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This paper reports on an effort to model the radiation pattern of 
a submerged ultrasonic transducer exciting a beam which is incident on 
a liquid-solid interface. The important aspects of this process are the 
diffraction of the beam as it propagates in the liquid and solid media, 
focussing of the beam due to a lens at the transducer face and/or the 
curvature of the interface, and aberrations induced by refraction at the 
interface. 

Ray tracing techniques have commonly been used to describe focussing 
and aberrations introduced in ultrasonic beams due to refraction and re­
flection at surfaces [1]. These methods generally ignore beam spreading 
due to diffraction. If aberrations are neglected, simple formulae are 
available to predict the effects of diffraction on the axial fields of 
unfocussed piston sources [2] and the full fields of Gaussian sources 
[3] after refraction through a planar or cylindrically curved liquid-solid 
interface. Presented here are two models which treat both diffraction 
and aberration effects as an ultrasonic beam passes through a planar or 
cylindrical interface. The approximate Gauss-Hermite model is presented 
as a working computational tool. The accuracy of its predictions are 
evaluated by comparison to those of the more exact and computationally 
intensive Green's function model. 

GAUSSIAN-HERMITE MODEL 

The Gauss-Hermite (G-H) beam model is based on an expansion of the 
radiation field in a complete set of orthonormal Gauss-Hermite functions. 
The use of this type of solution for transducer radiation fields was proposed 
by Cook and Arnoult [4]. Thompson and Lopes [5] combined this description 
of the diffraction of a propagating sound beam with a ray tracing model 
for the refraction of the fields at an interface to produce a hybrid model 
which accounts for both diffraction and aberrations. 

In the fluid, the G-H formalism expresses the velocity potential, 
~. as the sum of eigenfunctions 

~(x,y,z) E 
mn 

C ~ (x,z)~ (y,z)ej(wt-kz) (1) 
mn m n 
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where the Cmn are constant complex coefficients and the beam is directed 
along the z-axis. The eigenfunctions, ~. are composed of transversely 
varying Gaussian exponential and Hermite polynomial factors, along with 
axially varying amplitude and phase terms (see Ref. [5] for a complete 
description). These eigenfunctions satisfy a reduced wave equation in 
which a term of the order a2~/az2 has been dropped [4]. This approxima­
tion is equivalent to the Fresnel approximation and should be good for 
the well collimated beams often used in ultrasonic NDE. 

The coefficients, Cmn• can be determined by employing orthogonality 
relationships [6], provided that the potential~ is known on some plane, 
such as the plane containing the transducer face, 

- j (wt-kz ) coJ co * * C = e 0 dx f d~ (x,z )~ (y,z )~(x,y,z ). mn m o n o o (2) 
-co -co 

This integral may be evaluated exactly for a Gaussian distribution in 
the initial plane, but must be numerically integrated for a piston or 
other more complicated source. One benefit of this method is that, in 
principle, any type of source may be treated with equal ease. 

Ray Tracing Through interface 

Figure 1 illustrates the geometry of the procedure for treating re­
fraction at the liquid-solid interface. Suppose a cylindrically curved 
liquid-solid interface (bold arc) is illuminated by a transducer whose 
central ray is given by the central solid line. An incident field in 
the fluid may be defined, via the transducer radiation pattern, on a surface 
just before the interface (dashed arc), assuming no influence by the solid. 
A transmitted plane is defined perpendicular to the refracted central 
ray of the beam. One would predict a set of virtual fields on this trans­
mitted plane which, were the plane fully embedded in the solid, would 
produce the actual radiation field in the solid. A ray tracing analysis 
is used to relate the complex amplitudes of the incident and transmitted 
virtual fields. The fields on the transmitted plane can be used to generate 
a new set of coefficients for the G-H functions in order to describe the 
~ropagation of the beam into the solid. 

liquid 

Fig. 1. Geometry of interface transmission computation. 
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Actually, the scalar G-H solution is not rigorous in the solid media. 
However, for longitudinal waves, it should be a good approximation to 
the behavior of scalar elastic displacement potential. For transverse 
waves the problem is more severe. But, nonetheless, for many cases in 
which one component of the vector displacement potential is dominant, 
the scalar solution may be an accurate representation. For example, a 
well collimated beam passing at a moderate angle through a planar or gently 
curved interface should be a valid geometry for modeling shear waves. 

Numerical Results - Axicon Transducer 

Previously, the G-H model has been applied to beams generated by 
planar, spherically focussed and cylindrically focussed piston and Gaussian 
transducers. In order to demonstrate the applicability of the G-H model 
to general types of transducers, some results are presented here for a 
conically focussed, or axicon, transducer. This type of transducer has 
received some attention due to an apparent extended depth of focus [7-9]. 
The geometry of the axicon is shown in Fig. 2. The probe is characterized 
by a radius, "a", a cone angle, "a", and a frequency, "f". 

Figures 3a and b show the axial profile of an axicon transducer radia­
ting into water at 2.5 MHz. For this case, a= 5.7° and a= 2.0 em. 
The G-H prediction shown in Fig. 3a was obtained with a 65 x 65 term expan­
sion, and is compared with the calculations of Dietz [7], shown in Fig. 
3b. In Fig. 3b, the dashed line corresponds to a numerical integration 
of the Rayleigh diffraction integral and the solid line represents an 
approximation using the Method of Stationary Phase (MSP). The G-H model 
agrees well with the numerical result of Dietz, except in the very near 
field where convergence is sensitive to the number of terms taken in the 
expansion. The G-H expansion is also seen to be superior to the MSP approxi­
mation. Figures 3c,d,e show the full fields of an axicon with f = 2.25 
MHz, a= 4.3°, and a= .635 em. In Fig. 3c, the transducer is radiating 
into water. In Figs. 3d,e, the fields are shown after passage through 
a plane water-steel interface for 45° refracted shear waves and 70° refracted 
longitudinal waves, respectively. Note that for the 45° T wave case, 
the beam retains a good focal region, whereas for the 70° L case the beam 
shape has been degraded severely by aberrations. 

y y' 

14------z------~ 

Fig. 2. Geometry of axicon having radius a, cone angle a, and frequency 
f. 
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Fig. 3. Axicon Rad i ation: a) axial profile in water - G-H; b) axial 
profile in water - Dietz (dashed-numerical calculation, solid 
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- MSP); c) full field in water; d) 45° T wave through water-steel 
interface (CL= .596 cm/~s, CT = .3235 cm/~s, standoff in water 
= 1.27 em); e) 70° L wave through water-steel interface (standoff 
in water= 1.27 em). 



GREEN'S FUNCTION MODEL 

In order to assure the proper application of the Gauss-Hermite beam 
model, it is necessary to perform either an experimental or theoretical 
validation of the theory. Experimental data has been compared to the 
G-H model with favorable results for a variety of different cases [10]. 
However, there are limitations to this approach due to uncertainties re­
garding the degree to which the surface motion ·Of actual probes corresponds 
to the "piston" assumption. Here, a more rigorous theoretical approach 
has been developed in order to provide a touchstone against which the 
G-H model may be evaluated. 

Consider the semi-infinite volume, V, depicted in the left half of 
Fig. 4, which has a bounding surface, S. It is known that the time-harmonic 
displacement at a point in V can be represented as an integral over S 
of the form [11,12]. 

u (x) 
m 

f G G 
[T .. (x-X)u. (X)-u. (x-Xh .. (X)]n .dA(X) 

S ~Jm ~ ~m ~J J 
(3) 

where standard tensor index notation has been employed. In Eq. (3), ui 
and Tij are the displacement and stress conditions at the surface S, nj 
is the outward normal and u~ is the free-space Green's displacement tensor 
given by ~m 

G 
u. 
~m 

(4) 

where 

G8(R) = (l/4~R)eikaR, 

R = I x-X I· 

<a L,T) (5) 

(6) 

The L and T subscripts denote properties of longitudinal end shear waves, 
respectively. The corresponding Green's stress tensor, Tijm• is obtained 
by substitution of Eq. (4) into Hooke's Law. From the physical point-of­
view, U~ and t~. may be thought of as the displacement and stress fields 
that woij'd be rkd~ated to the field point x by a localized body force 
fm applied at the source point X, as sketched on the right hand side of 
Fig. 4. 

If the surface S is considered to be a liquid-solid interface, then 
Eq. (13) provides a formal solution for the field in the solid provided 
that the boundary fields, Ui and Tij• on the solid surface due to a trans­
ducer beam illumination can be determined. The approach taken by the 
Green's function (GF) model then, is to determine these boundary fields 
by an appropriate approximation and evaluate the integral numerically. 

The determination of the boundary fields has been based on the use 
of the G-H beam model, which is rigorously correct, within the Fresnel 
approximation, to describe the radiation pattern in the fluid. However, 
any appropriate transducer radiation model will work as well. First, 
the incident field is determined on the fluid side of the interface in 
the same manner as depicted in Fig. 1. Then, to calculate the actual 
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fields at each point on the surface, the transducer beam is assumed to 
be locally a plane wave and the surface is assumed to be locally planar. 
Thus, everywhere on the surface the continuity of stress and displacement 
can be approximately introduced through the classical theory of plane 
wave incidence on a plane boundary between two media. The boundary fields 
are equal to those of the transmitted wave in this form of the Kirchhoff 
approximation. As the interval in the numerical integration procedure 
is reduced, the error in these approximations is decreased. One drawback 
to this method is that a small integration step is required to resolve 
the phase variations over the surface. The computation time is therefore 
quite lengthy. 
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Fig. 4. Schematic geometry of Green's function formulation. 

NUMERICAL RESULTS 

Results of the Green's function model are compared here with the 
predictions of the Gauss-Hermite model for an unfocussed piston illumi­
nating a cylindrical interface. For this case, the transducer radius 
"a" is .635 em, the frequency "f" is 5 MHz, the radius of curvature of 
the interface "R" is 7.62 em, and the standoff in water "z0 " is for all 
cases 5.6 em. The material properties used are those for water and fused 
silica: Vwater = .15 cm/~s, V1 = .597 cm/~s, VT = .376 cm/~s, and Psolid= 
2.2 gm/cm3. All results shown are for longitudinal waves. 

Figure 5 shows the axial radiation fields for refracted angles of 
0, 5, 15 and 30 degrees, where the refracted angle is that of the beam 
axis. The amplitude has been normalized to that at the transducer face, 
and has been divided by the transmission coefficient of the central ray. 
In Fig. Sa, the GF prediction is seen to have a slightly lower amplitude 
in the focal region than does the G-H profile. However, a case was run 
(dashed line) in which the Fresnel approximation was applied to the spherical 
wave functions of the GF code. The result agrees well with the G-H theory, 
suggesting that the difference between the G-H and GF models is due to 
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the presence of the Fresnel approximation in the G-H model. The rema1n1ng 
plots demonstrate the good agreement of the G-H model with the GF predictions 
at higher angles. 

In Fig. 6, two profiles are shown which are taken transverse to the 
central axis in a plane perpendicular to the cylindrical axis of the inter­
face. The first is at normal incidence and the second is at a refracted 
angle of 30°. For both cases the profile is taken at a distance in the 
solid, z1, of 2.5 em. At normal incidence this corresponds to the geomet­
rical focal point of the interface. The agreement is seen to be excellent 
at normal incidence and at 30° the G-H model approximates the structure 
of the profile very well. 

SUMMARY 

The Gauss-Hermite model for transducer radiation through an inter­
face has been shown to be a versatile tool for modeling various types 
of transducers. Furthermore, when compared to a more rigorous model, 
it has proven to be remarkably accurate for the cases studied. The Green's 
function model will be very useful in further evaluation of the G-H and 
other models for more extreme cases and for shear wave cases. 
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DISCUSSION 

From the Floor: Your Green's Functions were vector functions; is 
that right? 

Mr. Newberry: Tensor functions. 

From the Floor: How did you make the comparison to the scalar? What 
components did you pick? Did you pick the magnitude of the tensor? 

Mr. Newberry: The result of the Green's Function model is a vector dis­
placement in the solid, and the result of the Gauss-Hermite is a 
scalar displacement potential. We made an approximation of quasi­
plane waves so we can deduce the displacement from the displacement 
potential. 

From the Floor: So you calculated the displacement potential from your 
vector? 

Mr. Newberry: We calculated a displacement from the displacement 
potential in the Gauss-Hermite model. 

Mr. R. L. Ludwig, Colorado State University: Did you look at your beam 
model, where you tried to model a liquid-solid interface -- at the 
possibility of using a liquid as a first approximation to a couplant? 

Mr. Newberry: I'm not sure I understand the question. 

Mr. Ludwig: Well, what I had in mind was to use a fairly small layer 
of liquid so that you can actually use it as a couplant, as the 
first approximation for a couplant. Is this a possibility? Can 
you account for it? 

Mr. Newberry: I think eventually we can. We (haven't reached) that 
problem where we just have a thin layer. We hope to extend this 
method to using wedges which would have a couplant in between. 
We haven't done that yet, no. 

Mr. Ludwig: Thanks. 

Mr. Fraser: Thank you. 
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