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ABSTRACT 

The objectives of this research were to explore the use of swine oral fluids, a type of 

aggregate sample, in infectious disease surveillance.  In Chapter 2, the uses and surveillance 

applications of aggregate samples are reviewed.  As reported in the refereed literature, bulk 

tank milk samples from ovine, bovine, and caprine herds have been tested to determine 

disease status and herd immunity.  Likewise, swine producers and veterinarians have used 

oral fluid testing for disease detection and the evaluation of herd immunity.  In Chapter 3, 

sampling guidelines for oral fluid surveillance in commercial swine herds are presented.  

These guidelines are the result of field-based research in which oral fluids were collected 

weekly from 3 barns on one wean-to-finish farm for 9 weeks and tested for porcine 

reproductive and respiratory syndrome virus (PRRSV) RNA.  Results were modeled using a 

piecewise exponential survival model to provide estimates of the probability of detection by 

disease prevalence, sample size, and diagnostic assay performance.  Notably, this study 

showed that fixed spatial sampling was as good, if not better, than simple random sampling 

and that probability of detection on a swine farm improved significantly when multiple barns 

on the farm were sampled.  In Chapter 4, a combined IgM-IgA PRRSV oral fluid ELISA was 

evaluated for its ability to detect pig-derived antibody produced in response to infection in 

the presence of maternal antibody.  Two studies were performed.  In Study 1 (experimental 

conditions), oral fluid samples were collected daily from 12 PRRSV-negative pigs from days 

post vaccination (DPV) -7 to DPV 42.  Pigs were vaccinated using a modified-live PRRS 

vaccine on DPV 0.  In Study 2 (field conditions), oral fluids were collected weekly from 3 

wean-to-finish sites, each with 3 barns, for a total of 9 samplings.  Testing of oral fluids from 

both studies by IgG, IgM, IgA, and IgM-IgA ELISAs showed that the IgM-IgA ELISA was 

able to detect pig-derived IgM and IgA in the face of circulating maternal antibody and that 

the combined IgM-IgA assay provided better performance than detection of either IgM or 

IgA alone. 
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CHAPTER 1.  GENERAL INTRODUCTION 

The purpose of disease surveillance and monitoring is to detect infectious agents and identify 

changes in disease trends within populations, respectively (Paskins, 1999).  In order to 

achieve success in this endeavor, samples need to be collected in an efficient manner and 

applicable assays must be available for testing.  The use of aggregate sampling represents a 

significant improvement in the effectiveness and efficiency of surveillance because samples 

representative of multiple animals provide a higher probability of detection at lower cost 

(Olsen et al., 2013; Thurmond and Perez, 2006).  Examples of aggregate samples in livestock 

surveillance include bulk tank milk samples and oral fluid specimens (Rotolo et al., 2017; 

Thurmond and Perez, 2006).  Therefore, the diagnostic uses of bulk tank milk samples and 

oral fluid samples were reviewed in Chapter 2 of this dissertation.  

 

While aggregate samples are a highly useful tool in disease surveillance, it must be 

recognized that sampling guidelines for individual samples do not apply to aggregate samples 

(Rotolo et al., 2017).  Therefore, the development of oral fluid sampling guidelines for 

disease detection in swine herds was evaluated in Chapter 3 of this dissertation.    

 

Surveillance and monitoring programs cannot function without repeatable, reproducible, and 

accurate diagnostic assays.  No surveillance program can be successful if testing results are 

ambiguous or unreliable.  In the case of the PRRSV oral fluid ELISA assay, a positive result 

in pigs less than 10 weeks of age may indicate presence of maternal antibody or pig-derived 

antibody in response to infection (Yoon et al., 1996; Houben et al., 1995).  Current PRRSV 

ELISA tests target IgG antibody.  Thus, Chapter 4 of this dissertation reports the evaluation 

of a combined IgM-IgA ELISA, as well as its ability to detect pig-derived antibody (IgM, 

IgA) produced in response to infection, despite the presence of maternal IgG.  
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Abstract 

All sectors of livestock production are in the process of shifting from small populations on 

many farms to large populations on fewer farms.  A concurrent shift has occurred in the 

number of livestock moved across political boundaries.  The unintended consequence of 

these changes has been the appearance of multifactorial diseases that are resistant to 

traditional methods of prevention and control.  The need to understand complex animal 

health conditions mandates a shift toward the collection of longitudinal animal health data.  

Historically, collection of such data has frustrated and challenged animal health specialists.  

A promising trend in the evolution toward more efficient and effective livestock disease 

surveillance is the increased use of aggregate samples, e.g., bulk tank milk and oral fluid 

specimens.  These sample types provide the means to monitor disease, estimate herd 

prevalence, and evaluate spatiotemporal trends in disease distribution.  Thus, this article 

provides an overview of the use of bulk tank milk and pen-based oral fluids in the 

surveillance of livestock populations for infectious diseases.   

 

Keywords:  surveillance, swine oral fluid, bulk tank milk, aggregate sample 
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Introduction 

Globally and locally, achieving the control of historically impactful infectious diseases of 

livestock continues to frustrate producers and challenge animal health specialists.  A core 

requirement of a successful control program is the on-going collection of disease data from 

populations.  Schwabe (1982) describes this as the process of establishing baseline levels 

"against which effects of intervention (control) efforts can be measured."   

 

The on-going burden of disease in endemic areas and the expansion of infectious agents into 

previously free areas exposes the frailty of current surveillance and response/control 

programs (Saeed et al., 2015; Backer et al., 2009; Lee, 2015; Neira et al., 2017).  Foot-and-

mouth disease virus (FMDV) was identified in 1897, but 116 years later endemic FMDV 

losses were estimated at $6.5 to $21 billion dollars annually and only 66 of the 181 (36.5%) 

OIE-member countries are "FMD free where vaccination is not practiced" (Knight-Jones, 

Rushton, 2013; Longjam et al, 2011; OIE, 2017a).  Classical swine fever virus (CSFV) was 

identified in 1903 (de Schweinitz, Dorset, 1903), but in 2017, just 32 of the 181 (17.7%) 

OIE-member countries are considered free of CSFV (OIE, 2017b).  This, despite the 

profound global economic burden of CSFV and the clear benefits of eradication, e.g., the 

benefit:cost ratio of CSFV eradication in the U.S. was estimated at ≥ 13.2 (Pinto et al., 2011; 

USDA, 1981).  Initially identified on the basis of outbreaks of unknown origin in the 1980's 

porcine reproductive and respiratory syndrome virus (PRRSV) was isolated 1991 and has 

become endemic in most major pork-producing regions of the world (Wensvoort et al., 1991; 

Zimmerman et al., 2012).  Holtkamp et al. (2013) estimated U.S. pork producers' losses to 

PRRSV at $664 million annually.  Nathues et al. (2017) estimated losses to European 

producers at €126.79 per sow per year and €3.77 per pig marketed in herds with "slight" 

PRRS.   

 

A promising trend in the evolution toward more efficient and effective livestock disease 

surveillance is the increased use of aggregate samples (Gibert et al., 2017; Rotolo, et al., 

2017; Strutzberg-Minder et al., 2015; Thurmond, Perez, 2006).  By definition, an aggregate 

sample represents two or more animals at a specific location and time, e.g., bulk tank milk 
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and pen-based oral fluid samples.  The use of aggregate samples in veterinary surveillance 

has grown in tandem with developments in diagnostic technology, e.g., nucleic acid-based 

assays and antibody assays specifically adapted to these specimens.  The purpose of this 

article is to review the use of bulk tank milk and pen-based oral fluids in infectious disease 

surveillance of livestock populations.   

 

Bulk tank milk samples 

Bulk tanks are designed to cool, agitate, and store milk in bovine, ovine, and caprine Grade A 

dairies.  Among other requirements of the Pasteurized Milk Ordinance (U.S. Food and Drug 

Administration, 2015), bulk tanks must chill milk (4.4°C to 7°C) within 2 hours of collection 

and maintain this range thereafter.  The size and number of bulk tanks varies among farms as 

a function of the number of animals in the herd or flock, but larger operations may have 

multiple tanks capable of storing thousands of gallons of milk.  Milk haulers may collect 

once a day, more than once a day, or every other day, depending on the farm’s storage 

capacity and milk production levels.  Regardless of the collection schedule, bulk tanks must 

be emptied, cleaned and sanitized at least every 72 hours (Bickett-Weddle et al., 2011; U.S. 

Food and Drug Administration, 2015).   

 

In the context of disease surveillance, samples from bulk milk tanks represent the lactating 

cows in the herd (Sekiya et al., 2013).  Depending on governmental standards or ordinances, 

tanks are agitated for ≥ 10 minutes after which samples are collected aseptically from the top 

of the tank using a sterile pipette, syringe, or sanitized dipper (Bickett-Weddle et al., 2011; 

U.S. Food and Drug Administration, 2015).  Although bulk tank milk samples do not 

represent dry cows or cows on milk withhold, they provide an economical, convenient, and 

timely approach for the detection of specific pathogens and/or estimation of herd prevalence 

(Collins et al., 2017; Lanyon et al., 2014; Olde Riekerink et al., 2006; Sekiya et al., 2013).  

Economically significant pathogens detectable in bulk tank milk samples and reported in the 

refereed literature are discussed below and listed in Table 1.  
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Schmallenberg Virus 

Schmallenberg virus (SBV) is an arthropod vector-borne orthobunyavirus first detected in 

dairy herds in Germany and The Netherlands in 2011 (Balmer et al., 2014; Daly et al., 2015; 

Gubbins et al., 2014; Johnson et al, 2014).  SBV infection causes abortions, congenital 

malformations, diarrhea, and fever in bovine, ovine and caprine species (Collins et al., 2017; 

Daly et al., 2015; Johnson et al., 2014).  The duration of SBV viremia is relatively short, i.e., 

an average of 3 to 4 days (Gubbins et al., 2014), but SBV serum neutralizing antibodies can 

be detected in cattle for as long as 24 months post infection (Elbers et al., 2014).  The 

detection of SBV nucleic acid has not been reported in milk, but antibodies to SBV can be 

detected in individual cow and bulk tank milk samples using commercial indirect ELISAs 

(Balmer et al., 2014; Daly et al., 2015; Johnson et al, 2014).  Although test performance 

estimates are not available (diagnostic sensitivity, diagnostic specificity), results of bulk tank 

milk ELISA testing were predictive of within-herd seroprevalence and herd immunity 

(Collins et al., 2017).  Analyses based on bulk tank milk testing results have been used to 

assess the spatial distribution, rate of spread, direction of the spread, and effect of farm 

altitude on the prevalence of SBV (Balmer et al., 2014; Johnson et al., 2014).  

 

Bovine viral diarrhea virus 

First described in the 1940's, bovine viral diarrhea virus (BVDV) is a pestivirus transmitted 

through direct contact or fetal (in utero) infection (Goens, 2002).  Clinical signs of BVDV 

include watery and/or bloody diarrhea, dehydration, pyrexia, tenesmus, tachypnea, and ulcers 

of the muzzle, lips, oral cavity, and/or nares (Goens, 2002).   

 

BVDV antibodies can be detected in bulk tank milk samples using blocking, indirect, or 

competitive ELISAs (Foddai et al., 2015; Houe, 1999; Hanon et al., 2017; Kramps et al., 

1999; Lanyon et al., 2014; Renshaw et al., 2000).  A Danish blocking ELISA demonstrated a 

diagnostic sensitivity of 100% and diagnostic specificity of 62% when testing bulk tank milk 

samples from herds with a BVDV prevalence of 26% (Foddai et al., 2015).  Diagnostic 

sensitivities and specificities of competitive ELISAs were reported as 97% to 100% and 

99%, respectively; whereas the diagnostic sensitivities and specificities of indirect ELISAs  
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were reported as 94% to 100% and 98% (Hanon et al., 2017).  As with Schmallenberg virus, 

bulk tank milk ELISA results were highly associated with herd seroprevalence (Lanyon et 

al., 2014).   

 

Persistently infected (PI) animals, the result of fetal infection during the first trimester of 

pregnancy (immunotolerance), serve as a continuous source of infection (Fray et al., 2000; 

Houe, 1999; Renshaw et al., 2000).  PI cows produce little-to-no BVD antibody, but 

continuously shed RT-rtPCR-detectable levels of BVDV in milk (Houe, 1999; Kramps, et al., 

1998; Radwan et al., 1995; Renshaw et al., 2000).  Drew et al., 1999 reported 100% 

diagnostic sensitivity and specificity for PCR-based detection of BVDV RNA in bulk tank 

milk samples from herds with PI cows.   

 

Strategically, antibody detection is used to identify herds with circulating BVDV and nucleic 

acid detection is used to identify herds with PI cattle (Lanyon et al., 2014).  Monitoring 

changes in antibody prevalence has been used to determine whether a BVDV infection is 

ongoing or recent (Lanyon et al., 2014).  ELISA testing has also been used to monitor 

declining antibody levels after removal of persistently infected cattle (Houe, 1999).  

 

Border disease virus 

First reported in England and Wales in 1958 and closely related to BVDV, Border disease 

virus (BDV) is a pestivirus of ovine and caprine species (Nettleton et al., 1998).  BDV is 

transmitted through direct contact or transplacentally, with infection during early pregnancy 

resulting in persistently infected offspring (Garcia-Perez et al., 2010).  Goats are susceptible 

to BDV, but infection is rare and typically results in abortion (Nettleton et al., 1998).  In 

sheep, clinical signs of BDV include abortion, stillbirths, and non-viable lambs. 

 

As in the case of BVDV, PI animals shed BDV continuously and do not produce antibodies.  

Bulk tank milk samples can be tested for BDV by RT-rtPCR, however, estimates of 

diagnostic performance have not been reported (Berriatua et al., 2006).  Immunocompetent 

animals produce antibodies detectable in bulk tank milk (Garcia-Perez et al., 2010).  In one 

study, the diagnostic sensitivity and specificity of a blocking ELISA for BDV detection in 
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bulk tank milk samples was reported as 100% and 85.2%, respectively (Corbiere et al., 

2012).  A high seroprevalence of BDV in lactating animals suggests the presence of 

persistently infected animals (Berriatua et al., 2006).  Thus, ELISA testing of bulk tank milk 

samples provides the means to estimate the prevalence of BDV in flocks and may indirectly 

reveal the presence of persistently infected animals (Berriatua et al., 2006; Garcia-Perez et 

al., 2010).   

 

Foot-and-mouth disease virus 

Foot-and-mouth disease virus (FMDV) is a highly impactful picornavirus of cloven-hoofed 

animals (Knight-Jones, Rushton, 2013; Reid et al., 2006; Thurmond, Perez 2006).  FMDV 

can be transmitted by direct or indirect contact (Bravo de Rueda et al., 2014).  Clinical signs 

of FMDV infection include vesicular lesions, decrease in milk yield in lactating cattle, and 

pyrexia (Armstrong, Mathew, 2001).   

 

FMDV was detected in milk samples from individual cows by RT-rtPCR for 23 days post-

inoculation (Reid et al., 2006).  Estimates of the diagnostic sensitivity and specificity of RT-

rtPCR for the detection of FMDV in bulk tank milk samples has not been reported, but 

Thurmond, Perez (2006), predicted that RT-rtPCR testing of bulk tank milk samples would 

detect FMDV 4 to 7 days earlier than detection based on the recognition/reporting of clinical 

signs.   

 

FMDV antibodies may be detected in ovine and bovine milk using blocking ELISAs 

(Armstrong, 1997a;1997b).  Estimates for diagnostic sensitivity and specificity of these 

ELISAs are not available, but Armstrong, Mathew (2001) found a statistically significant 

correlation (r = 0.53) between serum and milk antibody titers.  On this basis, these 

researchers suggested that antibody testing of bulk tank milk samples would be an effective 

approach for monitoring herd immunity and/or evaluating population susceptibility to 

FMDV.  
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Mycobacterium avium subspecies paratuberculosis 

Mycobacterium avium subspecies paratuberculosis (MAP) is the etiologic agent of Johne’s 

disease in ruminants (Mortier et al., 2014).  Most commonly acquired via fecal-oral 

transmission, Johne’s disease is characterized by enteritis, decreased milk yield, weight loss, 

diarrhea, and death (Mortier et al., 2014; Wilson et al., 2010).  A causal role for MAP in 

Crohn's disease has been postulated, but was neither confirmed nor rejected by an assessment 

of the available data (Feller et al., 2007).   

 

MAP is detectable in milk via culture and PCR testing, but culture of bulk tank milk samples 

is not practical because the procedure is neither diagnostically sensitive nor timely, i.e., 

culture can take 18 to 52 weeks (Slana et al., 2008).  The most common target of PCR assays 

is multiple copy insertion sequence IS900 in the MAP genome (Slana et al., 2008).  The 

analytical sensitivity of the IS900 PCR is reported as 5 to 6 MAP cells per ml of bulk tank 

milk versus 83 MAP cells per ml for a PCR targeting F57.  However, IS900 PCRs may have 

issues with analytical specificity because of the homology of this region across mycobacteria 

species (Cousins et al., 1999; Slana et al., 2008; Tasara et al., 2005).  Jayaro et al (2004) 

reported a diagnostic sensitivity of 21% and diagnostic specificity of 50% for bulk tank milk 

samples using an IS900 PCR.  No estimates of diagnostic sensitivity and specificity are 

available for F57-based PCRs. 

 

ELISA-detectable MAP antibodies are present in bulk tank milk samples, but interpretation 

of testing results has not been clearly established (Beaver et al., 2016; Nielsen et al., 2000; 

van Weering et al., 2007; Wilson et al., 2010).  Regardless, some researchers believe that 

ELISA testing of bulk tank milk samples can be used effectively by monitoring changes over 

time (Beaver et al., 2016; van Weering et al., 2007).  Alternatively, Beaver et al. (2016) 

suggested the concurrent use of both assays for bulk tank milk monitoring programs for MAP 

(Beaver et al., 2016).  Thus, herds with positive PCR results and high ELISA titers reflected 

active infection; whereas, herds with positive PCR results but low ELISA titers reflected 

environmental contamination (Beaver et al., 2016).   
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Coxiella burnetti (Q fever) 

Coxiella burnetti (Cb) is an obligate, intracellular rickettsial organism and the cause of Q 

fever in animals and humans (Kim et al., 2005).  Infection with Cb results in reproductive 

disease, including metritis and infertility in cattle and abortion in goats and sheep (Kim et al., 

2005; Rodolakis et al., 2007).  Shedding patterns of Cb in milk is species-dependent and 

varies among cattle, sheep and goats (Rodolakis et al., 2007).  Cattle shed Cb in milk for 

several months, goats shed for a shorter time, and sheep do not reliably shed in milk 

(Astobiza et al., 2012; Rodolakis et al., 2007).  Cb nucleic acid and antibody is detectable in 

bulk tank milk samples PCR and ELISA (Rodolakis et al., 2007; van den Brom et al., 2012).  

Muskens et al. (2011) reported diagnostic sensitivity and specificity of 82% and 70%, 

respectively, when testing bulk tank milk samples by a commercial real-time PCR.  The 

diagnostic sensitivity and specificity of a commercial Cb antibody ELISA for bulk tank milk 

was reported as 88.2% and 94.6%, respectively, using manufacturer-recommended cutoffs 

(van den Brom et al., 2012).  When used in combination, ELISA testing of bulk tank milk 

samples can be used to determine herd exposure and estimate prevalence of Cb while PCR 

testing can be used to determine shedding and prevalence (Astobiza et al., 2012; Muskens et 

al., 2011).   

 

Detection of bacterial pathogens associated with mastitis 

Streptococcus agalactiae is a highly contagious, obligate pathogen of the bovine mammary 

gland and a cause of subclinical and clinical mastitis (Keefe, 1997; Mweu et al, 2012; 

Phuektes et al, 2003; Olde Riekerink et al, 2006).  Streptococcus agalactiae may be detected 

in bulk tank milk samples by culture or PCR (Keefe, 1997; Phuektes et al., 2003).  As 

reviewed by Phuektes et al. (2003), estimates of the diagnostic sensitivity of culture range 

from 20% to 84%.  Estimates of the diagnostic sensitivity and specificity are not available, 

but as would be expected, testing multiple bulk tank milk samples was shown to increase the 

likelihood of detecting Streptococcus agalactiae by PCR (Phuektes et al., 2003; Soltau et al., 

2017).  ELISA-detectable Streptococcus agalactiae antibodies have been reported in 

individual milk samples, but this approach has not been evaluated for bulk tank milk testing 

(Logan et al, 1982).   
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Staphylococcus aureus is an opportunistic pathogen and a cause of subclinical and clinical 

mastitis in cattle, sheep, and goats (Haran et al., 2012; Merz et al, 2016; Olde Riekerink et 

al., 2006; Zanardi et al., 2012).  As reviewed by Olde Riekerink et al. (2010) culture of bulk 

tank milk for Staphylococcus aureus had an estimated diagnostic sensitivity of 21 to 42% and 

a diagnostic specificity of 100%.  Repeated sampling is recognized to improve the 

probability of detection by culture (Olde Riekerink et al., 2006, 2010).  PCR testing of bulk 

tank milk samples can be used to detect Staphylococcus aureus, estimate herd prevalence of 

the infection, and assess for the presence of methicillin-resistant strains (Haran et al., 2012).  

The diagnostic sensitivity and specificity of PCR testing for Staphylococcus aureus in bulk 

tank milk samples is reported at 99% and 67%, respectively (Zanardi et al., 2012).  Using 

individual milk, ELISA testing for antibodies against Staphylococcus aureus may be used to 

as a screening tool to detect infected animals (Fox and Adams, 2000).   

 

Mycoplasma bovis is a highly pathogenic mycoplasma causing both mastitis and respiratory 

disease in adult cattle (Parker et al., 2017a).  Mycoplasma bovis is detectable in bulk tank 

milk samples by culture, but the assay can take 7 to 10 days and overgrowth of bacteria is 

problematic (Parker et al., 2017a;b).  The diagnostic sensitivity of Mycoplasma bovis culture 

is reported as 50%, with diagnostic specificity estimates as high as 100% (Justice-Allen et 

al., 2011; Maunsell et al., 2011).  The diagnostic sensitivity and specificity of Mycoplasma 

bovis PCR for individual milk samples is reportedly 100% and 99.3%, respectively, but 

estimates of PCR performance for bulk tank milk samples have not been reported (Cai et al., 

2005).  PCR testing allows for more rapid detection of Mycoplasma bovis versus culture and 

herd prevalence estimates can be extrapolated from results (Arcangioli et al., 2011).  A 

commercial antibody ELISA is available for bulk tank milk testing and estimates for 

diagnostic sensitivity and specificity are 60.4% and 97.3%, respectively (Nielsen et al., 

2015).  The combination of PCR and ELISA testing can reveal Mycoplasma bovis infection 

in a herd and is an effective approach for surveillance (Nielsen et al., 2015).  
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Oral fluid samples 

Oral fluids are collected from swine or cattle by providing access to a rope suspended in the 

pen, then recovering the sample for diagnostic testing (Prickett et al., 2008a,b; Prickett et al., 

2010; Smith et al., 2004; Stanford et al., 2009).  Oral fluid samples are an aggregate sample 

composed of saliva and transudate originating from capillaries within the buccal and gingival 

mucosa (Prickett et al., 2008a).  Oral fluids contain both local and serum-derived antibodies 

and pathogens (Prickett et al., 2008a,b; Prickett, Zimmerman, 2010).  In addition, viruses, 

bacteria, and other test analytes in feed, water, or the environment may be present in oral 

fluids as a result of normal exploratory behavior (Johnson et al., 2012; Kittawornrat and 

Zimmerman, 2011).  This explains the detection of porcine epidemic diarrhea virus in swine 

oral fluid samples and Escherichia coli and salmonella in cattle (Bjustrom-Kraft et al., 2016; 

Renter et al., 2008; Smith et al., 2005a,b).  In cattle, oral fluids have been used in 

observational studies in feedlot cattle (Renter et al., 2008; Smith et al., 2005a,b), but have not 

been routinely utilized in surveillance.  In contrast, oral fluids have been used extensively for 

disease surveillance in swine populations.  Therefore, the remainder of this section will focus 

exclusively on this subject. 

 

Oral fluids can be collected from groups or individual pigs (Pepin et al, 2015a,b; White et al., 

2014).  In group-housed animals, oral fluids offer a higher probability of detection with fewer 

samples when compared to individual serum samples (Olsen et al., 2013).  Sampling 

guidelines for oral fluid collection at the barn or site level have been published (Rotolo et al., 

2017). 

  

Diagnostic assays optimized for swine oral fluid specimens have been available in North 

American veterinary diagnostic laboratories since 2010 (Bjustrom-Kraft et al., 2017; Olsen et 

al., 2013).  In three North American swine-interest veterinary diagnostic laboratories, the 

number of oral fluid tests performed increased from 20,963 in 2010 to 369,439 in 2016 

(Bjustrom-Kraft et al., 2017).  Pathogens detectable in oral fluid samples and reported in the 

refereed literature are listed in Table 2.  Selected pathogens are reviewed below.  
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Foot-and-mouth-disease virus 

Rapid screening of swine herds is critical in the control of FMDV because pigs aerosolize a 

large amount of virus compared to cattle and promulgate virus transmission (Stenfeldt et al., 

2016).  Under experimental conditions, FMDV was isolated from swine oral fluids on day 

post inoculation (DPI) 1 to 5 (Senthilkumaran et al., 2017).  By RT-rtPCR, FMDV was 

detected from one DPI, i.e., prior to the appearance of clinical signs, and up to 21 DPI 

(Mouchantat et al., 2014; Senthilkumaran et al., 2017).  RNA was detected in oral fluids one 

day earlier than oral or nasal swab samples and continued ~7 days longer (Senthilkumaran et 

al., 2017).   A field-deployable reverse transcription-insulated isothermal PCR (RT-iiPCR) 

has also been used to detect FMDV RNA in oral fluids (Ambagala et al., 2016).  FMDV 

antigens were detected in oral fluids one to 6 DPI using lateral flow immunochromatographic 

strip tests and 2 to 3 DPI using a double-antibody sandwich ELISA (Senthilkumaran et al., 

2017).  FMDV IgA was detected in oral fluids using a solid-phase competitive ELISA 

beginning at 14 DPI (Senthilkumaran et al., 2017).  Pacheco et al. (2010) were not successful 

in detecting FMDV IgM or IgG in oral fluid samples.  Estimates of diagnostic sensitivity and 

specificity have not been reported for the assays reported in this paragraph.  Although FMDV 

oral fluid assay development is in its early stages, preliminary results support the use of 

nucleic acid and/or antibody detection as a method to rapidly screen herds (Ambagala et al., 

2016; Senthilkumaran et al., 2017).  

 

Classical swine fever virus 

Classical swine fever virus (CSFV) is a pestivirus with significant economic consequences 

resulting from clinical disease, lost export markets, and costs related to control and/or 

eradication efforts (Fernández-Carrión et al., 2016).  CSFV can be transmitted by direct or 

indirect contact and, depending on the virulence of the strain, causes pyrexia, anorexia, 

lethargy, conjunctivitis, enlarged and discolored lymph nodes, constipation, and diarrhea in 

affected pigs (Moennig et al., 2003; Petrini et al., 2017).  Under experimental settings, CSFV 

was detected in oral fluids by RT-rtPCR from 7 up to 30 DPI, with a higher detection rate in 

oral fluid than blood samples (40% vs 28%) (Dietze et al., 2017; Petrini et al., 2017).  

Estimates of diagnostic sensitivity and specificity have not been reported for these assays 

and, overall, research on CSFV oral fluid diagnostics is in its initial phases. 
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African swine fever virus 

Infection with African swine fever virus (ASFV), the only member of family Asfarviridae, is 

a cause of fever, hemorrhage, and mortality in domestic and feral pigs (Gimenez-Lirola et al., 

2016; Guinat et al., 2014; Sanchez-Vizcaino, Neira, 2012).  Transmitted through direct and 

indirect contact, ASFV is of particular concern because, since its introduction into Georgia in 

2007, it has steadily advanced westwardly into Europe via feral swine and threatens to spread 

eastwardly into China (Guinat et al., 2014; Vergne et al., 2017). 

 

Under experimental conditions, ASFV was detected in oral fluid 3 to 5 DPI by PCR (Grau et 

al., 2015; Guinat et al., 2014).  ASFV antibodies were detected at 11 DPI in individual oral 

fluid samples by indirect ELISA under experimental conditions (Mur et al., 2013).  The 

pattern of antibody response in oral fluids was similar to the pattern seen in serum (Mur et al, 

2013).  ASFV antibodies were also detected using a p30 indirect ELISA in oral fluids 

(Gimenez-Lirola et al., 2016).  Diagnostic sensitivities and specificities for these assays have 

not been reported.   As in the cases of FMDV and CSFV, further studies are needed to 

optimize ASFV oral fluid assays and assess their use in the field (Grau et al., 2015).   

 

Porcine reproductive and respiratory syndrome virus 

Porcine reproductive and respiratory syndrome virus (PRRSV) is an arterivirus transmitted 

through direct and indirect contact (Zimmerman et al., 2012).  Clinical signs of PRRSV vary 

based on the age of the pig and the virulence of the isolate.  In sows, clinical signs include 

abortion, stillbirths, anorexia and mortality (Zimmerman et al., 2012).  PRRSV is often an 

etiological component of the porcine respiratory disease complex in growing pigs 

(Zimmerman et al., 2012).  

 

The detection of PRRSV nucleic acid in oral fluids has been extensively documented under 

field and experimental conditions (Kittawornrat et al., 2010; 2014; Pepin et al., 2015a,b; 

Prickett et al., 2008a,b; Ramirez et al., 2012; Rotolo et al., 2017).  Kittawornrat et al. (2010) 

reported detection in ~10% of experimentally inoculated boars at 24 hours post-inoculation 

by RT-rtPCR.  Olsen et al. (2013) evaluated test performance as a function of within pen 
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prevalence.  In pens holding 25 pigs, the probability of detecting PRRSV RNA or PRRSV 

antibody in pens containing ≥ 1 positive (4% prevalence) was 62% and 61%, respectively.  

PRRSV may also be sequenced from oral fluids (Biernacka et al., 2016).   

 

IgG, IgA and IgM antibody isotypes were detected in oral fluids collected from individual 

boars using a commercial PRRS serum antibody indirect ELISA modified for oral fluids 

(Kittawornrat et al., 2013).  The pattern of PRRSV antibody ontogeny was similar in serum 

and oral fluid, with IgM detected in oral fluids at 3 DPI, IgA at 7 DPI,  and IgG at 8 DPI  

(Kittawornrat et al., 2013).  Commercial PRRSV oral fluid ELISAs have since become 

available.  Antibodies were also detected in oral fluid using a fluorescent microsphere 

immunoassay (FMIA) with a reported diagnostic sensitivity of 92% and diagnostic 

specificity of 91% (Langenhorst et al., 2012).  

 

Testing of oral fluids can be used to assess the effectiveness of PRRSV control and/or 

elimination programs (Biernacka et al., 2016; Rotolo et al., 2017).  A distinct advantage of 

PRRSV oral fluid-based surveillance is that pen-based oral fluid sampling provides a higher 

probability of detection than individual animal sampling using either RT-rtPCR or ELISA 

(Olsen et al., 2013).   

 

Influenza A virus 

Influenza A virus (IAV) is an orthomyxovirus of humans, horses, sea mammals, birds, and 

pigs transmitted via direct and indirect contact (Hughes et al., 2015; Neira et al., 2016).  

Influenza A virus in commercial swine herds results in chronic, endemic infection with 

respiratory or reproductive clinical signs, as well as clinically inapparent infections (Goodell 

et al., 2013; Panyasing et al., 2013).  IAV is an important pathogen to surveil in pigs because 

of its zoonotic potential (Hughes et al., 2015; Vincent et al., 2014).    

 

Under experimental conditions, IAV RNA was detected in swine oral fluids by one DPI and 

up to 69 DPI (Allerson et al., 2014; Decorte et al., 2015).  Decorte et al. (2015) reported the 

duration of detection in oral fluids as 14 days longer than detection in nasal swabs by RT-

rtPCR (Decorte et al., 2015).  Compared to individual nasal swabs, the diagnostic sensitivity 
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and specificity of pen-based oral fluid RT-rtPCR testing was estimated at 80% and 100%, 

respectively (Romagosa et al., 2012).  Although further optimization is necessary, IAV have 

also been isolated from oral fluids (Goodell et al., 2013).  RT-rtPCR testing of oral fluids can 

be used to track viral circulation and monitor the effect of vaccination and control programs 

in commercial swine herds (Goodell et al., 2013).   

 

Panyasing et al. (2013) reported the ontogeny of IAV IgM, IgA and IgG in pigs housed under 

experimental conditions using isotype-specific indirect ELISAs.  Serum and oral fluid IgG 

responses were highly correlated (r = 0.80) (Panyasing et al., 2013).  Detection of IAV 

antibody has also been reported using blocking or competitive ELISA formats (Panyasing et 

al., 2014; Strutzberg-Minder et al., 2015).  Diagnostic sensitivity and specificity estimates 

have not been established for these assays.  Antibody detection in oral fluids allows for the 

detection of IAV infection in the absence of clinical signs (Panyasing et al., 2013).   

 

Coronaviruses  

Porcine epidemic diarrhea virus (PEDV) is an enteric coronavirus transmitted via the fecal-

oral route (Bjustrom-Kraft et al., 2016; Crawford et al., 2015).  Clinical signs of PEDV 

infection in swine include watery diarrhea, vomiting, and mortality in neonates (Bjustrom-

Kraft et al., 2016).  In the field, Bjustrom-Kraft et al. (2016) reported the detection of PEDV 

nucleic acid in oral fluids from 6 days post exposure (DPE) to 69 DPE.  PEDV was detected 

15 days longer in oral fluid samples compared to pen fecal samples and, compared to 

individual rectal swabs, oral fluids demonstrated a higher concentration of detectable virus 

and higher rate of detection.  In the same study, Bjustrom-Kraft et al. (2016) reported the 

detection of PEDV antibody (IgG and IgA) by 13 DPE in oral fluids.  The diagnostic 

sensitivity and specificity of a PEDV IgG oral fluid ELISA was reported as 69% and 97%, 

respectively.  In contrast, the diagnostic sensitivity and specificity of a PEDV IgA oral fluid 

ELISA was reported as 100% and 100%, respectively (Bjustrom-Kraft et al., 2016).  

Although estimates of diagnostic sensitivity and specificity have not been reported, the oral 

fluid RT-rtPCR is an effective tool to monitor for PEDV presence in herds and IgA antibody 

testing offers an effective method to evaluate herd level immunity (Bjustrom-Kraft et al., 

2016). 
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Like PEDV, porcine deltacoronavirus (PDCoV) is an enteric coronavirus that causes diarrhea 

and vomiting in pigs (Homwong et al., 2015).  PDCoV can be detected in oral fluids by RT-

rtPCR, although estimates of diagnostic sensitivity and specificity are not available 

(Homwong et al., 2015; Singh et al., 2015; Zhang, 2016).  Homwong et al. (2015) reported 

that the detection of PDCoV nucleic acid in oral fluids was 1.89 times more likely than 

detection in feces.  PDCoV antibody ontogeny in serum and oral fluids have not yet been 

reported. 

 

Discussion 

Globally, the production of livestock - poultry, cattle, swine - is in the process of shifting 

from small populations on many farms to large populations on fewer farms (Barkema et al., 

2015; Gale, 2017; Hoban et al., 1997; Marquer, 2010).  Readily accessible USDA data from 

the dairy and swine industries highlight this trend.  In 1982, ~275,000 U.S. dairy farms 

housed ~11,000,000 dairy cows.  By 2012, the number of dairy farms dropped to ~64,000 

while animal numbers remained relatively stable at ~9,250,000 (USDA, 2014).  Pork 

production has followed the same trend.  In 1982, ~330,000 U.S. farms housed ~55,000,000 

pigs in 1982.  By 2012, the number of farms with pigs declined to ~63,000 while the number 

of pigs increased to ~66,000,000 (USDA, 2014).  Increases in herd size are important to 

disease control because herd immunity becomes more difficult to achieve as population 

increases, which in turn leads to pathogen endemicity (LeBlanc et al., 2006; Pitzer et al., 

2016).  

 

Over the same time period, a shift occurred in the movement of livestock across political 

boundaries.  In 1960, 13,500,000 live cattle crossed U.S. state lines for feeding or breeding 

purposes (Hennessy et al., 2005).  By 2015, this number had risen to 20,500,000 (USDA, 

2017).  Similarly, ~2,500,000 pigs were moved across U.S. stateliness in 1960, in contrast to 

~52,500,000 moved in 2016 (Shields, Mathews, 2003; USDA, 2017).  Similar patterns have 

emerged in Europe.  For example, Denmark, France, Germany, Italy, Netherlands, Poland, 

and Spain cumulatively imported ~910,000 live pigs and exported ~937,000 live pigs in 1961 

(FAO, 2017).  In contrast, these countries imported ~22,000,000 imported live pigs and 
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exported ~27,000,000 in 2013 (FAO, 2017).  Trends in livestock movement are important 

because of the well-established role of animal transport in the spread of disease spread, e.g., 

the 2001 FMDV outbreak in the United Kingdom and, more recently, spread of PEDV 

throughout the Western Hemisphere (Davies, 2015; Guinat et al., 2016).   

 

The unintended consequences of changes in the structure and management of livestock 

populations have manifested themselves in the appearance of multifactorial diseases resistant 

to traditional methods of prevention and control, e.g., bovine and porcine respiratory disease 

complexes (Bochev, 2007; Edwards, 2010; Gardner et al., 2002; Hagglund et al., 2006; 

LeBlanc et al., 2006; Pitzer et al., 2016; Schwabe, 1982).  The need to understand complex 

animal health conditions mandates a shift toward the collection of longitudinal animal health 

data.  New intervention strategies or unanticipated events, e.g., the introduction of an exotic 

pathogen, can then be evaluated in the context of their impact on baseline values.   

 

Cumulatively, peer-reviewed research supports the conclusion that aggregate samples offer 

the opportunity to expand the scope of applied surveillance.  Testing of bulk tank milk 

samples provides bovine and small ruminant practitioners and producers the means to 

monitor disease and estimate herd prevalence and provides animal health researchers the 

means to evaluate the spatial distribution and rate of disease transmission (Balmer et al., 

2014; Berriatua et al., 2006; Collins et al., 2017; Garcia-Perez et al., 2010; Johnson et al., 

2014).  Swine oral fluids offer a more analytically sensitive detection system than individual 

pig samples, and at a lower cost (Goodell et al., 2013; Olsen et al., 2013).  Continued 

progress toward the goal of effective surveillance using aggregate sampling requires research 

in two areas:  1) continued development and adaption of diagnostic technology for the most 

globally impactful diseases of animals and humans (zoonoses);  2) continued development of 

statistically valid sampling guidelines for farm and regional surveillance.  
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Lanyon et al., 2014; Radwan et al., 1995; Renshaw et 
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Coxiella burnetti Astobiza et al., 2012; Muskens et al., 2011; Rodolakis 

et al., 2007 

Foot-and-mouth disease virus Reid et al., 2006; Thurmond and Perez, 2006 
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Cousins et al., 1999; Jayaro et al., 2004; Slana et al., 

2008; Tasara et al., 2005 

Mycoplasma bovis Arcangioli et al., 2011; Justice-Allen et al., 2011; 

Maunsell et al., 2011 

Staphylococcus aureus Haran et al., 2012; Zanardi et al., 2012 

Streptococcus agalactiae Phuektes et al., 2003; Soltau et al., 2017 

  

Antibody detection  

Border disease virus Berriatua et al., 2006; Corbiere et al., 2012; Garcia-

Perez et al., 2010 

Bovine viral diarrhea virus Foddai et al., 2015; Houe, 1999; Hanon et al., 2017; 

Kramps et al., 1999; Lanyon et al., 2014; Renshaw et 

al., 2000 

Coxiella burnetti Muskens et al., 2011; van den Brom et al., 2012 

Foot-and-mouth disease virus Armstrong et al., 1997a,b; Armstrong, Mathew, 2001 

Mycobacterium avium subspecies 

paratuberculosis 

Beaver et al., 2016; Nielsen et al., 2000; van Weering 

et al., 2007; Wilson et al., 2010 

Mycoplasma bovis Nielsen et al., 2015 

Schmallenberg virus Balmer et al., 2014; Collins et al., 2017; Daly et al., 

2015; Johnson et al., 2014 

  

Culture or Isolation  

Mycobacterium avium subspecies 

paratuberculosis 

Slana et al., 2008 

Mycoplasma bovis Justice-Allen et al., 2011; Maunsell et al., 2011; 

Parker et al., 2017 a,b 

Staphylococcus aureus Olde Riekerink et al., 2006, 2010 

Streptococcus agalactiae Keefe, 1997 
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Foot-and-mouth disease Ambagala et al., 2016; Mouchantat et al., 2014; 

Senthilkumaran et al., 2017 

Influenza A virus Allerson et al., 2014; Decorte et al., 2015; Goodell et 

al., 2013; Romagosa et al., 2012 

Porcine deltacoronavirus Homwong et al., 2015; Singh et al., 2105 

Porcine epidemic diarrhea virus Bjustrom-Kraft et al., 2016 

Porcine reproductive and 

respiratory syndrome virus 

Biernacka et al., 2016; Kittawornrat et al., 2010; 2014; 

Pepin et al., 2015a,b; Prickett et al., 2008a,b; Olsen et 

al., 2013; Ramirez et al., 2012; Rotolo et al., 2017 

  

Antigen Detection  

Foot-and-mouth disease Senthilkumaran et al., 2017 

  

Antibody detection  

African swine fever virus Gimenez-Lirola et al., 2016; Mur et al, 2013 

Influenza A virus Panyasing et al., 2013;2014; Strutzberg-Minder et al., 

2015 

Porcine epidemic diarrhea virus Bjustrom-Kraft et al., 2016 

Porcine reproductive and 

respiratory syndrome virus 

Kittawornrat et al., 2013; Langenhorst et al., 2012 

  

Culture or Isolation  

Influenza A virus Goodell et al., 2013 
  

  



37 

 

 

 

CHAPTER 3.  SAMPLING GUIDELINES FOR ORAL FLUID-BASED SURVEYS OF 

GROUP-HOUSED ANIMALS 

 

M. Rotolo1, Y Sun2, C. Wang2, L. Giménez-Lirola1, D.H. Baum1, P.C. Gauger1, K. M. 

Harmon1, M. Hoogland3, R. Main1, J.J. Zimmerman1 

 

1Department of Veterinary Diagnostic and Production Animal Medicine,  

College of Veterinary Medicine, Iowa State University, Ames, Iowa  50011; 2Department of 

Statistics, College of Liberal Arts and Sciences, Iowa State University, Ames, Iowa  50011; 

3Smithfield Foods, Algona, Iowa 50511 

 

Modified from a manuscript published in Veterinary Microbiology (2017) 209: 20-29. 

 

Abstract 

Formulas and software for calculating sample size for surveys based on individual animal 

samples are readily available.  However, sample size formulas are not available for oral 

fluids and other aggregate samples that are increasingly used in production settings.  

Therefore, the objective of this study was to develop sampling guidelines for oral fluid-based 

porcine reproductive and respiratory syndrome virus (PRRSV) surveys in commercial swine 

farms.  Oral fluid samples were collected in 9 weekly samplings from all pens in 3 barns on 

one production site beginning shortly after placement of weaned pigs.  Samples (n = 972) 

were tested by real-time reverse-transcription PCR (RT-rtPCR) and the binary results 

analyzed using a piecewise exponential survival model for interval-censored, time-to-event 

data with misclassification.  Thereafter, simulation studies were used to study the barn-level 

probability of PRRSV detection as a function of sample size, sample allocation (simple 

random sampling vs fixed spatial sampling), assay diagnostic sensitivity and specificity, and 

pen-level prevalence.  These studies provided estimates of the probability of detection by 

sample size and within-barn prevalence.  Detection using fixed spatial sampling was as good 

as, or better than, simple random sampling.  Sampling multiple barns on a site increased the 

probability of detection with the number of barns sampled.  These results are relevant to 



38 

 

 

 

PRRSV control or elimination projects at the herd, regional, or national levels, but the results 

are also broadly applicable to contagious pathogens of swine for which oral fluid tests of 

equivalent performance are available. 

 

Introduction 

As reviewed by Christensen (2001), various definitions of surveillance and monitoring 

appear in the literature, with the primary difference that surveillance implies that an action 

will be taken in the case of a positive result.  However, as discussed in the FAO "Manual on 

Livestock Disease Surveillance and Information Systems" (Paskins, 1999), “surveillance” is 

often used interchangeably with “monitoring” (even by epidemiologists) and, in practice, the 

distinction between the two is often blurred.  Paskins (1999) goes on to define surveillance 

as, “All regular activities aimed at ascertaining the health status of a given population with 

the aim of early detection …." and monitoring as “All activities aimed at detecting changes 

in the epidemiological parameters of a specified disease”.  Consistent with this approach, the 

assumption in this paper is that the purpose of surveillance is to detect infectious agents and 

the purpose of monitoring to detect changes in pathogens' trends in populations.  Regardless 

of the purpose for which samples are collected, the sampling guidelines reported herein apply 

equally to both. 

 

Beginning in the 20th century and continuing into the present, pig production moved from 

relatively small, extensive, labor-dependent enterprises into larger, intensive, technified 

production systems.  In these farms, animals are segregated by age, production stage, and/or 

function - with little interaction between groups.  Both breeding and growing pig populations 

turn over rapidly, but non-uniformly, as animals finish the production cycle and are replaced 

by others – often of differing infectious and/or immune status.  Thus, the size and structure of 

contemporary production systems leads to instability in herd immunity and promotes the 

circulation of agents.  Schwabe (1982) recognized the impact of these changes on the 

expression of disease and prescribed continuous monitoring as a means of discovering the 

levels and patterns of pathogen circulation and evaluating the effectiveness of interventions. 
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In conjunction with these changes and particularly in North America and Europe, large 

numbers of young pigs are moved from breeding farms to finishing farms located in 

proximity to the areas where crops are produced.  Thus, not exclusively, but primarily for this 

reason, 27,500,000 live animals entered the state of Iowa USA between December 1, 2014 

and December 1, 2015 (NASS, 2016).  While it is more cost-effective to bring the pigs to the 

feed (rather than the reverse), this management practice effectively connects distant farms 

and rapidly moves infectious agents between them.  Ultimately, movement of large numbers 

of pigs compromises the ability of veterinary health authorities to control the spread of 

infectious diseases at the regional and national levels.  This is of particular concern for 

transboundary and OIE-listed pathogens. 

 

Cumulatively, these recent developments drive the need to collect infectious disease 

information more rapidly and efficiently.  Historically, swine surveillance has been based on 

individual animal sampling, e.g., serum, nasal swabs, tonsil biopsies, etc., but aggregate 

specimens, such as oral fluids, offer specific advantages.  In particular, oral fluid specimens 

can be collected by a single person, can be collected frequently (even daily) without stress to 

pigs or people, and can provide a higher probability of analyte detection with fewer samples 

than serum (Olsen et al., 2013).  This approach provides for an inexpensive, practical, and 

welfare-friendly method to surveil pig populations.  Detection of nucleic acids or antibodies 

in oral fluids have been reported for most swine pathogens, including Actinobacillus 

pleuropneumoniae (Loftager et al., 1993), African swine fever virus (Greig and Plowright, 

1970; Giménez-Lirola et al., 2016), classical swine fever virus (Corthier and Aynaud, 1977), 

foot-and-mouth disease virus (Eblé et al., 2004; Senthikumaran et al., 2016a; Vosloo et al., 

2015), influenza A virus (Goodell et al., 2013; Panyasing et al., 2013), porcine circovirus 

type 2 (Prickett et al., 2011), porcine epidemic diarrhea virus (Bjustrom-Kraft et al., 2016), 

porcine reproductive and respiratory syndrome virus (Kittawornrat et al., 2010, 2012, 2013; 

Prickett et al., 2008a,b), swine vesicular disease virus (Senthilkumaran et al., 2016b), 

vesicular stomatitis virus (Stallknecht et al., 1999), and others. 

 

The general need for a new surveillance approach reflects the requirement to adapt to the 

population structure and production practices in use on contemporary swine farms and the 
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availability of new sampling/testing methods.  The specific objective of the present study was 

to develop sampling guidelines for oral fluid-based porcine reproductive and respiratory 

syndrome virus (PRRSV) surveillance or monitoring in commercial swine farms.  Estimates 

for probability of detection are needed to expedite on-farm data collection and aid in PRRSV 

control and/or eradication efforts. 

 

Materials and methods 

Experimental design 

Oral fluid samples were collected in 9 weekly samplings from all occupied pens (~25 pigs 

per pen, 36 pens per barn) in 3 commercial wean-to-finish (WTF) barns on one production 

site in the Midwest USA.  The Iowa State University Office of Responsible Research 

reviewed and approved the on-farm sampling procedures.  After the final collection, the 972 

oral fluid samples (36 pens x 3 barns x 9 samplings) were randomized and tested for PRRSV 

RNA by real-time reverse transcription polymerase chain reaction (RT-rtPCR).  Longitudinal 

binary diagnostic test outcomes were analyzed using a piecewise exponential survival model 

for interval-censored, time-to-event data with misclassification.  The model and the 

parameters estimated from analyses of field data were then used in simulations (10,000) to 

study the barn-level probability of PRRSV RNA detection in the context of sample size, 

sample allocation (fixed spatial vs simple random sampling), assay diagnostic sensitivity and 

specificity, and the number of positive pens.  The effect of disease spread on probability of 

detection by time was evaluated using simulation studies for three scenarios; the observed 

spread of the infection (𝛽1, 𝛽2), one-half the observed spread of the infection (𝛽1/2, 𝛽2/2), 

and twice the observed spread of the infection (2𝛽1, 2𝛽2). 

 

Animals and animal care 

The study was conducted on one swine farm with three curtain-sided, wean-to-finish barns 

(13.4 m × 61.0 m) sited parallel to each other and spaced 10 m apart.  Barns used split-zone 

ventilation, with independent control of curtains and ridge ventilation by zone.  Manure was 

collected in shallow pits beneath each barn and moved to an outdoor above-ground slurry 

storage tank via a scraper system.  The site functioned on an all-in-all-out basis, with 
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buildings cleaned and disinfected between groups.  Animal veterinary care, housing, 

handling, and feeding were under the supervision of production system veterinarians. 

 

Each barn contained 40 pens with 20 pens on either side of a central walkway.  Pens 

(3 m × 6 m) were built with solid concrete walls and partial slats.  At the time of the study, 

36 pens in each barn were occupied, with ∼25 pigs in each pen.  Barns were filled with 

weaned pigs (∼21 days of age) sourced from the same PRRSV-endemic breeding herd over 

the course of approximately one week.  Commercial modified-live PRRS vaccines were 

administered to replacement gilts in the breeding herd, but PRRS vaccine was not 

administered to sows or pigs. 

 

Sample collection 

Oral fluid samples were collected weekly from each of the 36 occupied pens in each of the 3 

barns, i.e., 108 samples per week, using a procedure described elsewhere (Prickett et al., 

2008a, 2008b).  In brief, oral fluid samples were collected by hanging one 100% cotton rope 

in each pen, with the end of the rope hanging at the height of the pigs' shoulder.  One day 

before the first sample was collected, pigs were “trained” by providing access to ropes for 

60 min (White et al., 2014).  For routine sampling, ropes were hung for 20–30 min.  

Thereafter, the wet portion of the rope was inserted into a one gallon plastic bag and severed 

from the remainder of the rope.  Oral fluid was extracted by passing the rope, still within the 

bag, through a chamois wringer.  Samples were decanted into 50 mL centrifuge tubes and 

placed on crushed ice for transport to the laboratory.  At the laboratory, samples were 

aliquoted into cryovials (4 mL) and stored at −20 °C.  Prior to testing, samples were placed in 

random order to control for systematic bias.  Sampling began one week after pigs were 

placed in the facility and continued for 8 weeks thereafter (total of 9 samplings). 

 

PRRSV RT-rtPCR 

All samples were tested for the presence of PRRSV RNA at the Iowa State University 

Veterinary Diagnostic Laboratory (ISU VDL) using standard protocols.  Extraction of the 

oral fluids was performed using the MagMAX™ viral RNA isolation kit (Life Technologies, 

Carlsbad, CA, USA) and a Kingfisher 96 magnetic particle processor (Thermo-Fisher 
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Scientific, Waltham, MA, USA) using a high-volume modified lysis (HVML) procedure.  A 

modified lysis/binding solution was prepared with 120 μL lysis/binding solution, 2 μL carrier 

RNA, 120 μL isopropanol and 2 μL Xeno™ RNA template at 10,000 copies/μL.  At the lysis 

step, 240 μL of the prepared lysis/binding solution was added to 20 μL of magnetic bead mix 

prior to extraction and elution into 90 μL buffer.  An additional modification for the HVML 

procedure was an increase in volume of wash I and II solutions, i.e., the procedure used 

300 μL in wash I and 450 μL in wash II.  The extraction was performed using Kingfisher 

AM1836_DW_HV_v3, provided by Thermo Fisher Scientific. 

 

Samples were assayed using a commercial PRRSV real-time rtPCR kit (EZ-PRRSV MPX 

4.0 assay, Tetracore©, Rockville, MD, USA).  For each run, one positive control for PRRSV 

Types 1 and 2 and a negative amplification control were included.  For each control well, 

17.25 μL of EZ-PRRSV MPX 4.0 Reagent was added.  The EZ-PRRSV MPX 4.0 Reagent 

includes buffer, primer and probes, 0.75 μL Enzyme Blend, 0.25 μL IC and 7 μL of positive 

control (Type I or 2 IVT) or negative control (1x TE).  Specifically for oral fluid samples, 

each well contained 17.25 μL of the EZ-PRRS MPX 4.0 Reagent, which included buffer, 

primer, probes, 0.75 μL Enzyme Blend and 7 μL of the oral fluid extract.  Plates were loaded 

onto the thermal cycler (7500 Fast Real-Time PCR System, Applied Biosystems©, Foster 

City, CA, USA) and the following cycling conditions were used: one cycle at 48 °C for 

15 min, one cycle at 95 °C for 2 min, 45 cycles of: 95 °C for 5 s, and 60 °C for 40 s.  

Samples with Ct values <45 for Type 2 PRRSV were considered positive. 

 

Statistical analysis 

Longitudinal binary diagnostic test outcomes, uij = (uij1,...uijt), for pen j in barn i and sampling 

time t were analyzed using a piecewise exponential survival model for interval-censored 

time-to-event data with misclassification (Sun, 2017).  The corresponding unobserved true 

infection status, yij = (yij1,...yijt), was modeled through a binary latent survival process that 

followed a piecewise exponential model.  The hazard of the onset of infection for pen j in the 

survival model, 𝜆𝑖𝑗𝑡,was modeled as a function of the infection status of the other pens j’ in 

the building and the distance ( 'jj
d ) between pens j and j’ within the same barn: 
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Here 0  is the baseline negative log-hazard and 1  and 2  are parameters quantifying the 

spread of the infection.  Specifically, 1  represents the change in log-hazard for each 

additional positive pen in the same barn regardless of distance and 2  represents the change 

in log-hazard for each additional positive pen in the same barn per 1/ 'jj
d . 

 

Diagnostic test outcomes were modeled conditional on the latent disease process using 

Bernoulli distribution parametrized through the assay's diagnostic sensitivity (se) and 

specificity (sp):  

          

uijt | (yijt=1) ~ Bernoulli(se), uijt | (yijt=0) ~ Bernoulli(1-sp).   (2) 

 

These test outcomes are correlated over space and time as a result of the model structure. 

Since the pens were sampled at pre-determined time points, t (weekly), the true infection onset 

time can be viewed as interval-censored.  The model parameters 0 , 1 , and 2  were estimated 

through a hierarchical Bayes approach utilizing non-informative priors.  The model and the 

parameters estimated from analyses of field data were then used in simulation studies to study 

the effect of sample size, sample allocation (simple random sampling or fixed spatial 

sampling), and sampling frequency on the probability of detecting PRRSV infection while 

controlling for assay diagnostic sensitivity and specificity, prevalence (proportion of positive 

pens), and spread of the virus.  For any selected sample size, pen samples were either randomly 

selected using software R 3.2.2 (R Development Core Team, 2010) or selected using a fixed 

spatial sampling approach.  Fixed spatial sampling was based on selecting pens equidistant to 

each other and on alternate sides of the center alleyway over the length of the barn. 
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Probability of detection in a single barn (single sampling) 

The probability of detection in a single barn at a single sampling was evaluated for a range of 

relevant criteria, i.e., diagnostic sensitivities and specificities, sample sizes (1 to 36), sample 

allocation (simple random sampling vs. fixed spatial sampling), and prevalence (0 to 36 

positive pens).  Simulations were carried out in R 3.2.2.  In each simulation study, the true 

infection status of the 36 pens in each of the 3 barns was simulated over time using the 

estimated model parameters ( 0 , 1 , 2 ).  For each set of sampling criteria, the probability of 

detection was calculated as the proportion of simulations (out of 10,000 runs) with ≥ 1 

positive pens among the total pens sampled. 

 

Infection status and sample test outcomes were generated using simulation studies over the 

sampling period of 8 weeks, t = 0, 1, …, 8.  For each pen j in barn i, the true infection status, 

yij0, at the initial sampling point was generated from the Bernoulli distribution with 

probability p0., the initial prevalence at week 0.  If the result was yij0  = 1, the pen was 

classified positive at sampling point 0 and all subsequent sampling periods.  If the result was 

yij0  = 0, the time to positive pen status tij1
 was simulated from an exponential distribution with 

parameter 𝜆𝑖𝑗1 defined as in (1), where 𝑦𝑖𝑗′0 was the true infection status for pen 𝑗′ at 

sampling time 0.  If 𝑡𝑖𝑗1 ≤ 1, then the true infection status for pen j at time 1 was yij1 = 1, thus 

yij2 = … = yij8 = 1.  If   𝑡𝑖𝑗1 > 1, 𝑡𝑖𝑗2 was generated from an exponential distribution with 

parameter 𝜆𝑖𝑗2, as defined in (1), where 𝑦𝑖𝑗′1 was the true infection status for pen 𝑗′ at 

sampling time 1.  If 𝑡𝑖𝑗2 ≤ 1, then the true infection status for pen j at sampling time 2 was 

yij2 = 1, thus yij3 = … = yij8 = 1.  If 𝑡𝑖𝑗2 > 1, 𝑡𝑖𝑗3 was generated from an exponential 

distribution with parameter 𝜆𝑖𝑗3, as defined in (1), where 𝑦𝑖𝑗′2 was the true infection status 

for pen 𝑗′ at sampling time 2.  Similarly, the true infection status for each pen at each 

sampling point was generated through this procedure. 

 

After simulation of infection status, diagnostic test outcomes were simulated with the number 

of pens sampled (1 to 36) allocated using either simple random sampling or fixed spatial 

sampling.  For any predetermined level of diagnostic sensitivity or specificity, the test 

outcome, uijt, was generated conditionally on yijt from (2).  At each prevalence level, the 
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probability of detection was calculated as the proportion of simulations (out of 10,000 

simulations) with ≥ 1 positive pen among the total pens sampled.  The probability of 

detection was calculated for both simple random sampling and fixed spatial sampling and the 

results compared using McNemar's test for paired proportions. 

 

Effect of the spread of infection on the probability of detection 

As shown in Equation (1), the spread of infection was controlled by 𝛽1, 𝛽2 such that larger 

values of 𝛽1, 𝛽2 resulted in faster spread among pens within a barn, while smaller values of 

𝛽1, 𝛽2 produced slower spread.  The effect of spread on the probability of detection by time 

in a single barn was explored by changing the values of these parameters in simulation 

studies.  Fixed spatial sampling was used with sample sizes 2, 4, and 6 while allowing 

prevalence to change over time.  For simplicity, diagnostic sensitivity and specificity were 

assumed to be 100%. 

 

The effect of the spread of infection on the probability of detection was evaluated for three 

scenarios while keeping 𝑝0, 𝛽1 constant: the observed spread (𝛽1, 𝛽2), one-half the observed 

spread (𝛽1/2, 𝛽2/2), and twice the observed spread of infection (2𝛽1, 2𝛽2).  Simulation 

studies were carried out and the true infection status at each sampling point was generated 

using the methods described above through the end of the sampling period (8 weeks).  Test 

outcomes were generated conditional on the true infection status.  At each sampling point, 

the probability of detection was calculated as the proportion of simulations (out of 10,000 

simulations) with ≥ 1 positive pen among the total pens sampled. 

 

Effect of sampling 2 or more barns on a site 

The approach described above estimates the probability of detecting infection in one barn.  

Assuming independence among barns, the overall probability of detecting infection on one 

production site by sampling ≥ 2 barns can be calculated as: 

 

P = (1 - (1 - p1)(1 - p2)(1 - p3) … (1 - pk)).     (3) 
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In equation 3, pi is the probability of detection in the ith (i = 1,2, …, k) barn.  When the k 

barns are similar in design and are sampled with same scheme, then all pi can be assumed 

equal to a common p of detection and the formula simplifies to: 

 

P = (1 - (1 - p)k).        (4) 

 

Results 

Oral fluid samples were completely randomized prior to testing for PRRSV nucleic acid and 

then tested in batches of ~252 samples to optimize laboratory throughput.  RNA extraction 

(Life Technologies) and RT-rtPCR (Tetracore, Inc.) were each performed using a single 

production lot.  Samples were tested once, i.e., no retests were performed.  A total of 425 

samples tested positive (Ct ≤ 45) and 547 samples tested negative.  The mean Ct among 

positives was 30.7 (95% confidence interval 30.4, 30.9).  Table 1 provides a spatiotemporal 

perspective of the results.  Descriptively, the 3 barns differed by the week at which they 

reached ≥ 4 PCR-positive pens (≥ 11% positivity):  Barn A at week 1, Barn B at week 3, and 

Barn C at week 6.  Likewise, barns differed in the time it took for PRRSV to spread from ≥ 4 

positive pens to ≥ 32 (≥ 89%) positive pens:  Barn A 4 weeks, Barn B 3 weeks, and Barn C 1 

week. 

 

Test results were used to estimate model parameters 𝑝0, 0 , 1 , and 2  through a 

hierarchical Bayes approach using non-informative priors with JAGS Version 4.0.0 

(Plummer, 2007).  Posterior means, standard errors, and 95% credible intervals are given in 

Table 2.  The 95% credible intervals did not include 0, indicating that the parameters' 

estimates were statistically significant and that the constructed model effectively represented 

the spread of infection.  The parameter estimates were then used in simulation studies, as 

described in section 2.5.1 and section 2.5.2, to evaluate the effect of sample size, sample 

allocation (simple random sampling vs fixed spatial sampling), and time on the probability of 

detecting PRRSV infection in a single barn while controlling for assay diagnostic sensitivity 

and specificity, prevalence (proportion of positive pens), and spread of infection. 
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Simple random sampling and fixed spatial sampling were compared in terms of the 

probability of detecting ≥ 1 positive samples over a range of sample sizes and number of 

positive pens in a single barn.  For simplicity, the data presented in Figure 1 assume that 

diagnostic sensitivity and diagnostic specificity are both 100%.  The results for each set of 

parameters were based on 10,000 simulations, i.e., the standard errors for each estimate 

should be smaller than 0.005.  Comparisons of the results showed that the probability of 

detection using fixed spatial sampling was equal to, or greater than, the probability of 

detection using simple random sampling (McNemar's test, p < 0.05).  Therefore, the 

remainder of the analyses reported herein were based on fixed spatial sampling. 

 

The effect of diagnostic sensitivity on the probability of detecting PRRSV infection in a 

single barn was evaluated for fixed spatial sampling as a function of sample size and number 

of positive pens (Table 3).  Diagnostic specificity was assumed to be 100% for each level of 

diagnostic sensitivity.  Conversely, the effect of diagnostic specificity on the probability of 

producing a false positive result is given in Table 4. 

 

The effect of 1  and 2  on the probability of detection is shown in Figure 2 for 2, 4, and 6 

samples collected using fixed spatial sampling from one barn.  Three separate scenarios were 

analyzed:  one-half the observed spread of infection (0.5 × ( 1 , 2 )), the observed spread of 

infection (1.0 × ( 1 , 2 )), and twice the observed spread of infection (2.0 × ( 1 , 2 )).  The 

number of positive pens by week were derived from the simulations and, therefore, vary 

slightly from the field data reported in Table 3.  Table 5 reports the probability of ≥ 1 true 

positive results in 1, 2, or 3 barns as a function of the spread of infection ( 1 , 2 ), the 

number of barns sampled, the number of pens sampled within barns using a fixed spatial 

sampling, and the number of positive pens in the barns.  The probabilities for 2 or 3 barns 

reported in Table 5 were calculated using Equation 4. 
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Discussion 

Cannon and Roe (1982) introduced the concept of statistical sampling to an earlier generation 

of livestock health specialists by presenting sample size guidelines based on perfect tests in a 

highly readable and widely disseminated pamphlet.  The first wholesale application of 

statistical sampling to the livestock industry may have been the U.S. Aujeszky's disease 

(Pseudorabies) eradication program initiated in 1989 and successfully concluded in 2002 

(Anderson et al., 2008).  Subsequently, Cameron and Baldock (1998) developed formulas to 

calculate sample sizes for surveillance based on imperfect diagnostic tests and Cannon 

(2001) derived fast approximation formulas for this calculation.  Such work provided a 

strong theoretical basis for surveillance based on individual animal samples, e.g., serum, but 

did not provide guidance for surveillance based on aggregate samples, e.g., oral fluids. 

 

In this study, a piecewise exponential survival model was used to model ‘time-to-infection’ 

at the pen level using PRRSV RT-rtPCR results on oral fluid samples collected weekly (1, 2, 

… t).  Since sampling occurred at seven-day intervals, pen-level ‘time-to-infection’ was 

treated as interval-censored.  The piecewise exponential model has previously been used for 

interval-censored time-to-event data where a constant hazard is assumed in each time 

interval.  Covariate effects, if present, can be accommodated using proportional hazards 

(Friedman, 1982; Lindsey and Ryan, 1998).  Simulation studies were then used to determine 

the effect of sampling allocation (simple random sampling vs. fixed spatial sampling), 

sample size, prevalence, time, and test performance (diagnostic sensitivity and specificity) on 

the probability of PRRSV detection in a single barn. 

 

Independent of test performance, the probability of detection increased as sample size and/or 

PRRSV prevalence increased (Table 3); whereas, the probability of false positive results 

increased with larger sample size and/or with declining prevalence (Table 4).  The overall 

trends observed were generally as expected, with estimates for specific conditions provided 

by the simulation studies. 
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Somewhat unexpectedly, fixed spatial sampling was found to be equal to, or better than, 

simple random sampling in terms of the probability of detecting infection (Fig. 1).  Simple 

random sampling assumes that the characteristic of interest is independent and spatially 

distributed (Cochran, 1977), but in infectious diseases, observations in proximity with each 

other are likely to be of similar status as a result of pathogen spread.  Although rarely used in 

veterinary medicine, spatially-based sampling is widely used in other fields, where it is 

considered to offer advantages in terms of cost and efficiency (Wang et al., 2013).  Fixed 

spatial sampling provides for a surveillance sampling design that is easily described and 

easily implemented in pig barns.  Results of repeated sampling from the same pens over time 

provide a coherent picture of the infectious process and/or immune responses that can be 

easily juxtaposed with temporal productivity or clinical parameters. 

 

Currently, farm- or herd-level surveillance is challenged by the larger population size and 

heterogeneous hierarchies (sites, barns, animals) common to contemporary production sites.  

A design based on sampling individual barns provides flexibility in tailoring surveillance to 

farms ranging widely in size and complexity.  Furthermore, sampling across multiple barns 

on a site is a powerful approach for detecting infection.  For example, assuming fixed spatial 

sampling, within-barn prevalence of 25%, and test sensitivity/specificity of 95/100%, the 

probability of detecting PRRSV infection in one barn using 2 oral fluid samples is 43% 

(Table 3).  Under these same assumptions, if 2 oral fluid samples were collected from each of 

3 barns on one site, the probability of detection is 81%.  This may be calculated using 

Equation (4): P = (1 − (1 − p)k) = (1 − (1–0.43)3) = 0.81.  If prevalence is thought to differ 

among barns on a site, Table 3 and Equation (3) can be used to estimate the probability of 

detection by sample size.  This approach assumes independence among barns.  If this 

assumption does not hold, the piecewise exponential survival model can be generalized to 

include the pathogen's spread among barns and the overall chance of detection in multiple 

barns generated using simulations. 

 

Sample size addresses the probability of detection at a single point in time, whereas the 

combination of sample size and frequency address the probability of detection as a pathogen 

spreads over time.  The pattern of PRRSV spread observed in this study was in agreement 

http://www.sciencedirect.com/science/article/pii/S0378113516305272#eq0040
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with a previous report (Dufresne et al., 2003), but given that barns and pens-within-barns 

vary in design and size, it is possible that the parameters for the spread of infectious agents 

may differ somewhat among production sites.  This concept has not been widely explored, 

but using a modeling approach, Maurice et al. (2016) predicted the spread of 

encephalomyocarditis virus to be faster in a barn with gated pens as opposed to concrete 

walls.  The impact of spread on detection was addressed by modeling detection at 0.5, 1, and 

2 times the observed spread of infection (Fig. 2, Table 5).  From this analysis it can be seen 

that frequent sampling is mandatory, if early detection is the objective. 

 

The first step in developing a sampling design is to establish a clear objective: surveillance 

vs. monitoring.  To that end, the primary purpose of this study was to provide sampling 

guidelines for commercial pig farms.  Given that perfect tests do not exist, a clear strategy for 

addressing unexpected results, e.g., suspected false positives, should be in place before 

sampling is initiated.  Tables 3–5, provide the probabilities of detection for various scenarios 

and serve to guide sample size decisions.  These tables describe the number of samples to 

collect in a barn as a function of the probability of detection.  The number of pens in a barn is 

not an issue in selecting sample size.  If the barn is designed with many pens, samples will 

likely be collected from separate pens.  If the barn is designed with few pens, more than one 

sample per pen could be collected.  The key feature is a fixed spatial approach: space 

samples equally over the length of the barn. 

 

The purpose of surveillance is to assure animal health and welfare, improve producer 

profitability, and protect a valuable national asset.  The specific objective of the present study 

was to develop sampling guidelines for oral fluid-based PRRSV surveillance or monitoring 

in commercial swine farms.  These results will have immediate application to PRRSV control 

and/or elimination projects at the herd, area, and regional levels.  The analysis was based on 

PRRSV infection in commercial swine production facilities detected using PRRSV RT-

rtPCR testing, but the results are expected to be broadly applicable to swine pathogens for 

which oral fluid tests of equivalent performance are available. 
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Tables 

Table 1.  Spatiotemporal patterns of PRRSV spread in three wean-to-finish barns as revealed 

by weekly RT-rtPCR testing of pen-based oral fluids beginning one week post-

weaning. 

 
a Adjusted Ct is calculated as follows: Cutoff – Result = Adjusted Ct: Example: 45- 30 = 15. 

The higher the adjusted Ct, the higher the concentration of virus detected.  
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Table 2.  Model parameter estimates, standard errors, and 95% credible intervals 

 

 0p  0  1  2  

Estimate 0.032 3.980 -0.063 -1.286 

Standard error 0.0167 0.3118 0.0427 0.0962 

95% credible interval [0.008, 0.073] [3.339, 4.440] [0.117, 0.031] [-1.435, -1.082] 
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Table 3.  Probability of ≥ 1 true positive results in one barn at one sampling.  Probability (%, 

in italics) is a function of the number of positive pens in the barn, the number of 

pens sampled using a fixed spatial approach, and test diagnostic sensitivity* 

Test 
No. of 

samples  

Number of positive pens among a total of 36 pens in the barn 

1 2 3 4 5 6 9 18 27 36 

D
ia

g
n

o
st

ic
 s

en
si

ti
v

it
y

 6
0
%

 

1 2 3 5 7 9 10 16 34 52 60 

2 3 7 10 14 16 20 30 56 74 84 

3 5 10 15 20 24 29 40 70 86 93 

4 6 12 19 25 30 36 50 80 93 97 

5 9 17 23 31 37 42 58 86 96 99 

6 10 19 28 36 43 50 66 91 98 100 

9 15 28 39 49 56 64 80 97 100 100 

18 29 51 66 77 84 89 97 100 100 100 

27 46 70 83 91 96 98 100 100 100 100 

36 60 83 94 97 99 100 100 100 100 100 

D
ia

g
n
o
st

ic
 s

en
si

ti
v
it

y
 7

0
%

 

1 2 4 6 8 10 13 19 38 60 69 

2 4 8 11 16 19 23 33 63 82 91 

3 6 12 17 22 27 32 46 76 92 97 

4 8 15 23 28 34 40 57 87 97 99 

5 10 19 27 35 42 49 65 92 98 100 

6 10 22 31 41 49 55 71 95 99 100 

9 17 32 45 56 64 72 86 99 100 100 

18 35 58 73 84 90 94 99 100 100 100 

27 54 77 90 95 98 99 100 100 100 100 

36 70 91 97 99 100 100 100 100 100 100 

D
ia

g
n
o
st

ic
 s

en
si

ti
v
it

y
 8

0
%

 

1 3 4 7 9 11 14 21 46 69 80 

2 4 9 13 17 21 26 38 70 90 96 

3 7 13 19 25 31 36 52 82 97 99 

4 9 17 25 33 40 46 63 91 99 100 

5 11 21 31 39 47 54 71 95 100 100 

6 13 25 36 45 53 61 78 98 100 100 

9 20 37 50 61 70 77 90 100 100 100 

18 42 65 80 88 94 97 100 100 100 100 

27 60 84 93 98 99 100 100 100 100 100 

36 80 96 99 100 100 100 100 100 100 100 

D
ia

g
n

o
st

ic
 s

en
si

ti
v

it
y

 9
0
%

 

1 2 5 8 10 13 15 24 50 78 90 

2 5 10 15 20 25 29 42 77 95 99 

3 7 15 22 29 35 41 57 89 98 100 

4 10 20 28 36 44 51 67 95 100 100 

5 12 24 34 43 52 59 76 98 100 100 

6 14 28 40 49 59 66 83 99 100 100 

9 23 41 55 66 74 82 94 100 100 100 

18 45 71 85 92 97 98 100 100 100 100 

27 68 90 97 99 100 100 100 100 100 100 

36 89 99 100 100 100 100 100 100 100 100 
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Table 3.  Cont’d 

Test 
No. of 

samples  

Number of positive pens among a total of 36 pens in the barn 

1 2 3 4 5 6 9 18 27 36 

D
ia

g
n

o
st

ic
 s

en
si

ti
v

it
y

 9
5
%

 

1 3 5 8 10 13 16 25 53 81 95 

2 5 11 16 20 25 30 43 79 96 100 

3 8 16 23 30 36 42 58 90 99 100 

4 11 21 30 39 46 53 71 96 100 100 

5 12 25 36 46 55 63 80 99 100 100 

6 15 30 42 52 62 69 85 99 100 100 

9 23 43 58 68 77 84 95 100 100 100 

18 47 73 87 94 97 99 100 100 100 100 

27 73 93 98 100 100 100 100 100 100 100 

36 94 100 100 100 100 100 100 100 100 100 

D
ia

g
n
o
st

ic
 s

en
si

ti
v
it

y
 9

8
%

 

1 2 5 8 11 14 17 26 54 83 98 

2 5 10 16 22 26 31 45 81 97 100 

3 7 15 23 30 36 42 60 91 100 100 

4 12 21 30 39 46 54 71 97 100 100 

5 14 26 37 47 46 62 79 99 100 100 

6 16 30 42 53 62 69 85 99 100 100 

9 24 43 59 70 78 85 96 100 100 100 

18 49 74 88 94 98 99 100 100 100 100 

27 74 94 99 100 100 100 100 100 100 100 

36 98 100 100 100 100 100 100 100 100 100 

D
ia

g
n
o
st

ic
 s

en
si

ti
v
it

y
 1

0
0
%

 

1 3 5 8 12 14 17 26 55 83 100 

2 6 11 16 22 27 32 46 80 98 100 

3 8 16 23 30 38 45 62 92 100 100 

4 11 21 31 40 47 54 72 97 100 100 

5 13 26 36 46 55 63 80 99 100 100 

6 17 31 43 54 63 70 85 100 100 100 

9 25 45 60 72 80 86 96 100 100 100 

18 49 75 89 95 98 99 100 100 100 100 

27 75 94 99 100 100 100 100 100 100 100 

36 100 100 100 100 100 100 100 100 100 100 

* Data for Table 3 were derived from the field data (Table 1) and simulation studies 

described in Section “Probability of detection in a single barn (single sampling)”.  Field 

data were derived from barns with 36 pens.  Diagnostic specificity was assumed to be 

100% to generate the data in Table 3. 
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Table 4.  Probability of ≥ 1 false positive results in one barn at one sampling.  Probability (%, 

in italics) is a function of the number of positive pens in the barn, the number of 

pens sampled using a fixed spatial approach, and test diagnostic specificity* 
 

Test 
No. of 

samples  

Number of negative pens among a total of 36 pens in the barn 

1 2 3 4 5 6 9 18 27 36 

D
x

 s
p

ec
if

ic
it

y
 =

 9
8
%

 

1 0 0 0 0 0 0 0 1 1 2 

2 0 0 0 0 0 0 1 2 3 4 

3 0 0 0 0 0 1 1 3 4 6 

4 0 0 0 0 1 1 2 3 6 8 

5 0 0 0 1 1 2 2 4 7 9 

6 0 1 1 1 1 2 3 5 9 11 

9 0 1 2 2 3 4 5 8 13 17 

18 1 2 2 4 5 5 10 16 24 30 

27 1 2 3 4 5 7 11 22 34 43 

36 2 4 6 7 10 11 16 31 42 53 

D
x
 s

p
ec

if
ic

it
y
 =

 9
9
%

 

1 0 0 0 0 0 0 0 0 1 1 

2 0 0 0 0 0 0 0 1 2 2 

3 0 0 0 0 0 0 1 2 2 3 

4 0 0 0 0 0 0 1 1 3 4 

5 0 0 0 0 1 1 1 3 4 5 

6 0 0 0 1 1 1 1 3 4 6 

9 0 1 1 1 1 1 2 4 6 9 

18 0 1 2 2 3 3 4 8 12 16 

27 1 1 1 2 3 4 5 11 19 24 

36 1 2 3 3 5 6 8 16 24 31 

D
x

 s
p
ec

if
ic

it
y
 =

 9
9
.9

%
 1 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 1 

9 0 0 0 0 0 0 0 0 1 1 

18 0 0 0 0 0 0 0 1 1 2 

27 0 0 0 0 0 0 0 1 2 2 

36 0 0 0 0 0 1 1 2 2 4 

* Data for Table 4 were derived from the field data (Table 1) and simulation studies 

described in Section “Probability of detection in a single barn (single sampling)”.  Field 

data were derived from barns with 36 pens.  Diagnostic sensitivity was assumed to be 0% 

to generate the data in Table 4.  
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Table 5.  Probability of ≥ 1 true positive results in 1, 2, or 3 barns.  Probability (%, in italics) 

is a function of the spread of infection ( 1 , 2 ) the number of barns sampled, the 

number of pens sampled within barns using fixed spatial sampling, and the number 

of positive pens in the barn(s)*   
 

 Sampling Number of positive pens predicted over time (week) 

 Barns Pens 1 (0) 3 (1) 5 (2) 8 (3) 12 (4) 17 (5) 23 (6) 28 (7) 32 (8) 

S
p

re
a

d
 =

 0
.5

 ×
 (

ß
1
, 

ß
2
) 

 

1 2 5 16 28 42 57 72 85 94 98 

4 11 30 48 65 80 90 96 99 100 

6 17 42 63 79 90 96 99 100 100 

2 2 10 29 48 66 82 92 98 100 100 

4 21 51 73 88 96 99 100 100 100 

6 31 66 86 96 99 100 100 100 100 

3 2 14 41 63 80 92 98 100 100 100 

4 30 66 86 96 99 100 100 100 100 

6 43 80 95 99 100 100 100 100 100 

 

Barns Pens 1 (0) 3 (1) 7 (2) 15 (3) 26 (4) 34 (5) 36 (6) 36 (7) 36 (8) 

S
p

re
a
d

 =
 1

.0
 ×

 (
ß

1
, 

ß
2
) 

1 2 6 18 37 65 90 98 100 100 100 

4 10 32 58 83 96 100 100 100 100 

6 16 44 72 91 99 100 100 100 100 

2 2 12 33 60 88 99 100 100 100 100 

4 19 54 82 97 100 100 100 100 100 

6 29 69 92 99 100 100 100 100 100 

3 2 17 45 75 96 100 100 100 100 100 

4 27 69 93 100 100 100 100 100 100 

6 41 82 98 100 100 100 100 100 100 

 

Barns Pens 1 (0) 4 (1) 15 (2) 33 (3) 36 (4) 36 (5) 36 (6) 36 (7) 36 (8) 

S
p

re
a

d
 =

 2
.0

 ×
 (

ß
1
, 

ß
2
) 

1 2 6 22 64 97 100 100 100 100 100 

4 11 39 83 99 100 100 100 100 100 

6 16 52 91 99 100 100 100 100 100 

2 2 12 39 87 100 100 100 100 100 100 

4 21 63 97 100 100 100 100 100 100 

6 29 77 99 100 100 100 100 100 100 

3 2 17 53 95 100 100 100 100 100 100 

4 30 77 100 100 100 100 100 100 100 

6 41 89 100 100 100 100 100 100 100 

* Data for Table 5 were derived from the field data (Table 1) and simulation studies 

described in Section “Effect of the spread of infection on the probability of detection”.  The 

probabilities for 2 and 3 barns were calculated using Equation 4.   Diagnostic sensitivity 

and specificity were assumed to be 100%. 
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Figure 1.  Probability of detecting PRRSV in a single barn using pen-based oral fluids tested 

by RT-rtPCR as a function of sample allocation (simple random sampling vs. fixed 

spatial sampling), sample size, and prevalence. 
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Figure 2.  Effect of spread of infection on the probability of detection by time in a single barn 

modeled by changing the values of 𝜷𝟏, 𝜷𝟐 in simulation studies.  Fixed spatial 

sampling was used with sample sizes 2, 4, and 6 while allowing prevalence to 

change over time.  For simplicity, diagnostic sensitivity and specificity were 

assumed to be 100%. 
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Marisa L. Rotolo1, Luis Giménez-Lirola1, Ju Ji2, Ronaldo Magtoto1, Yuly A. Henao-Díaz1, 

Chong Wang1,2, David H. Baum1, Karen M. Harmon1, Rodger G. Main1, Jeffrey J. 

Zimmerman1 

 

1Department of Veterinary Diagnostic and Production Animal Medicine,  

College of Veterinary Medicine, Iowa State University, Ames, Iowa  50011; 2Department of 

Statistics, College of Liberal Arts and Sciences, Iowa State University, Ames, Iowa  50011 

 

Modified from a manuscript accepted for publication in Veterinary Microbiology  

 

Abstract 

The ontogeny of PRRSV antibody in oral fluids has been described using isotype-specific 

ELISAs.  Mirroring the serum response, IgM appears in oral fluid by 7 days post inoculation 

(DPI), IgA after 7 DPI, and IgG by 9 to 10 DPI.  Commercial PRRSV ELISAs target the 

detection of IgG because the higher concentration of IgG relative to other isotypes provides 

the best diagnostic discrimination.  Oral fluids are increasingly used for PRRSV surveillance 

in commercial herds, but in younger pigs, a positive ELISA result may be due either to 

maternal antibody or to antibody produced by the pigs in response to infection.  To address 

this issue, a combined IgM-IgA PRRSV oral fluid ELISA was developed and evaluated for 

its capacity to detect pig-derived PRRSV antibody in the presence of maternal antibody.  

Two longitudinal studies were conducted.  In Study 1 (modified-live PRRS vaccinated pigs), 

testing of individual pig oral fluid samples by isotype-specific ELISAs demonstrated that the 

combined IgM-IgA PRRSV ELISA provided better discrimination than individual IgM or 

IgA ELISAs.  In Study 2 (field data), testing of pen-based oral fluid samples confirmed the 

findings in Study 1 and established that the IgM-IgA ELISA was able to detect antibody 
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produced by pigs in response to wild-type PRRSV infection, despite the presence of maternal 

IgG.  Overall, the combined PRRSV IgM-IgA oral fluid ELISA described in this study is a 

potential tool for PRRSV surveillance, particularly in populations of growing pigs originating 

from PRRSV-positive or vaccinated breeding herds.   

 

Introduction 

Porcine reproductive and respiratory syndrome virus (PRRSV) was first identified in 1991 

(Wensvoort et al., 1991).  Assays for the detection of PRRSV serum antibody became widely 

available shortly thereafter, including immunoperoxidase monolayer (Wensvoort et al., 

1992), immunofluorescence (Benfield et al., 1992), serum-virus neutralization (Benfield et 

al., 1992), and ELISA (Albina et al., 1992).  The detection of PRRSV serum antibody using 

fluorescent microsphere-based assays has been reported under experimental conditions 

(Langenhorst et al, 2012).  At the present time, the ELISA is the most common format for 

PRRSV antibody detection and commercial PRRSV antibody ELISA kits are widely 

available for serum and swine oral fluid specimens (Pejsak et al., 2017).   

 

The ontogeny of PRRSV antibody in serum and oral fluids has been described using isotype-

specific ELISAs.  Kittawornrat et al. (2013), using paired samples collected over time post 

inoculation, showed that the temporal appearance of antibody isotypes in serum and oral 

fluid was essentially identical in animals inoculated with viable, replicating PRRSV.  That is, 

IgM was detectable by 7 days post inoculation (DPI), IgA after 7 DPI, and IgG by 9 to 10 

DPI.  Because of the higher concentration of IgG relative to other isotypes, commercial 

ELISA kits usually target the detection of IgG, although detection of IgM and IgA has been 

used in human diagnostic medicine.   

 

In addition to antibody produced in response to PRRSV infection or vaccination, younger 

animals may also have ELISA-detectable PRRSV-specific passive antibody, primarily IgG, 

in serum and oral fluid (Biernacka et al, 2016; Goyal, 1993; Ramirez et al, 2012).  In oral 

fluid-based testing, maternally-derived antibody creates a challenge in discerning whether a 

positive ELISA is the result of infection, vaccination, or maternal antibody.  Therefore, the 
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goal of this study was to develop a PRRSV combined IgM-IgA oral fluid ELISA and 

evaluate its performance under experimental and field conditions.   

 

Materials and methods 

Experimental design 

Two longitudinal studies were conducted to evaluate PRRSV oral fluid antibody ontogeny 

using isotype-specific ELISAs (IgM, IgA, IgG, IgM-IgA).  In Study 1 (experimental data), 

oral fluid antibody isotype responses were evaluated in individual pigs following 

administration of a modified-live PRRSV vaccine.  In Study 2 (field data), PRRSV antibody 

isotype responses were monitored in oral fluid samples collected from PRRS unvaccinated, 

group-housed pigs in commercial wean-to-finish farms in Iowa USA.  In Study 2, wild-type 

PRRSV infection was determined by PRRSV real-time reverse-transcriptase PCR (RT-

rtPCR) testing and sequencing.  Studies were conducted with the authorization of the Iowa 

State University Office for Responsible Research and the permission of the producers. 

 

Animals and animal care           

Study 1 was an experimental study conducted in a biosafety level 2 research facility located 

at Iowa State University and accredited by the Association for Assessment and Accreditation 

of Laboratory Animal Care (AAALAC).  The facility was designed with a single-pass, non-

recirculating ventilation system, i.e., unidirectional flow from low contamination areas to 

high contamination areas.  Each room was ventilated separately and humidity and 

temperature was strictly controlled.  Zones of negative pressure prevented airborne 

contamination from area-to-area or room-to-room.  Pigs were housed in individual pens (1.52 

m x 1.83 m) in one room.  Partitions with evenly-spaced vertical bars allowed interactions 

between pigs in adjacent pens.  Animal care, housing, and feeding were under the 

supervision of the research facility staff.   

 

Pigs (n = 12; 50 kg) were sourced from a PRRSV-naïve commercial herd.  To confirm 

PRRSV-naïve status, pigs were tested for PRRSV serum antibody at 19 and 11 days prior to 

arrival at the research facility and again prior to vaccination.  Pigs were acclimated in the 
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facilities for 5 days and then vaccinated with a modified-live PRRS vaccine on Day 0 of the 

study (Ingelvac PRRS® MLV, Boehringer Ingelheim Vetmedica Inc., St. Joseph Missouri).  

Individual oral fluid samples were collected twice daily from each of the 12 pigs from Day -7 

through Day 42 using a protocol described elsewhere (Prickett et al., 2008a, b).  In brief, one 

100% cotton rope was hung in each pen for 30 minutes, during which time the pigs interacted 

(chewed on) the rope.  Thereafter, the wet portion of the rope was inserted into a plastic bag 

and severed from the remainder of the rope.  Oral fluid was extracted by passing the wet 

rope, still within the bag, through a portable towel wringer (Dynajet, Nürtingen, Germany).  

Samples were decanted into 50 ml centrifuge tubes and placed on crushed ice.  The morning 

and afternoon oral fluid samples from each day were combined, aliquoted into 5 ml cryovial 

tubes and stored at -80°C.  

 

Study 2 was a field study conducted on three separate farms in one production system.  Each 

farm (A, B, C) consisted of three curtain-sided, wean-to-finish barns (1, 2, 3) sited parallel to 

each other and spaced 10 m apart.  Barns (13.4 m x 61.0 m) were designed with split-zone 

ventilation, independent control of curtains, and ridge ventilation by zone.  Manure was 

collected in shallow pits beneath each barn and moved to an outdoor above-ground slurry 

storage tank via a scraper system.  All farms were managed on an all-in-all-out basis, with 

buildings cleaned and disinfected between groups.  Animal housing, handling, feeding, and 

health care were implemented by producers and with the assistance of production system 

veterinarians.  For the purpose of implementing this study, producers and veterinarians did 

not vaccinate or move pigs between pens or barns during the 2-month sampling period.   

 

Each barn contained 40 pens arranged as 20 pens on either side of a central walkway.  On 

Farm A, pens (3 m x 6 m) were built with solid concrete walls and partial slats.  On Farm B 

and C, pens (3 m x 6 m) were built with gated walls and partial slats.  During the collection 

period, all occupied pens held ~25 pigs.  Barns were populated with weaned pigs (~21 days 

of age) sourced from one PRRSV-endemic breeding herd over the course of 7 to 14 days, but 

each farm's pigs came from a different sow herd.  For all breeding herds, commercial 

modified-live PRRS vaccines were administered to replacement gilts during quarantine, but 

not to sows or pigs in other phases of production.   
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Oral fluid samples were collected weekly from every occupied pen (n = 36) in every barn (n 

= 3) on each farm (n = 3) using the procedure described above.  Samples were decanted into 

50 ml centrifuge tubes and placed on crushed ice for transport to the laboratory.  Samples 

were aliquoted into 4 ml cryovials in the laboratory and stored at -20°C.   

 

After weekly oral fluid collection, blood samples were collected from 20 pigs in each barn by 

sampling 10 pigs from each of two pens.  Pens selected were approximately 1/4 of the 

distance from each end of the barn on opposite sides of the walkway.  The same pens were 

sampled each week, but not necessarily the same pigs (convenience sampling).  Blood 

samples were collected using a single-use vacutainer system with 10 ml serum separation 

tubes (Becton, Dickinson and Company, Franklin Lakes, NJ, USA).  Blood samples were 

placed on ice for transport to the laboratory.  In the laboratory, samples were centrifuged 

(1000 x g for 10 min), aliquoted into 4 ml cryovials, and stored at -20°C.  

 

PRRSV ELISAs 

Serum samples were tested for PRRSV antibodies using a commercial PRRSV ELISA 

(IDEXX PRRS X3 Ab Test, IDEXX Laboratories, Inc., Westbrook ME USA) following the 

instructions provided by the manufacturer.  Sample-to-positive (S/P) results ≥ 0.4 were 

considered positive for PRRSV antibody. 

 

Oral fluid samples were tested for PRRSV antibodies using a commercial PRRSV oral fluid 

antibody (IgG) ELISA (IDEXX PRRS OF Ab Test, IDEXX Laboratories, Inc.) following the 

instructions provided by the manufacturer.  S/P results ≥ 0.4 were considered positive for 

PRRSV antibody.  IgM, IgA, and IgM-IgA oral fluid ELISAs were performed as instructed 

by the manufacturer for the PRRSV OF Ab ELISA (IgG) with the following exceptions:  the 

kit IgG conjugate was replaced with goat anti-pig IgM (A100-100P Bethyl Laboratories) 

diluted 1/5,000 in IDEXX conjugate diluent; or goat anti-pig IgA (A100-102P Bethyl 

Laboratories) diluted 1/3,000 in IDEXX conjugate diluent; or dual mixture of IgM (1/5,000)-

IgA (1/3,000).  Plate positive controls for the IgM, IgA, or IgM-IgA ELISAs were based on 

oral fluid samples of known positive PRRSV status diluted in kit sample diluent to produce 
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optical density (OD) values between of 0.6 and 0.7.  Tests were performed as recommended 

by the manufacturer and results reported as S/P ratios.  Cutoffs for the IgM, IgA, and IgM-

IgA oral fluid ELISAs were determined by receiver operator characteristic curve (ROC) 

analysis, as described in section 2.6 (statistical analysis). 

 

PRRSV RT-rtPCR 

All samples were tested for PRRSV RNA at the Iowa State University Veterinary Diagnostic 

Laboratory (ISU VDL) using standard protocols.  Systematic bias was addressed by 

randomizing samples order prior to submission.   

 

In Study 2 (field data), serum samples from the same pen were pooled by five and tested by 

PRRSV RT-rtPCR.  Nucleic acid extraction was performed using the MagMAX™ viral 

RNA isolation kit (Life Technologies, Carlsbad, CA, USA) and a Kingfisher 96 magnetic 

particle processor (Thermo-Fisher Scientific, Waltham, MA, USA) using a standard lysis 

procedure.  A lysis/binding solution was prepared with 65 µL lysis/binding solution, 1 µL 

carrier RNA, 65 µL isopropanol and 2 µL Xeno™ RNA template at 10,000 copies/µL.  At 

the lysis step, 130 µL of the prepared lysis/binding solution was added to 20 µL of magnetic 

bead mix prior to extraction and elution into 90 µL buffer.  The standard lysis procedure used 

150 µL in wash I and 150 µL in wash II.  The extraction was performed using the Kingfisher 

AM1836_DW_50_v3 program (Thermo-Fisher Scientific). 

 

In Study 2, oral fluid samples were tested individually (not pooled) for PRRSV RT-rtPCR 

testing.  Nucleic acid extraction was performed using the MagMAX™ viral RNA isolation 

kit and a Kingfisher 96 magnetic particle processor using a high-volume modified lysis 

(HVML) procedure.  A modified lysis/binding solution was prepared with 120 µL 

lysis/binding solution, 2 µL carrier RNA, 120 µL isopropanol and 2 µL Xeno™ RNA 

template at 10,000 copies/µL.  At the lysis step, 240 µL of the prepared lysis/binding solution 

was added to 20 µL of magnetic bead mix prior to extraction and elution into 90 µL elution 

buffer.  An additional modification for the HVML procedure was an increase in wash I and II 

solutions, i.e., the procedure used 300 µL in wash I and 450 µL in wash II.  The extraction 

was performed using the Kingfisher AM1836_DW_HV_v3 program. 
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Both serum and oral fluid samples were assayed using a commercial PRRSV real-time RT-

rtPCR kit (EZ-PRRSV MPX 4.0 assay, Tetracore©, Rockville, MD, USA).  For each run, 

positive controls for PRRSV Types 1 and 2 and a negative amplification control were 

included.  For each control well, 17.25 µL of EZ-PRRSV MPX 4.0 Reagent was added.  The 

EZ-PRRSV MPX 4.0 Reagent includes buffer, primer and probes, 0.75 µL Enzyme Blend, 

0.25 µL IC and 7 µL of positive control (Type I or 2 IVT) or negative control (1 x TE).  Each 

well contained 17.25 µL of the EZ-PRRS MPX 4.0 Reagent, which included buffer, primer, 

probes, 0.75 µL Enzyme Blend and 7 µL of the oral fluid extract.  Plates were loaded onto 

the thermal cycler (7500 Fast Real-Time PCR System, Applied Biosystems©, Foster City, 

CA, USA) and the following cycling conditions were used: one cycle at 48°C for 15 min, one 

cycle at 95°C for 2 min, 45 cycles of: 95°C for 5 s, and 60°C for 40 s.  Samples with Ct 

values < 45 for Type 2 PRRSV were considered positive. 

 

PRRSV sequencing 

In Study 2 (field data), one RT-rtPCR-positive pooled serum sample (pool of 5) from each 

barn was selected for PRRSV sequencing each week.  Approximately 1,082 base pairs of 

open reading frame (ORF)5 region and the flanking regions within the PRRSV genome were 

amplified using forward primer 5’-AAG GTG GTA TTT GGC AAT GTG TC-3’ and reverse 

primer 5’-GAG GTG ATG AAT TTC CAG GTT TCT A-3’ and the qScriptTM Custom One-

Step RT-rtPCR Kit (Quanta Biosciences, Gaithersburg, MD USA).  The serum sequencing 

PCR setup reaction used 320 nM of each primer with 12.5 µl 2X qScript™ One-Step master 

mix, 0.5 µl qScript One-Step reverse transcriptase and 7.2 µl nuclease-free water.  The final 

PCR volume of 25 µl consisted of 21 µl of master mix and 4 µl of RNA extract.  One 

positive extraction control, one negative extraction control, and one negative amplification 

control were included with the reaction.  The PCR was performed (Applied Biosystems® 

2720 thermal cycler, Life Technologies Corporation) with the following cycling conditions: 

one cycle at 48°C for 20 min, one cycle at 94°C for 3 min, 45 cycles of 94°C for 30 s, 50°C 

for 50 s, and 68°C for 50 s.  The final elongation step was 68°C for 7 min.  Detection of the 

RT-rtPCR product of the correct size (1082 bp) was performed on a QIAxcel® capillary 

electrophoresis system (Qiagen®) using a DNA screening cartridge and the AM420 method 
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and purified with ExoSAP-IT® (Affymetrix, Santa Clara, CA USA) following the 

manufacturer’s recommendations.  Samples were submitted to the Iowa State University 

DNA Facility for sequencing and commercial software was used to compile sequences 

(Lasergene®, DNAStar, Madison, WI, USA).  

 

Statistical analysis 

Receiver operating characteristic curve (ROC) analyses were performed in R 3.3.0 (R Core 

Team, 2013) with the objective of calculating the cutoffs and associated diagnostic 

sensitivity and specificity for each oral fluid antibody isotype-specific ELISA assay.  PRRSV 

IgM, IgA, and IgM-IgA ELISA ROC analyses were done separately for Study 1 and Study 2.   

 

In Study 1 (experimental data), sample status (positive/negative) was defined relative to the 

day of vaccination (Day 0, Ingelvac PRRS® MLV).  For the PRRSV IgM and IgM-IgA 

ELISA ROC analyses, samples from days -7 to 5 were considered negative and samples from 

days 10 to 28 as positive.  For the PRRSV IgA and IgG ELISA ROC analyses, days -7 to 7 

were classified as negative and days 11 to 28 as positive.  

 

In Study 2 (field data), the infection status for pen-based samples was determined by RT-

rtPCR testing.  For the ROC analyses, oral fluid samples from a pen were considered IgM 

and IgA antibody negative up to, and including, the first positive PRRSV RT-rtPCR result 

from the pen.  Thereafter, samples were considered positive for IgM beginning with the next 

weekly sampling and for four subsequent weekly samplings.  For IgA and IgM-IgA ELISA 

ROC analyses, samples were considered positive for all weekly samplings after the first RT-

rtPCR positive result.  The IgG ELISA results were not analyzed due to the presence of 

maternal PRRSV antibody.  

 

For both Study 1 and 2, transformation of S/P values (x3/7) was performed to fulfill the 

assumption of normality for the IgM, IgA, and IgM-IgA data.  Thereafter, a linear mixed 

model was fitted to the data, with PRRSV infection status as the explanatory variable and pen 

as the random effect.  After obtaining the fixed parameter estimates and standard deviation, 

point estimates, variance, and confidence intervals for diagnostic sensitivity and specificity 
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were calculated based on the Normal model.  Because of the correlated structure of the data, 

i.e., repeated measures at the sampling level, binomial exact confidence intervals were 

calculated using model-based estimation of diagnostic sensitivity and specificity.  

Asymptotic logit transformation was used to avoid confidence intervals beyond [0, 1].  That 

is, diagnostic sensitivity and specificity point estimates were first logit transformed, then 

confidence intervals were calculated, after which the final confidence intervals were obtained 

by back transformation.  

 

Results 

All samples were randomized prior to PRRSV ELISA or RT-rtPCR testing.  All samples 

were tested once and no retests were performed.   

 

Study 1 (experimental data) 

Study 1 followed the PRRSV oral fluid antibody isotype response of 12 pigs following 

vaccination with a modified-live PRRSV vaccine (Ingelvac PRRS® MLV, Boehringer 

Ingelheim Vetmedica, Inc.) under experimental conditions.  All pigs were confirmed free of 

PRRSV infection by PRRSV RT-rtPCR and PRRSV ELISA testing.  From DPV -7 to 42, 

oral fluid samples were collected twice daily from individual pigs for a total of 600 oral fluid 

samples.  At the end of the trial, all samples were tested for PRRSV antibody using isotype-

specific ELISAs (IgM, IgA, IgG, and IgM-IgA).  The oral fluid isotype-specific ELISA mean 

S/P values and the percent of IgM-IgA ELISA samples with S/P ratios ≥ 0.40 by DPV are 

shown in Figure 1. 

 

Study 2 (field data) 

Study 2 was conducted on 3 commercial farms (A, B, C) in one production system, each with 

3 wean-to-finish barns (1, 2, 3).  Oral fluid samples were collected weekly from the 36 

occupied pens (~25 pigs per pen) in each of the 3 barns, i.e., 108 samples per week, for a 

total of ~972 oral fluid samples per farm.  In addition, 20 serum samples from two pens in 

each barn were collected at each weekly sampling for a total of 1,620 serum samples per 

farm.  The PRRSV status of barns and farms was determined on the basis of RT-rtPCR 
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testing and reflected the endemic circulation of virus in the production system.  No PRRSV 

vaccine was used in the pigs or their dams during the production cycle. 

 

The PRRSV RT-rtPCR results for oral fluid samples are shown in Figure 2.  In Farm A, 

PRRSV RT-rtPCR-positive oral fluid samples were observed in one or more of the three 

barns at every sampling period (week 0 through 8).  Of the 972 oral fluid samples collected 

on Farm A, 425 samples were positive.  At the last sampling, all oral fluid samples collected 

from all Farm A (n = 108) were positive.  No RT-rtPCR-positive oral fluid samples were 

observed in Farm B and in Farm C one oral fluid sample tested positive at week 8.  

 

PRRSV RT-rtPCR-positive serum samples (pooled by fives) were found in Farm A on 

sampling weeks 4 through 8.  No RT-rtPCR-positive serum samples were detected at any 

time in Farms B and C.  In Farm A, PRRSV sequencing was attempted on RT-rtPCR-

positive pooled serum samples collected weeks 4 through 8.  To optimize sequencing success 

and collect sequencing data over time, the pool with lowest Ct was selected each week from 

each barn.  A total of 14 pooled serum samples were submitted for sequencing and 10 ORF 5 

sequences were obtained.  Sequence analysis provided evidence of the circulation of wild-

type PRRSV (Figure 3).   

 

All oral fluid samples collected in Study 2 (n = 2,916) were tested for PRRSV antibody using 

isotype-specific ELISAs (IgM, IgA, IgG and IgM-IgA).  The mean S/P values for the IgG 

ELISA and IgM-IgA ELISA are shown in Figure 4.  The percent of IgM-IgA ELISA samples 

with S/P ratios ≥ 0.40 by sampling week are given in Figure 2.   

 

ROC analysis 

For both Study 1 (experimental data from individual pigs) and Study 2 (field data from pens 

of pigs), the diagnostic sensitivities, specificities, and 95% correlated confidence intervals 

were calculated for the IgA, IgM, and IgM-IgA ELISAs over a range of S/P cutoffs of 0.20, 

0.30, 0.40, 0.50, and 0.60 (Table 1).  For Study 1, the oral fluid isotype-specific ELISA mean 

S/P values and the percent of IgM-IgA ELISA samples with S/P ratios ≥ 0.40 by DPV are 

shown in Figure 1.  Two of 156 samples collected between DPV -7 to 5 had S/P values ≥ 
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0.40.  Specifically, one sample collected on DPV -3 had an S/P value of 0.46 and one sample 

collected on DPV -1 had an S/P value of 0.53.  These values were accounted for in the ROC 

analysis (Table 1), resulting in a diagnostic specificity of 99%. 

 

Discussion 

Various economic studies have uniformly shown that PRRSV inflicts major losses on swine 

health and productivity (Holtkamp et al., 2013; Nathues et al, 2017; Neumann et al, 2005; 

Nieuwenhuis et al., 2012; Zhang et al, 2012).  In Europe and North America, the cost of 

PRRSV to the industry in terms of hog marketed has been estimated at $6.25 to $15.25 per 

pig (Holtkamp et al., 2013; Nathues et al., 2017).  On-going losses at this level are 

unacceptable in terms of animal welfare and the public's perception of swine production, but 

the solution to this dilemma is not apparent.  Calvin Schwabe in 1982 recommended that 

veterinary practitioners use surveillance to understand the patterns of disease and establish 

baselines against which the effect of control interventions could be measured.  Schwabe's 

vision was never realized, but the complex, dynamic, global nature of contemporary swine 

production mandates that on-going, near-real-time surveillance be part of the PRRSV 

solution.   

 

PRRSV surveillance can be based on the detection of nucleic acid and/or antibody: each has 

its strengths and weaknesses.  The time to RT-rtPCR-detectable viremia differs among 

PRRSV isolates, but the majority of animals are viremic within 48 hours (Pepin et al., 2015).  

Under experimental conditions, ~50% of pigs were still nucleic acid-positive at ~50 DPI and 

≤ 10% of animals remained positive at ~100 DPI (Horter et al., 2002; Molina et al. 2008).  

This unusually long duration of viremia makes nucleic acid detection a viable option for 

PRRSV surveillance.  However, serum-RT-rtPCR-negative animals can still harbor 

infectious PRRSV.  That is, after the immune response clears virus from the circulatory 

system, infectious PRRSV can still be recovered from lymphoid tissues, e.g., tonsils of the 

soft palate (Horter et al., 2002; Wills et al., 2003).  
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The humoral immune response against a variety of PRRSV proteins has been described 

(Molina et al., 2008) and a variety of serum antibody detection platforms are available in 

diagnostic laboratories, e.g., ELISA, IFA, IPMA and neutralizing antibody assays (Decorte et 

al, 2014; Ouyang et al, 2013; Pejsak et al., 2017; Yoon et al, 1995).  ELISA is compatible 

with high-throughput laboratories, is technically simple, and is a widely used assay for 

PRRSV antibody detection (Pejsak et al., 2017).  Kittawornrat et al., (2012b) in a study 

involving 12 laboratories found that the results produced by a PRRSV oral fluid ELISA were 

highly repeatable within laboratories and highly reproducible between laboratories.  When 

used in surveillance, PRRSV serum and oral fluid ELISAs can provide useful data 

concerning herd immunity and exposure history.  However, PRRSV maternal antibody may 

be present in pigs up to 10 weeks old (Yoon et al., 1996; Houben et al., 1995).  The presence 

of maternal IgG antibody complicates the interpretation of ELISA results because, in 

younger pigs, a positive result may represent maternal antibody or antibody produced by the 

pig in response to PRRSV infection.   

 

Prior research demonstrated that inoculation with type 1, type 2, or MLV PRRS viruses 

produced detectable levels of PRRSV IgM and IgA in both serum and oral fluid 

(Kittawornrat et al, 2013).  The goals of the present research were to develop a combined 

IgM-IgA oral fluid ELISA, evaluate its performance using experimental and field samples, 

and determine whether the assay could detect PRRSV-specific IgM and IgA produced by 

pigs in response to infection, even in the presence of maternal IgG antibody.   

 

Using samples from MLV-vaccinated pigs and type 2 field virus-infected pigs, the results 

confirmed prior reports of IgM, IgA, and IgG antibody ontogeny in oral fluids following 

exposure to the virus.  Testing of oral fluids from pigs originating from sow herds 

endemically infected with PRRSV found abundant PRRSV IgG, but no evidence of 

maternally-derived IgM or IgA in oral fluid specimens.   

 

A comparison of IgM, IgA, and IgM-IgA ELISAs showed that the combined IgM-IgA assay 

provided better performance than detection of either isotype alone (Table 1).  The authors 

were unable to locate other examples of combined antibody isotype ELISAs with which to 
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compare these data, but there are examples of combining the results of two different isotype 

assays to establish infection status.  For both Dengue virus and Crimean-Congo hemorrhagic 

fever virus, performing IgM and IgG ELISAs in parallel and interpreting a positive result on 

either as indicative of infection significantly improved diagnostic sensitivity (Dowall et al., 

2011; Vaughn et al. 1999).  While the combined IgM-IgA oral fluid ELISA demonstrated 

adequate diagnostic sensitivity and high diagnostic specificity, higher performance may be 

achievable through further assay optimization and/or the removal of IgG.  Removal of IgG 

from specimens using anti-IgG or protein G has been described as a method to improve 

detection of IgM and IgA (Ankerst et al., 1974; Martins et al., 1995).  For example, Dowall 

et al. (2011) showed that removal of IgG from diagnostic samples resulted in increased both 

the diagnostic sensitivity and specificity of a Crimean-Congo hemorrhagic fever virus IgM 

ELISA.   

 

Overall, the combined PRRSV IgM-IgA oral fluid ELISA described in this proof-of-concept 

study is a promising tool for PRRSV surveillance, particularly in populations of growing pigs 

originating from PRRSV-positive or vaccinated breeding herds because of its ability to detect 

pig-derived IgM and IgA antibody in the presence of maternal IgG.    
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Tables 

Table 1.  PRRSV isotype-specific ELISA diagnostic sensitivity and specificity based on experimental and field data 

  

Study 1 

 (Experimental data from individual pigs) 

Study 2 

 (Field data from pens of pigs) 

PRRSV ELISA 

antibody target 
Cutoff (S/P) 

Diagnostic 

sensitivity (95% CI) 

Diagnostic 

specificity (95% CI) 

Diagnostic 

sensitivity (95% CI) 

Diagnostic 

specificity (95% CI) 

IgA 

0.2 0.78 (0.76, 0.80) 0.87 (0.86, 0.88) 0.76 (0.75, 0.76) 0.94 (0.94, 0.94) 

0.3 0.63 (0.59, 0.66) 0.97 (0.97, 0.97) 0.69 (0.68, 0.70) 0.97 (0.97, 0.97) 

0.4 0.48 (0.44, 0.52) 0.99 (0.99, 0.99) 0.66 (0.65, 0.67) 0.98 (0.98, 0.98) 

0.5 0.40 (0.37, 0.44) 0.99 (0.99, 0.99) 0.63 (0.62, 0.64) 0.99 (0.99, 0.99) 

0.6 0.34 (0.31, 0.38) 0.99 (0.99, 0.99) 0.60 (0.59, 0.61) 0.99 (0.99, 0.99) 

IgM 

0.2 0.69 (0.67, 0.71) 0.99 (0.99, 0.99) 0.63 (0.62, 0.64) 0.99 (0.99, 0.99) 

0.3 0.61 (0.58, 0.63) 0.99 (0.99, 0.99) 0.56 (0.55, 0.57) 1.0 (0.99, 1.0) 

0.4 0.54 (0.51, 0.57) 1.0 (NA*) 0.50 (0.49, 0.52) 1.0 (0.99, 1.0) 

0.5 0.47 (0.44, 0.50) 1.0 (NA*) 0.45 (0.43, 0.46) 1.0 (0.99, 1.0) 

0.6 0.40 (0.38, 0.43) 1.0 (NA*) 0.42 (0.41, 0.44) 1.0 (0.99, 1.0) 

Combined IgM-

IgA 

0.2 0.93 (0.93, 0.94) 0.85 (0.83, 0.86) 0.80 (0.80, 0.81) 0.95 (0.95, 0.95) 

0.3 0.84 (0.83, 0.85) 0.96 (0.96, 0.96) 0.77 (0.77, 0.77) 0.98 (0.98, 0.98) 

0.4 0.77 (0.75, 0.79) 0.99 (0.99, 0.99) 0.74 (0.73, 0.74) 0.99 (0.99, 0.99) 

0.5 0.68 (0.66, 0.71) 0.99 (0.99, 0.99) 0.72 (0.72, 0.73) 0.99 (0.99, 0.99) 

0.6 0.64 (0.61, 0.67) 1.0 (NA*) 0.69 (0.68, 0.70) 1.0 (0.99, 1.0) 

*Confidence intervals not calculable.  
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Figures 

 

Figure 1.  PRRSV antibody ontogeny in oral fluid samples collected from 12 pigs vaccinated 

with a modified-live virus vaccine over the course of 49 days (Study 1) 
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Figure 2.  Oral fluid testing results (% positive) in PRRSV-positive (A) and PRRSV-negative 

(B, C) wean-to-finish farms (Study 2). 

  



83 

 

 

 

 

 

Figure 3.  Phylogenetic analysis (ORF 5 nucleotide level) of wild-type PRRS viruses 

circulating in Farm A (Study 2) reported as nucleotide substitutions per 100 

residues 
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Figure 4.  Oral fluid testing results (mean S/P) in PRRSV-positive (A) and PRRSV-negative 

(B, C) wean-to-finish farms (Study 2).
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CHAPTER 4.  GENERAL DISCUSSION 

Current efforts to control and/or eradicate diseases in pig populations have been complicated 

by two recent changes in husbandry:  the emergence of larger herds and the increased 

movement of pigs between farms (multi-site production), often across local, regional, or 

national borders, as a core management strategy.   

 

Throughout the world, pork production is rapidly transitioning from smaller, "extensive" 

farms to larger, "intensive" farms (Gale, 2017; Marquer, 2010; USDA, 2005).  For example, 

backyard production accounted for 94% of pig inventory in China in 1983 but by 2009, 

family farms and large systems accounted for 61% of pig inventory (Xiao et al., 2012).  This 

change from small to large farms is important vis-à-vis disease control because larger farms 

are more likely to become infected due to the greater number of potential "transmission 

events", i.e., movement of employees, trucks, and animals, and because larger populations 

are less able to achieve and maintain herd immunity (Gardner et al., 2002; Haggett, 2000).   

 

Increased movement of pigs between farms is important because it serves to physically 

connect distant populations (metapopulations) (Dorjee et al., 2013; Relun et al., 2017).  This 

is an old problem, but it is occurring on a greater scale than ever before.  Previously, the 

movement of rinderpest via infected animals led to the founding of the World Animal Health 

Organisation (OIE) and the Food and Agriculture Organization of the United Nations 

(Roeder, 2011).  But current levels of pig movement far exceed historic patterns.  In the 

United States, 4,317,000 pigs crossed state borders in 1990, but by 2016 this number had 

increased to 52,555,000 pigs, i.e., roughly 1,000,000 per week (USDA NASS).  In England 

and Wales, 61,937,855 pigs were moved between farms from 2009 to 2013 (Guinat et al., 

2016).   

 

Thus, fundamental changes in pig rearing have impacted efforts to detect, prevent, control 

and/or eliminate infectious disease and have accelerated the speed at which pathogens are 

dispersed among farms.  Current approaches to improve on-farm disease control rely on more 

stringent biosecurity protocols and enhancement of herd immunity through the use of 
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vaccines or intentional exposure (Pitzer et al., 2016).  While biosecurity and herd immunity 

play primary roles in animal disease control, on-farm disease surveillance and monitoring 

must be in place to verify their effectiveness.  In addition, efficient, effective regional 

surveillance must be in place for the detection of foreign animal diseases (FAD).   

 

The research presented in this dissertation aimed to begin the work of developing new 

methods for livestock surveillance based on aggregate samples, specifically the use of oral 

fluid samples in swine populations.  Guidelines for oral fluid sampling will provide estimates 

for probability of detection to guide the development of surveillance and monitoring 

programs.  In addition, the development of a combined IgM-IgA oral fluid ELISA, i.e., a test 

that allows for the detection of PRRSV infection in the presence of maternal antibody, is an 

indicator of the potential for new and improved diagnostic technology.  

 

Future work should focus on the continued development and/or adaptation of aggregate 

sample-based diagnostic assays to the detection of endemic and exotic animal diseases, e.g., 

foot-and-mouth disease virus, classical swine fever virus, and African swine fever virus.  

Simultaneously, additional work is required to develop statistically-valid methods for 

applying these tests to the detection of disease in populations, farms, and regions. 
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