmetry, and for crystals of high

symmetry {such as cubic) this is very useful.22 Wave functions arising

from s states have full cubic cymmetry (r-l) The operator iV has symmetry
r-ls, and so in first order perturbation can connect s states only with

states of symmetry r-15 These include p states, some f states, etc.

The matrix elements connecting the Ls state of nickel with the 3p state
and the lip state were estimated. The %s wave function used was that cal-
culated for metallic copper by Fuchs.? Copper and nickel have the same
crystal structure, face centered cubic. The lattice constant2l for
copper at room temperature is 3,608 x lO‘8 cm while that for nickel at
room temperature is 3.517 x 10-8 cm. The difference between lattice con-
stants 1s about three percent, The 3p wave function used was that calcu-
lated by Hartree and Hartrjee25 for the Cud ion. Since the 3p function of
copper is tightly bound, one expects the wave function of electrons in the
metal to be nearly equal to those in the free ion.

221, P. Bouckaert, R. Smoluchowski and E. Wigner, Phys. Rev. 50, 58
(1936). This paper Wlll be denoted as BSW in later references.

23K. Fuchs, Proc. foy. Soc. (London) A151, 585 (1935).

2lg, 1. Hodgman, Handbook of Chemistry and Physics (Chemical Rubber
Publishing Co., Cleveland, Ohio) thirtieth edition, p. 2016.

( 25? R. Hartree and W. Hartree, Proc. Roy. Soc. (London) A157, LSO
1936
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The Lp wave function wis calculated by the quner—oeltz~6 =21 method,
using the potentizl for Cut of Hartrce and Hartree.2® In this method the
atomic polyhedron is anproximated by a sphere of equal volumc. In the face
centered cube, there are four atoms, thus, for ccpper the volume per atom is
(3.608 x 10=8"cm)3/L = 11.75 x 10'2ﬁcm3. The volume of the sphere is

hTrrs3/ 3, so the radius rg = 1.41 x 10-8 ¢cm = 2.7 ap, where ay , the radius
of the first Bohr orbit, is a, = 0.528 x 107Y cm.

Since the notential z2ni the regicn are spherical, the solution will be
in terms of spherical harmonics:

Gu(Ty 0) = YL, P) Ry(e) = A, p)E) (2)/r. (5.6)
The radial nart of *he wave furction satisfies the equation,

(12/2m) {a%P (x)/ar? -0 (P4 1) By (r)/x2 } 4

{E - V(r)} Po(r) = 0. (5.7)

If distances are measured in terms of the radius of the first Bohr orbit,
ap =A2/me? = 0,528 x 10~8 cm, and cnergies in terms of the Rydberg, that
is, e2/2aO - 13.% eV, the above equation becomes:

__L___dP (r) . E-v -+ 1)/r2} P, (r) = o. (5.8)

Since spherical harmonics arce ortho-normal, that is:

ﬁm (,9 Q) Ym' (9 P) sinfd,a¢ -ﬂ£1|dm, (5.9)
in order that //b U dTb = 1, the P's are normalized so that //? 2 dr = 1.

Solutions to equation (5.8) are Fecurd in the following manner. For
small r, hydrogenic wave functions may be used. These are given, for
example, by Pauling anu Wilson.2% This solution for small r is extended
in steps by calculatlnb the second derivative of Pp from equation (5.8)
for somc assumed value of energy. LThe change of the first derivative in an
interval is cemputed from the second derivative. In the same manner the

26g, Wigner and F. Seitz, Phys. Rev. Eé, 8oLy (1933).
275, Bardeen, J. Chem. Phys. 6, 367 (1938).

28, Pauling and E. 5, Wilson, Introduction to Quantum Mechanics
(McGraw-Hill Book Corpany, Mew York, 1935), p. 136.
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change in P, in an interval is computed from the new value of the first
derivative. With the value of the function at a new radius, a new second
derivative is computed and the process continued, extending the function
for increasing r. The entire process is repeated with other assumed
energies until an energy is found for which the computed function satis-
fies the appropriate boundary conditions. In the case of p functions,
since Up(¥,0) is periodic in the unit cell, and odd with respect to
either x, y, or 2z, it must vanish halfway between nearest neighbor ions.
Thus, the boundary condition on Ph (r) is Phn(r ) = 0., Table 1 gives
R),<(r), Py (r), and Php(r) as well as r(dR)q/dr) at intervals of 0.1 a,
from 0 to 8.7

_ From equation (5.5), the rate at which p functions mix with s functions
as k is increased is

-(6/m) (p|1v|s)/{Es(0) - Ep(0) } . (5.10)

The matrix element can be evaluated as follows:
0
(pg|0/2 z|s) =’/Yl Ty Ry Ry (z/r) 4T, =
1 s
37z [Rp Ry r2 dr, (5.11)
. 1 0 1 .

since Yy = (LTr)~2, and ¥ = (3/LT)Z (z/r). The matrix elements were
calculated from the functions in Table 1, numerically integrating with
intervals of 0.1 a,. The trapezoid ruleé9 was used; that is, the integral
was approximated as the sum of the integrands minus one-half the end point

values of the integrand, multiplied by the interval. The matrix elements
are given below:

ﬁﬁpz(?,o) ‘QE‘ Uys(r,0) d7-, = 0.055/ac, (5.12)
/Uﬁpz(?,o) -g—z—U)_Ls(_r?,o) dT, = 0.31/a, . (5.13)

The Ls band of nickel has 0.6_electrons_per atom so the number of states
filled in the Ls band is Lwk3/3 (273 = 0.6N/27. Since N/V = (3/LTT)
(2.7ap)=3, kg = 0.58/a5. The'energies of the three states are:

E)s(0) = -0.8 e2/230, (5.14)
E3p(o) = -7.3 eg/2ao, (5.15)

29W. A. Granville, P. F. Smith, and W. R. Longley, Elements of the
Differential and Integral Calculus (Ginn and Company, Boston, 19L41), p. 2LS.
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Table 1, Normalized wave functions for copper

r/ao R)s rR)\ P3p Pip
0.1 -0.772 -3.86 0.607 0.3LhL
0.2 -0.715 0.82 0.400 0.233
0.3 0.0LY 1.79 -0.2L9 -0.129
0.4 0.47° 0.93 -0.80L -0.4l1
0.5 0.513 -0.12 -1.123 -0.602
0.6 0.L430 -0.72 -1,235 -0.63)L
0.7 0.270 -1.16 -1,212 -0.56L
0.8 0.099 -1.25 -1.115 -0.435
0.9 -0.0Lk -1.10 -0.986 -0.261
1.0 -0.148 -0.87 -0.848 -0.067
1.1 ~0.219 -0.70 -0.717 0.133
1.2 -0.274L -0.61 -0.598 0.330
1.3 -0.323 -0.60 -0.494 0.501
1.4 -0.361 -0.42 -0.405 0.657
1.5 -0.384 -0.32 -0.350 0.77L
1.6 -0.39%9 -0.23 -0.296 0.891
1.7 -0.397 -0.1l4 -0.236 0.942
1.8 -0.420 -0.08 -0.176 0.994
1.9 -0.422 -0.02 -0.1L45 0.978
2.0 -0.420 0.02 ~0,11k 0.963
2.1 -0.418 0.06 -0.094 0.882
2.2 -0.416 0.13 -0.073 0.801
2.3 -0.409 0.13 -0.060 0.666
2.4 -0.405 0.06 -0.047 0.531
2.5 -0.4L0kL 0.02 -0.038 0. 361
2.6 -0.403 0.0k -0.030 0.191
2.7 -0.401 0.0L -0.025 0.000
E -0.8e2/2a, -7.3e2/2a, 2.2e2/2a,
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Bip(o) = 2.2 e2/2a,, ' (5.16)

so the amount of 3p and Lp states mixed with the s state at the Fermi level
is:

-ei2/m) (o |19[ks) - F/{Ble) - Byyl0)} =0.085, (5.17)
-a2/m) (p [i9[Ls) - K/ {E (o) - E(o)}

These calculations indicate that the nearby states do not mix appreciably
with the Ls state.

0.021. (5.18)

This result is somewhat surprising because 3p states are presumably
very tightly bound and thus E3p(F0 = E3p(0). In this case_the 3p functions
have three-fold degeneracy, since they have ris symmetry.22 For state px
and ¥ in the ky direction, the energy is the same expression”“ as given for
the non-degenerate case, equation (5.2). Equation (5.2) applied to 3p
states. says that coupling of 3p (k = 0) with other k = O states must can-
cel off1ﬁ3k2/2m. 3p - Ls coupling should be the most important single con-
tribution. The same matrix elements and energy denominators are involved
as in equations (5.12) to (5.16). Evidently the 3p state gets small con-
tributions from many different states. OSimilarly, one might expect many
states to mix slightly with the Ls state as ¥ is increased from k = 0.

Slater3l has calculated one-electron energies of solids by averaging
x-ray term values. Band widths have been taken from soft x-ray levels. He
gives the ls band width (% ) of copper as 0.5 e2/2a,, and the 3p state as
located 5.1 e2/2a, below the bottom of the Us band. In the case of nickel
the respective energies are 0.L and L.5 e2/2ay5. From the.low temperature
specific heat of copper its® is estimated to bé L.78 eV or 0.35 e2/2aq,
and its effective mass to be m® = 1.47 m.32 The difference in energy of the
3p state of copper and the bottom of the s band as given by equation (5.1L)
minus equation (5.15) is 6.5 e2/2a,. These last energies are one-electron
values that neglect exchange and coulomb effects, so it is not surorising
that the agreement with Slater's values is not better.

In calculations of scattering amplitudes of electrons in nickel,
Fuchs'23 wave function for the k = 0 electronic state of copper will be
used for U s(r, k) for all X, since no one state appears to mix appreciably
with U)s(¥, 0). The Ls effective mass used will be that from low tempera-
ture specific heat of copper, m* = 1.47 m. The value of f that will be

30L. schiff, op. cit., p. 15L.
315. c. slater, Phys. Rev. 98, 1039 (1955).

32p, seitz, op. cit., p. 153.
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used for nickel is obtained by multiplying the value for copper from low
temperature specific heat by (0.6)2/3 since nickel has but six-tenths the

number of Us electrons that cepper has. This 7ives a value of:f = 0,25
e?/2ay for nickel.

The quantities X and (KE)p that appear in cquation (L.10) can now be
estimated. The value of A that will be used is

K= Tron/hmtackr =1r/(1.L7)(0.6) = 0.89, (5.19)
and that of (KE) is
(KE), 1‘5 = 2,75 e2/2a, , (5.20)

wherz (KE), is given following eguation (7.7).
VI. THE 3D BAND OF MICKEL

Fletcherl! has calculated the wave function and enerysy values of the
3d band of nickel, using the otrong binding method. A Bloch function can be
formed from the following combination of atomic functions,

yzN‘%i(n) exo(ik - _R_r’l) ¢(r_—7Rn)- (6.1)

If each atomic function has apprecciable magnitude only in its own cell, then
the Bloch function will be nearly like the atomic function within that cell.
Fletcher formed Bloch functions from each of the five 3d atomic functions
for nickel. The atomic functions were tuken in the cubic form, that is:

p1 - (1543 (xy/r2) Rag(r), (6.2)
Do = (18/LM2 (y2/r2) Ryg(x), (6.3)
S Py = (15/WMF (ax/r2) R3a(r), (6.L)
P, = (1516M3 (62 - y2 /r2)] myg(o), (6.5)
Ps = (5/16M3 (322 - x2 /r2)] Ryq(x), (6.6)

where R3g(r) is normalized so that //hid(r) r2 dr = 1. Linear combinations
of Bloch functions formed from these atomic functions are maie sc as to
minimize the energy as calculated in the sirong binding approximation. If ﬁ9
= by, yt where

pt=NEgn) e - ) 4 TRy, (6.7)
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then minimizing the erergy is cquivalent to solving thz cgaations.
(Ht) - E(R) 0Ogg) Dyr = 0, (6.8)

where reoeated indices are to hoe sumwed. Hyyr 1s Jdefined as

Hyp =//Lt* Hgt' aT, (6.9)

and Oyt is defined as
]

Oty =/j et a7 (6.10)
Fletcher neglected the ¢If ilagonal sorms of Oggr, and numerically estiroted
Hypr teking Ry = 0 and R £ the nearest neighbors into account. e
approximated the Cu+'potent1a1 of Hartre~ an' inrtree25 by the analytic form

V(r) = - {} + 2C cxp(-Br):} /r, (£.11)

where V(r) is in atomic units anu » is in units of the first Sohr ~adius

ap. The radial part of ?’ d was deuvermined bt curve fittine, using twe
hydrogenic radial functions Mhe mormalized raiial »art of the 34 functions
was given by Fletcher ags

R3gq(r) = 85,6812 exo(-5r) # 1.979r2 exn(-2r). (6.12)
Fletcrer evaluated the matrix clements by keening rearest reighbor
terms ard calculating interaction intesrals using the functions (6.11) and

6.12). The matrix elements oubtained arc:

H11 = -LAy cosg cosn¢ Laps(cosn cosf t cos B cos g3 );

Hoo
33 = -bAy cos ¥ cos§ + Lip(cos§ cos N - cos M cos § )
Hy), = bB) cos3 cos N - Lag(cos N cos § # cos § cos 3 )5
Hgg = -(b/3)(A) + bAg) cos§ cosn + (L/3)(2A) - Ag)

x (cosn 0055 + Cos); 0083 )3

-UA7 cosh 0055 + hAg(cos} cosg + cos 3 cos N )3

4

Hip = Hpp = -lf3 sinj sing ; a3
4M3sh1ﬁsm5 ; 1l = Hp1
-LAg sin R sinj 3 H3) = H)3

I§2=-M3smj cin N ;

0

HY.¥3 Sin'5 Sinj

H3j = H13

Holy = Hyp

1l
i
0"
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Hig = Hgy = -(8/3‘12‘)A6 sinj sinN
Hyg = Hgp = (L/3%)Ag sinn sin¥f
H3s = H53 = (L/33)A6 sin ¥ sin § ;
Hjg = Hg), = (h/B%)(Ah +As)(cos n cos; - cos 5’ cos §f ); . (6.13)
ggﬁi:ré%—cggféziatticgky/%ﬁea?&t r;cizgézcon:tgitgh:rgube odge of the face
A} = 0.1928Eq, Bp = 0.0572Ep, A3 = 0.0776E,,
A), = 0.13LBE,, Ag = 0.02L7E,, Ag = 0.0862E,, (6.1L)

wherc Ey = h(Al +.A2) = 1.349 eV.

Along certain directions in k-space, the secular equation (6.8) can be
solved explicitly as followss

(100) direction. E1,2 = LA ¢ L(A2- A1)cos j .
E3 = -l + BAQCOS 3 .
Eh = LA), - 8Agcos § .

= (1/3) {-#y - bAg
+ (Ly), - 2A5)cos}3 (6.15)

(110) direction. = LK) cos® § - BAgcos i-
E2,3 = LAgcos? 7 + L(Az - Ay)cos §
+ lh3sin? § .
E), and Eg are given by the two roots of
B2 4+ [{hAl + (1685/3) + (hAh/B)} q?
+ (BAg/3 - 160)/3 - 8A2)q_] E
+ (16q2/3) |( DLAlAs + A14),)q°
- (BApAg + 285A) + LAjA) - 2AjAc)q
POy - Laghs)] - 6lagel/3 = o, (6.16)

where p = sin § 5 q = cos 5.
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(111) direction. Ej =4 {(21&3 + 285 - A1)cos? § - 2A3}.
The other four roots occur in two doubly-de.enerate pairs given by
E2 - ), {(21&2 - A + A}, - 2A¢ - A3)cos2§ 4 A3} E
416 E‘(Ah - 285) (22 - 81 - £3) - 288 ] cosH §
+ §a3(a) - 2n5) + LLA%} cos? § - 243 ] = 0. (6.17)
3= }= 0 direction
E1,2 =+ hA(Al + A2)CQSV\ - hA2o
E3 = L4,
= = / - 2 %
B), 5 = (L/3) {211.5 A, + 2(A) + Ag)(1 ¢ 3cos n)z}. (6.18)
Electronic wave functions can he written so that the K falls within
the first Brillouin zone. This zone, for a face-centereild crystzl, is shown
in Figure 1. Following is a description of the zone.

If the lattice vectors are

3& = (3/2: 3/2: 0),
Zé = (3/2: 0, 3/2)’
o= (0, a/2, a/2), (6.19)

then the reciprocal vectors are

-

1/a(1, 1, -1),

by =
To =1/2(1, -1, 1),
By =1/a(-1, 1, 1), (6.20)

These satisfy the rclation A - BE = cfij, The k-space lattice is ziven by
Kn = 2m(n187 + noto + n3B3), for integer n's. 'The nearest neighbors to the
origin in k-space are for the six values of the tpe n] =+ 1, np = ¢+ 0,

n3 = 0, etc., and for_ﬁge two of the tipe n] = + 1, np = 4 1, n3y = ¢ 1.

For n] =np=n3 =1, K= (2r/a)(1, 1, 1). A plane bisecting this vector
is erected. This forms the hexagonal face of the Brillouin zore, the center
of whirh 45 called L; the center of the zone is called [T. The distancelL
is 321T/a. l‘he next nearest neighbors are given by the six values of the
type np = + 1, np = 4+ 1, n3 = 0. forn) =1, np = 1, n3 = 0, K
A plane bisecting this vector is also erected. This forms the square face,

= om/a(2, 0, Q).
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Figure 1. The Brillouin zone for a face-centered crystal.
Points and lines of symmetry are labeled using the
notation of BSW.?22
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the center of which is called X. The distance rk is 21T/a. One sees that
every vector in this zone is at least as near to the origin as it is to
any other k-space 1att17e point. For copper a = 3.608 x 10-8 cm = 6.8k aq,
so the distance "L = 31/¢ n-/a = 0.80/ao and the distanceT™ X = 21/a =

0. 92/ao. If one were to approximate the first Brillouin zone by a sphere
of equal volume, (21)3 times the reciprocal of the volume of the atomic
polyhedron, the radius would be 0.90/ag. k-space distances are three
percent larger for nickel.

When E3q(K) is known, equation (6.8) can be solved for bt(z) This
can be done for the special directions for which the energy values have
been given. Information concerning bt(iﬁ for some other k's can be deter-
mined from considerations of symmetry.

Let O(Y) be some operation (rotation, reflection, etc.) on the points
of configuration space that leave a particular point (the origin) unaltered.
The corresponding operation-on._a functlon F(¥) is defined by

0 F(T) = F(0-1F). . | (6.21)
The set of operators O that leaves the potential function invariant forms
a group known as the point group (referred to the point chosen as origin).

Since the Laplacian is invariant to all rotations and reflections, every
operator of the point group commutes with the Hamiltonian operator

= - (Rf2m) 92 + V(). (6.22)

So if ¥ .is an eigenfunction of the Hamiltonian with energy E, 0§ is also
an eigenfunction with the same energy:

HOWY =0HY =0EY¥ = Eo;u (6.23)
An operator -0 applied to a Bloch function glves ( |
0 Y(F, ) = exp(ik - 01 U0l T ). (6.2L)

Let O(E} define the same operation in k-space as the operator,O(?O does in
configuration space. Then

0K-0T=¥X-T1, | (6.25)
from which it follows that ‘
oW (%, ) = exp(iok - ¥) U(0~1 7, "12). (6.26)

Since U(0~1 ¥, ®) is perlodlc in the crystal, O ¢/(§7 ®) is a Bloch function
solution with propagation vector oK. o

The point group referred to an atomic position in a simple face center-
ed cubic lattice such as nickel is the full cubic group m 3 m.
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That sub—group of the point group that takes ¥ into itself or into an
equivalent k that is, a k' differing from K by 277 times a reciprocal
lattice vector, is called the small group of K. For example, suppose K is
a general point in the kx, ky plane. The identity operation and z —> -z
form the small group. Since the square of z-»-z is the identity operation,

# (T ¥) can be found that are even or odd to this operation. When an
operation is performed on a function in the Bloch form as given by equation
(6.1), all of the Rp's can be mapped on to other Rp's, so that *he trans-
form of equation (6.1) is thec same tyne of sum of transformed @functions.
For the odd solution, only 792, and 993, can enter, whilc for the even
solution, 21, & |, and 5, can euter. Thus, wave functions whose K's

lie on planes XL , , KXIT , and XUW as shown in Figure 1, must be
either even or odd to the operations z&*y, x€y, z—>»-z, and x—) -X,
respectively.

Any kZvector in the Brillouin zone can be generated by operating with
some member of the point group on some vector in that portion of the zone
included between these three planes. Thus if bt(ﬂﬁ is known in this region,
solutions for the whole zone are known. A plane similar to KLT" can be
obtained as a continuation of XLV , a point similar to K being the inter-
section of the line UL and the center of a hexagonal edge. Some energy
contours for this plane and the KX[T and XUW planes are shown in Figure 2,
for the highest energy even and odd solutions. Fletcher's 17 energy values
were plotted in his units on lines of high symmetry and contours drawn
between them to obtain these figures.

According to Fletcher's work, the Fermi energy for ferromagnetic
nickel is about 0.2 eV below the top of the 3d band, or about 0.62E,, and
for paramagnetic nickel, is about 0.18 eV below the top of the 3d band, or
about 0.67E,. As states with energy near that of the Fermi energy are those
of interest, the energy contours plotted in Figure 2 are those for 0.6Eq,
and 0.7Eg. A symbol such as Xg 0.771l, signifies that for a ¥ at point X,
there is a wave function with symmetry classification X5 and energy O. 771E0.
Since wave functions of propagation vector'§7form a basis for an irreducible
representation of the small group of k knowledge of the small group enables
one to classify the symmetry of wave functlons° The notation is that of
BSW.22 Figure 3 shows that portion of the Brillouin zone bounded by the
planes XL , LK™ , KXIT , and XUW. Energy contours for E = 0.6Eq have
been plotted to show how the constant energy lines on Figure 2 fit together
in three dimensions. The signs on symmetry planes show whether the wave
function is even or odd to mirroring in that plane.

Results on normal Ls to 3d scattering will involve wave functlons
referred to a coordinate system where polar angles are measured from k3d.
The numbers on the axes of rotation in Figure 3 denote the absolute value
of the m values of spherical harmonics appearing in the wave function in
this coordinate system. For instance, on the two-fold axis 8 , the wave
function 22 has symmetry like z(x - y). In a new coordinate system where
the z' axis is in the (1 1 0) direction, the y' axis is in the (0 0 1)
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Figure 2. 3d constant energy contours for high symmetry planes of
k-space of metallic face-centered nickel. Energy is given
in units of E, = 1.349 eV, measured from an arbitrary zero.
Wave functions for k's in the upper planes are even to mirroring,
while those in the lower planes are odd. Wave function symmetry
is given in the notation of BSW.22
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w

Figure 3. A portion of the 3d Brillouin zone of face-centered
metallic nickel showingz a 0.6E, energy contour. Signs
in high symmetry planes denote symmetry under mirroring.
A dot signifies an accidental degeneracy. Numbers on
axes of rotation denote the absolute magnitude of m values
gf spherical harmonics appearing in the wave tunction for
k lying on the axis, that axis being the polar axis.
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direction, and the x' axis is in the (1 1 0) direction, this wave function
has symmetry like x' y'. In equations (6.2) through (6.6) for the 3d func-
tions in polynomial form, ‘PS corsists of m = 0 terms, #» and Pzm= + 1
terms, and #7 and 4& m = + 2 terms. Since 252 is in the form %, 2 is
shown on the two-folu axis.

Since m = () terms are even to all mirror planes includin; the nolar
axis, wave functions with even-odd mirror symmetry can never have m = Q
parts. Wave functions with even symmetry can have all five types. The m
= 0 solutions have low enerygy in all special directions, so one would not
expect them to cnter appreciably in solutions for energies near the Fermi

energy.

Fletcher has neglected off-diagonal terms in the over-lap integral
given by squation (6.10). Since these will probably be of comparable size
with respect to the off-diagonzl terms of the Hamiltor..an given by eguation
(6.9), tiis neglect is serious. <Ihe work of Slater and Kosterl8 circum-
vents this difficulty by considering the atemic functions to he made ortho-
normal to each other vy takinz suitable linear combinations. Enerey values
and wave functions are Jetermined at points of high symmetr; by some accu- -
rate method such as the cellular method or the orthogonalized plane-wave
method. The strong binding method is then used as an interpolation pro-
cedure, the constants Aj...A§ being determined so as to fit the accurate
calculation at voints of high symmetry. Slater and Koster have used the
results of Howarth's33 cellular calculation on the 3d band of metallic
copper to compare the constants that woull fit ilowarth's energy values
at points of hi~h symmetry. They fini fairly good agreement with Fletcher's
results except for one constant.

Howarth34 has also crlculated the d band of copper using Slater's 35
method of augmented plane waves. His results ara completely Jdifferent from
those of Howarth,33 so 1u seems that calculations on stronzly bound eslec-
trons are very sensitive to slight changes in potential. This would make
one rather unconfident of the constants as calculated by either Fletcher
or Slater and Koster. On the other hand, the atomic functions used by

33p. J. Howarth, Proc. Roy. Soc. (London) A220, 513 (1953).

3uD. J. Howarth, Great Malvern, Wofchester, England. (Private commui-
cation). 1955,

355. c. Slater, Phys. Rev. 92, 603 (1953).
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Fletcher should be fairly reliable as only small amounts of nearby neighbors
need be added te make the z2%omic functions ortho-normal with the nearhy
neighbors., Fletcher's interaction constants will be used in this work.

VII. LS TO LS SCATTERING

A, Normal Processes

The scattering amplitude as given by equation (L.30) will now be
evaluated for scattering from one Ls state to another. As discussed in
Section V, the wave function calculated by Fuchs®> for_the k = 0 state of
the Ls band of metallic copper will be used for Uhs(Eﬂﬂﬁ for nickel. First

normal porcesses will be considered, that is scattering for which Kn = 0.
The first term By in equation (h.BOS contributes to the scattering ampli-
tude the followiug term:

A
1 -
N=2 agj C(q) ig - g«ﬂ (7.1)
. 3*
since j(Uf U; dT7% = 1. The second term Bp in equation (L.30) does not
contribute to scattering because the integral is zero. The reason is that
the integrand is the product of an even function and an odd function, and

the region of integration is even to inversion,

Since Uhs(r) is assumed to be spherically symmetric, B3 in equation
(L.30) is

s
NF aqy (02/m) i - /érad U; (& Up/Qs) 4T,
1 - ) D
= -N"F ag; @%/m) 17 ¢ oy ﬂwus/o J2 o, (7.2)
The equality follows, as only the part of @ in the direction of s can con-

tribute. The intesral can be related to the kinetic energy at k = 0, (KE),,
by noticing that for spherically symmetric wave functions:

(kB)o = -2/2m) [p* w2p o
= (2/2m) [\ P/ x| ot (7.3)
The last equation comes from the use of the divergence theorem, and the

fact that ¥* ¢ is periodic. Thus the third term in the scattering ampli-
tude, B3, becomes:

1 - 2
B3 = - N2 agy (2/3) id + Egj (KE),. (7.L)
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Combining By and B3, one can write the scattering amplitude for regular Ls
to Ls scattering as

AN
N-3 aqj (2/3) iq . qu {33-5)
P25 Qe X))}, (7.5)

since 5,3 (KE)g - (KE)o. Bethe,l by neglecting the effect that the total
electronic energy must be independent of strain to first order, and the
effect of charge redistribution, has only the term B3, given by equation
(7.4). Equation (7.5) is similar to she result of Bardeen,® except that it
does not fall off as fast for increasing q.

The kinetic cnergy is given by the following expressions

(KE) = —(ﬁ2/2m%0*72 pat = (ﬁé’/zmﬂvy'? a7, (7.6)

which can be obtained by use of the divergence theorer. The wave function
at the bottom of the band is given by W= YgR s so V¢ = (F/r) Yo(dR)q/dr).
For this case the kinctic energy is given by

"
(KE)o = 4ﬁ2/2m)(dRhs/dr)2 2 dr. (7.7)

This was evaluated by numerical integratior for the wave function given by
Fuchs, with a result of (KE), = 2.80 e2/2a,. The atomic polyhedron has been
approximated by a sphere as was done in Section V. This will be done in the
evaluation of all integrals in this work. Steps of 0.1 ap were too coarse
for the interval nearest the origin, so a ls wave function was calculated
by theWigner—Seitz20 method using the Hartree and Hartree25 potential for
Cut, and normalized so as to join the function of Fuchs at the first max-
imum. The ceontribution to eguation (7.7) of the interval from 0.0 to 0.1

ap was integrated in finer steps. The value of (KE)o was reduced from 2.8
to 2.16 e2/2ao by this recomputation. As an additional check, the Ls wave
function was computed for the entire span by the Wigner-Seitz method. The
value of (KE), found by numerical integration for this function was 2.96
e2/2ao. The discrepancy between this value and that from Fuchs' function

is due to the fact that Fuchs took exchange into account and this was not
done in the computation of the wave function in this work. In the follow-
ing work, a value of 2.5 e2/2ao (34 eV) has been used for (KE)O.

B. Umklapp Processes

A

For Umklapp processesi?js a small non—vanishing'g,vector. The small-
est is that in the (111) direcction, and the next smallest is in the (100)
direction. The scattering arplitude for Umklapp processes will be evaluat-
ed by substituting in equation (L.30) for the scattering amplitude. The
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integral appearing in Bs can be converted into a functlon involving the
integral appearing in By as follows:

- A -
Jous(8Ts/28)dT, = - 2g5 + fen(F - P UysVlks dT,

By - [emlf - AV(U,2)T /2
/\ -7 —y
=qu . /Uhs2 Vexp(iK - r) dT,/2
=1 €qj - K fﬁhs Uys dTo/2, (7.8)

where integration by parts has been done twice. Neglecting Ej - Ef, the
enrgy of the phonon, one can combine parts By and Bo of the scattering
amplitude as followse

B1+ B2 = ‘
W% agy 1 _{_C(q) T- %“qj . é\qj . K (#2/2m) (kg2 — k42)/2
//ﬁhs Ups dTo b (7.9)
Since kf kf—:7K k£_;7§, the expression in the brackets may be written
as
A A -
C(a) Tqy - q+ @/2m)(e? + 2% - D(Tqy - K/2). (7.10)

The largest value of C(q) is (2/3)(KE)p = 1. 83 e2/2ao. Referring to Figure
6, it is seen that For Umklapp processes kl, —kf, and q, are all in the
general dlrcctlon of X. The largest value of q is about K/2, so the largest
value of (q2 4 2K; - §) is less than 3(K/2)2, since ki cannot be as large
K/2. For K in the (11 1) ection, K = ?1F32/a = 1.6/ and for
1n the direction of @ and.i; term (7.10) is less than ?8 8/ag)(1.83 +
1.35) e?/2ay = 3.00 e2/2an°,

Equation (D.5) gives the value of the integral in equation (7.9) as
-0.018 so the maximum absclute value of Bl + Bp for Umklapp Ls - s
scattering is

- N-3 : 2/5, 2
Bl 4+ By = N72 agj 1(3.00)(0.018) e%/2a,
L . 2 2
= N72 agy 1(0.054) e%/2a,°. (7.12)

Thus By + Bo can be neglected compared to B3 as gilven by equation (D.lh)*
and the Umklapp Ls - ls scattering amplitude is given by

Ay
NF agj (2/3) id - €qj (0.8) (KE)o. (7.13)

*Equations (D.5) and (D.1l), as well as other equations whose numbers
are preceded by letters A-F, are included in the Appendices of the Ph.D.
thesis by John B. Gibson. See Appendices, this report, page L7.
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B1 is large in normal Ls - Ls scattering, but is small for Umklapp
Us - Ls scattering. The reason is that B} is porportional to s Ols
dT,, which equals 1 for normal scattering but equals -0.018 for Umklapp
scattering. Bl and B3 tend to zancel for normal scattering, but for Un-
klapp scattering By is too small to,and of the wrong sign for this can-
cellations thus Umklapp scattering is much greater than normal scattering.

Notice that the value of Umklapp scattering amplitude does not join
continuously to the regular scattering amplitude when k¢ -"ki lies on the
Brillouin zone boundary, that is when normal processes end and Umklapp
processes begin. In order to shbw this condition more clearly, a (1T 0)
plane intersecting the first Brillouin zone, passing through the k; axis
and the (111) direction is shown in Figure l.

Since ki 4+ q - kf =.E;, qnd'iz, i& and q must all be in the first
zone, Umklapp cannot take place while ki =7kf lies in the first zone. In
Figure I the case is shown for ki - kf lying on the zone boundary. Yor
this case ¢ also lies on the zone boundary. As kz_:’kf crosses the zone
boundary and Umklapp processes hegin, the scattering,will be continuous.
The fact that the present calculations show a discontinuity in scattering
amplitude is an indication of the inadeguacy of the calculations as
carried up to this point.

The difficulty can be understood by noting that as ki - k¢ is in the
first zone and approaches the zone boundary,'ai causes scattering, while,
after kj —"kf crosses the zone boundary, @b causes scattering. Since Qo =
q + Kn, the displacements of the ionic cores are the same for btoth waves.
This is not true for the displacement of a general point as given by
equation (4.17):

s : 2 - -
S(F) = 7% g(a5) g -%qj exp(iq * 1)
+ a')q"j exn(-iq - ?)} s (L.17)

witn @ restricted to the first Frillouin zone. In fact the equation can be
generalized te the form

- 1 A
S(3) = 12 Z.(gin) iqj Xn l:aqj exp(iq_-f?Kn -
¥ agj exp -Ei(QT’Kn) . 7}] (7.14)

without_ir any way violating the condition that at the position of the ion
cores, S(Rp) is piven by equation (4.2), provided only that fo» the co-
eflicients Xp,

. s(n) Xp = 1. (7.15)
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A plane intersecting the Brillouin zone in the (0 0 1)
and (1 1 1) directions. This is the limiting case, in
which scattering changes from normal to Umklapp. qj
will scatter as a normal process, while 71'2 will scatter
as an Umklapp process. The scattering angle is &.
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- . . 7 . —7 v e
Further, if the Xy are functiones only of \q + Knl, whether ¢ is or is not

in the first Brillouin zone can make no difference. Smoothness and conver-
gence (according to equation (7.1%)) are the only criteria at once avail-

. ¥ —_— B K
able to restrict the devendence of Xp on q + Kp. In the present work the
form

Xp X qu’Knl"h (7.16)
is assumed.

For small q, Xo==1, and all others are small. On the other hand, when
q approaches a zone boundary and qa;l?f-+?§d, for some n, then Xo4dXh£51/2,
and all others arec small. Since the scattering amplitude 1s linear in the
waves, scattering amplitudes as previously calculated may be added. Figure
5 shows the same section of the Brillouin zone as Figure L, for the case
when k3 = k¢ is in the first Brillouin zone, and Figure & shows the case
when ki —kf is outside the Brillouin zone.

As shown in Figure 5, for the case when ki = k¢ is inside the Brillouin
zone, the wave with propagation vector @ scatters as a normal process pro-
portional to (kf -"ki) "%éqj while the wave jwith propagation vector g K
scatters as an Umklapp process. +he Umklapp amrlitule is proportional to
(Ef—:7ki) - L= (kr - ki + K) » ©g55. The wave with propagation g ¥ K
must be included”in the calculations alongz with the wave with ngpagation
vector q, as [q—;7Kl is fairly close in magnitude to q. Other Kp's are of
very slight importance, since the corresponding vectors q—;vKn are much
larger than q%

In Figure 6 the case whea ki ~~kf is outside the Brillouin zone is
illustrated. The wave with propagation vector g (in tge_ﬁ;rst Brillouin
zone) scatters as an Umklapp process_proportional to (kr ="ki) - £q) = _
(kf - ki + K) - lg:qj’ since k¢ = kE_:7K. The wave 9_;7K , where K, = - K,
scatters as a normal process nroportional to (Ef + Kn - kf? . 42&3 = (kf -
ki) . GE .. Thus it is seen that the scattering amplitude is continuous
when ki < Kf crosses the boundary of the Brillouin zone.

The scattering amplitude can be written as

S¥en, s ar N
= ,‘T"%I aqj (2/3) i (k:ki) . EQJ G(u), (7.17)

where u = sin &/2 = |k¢ -kil/2 kp. G2(u) is plotted in Figure 7 as a
i}nction of the scattering angle & . ki = kf has been assumcd to be in the
K direction. K has been taken as 1.8/ao, double the radius of the sphere
whose volume equals that of the first Brillouin zone. The two waves with
largest X, have been added with relative weight factors of (d_:7Kn)' .
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A plane intersecting the Brillouin zone in the (0 0 1)
and (1 1 1) directions. kj - kg lies in the zone. @
scatters as a normal process, and q + K scatters as an
Umklapp process. The scattering angle is €.
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Figure 6.
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A plane intersecting the Brillouin zone in
the (0 0 1) and (1 1 1 ) directions. kj - k¢
lies outside the zone. q scatters as an
Umklapp process and q — K scatters as a
normal process. The scattering angle is &.
The relation between the vectors is of the
form kf — ki = g < K.
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A polar plot of Us to Ls scattering showing G2(u)

as a function of scattering angle &. u = sin(6/2),
and G2(0) = 1. ki - kg has been assumed to be in

the K direction. Scattering from waves with propa-
gation vectors q_:7Kn have been combined with relative
weight factors |q—T'Kn|‘h to obtain G(u).
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VIII. LS TO 3D SCATTERING

The amplitude for Us to 3d scattering may be found by evaluating
equation (L.30) for the scattering amplitude using the wave function of
Fuchs?3 for ULs(T, K, and the wave functions of Fletcherl? for W3d(-r-': X,
It will be assumed that WBd(}’, K) is of the form:

¥ 34(T, ®)

= N% S(n,m) bn(®) exp(F - Bn)¥ Thomio(r —Bn), (8.1)
where
:1tomic(?) = Yrg(,&,¢) Ry4(r). (8.2)

These atomic functions are expressed in a form different from those in
equations (6.2) through (6.6). Since ¢mt . (F) is small outside of the
atomic polyhedron for tightly bound elec%rgggj, the main contribution to the
wave function in the cell about the origin will come from the Ry = O term,
and only this term will be considered.

The first term, B*;, in equation (L.30) for the scattering amplitude,

—

is proportional to J U34q Uy d7 4, where T4 = axn(i¥ . F) Uﬁd' In terms
of R3q(r), ﬁsd is given by

ﬁ?d(r—‘;?) = Z(m) b;(i) Ygl*(/&,@)exp(i-:_l:3d~?)R3d(r), (8.3)
since

Wy = exp(iF - B Pig(F7 1. (8.L)

By expanding the exponential in spherical harmonics, one can evaluate this
intezral as follows:

-t
ST U a7, r
- - Z (Lo (R3g) B* @ , §) Zj;(i3dr)R§d Uys 2 dr,  (8.5)
where (© ,@) are the polar and azimuthal angles of i}d = k34 + K.

The second term, Bo, in the scattering amplitude formula equation
(L4.30) is proportional to /Uhs(b-ff;d/bs)dto, where s is the direction of
the polarization vector 'S je Integrating once by parts, one gets
- U?d(‘c U)s/D s)AT 4. 21 > U,s/D s be expanded in spherical harmonics
as Iollows:

dUus/Ds = T(m) cp YA ,0) Uls. (8.6)
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In integral (8.5) the sum can be reduced by taking the polar axis in
expansion (8.1) to be k33. Then® = 0, and
3 1
Z(m) ¥ YB(B® ,8) = b} (5/um)s = 0.63 by- (8.12)

Using equations (L.30), (E.12), and (E.15), one can evaluate the sum of By
and B3 as follows:

(By + B3)/(1 N5 ag3)

. A
{(1.83)(0.63)(0.247) - 2(0.0213)} by T+ g
+ 2q (0.294 dg by + 0.306 @ + 0.337 Gp)

- A
0.120 bf § . & o5 e2/2a,

+ a (0.588 dg bf 4 0.612 Q) 4 0.674 Qp) e2/2a,, (8.13)
where
d) bf 4+ d_j b¥y.

do bg + d_o» bf2. (8.14)

Q1
Q

Referrinf to Figure 3, for 3d states on the Fermi level as calculated by
Fletcher 1 one notices that bg == 0. Consequently, the only parts of
equation (8.13) that contribute appreciably are those proportional to Q1
and Gp. Q) and Qo are discussed in Appendix F.

It will now be shown that for normal Ls - 3d scattering, Bp is neg-
ligible compared to Bl + B3. Substituting equation (E.1lh) into Bp of
equation (4.30), one finds

1
Bo/iN7Z ag;
.
= (0%/2m) (R34 - kf5)(0.0539 cq by +0.0487 1y)/a, (8.15)
where

Ty = c1 bf 4+ c_3 b¥). (8.16)

The energy of the phonon, Ej - Ef, has been neglected. Tj1 is discussed in
Appendix F.

In order to compare expressions (8.13) and (&.15), the conditions for
normal scattering to maximize expression (8.15) and to minimize expression
(8.13) will be sought. Equation (8.15) is proportional to the amount of
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[ml = 1 state, since bg 2= 0. Referring to Figure 3 it is seen that there
are states on axes 4 and /A that are pure |m| = 1. The larger k3gq for the
Fermi level,is on. A. This.Ebd is about 0.8/ay in length. This choice
maximizes kgd - kﬁs, and thus equation (8.15). Equation (8.13) is propor-
tional to q. The minimum q would be with K);s in the same direction as k3ig.
For this case q = 0.8/ag — 0.6/ag = 0.2/ag. The angle @\ between T<'3d and q
is zero. Referring to equations (F.16), (F.18), and (F.38), one sees that
shear waves cause scattering in both By ¢ B3 and Ba. For this case the
values of equations (8.13) and (8.15) are

(By + B3)/iN°F agj = (0.2)(0.612) (LT1/15)3

= 0.118 e2/2a,2, (8.17)

Bp/iN-3 agj = (0.0L87)(0.6L - 0.36)(kM/3)z
= 0.0278 e2/2a,°. (8.18)

Thus for normal scattering, Bs at its largest is still only 0.2L times as
large as B] + B3, and therefore Bp will be neglected for normal scattering.

Suppose k3q is on the S axis. As shown by Figure 3, this state is
type |m] = 2. From equations (8.13) and (F.26), the normal scattering
probability to any Ls state is given by

(0.67W)2(LTT /15) N agy Fo(ex,Bp) (e/Lagh), (8.19)

where 0<,5?2 are the polar and azimuthal angles of q in a system as described
in Appendix F. The amplitude of the longitudinal mode is aql. Fao(eX, &)

is defined in equation (F.26), and is plotted in the lower left hand corner
of Figure 8. -

Suppose instead K’d is on the axis A . There are three states, two
type Im| = 1 and one \m| = 2. Scattering from the type |m| = 2 state is
the same as described above. From equations (€.13) and (F.19) the transition
probability from the type \m| = 1 state to any Us state on the Fermi level
is given by

where the angles are similar to those above, and F1(e{, &) is defined by
equation (F.19) and is plotted in the upper right hand corner of Figure 8.

For'EBd on the axis.A , as well as at a general position on the Fermi
surface, the 3d wave function consists of both |m| =1 and |m| = 2 type
functions. If one defines b and & by the relations
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Figure 8. (A) Contours of Fi(cX, /1) are plotted as a function
of X and /&, the polar and azimuthal angles of G~
relative to-EBd where the azimuthal angle is measured
in a special system as discussed in Appendix F. This
function is proportional to the transition probability
for normal scattering between a pureim|= 1 3d state and
a L4s state. (B) In like manner contours of Fo(A, B2)
are plotted. The probability for scattering between an
jnl = 2 3d state and a L4s state is proportional to Fo.
In each case it is sufficient to plot contours for only
one octant, because of symmetry.
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0.612'B§ 2b cos § ,

0.67L Bf = b sin ¥ , (8.21)

then the transition probability will be given by
(4T/15) N aq12 b2 {foszx Fl(:K,@gl) + sin261F2(CX ,ﬁ?2)
4 sin 2§ Fyp, (d,ﬂl,ﬁzﬁ(eh/haoh) , (8.22)

where Fyo(t, 81, 5’2) is defined by equation (F.29) and is discussed in
Appendix F. Equation (8.22) is obtained by the combination of equations
(8.13), (8.21) and (F.29).

For Urmklapp process, k3d is ruch larger than K5, and consequently By
is much more important than for normal processes. For )m\ 1 type 3d func-
tions, Bo will contribute most strongly when @ is on the Brillouinr zone
boundary. This behavior can be understood in the following way.

Both normal and Umklapp scattering enter when g is near a zone boundary.
Referring back to the discussion on normal and lmklapp Lhs - ks scatterlng,
one finds that normal scattering is caused by ql and Umklapp scattering is
caused by q2 when @ is on the zone boundary. By symmetry requirements,
waves with @'s on the square face and on line LW of the hexagonal face will
have polarization vectors such that one, 811 will be vperpendicular to the
surface, and the other two, &,2 and 8,3, will be parallel to the surface.
Now

. %1 = - 3’2 . /E_\l, (8.23)

and so, since for these cases normal and Umklapp scattering are added in
equal amounts, contributions from normal and Umklapp processes tend to can-
cel. Normal and Umklapp scattering will not cancel for the other polari-
zatlons, but will_add and be proportional to the sine of the angle between
q and the nearby XK. Contributions of 1 will cancel completely if the
form of the scattering for normal and Umklapp processes is the same, as it
nearly is for By 4 B3. Thus for q's on the square face and on lines
analogous to LW there will be a part of the scattering from By + B3 due to
normal and Unklapp terms, and a part from Bs proportional to the amount of
tml = 1 3d wave function. The former is proportional to the sine of the
angle between @ and the nearby X.

bs - 3d scattering is much more complicated in its angular dependence
than is bs - Us scattering. Axial symmetry, as nossessed by Us - Ls
scattering is no longer present in Ls - 3d scattering.
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In this work it has been convenient to consider the scattering [rom
some 3d states to relevant s stuates. For conductivity calculations, it
vwiould be desirable to know the scattering from any Ls state on the Fermi
level to all 3d states satisfying the requirements of crergy conservation.
This would require a more extensive knowledge of bp(k3g) than is available
at this time.

IX. DISCUSSION

K. Us - Ls Scattering

The most reliable work on thermally induced electronic scattering in
monovalent metals is that of Bardeen.6 The results of the present
investigation for Us - Ls scattering are shown in Figure 7. They agree
fairly well with thecse of Bardeen for long wave length elastic waves. For
short wave lengths, for examnle, a q on the zone boundary, the larzc Umklapp
scattering averaged with the smaller normal scattering, gives a rcsult of
an amplitude about ten times rsreater than that of ‘ardeen. The deformable
potential woula not be expected to be very accurate for short wave length
deformations, since if the charge is carried along with the ions, the
potential locally is not likc that of a homogeneously deformed crystal,
deformed to the local strain. This last is one of the fundamental assump-
tions of the deformable potential as used in this investigation. In
brief, the results of this investigation would be expected to be fairly
accurate for small Q's (small angle scattering) but probably not reliable
for large T's.

This investigation predicts that Ls - Ls scattering falls off faster
with scattering angle for small scattering angles, but is larger for large
scattering angles than Bardeen's results indicate. This is in agreement
with the analysis of the experimertal temperature dependence of monovalent
metals by Ziman.l

Bardeen treated the ionic cores as rigid and the s electrons as weakly
bound to them. Upon deforming a crystal, the potential changes in two ways.
One, thc ionic core potentials are relocated at the new ion sites. Two,
there is an additional change in potential due to the conduction electrons
redistributing themselves in the new ion core potential. Bardeen computed

the latter by a self-consistent field calculation.

In this work a continuous delormation is assumed. Conduction electrons
are first considered to move with the ionic cores so that electrical neu-
trality is maintained. The local potential is assumed to be that of a
homogzeneously deformed crystal, deformed to the local deformation. The fine
detail of the potential in the homogeneously deformed crystal is assumed to
be that of a deformable potential, that is, the potential in the deformed
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lattice at a deformed position is equal to the potential at the original
point in the undeformed lattice. A function of strain, independent of
position, is added to the potential so that the total electronic energy will
be a minimum for the equilibrium lattice spacing. If the conduction elec-
trons are moved along with the ionic cores so that electrical neutrality is
preserved, the Fermi energy may fluctuate in the crystal if the deformation
is not homogeneous. Thus to the potential of a homogeneously deformed
crystal must be added the potential produced by the charge imbalance when
conduction electrons redistribute so as to equalize any fluctuation of the
Fermi energy throughout the crystal.

B. Us - 3d Scattering

Mott? has given a brief discussion of s to d scattering. He assumed
that a Us electron's wave function is of the form
bs

¥ =Abs e BH $ 0¥y (9.1)

where A)) B)) C. Since all functions are normalized, A is approximately one.
He used the deformable potential to describe the electron lattice inter-
action. The transition probability for s to s scattering is proportional
to

|AB/}”‘; WV Y aT | 2 (9.2)

while that for s to d scattering is proportional to

|B/$U§ VV¢p a7 |2, (9.3)

Since both probabilities depend on the second power of B, and A == 1, Mott
concluded that the probability of scattering an electron from an s state was
roughly independent of whether the finaﬁ state was s or d. In the deform-
able potential theory as used by Bethe,4 this would mean a constant G(u),
or so called isotropic scattering.

Wilson8 carried through a calculation for the electrical conductivity
of transition metals using isotropic bs - Ls and Ls - 3d secattering. For
high temperatures his results agree fairly well with experiment. The low
temperature resistance depends on the gap in k-space between the s and d
parts of the Fermi surface. Since ki - kf = - for regular processes, a
phonon with minimum q is required before s to d scattering can take place.
At temperatures low compared to the energy of this phonon, the number of
modes with g large enough to cause s to d scattering will vary exponentially
with temperature. Thus, the contribution to the resistance due to s to d
scattering will vary exponentially in this temperature region. Since this
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effect has never been observed, it seems likely that the d band energy
surface fluctuates sufficiently to have the d band Fermi surface inter-
sect the s band Fermi surface.

Mott's work on the probability for scattering is only an order of
magnitude calculation, so it is not surprising that the present work shows
a moderately strong angular dependence, where he thought the scattering
would be mainly isotropic.

C. Umklapp s - s Scattering

Bhatial3 has discussed the effect of s - s Umklapp scattering on the
temperature dependence of resistance of monovalent metals. He finds
results at high termeratures that agree well with experiment, but predicts
that at temperatures low enough so that few modes with g greater than

K - 2k)5 (9.4)

are excited, Umklapp processes would be impossible and thus shear waves
would not contribute to scattering. The consequent lowering of resistance
is rot obiserved. The results of the present investigation do not predict
this sharp cutoff in resistance since Umklapp processes do not cut off
sharply, being averaged with normal scattering with weight factor some
function of the magnitude of the propagation vector.

D. Limitations and Approximations

Aside from using the one-electron formalism, the major assumption in
this work is that electron lattice interaction can be represented by a
deformable potential. Since results on Us - Ls scattering usine the deform-
able potential are more nearly like those of Bardeen® than are Nordheim's5
results, the deformable potential seems preferable to the rigid core method
of Nordheim,

Some error was introduced by the use of wave functions for copper for
a calculation on nickel, but it seems unlikely that this would change the
major results of the calculations. :

Error has also been introduced by neglecting p and d state mixing with
the Us state. The neglect of wave functions located at ion sites other
than the origin in equation (8.1) for 3d wave functions introduces small
error since the overlap of 3d atomic functions is small.

Uncertainty of interaction integrals for the strong binding calculation
for 3d electrons in nickel leaves knowledge of bp(K3q) somewhat uncertain.
Were different types of 3d states than those predicted by Fletcher on the
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Fermi level, the Ls - 3d scattering would be different from that described.
Further work of Fletcher's3h seems to cast doubt on the interaction inte-
grals.

The numerical integration of matrix elements, and the spherical
approximation of the unit cell have both introduced errors into the numeri-
cal factors of this work, but do not seem likely to have affected the major
results.

E. Conclusions

The transition amplitude for Ls - 3d scattering is of comparable size
to that of Ls - Ls scattering. That for Ls - Us scattering has azimuthal
symmetry as a function of the final k vector relative to the initial k
vector, while that for Ls - 3d scattering has moderate angular dependence
both in polar and azimuthal angles of the final k vector relative to the

~initial k vector.

For s - L5 scattering when kf_:vki is in the first Brillouin zone,
normal scattering is caused by the longitudinal part of elastic waves.
Umklapp scattering is caused by both the longitudinal and transverse parts
of elastic waves. For small kf - ki =q, only normal scattering enters.
As d approaches thc zone boundary, Umklapp scatterinsg must be added to
normal scattering, so that when @ is on the zone boundary, normal and
Unklapp scattering amplitudes are averaged with equal weight factors.

For Us - Ls scattering when k¢ -"ki is outside the first 3rillouin
zone, Umklapp scattering is caused by the longitudinal part of elastic
waves alone. Normal scattering is caused by both the longitudinal and
transverse parts of elastic waves. When kf - ki is on zone houndary,
nomal and Umklavp scattering enter with equal weight factors. As kf - ki
increases further, the weight factor for Umklapp scattering increases at
the expense of that for normal scattering so that when kf - ki = JK:
only Umklapp scattering remains. Thus as kf -’ki changes from O to - K,
scattering changes from completely normal to completely Umklapp.

A1l modes cause both normal and Umklapp Ls - 3d scattering.

X. APPENDICES

The details of various mathematical derivations in this report are
included in the Ph.D. thesis of the same title by John B. Gibson, which
is on file at the library of Iowa State College, Ames, Iowa. These
derivations are included in Appendices A-F of the thesis.
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