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SPOILAGE IDENTIFICATION OF BEEF USING

AN ELECTRONIC NOSE SYSTEM

S. Balasubramanian,  S. Panigrahi,  C. M. Logue,  M. Marchello,
C. Doetkott,  H. Gu,  J. Sherwood, L. Nolan

ABSTRACT. A commercially available Cyranose−320� conducting polymer−based electronic nose system was used to analyze
the volatile organic compounds emanating from fresh beef strip loins (M. Longisimmus lumborum) stored at 4°C and 10°C.
Two statistical techniques, i.e., linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA), were used
to develop classification models from the collected sensor signals. The performances of the developed models were validated
by two different methods: leave−1−out cross−validation, and bootstrapping. The developed models classified meat samples
based on the microbial population into “unspoiled” (microbial counts <6.0 log10 cfu/g) and “spoiled” (microbial counts >
6.0 log10 cfu/g). Overall, quadratic discriminant−based classification models performed better than linear discriminant
analysis based models. For the meat samples stored at 10°C, the highest classification accuracies obtained by the LDA
method with leave−1−out and bootstrapping validations were 87.10% and 85.87%, respectively. On the other hand,
classification by QDA and subsequent validation by leave−1−out and bootstrapping provided highest accuracies of 87.5%
and 97.38%, respectively. For samples stored at 4°C, the LDA method provided highest classification accuracies of 79.17%
and 85.64% using leave−1−out and bootstrapping validation, respectively. When the QDA method was used, the highest
classification accuracies obtained for the samples stored at 4°C were 87.50% and 98.48%, respectively, with leave−1−out
and bootstrapping validations.
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he food and agriculture industry is the largest in the
country, representing 16% of our gross national
product. Measures to ensure a safe and high−quali-
ty food supply are a critical priority for our nation

(NSTC, 1996). Food safety problems can be broken down
into three major categories: microbial contamination, chemi-
cal hazards, and natural toxins. The detection of microbial
contamination  in foods relies chiefly on culture−based meth-
ods that do not examine all products or all surfaces of every
product and that also have built−in delays during detection.
Non−destructive and real−time means of detecting microbial
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contamination could greatly reduce the risk of foodborne ill-
ness.

The use of electronic noses for sensing the quality of
foodstuffs as a means of non−destructive sensing is becoming
widespread, and moreover, electronic noses are fast and
reliable.  Applications of electronic noses for determining
food quality have been reported by several researchers (Blixt
and Borch, 1999; Schaller et al., 1998; Jonsson et al., 1997;
Natale et al., 1997). They have reported the use of various
sensors for sensing the quality of meat, grains, coffee,
mushrooms, beer, cheese, fish, beverages, blueberries, and
even sugars. Boothe and Arnold (2002) employed an
electronic nose to analyze the volatile compounds emitted
from poultry meat samples. Their study revealed that the
electronic nose was able to detect changes in the volatile
compounds associated with chicken meat based on the
storage time and temperature.

Conducting polymers have been also used as detectors in
electronic nose systems (Stella et al., 2000). Conducting
organic polymer sensors (CP) exhibit a change of resistance
when any gas is adsorbed by the sensor (Schaller et al., 1998).
This change of resistance is sensed and delivered as the
output. These sensors are very sensitive to polar compounds
(Schaller et al., 1998) and can be used at ambient tempera-
tures (Annor−Frempong et al., 1998). However, they also
have some disadvantages. For example, because of their low
operating temperatures (<50°C), these sensors are very
sensitive to moisture. Electronic nose systems based on
conducting polymers have been used for different applica-
tions, including monitoring of wine fermentation (Pinheiro et
al., 2002), differentiating boar taint (Annor−Frempong et al.,
1998), classification of olive oils (Stella et al., 2000),
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classification of mite infestation in wheat (Ridgway et al.,
1999), and differentiation of spoilage fungi (Keshri et al.,
1998).

Appropriate data analysis and pattern recognition tech-
niques should be applied to construct a reliable algorithm for
interpreting the acquired signal or smell patterns for
classification or prediction purposes. The smell patterns
obtained from the electronic nose sensors can be analyzed
using various statistical and neural network tools. Pattern
recognition techniques like principal component analysis
(PCA), partial least squares (PLS), functional discriminant
analysis (FDA), cluster analysis, and fuzzy logic or artificial
neural networks (ANN) have been used for data analysis in
electronic nose applications (Haugen and Kvaal, 1998).
Siegmund and Pfannhauser (1999) performed a PCA analysis
of the discriminant factors to classify cooked chicken meat
samples based on the responses obtained from an electronic
nose. Pinheiro et al. (2002) emphasized autoscaling the data
prior to principal component analysis, as autoscaling could
prevent bias due to high sensor responses dominating the
analysis.

If the sample size is small, then building a reliable
prediction or classification model is often difficult. Similarly,
even with adequate samples, it is critical to build a reliable
and robust model that can perform satisfactorily in real−
world conditions. Several techniques such as leave−k−out
(leave−1−out) and bootstrap methods have been used for this
purpose. Panigrahi et al. (1998) described a bootstrap
procedure employed for building a three−way classification
model to determine the quality of edible beans. A single
bootstrap sample is created by randomly drawing n observa-
tions with replacement from the original sample set.
However, this bootstrap approach, which is appropriate for
small sample sizes and had lower variability than the
cross−validation approach, was found to be more biased
(Efron, 1983). Efron and Tibshirani (1993) proposed a simple
method to correct this bias and that could improve the quality
of the bootstrap error rate estimates.

Meat including beef is a staple food in the U.S. Thus, it is
critical to ensure the supply of high−quality, safe meat
products. The development and evaluation of intelligent
quality sensors to provide critical quality information about
food and agricultural products are justified. Although
different types of sensors have been reported for determining
the quality of food products, we hypothesize that the volatile
organic compounds (gases) generated by the activities of
spoilage organisms on meat could be used as indicators of
bacterial presence and, subsequently, of meat quality. Thus,
the objective of this article is to evaluate the capability of a
commercially available electronic nose system for identifi-
cation of meat (beef) spoilage. Emphasis is given to the use
of selected statistical techniques for developing classifica-
tion models.

MATERIALS AND METHODS
BEEF SAMPLES

For each experiment, beef strip loin (M. Longisimmus
lumborum) samples from different animals (obtained from
the Animal and Range Sciences Department, North Dakota
State University, Fargo, N.D.) were taken after 24 h of
chilling. From each beef carcass, a 100 g piece of strip loin
was taken. This 100 g meat sample was divided into two
equal samples. Each sample was packed separately using a
polystyrene base tray and was covered with a commercial
food−grade stretch wrap polymer (Filmco Meat Stretch
Wrap, Filmco Industries, Aurora, Ohio). This packaging
simulated the packaging of meat in retail grocery stores. One
of these two samples was used for the electronic nose
analysis, and the other was used for analyzing the microbial
flora present in it. We assumed that the microbial data from
this meat (50 g) sample would be representative of the
microbial data in the other 50 g of sample meant for
headspace analysis. The packaged meat samples were stored
at 10°C (50°F) and 4°C (37°F). The 10°C storage condition
was chosen to expedite the spoilage of meat, and the 4°C
storage represented the ideal storage temperature of meat in
grocery stores.

Three experiments were carried out in different months.
In the first experiment, there were two replications for each
sample collected from each carcass. For the other two
experiments, there was one replication for each sample
collected from each carcass. The experiments were con-
ducted in October 2002, March 2003, and May 2003,
respectively. The number of samples for each experiment and
the sampling interval for microbial analysis and meat
headspace analysis were carried out as shown in table 1.

MICROBIOLOGICAL ANALYSIS

The microbiological analysis of the meat samples was
carried out as required. Aerobic plate counts of the meat were
carried out in the Department of Veterinary and Microbiolog-
ical Sciences at North Dakota State University using standard
protocols (U.S. FDA, 1998). Briefly, a small portion of the
meat sample weighing approximately 10 g was aseptically
removed and diluted to a 1:10 ratio in maximum recovery
diluent (MRD, CM733, Oxoid, Inc., Ogdensberg, N.Y.). The
meat sample was homogenized in a stomacher (IUL Mastica-
tor, Torrent de Lestadella, Barcelona, Spain) for 2 min and
serially diluted in 9 mL of MRD as necessary. Plate counts
were obtained by plating out samples on the surface of plate
count agar (PCA, Oxoid, Inc.) with incubation of the plates
at 25°C for 3 days. Counts were obtained by enumerating
typical colonies present and calculated as log10 cfu/g of the
meat sample.

Table 1. Electronic nose sampling protocol employed for the stored beef strip loins.

Storage Days of October, 2002 March, 2003 May, 2003Storage
Temperature

Days of
Sampling Replications Samples Replications Samples Replications Samples

10°C (50°F) 0[a], 1, 2, 3, 4,5,6,7 6 48 4 32 3 24
4°C (37°F) 3,6,9,12,15 6 30 4 20 3 15

Total samples for
one experiment

13 days total 78 52 39

[a] Denotes that on day 0 the readings from the sensor were used for both 10°C and 4°C data.



1627Vol. 47(5): 1625−1633

ELECTRONIC NOSE SETUP
A commercially available Cyranose−320� electronic nose

(Cyranose−320�, Cyrano Sciences, Pasadena, Cal.) was used
to obtain the smell patterns from the headspace of the beef
sample packs. This electronic nose contains an array of 32
conducting polymer sensors. Each sensor has a certain degree
of affinity towards specific chemical or volatile compounds.
When the sensor is exposed to a chemical, the chemical is
adsorbed by the sensing element; subsequently, a change in
resistance is experienced by the sensor that is proportional to
the amount of chemical absorbed by the conducting polymer
surface. This change in resistance over a specific time
interval constitutes the signal or the response of the electronic
nose. This signal is stored as an output file, which can be
exported to MS Excel (Microsoft Corporation, Seattle,
Wash.). Out of the 32 sensors, four (sensors 5, 6, 23, and 32)
were sensitive to polar compounds (water vapor) present in
the headspace due to the respiration of meat. Therefore, the
responses from these four polar−sensitive sensors were not
included in the data sets used for this study.

SAMPLING PROCEDURE
Responses of the electronic nose system (Cyranose−

320�) to the headspace of meat samples were acquired
starting from day 0 until day 7 (a total of 8 days) for the
samples stored at 10°C. From the meat samples stored at
4°C, similar responses of the electronic nose system were
acquired starting from day 3 until day 15 at an interval of 3
days (a total of 5 days). It should be noted that the sampling
was carried out at storage intervals appropriate to the storage
temperature of meat. In the case of meat held at 10°C and
above, spoilage can occur at a rapid rate; hence, typical
sampling intervals are usually daily in order to capture the
spoilage counts more accurately. In meat samples stored at
temperatures less than 4°C, spoilage occurs at a much slower
rate (Boothe and Arnold, 2002) because the low storage
temperature slows down the spoilage characteristics. Due to
this reason, we chose a 3−day sampling interval and
examined spoilage over a longer period of time. The
sampling interval used in acquiring the sensor responses and
conducting the microbial analysis is presented in table 1.

Table 2 shows the salient data acquisition parameters. The
meat samples were discarded after each day’s analysis.
Atmospheric air was used as the reference. Prior to purging
the sensor array with atmospheric air, the air was conditioned
by passing it through desiccants, e.g., drierite (anhydrous
calcium sulfate) (fig. 1). A small syringe (open at both ends)
was attached to the opening of the purge inlet of the electronic
nose system. The syringe was filled with about 3 g of drierite
and dry cotton balls. Atmospheric air used for purging the
sensors passed through the syringe filled with drierite and
cotton. Drierite helped to remove any moisture and unneces-
sary odor from the atmospheric air. This processed air was
then used to purge the sensors for 10 s prior to sampling the
headspace gas. The sensors were maintained at a temperature
of 42°C during data acquisition. The electronic nose was
programmed such that any data−processing algorithm avail-
able in the electronic nose system did not process the
acquired data. Thus, the data acquired were the raw responses
of the sensor. The setup for data acquisition using the
Cyranose−320�electronic nose is schematically represented
in figure 1.

Table 2. Cyranose−320� sampling cycle for beef headspace analysis.
Operation Time (s)

Baseline correction (laboratory air intake) 10
Sample draw−in 120
Laboratory air purge 5
Sample purge 30
Manual purge 240

Total run time for one sample 405

DATA PRE−PROCESSING AND FEATURE EXTRACTION
The overall data collection and processing techniques

used for development of the classification models are shown
in figure 2. The commercial electronic nose system has a
provision for using several statistical techniques for classifi-
cation of sensor responses. It should be noted that the sensor
response for the meat samples (at day 0) stored at 10°C was
also used as the day 0 reading for the samples stored at 4°C.

Figure 3 shows a typical raw signal/response of a sensor
(detector) of the electronic nose. The acquired raw sensor
signals were first pre−processed using binomial smoothing,
averaging, and normalization techniques. After the binomial
smoothing was carried out, the averaging technique further
smoothed the data using a 2−1 data reduction technique.
These processing operations were carried out using appropri-
ate functionalities available in GRAMS/32 software (Ther-
mo Galactic, Woburn, Mass.).

The smoothed sensor data were then normalized using the
following equation:

min

min

R

RR
R i

n
−=  (1)

where
Rn = normalized sensor response at a given instant i
Ri = sensor response at a given instant i
Rmin = minimum sensor response obtained between time

intervals of 0 and 30 s, where 0 s represents the
start of purging with ambient air (fig. 3).

A separate program was written to automatically deter-
mine Rmin and the corresponding time value of Tmin. Figure 4
shows a typical plot of sensor signals after they were
smoothed and normalized. Subsequently, the area under the
curve for the sensor responses between Tmin (time at which

Laptop computer
for data acquisition

Purge
outlet

Drierite and
cotton

Meat headspace volatiles
inlet (from meat packet)

Purge
inlet

Figure 1. Setup for Cyranose 320�sensor for headspace volatile sampling.
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Meat packets

Electronic nose

Raw sensor signals

Pre−processing
(Grams−32 s/w)

1. Binomial smoothing
(points = 2)

2. Average (2

For each sensor find Rmin
between 0−30 s and record the
time (Tmin) where Rmin occurs

Find (R i − Rmin)/Rmin

for each sensor

Find area under the curve (between
Tmin and 130 s) for all pre−processed
curves and re−group them by sample
number

Remove sensor (s5, s6, s23, and
s31) areas to prevent these high−
variation sensor areas from
dominating the analysis

Pre−processed file ready
for data analysis

Reclassify microbiology data as either 1 or 2
1. Micro data < 6.0 log10 cfu/g (unspoiled)
2. Micro data ≥ 6.0 log 10 cfu/g (spoiled)

Run principal component analysis (PCA) for
the 28 sensor areas (27 sensor areas only
for October 2002 and combined data)

Produce principal components input file
for classification analysis

Discriminant analysis

Calculate and compare classification
accuracies of the four models

Linear Quadratic

Leave−1−out
cross−validation

Bootstrap

1. LDA with leave−1−out
cross−validation

2. QDA with leave−1−out
cross−validation

1. LDA with
bootstrap

2. QDA with
bootstrap

Headspace volatiles

�1)

Figure 2. Data collection, processing, and statistical analysis methods used for developing the classification models.

the minimum sensor response, Rmin, occurs) and 130 s (the
time at which data collection from the meat headspace was
stopped) was extracted, and this file was stored for future
processing.

Twenty−eight areas (features) corresponding to 28 sensors
were extracted for each meat sample. For October 2002 and
combined datasets only, 27 area features were used, corre-
sponding to 27 sensors, as one of the sensors was not
functioning properly during the October 2002 experiment.
As the numbers of observations (days) were small (i.e., eight
for 10°C and six for 4°C), further reductions in the dimen-

sionalities of our data set were needed. Principal component
analysis (PCA) is a suitable method that can reduce the di-
mensionalities  while eliminating redundancies in the data
set. Therefore, PCA was applied, and the principal compo-
nents were extracted so that they accounted for 99% or more
of the variation. These extracted data sets were further used
for development and evaluation of the classification models.

MODEL DEVELOPMENT FOR CLASSIFICATION

Two types of discriminant analysis models (linear and
quadratic) were used to classify the stored beef samples into
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Figure 3. A typical raw signal/response of a sensor of an electronic nose.

two groups based on their microbial counts. Results of the
aerobic plate counts ranged from <1.7 log10 cfu/g to about
9.63 log10 cfu/g. Samples with microbial counts > 6.0 log10
cfu/g were classified as “spoiled,” and samples with micro-
bial counts <6.0 log10 cfu/g were classified as “unspoiled.”
The PROC DISCRIM procedure in SAS (version 8.2, SAS In-
stitute, Inc., Cary, N.C.) was used for developing linear dis-
criminant and quadratic discriminant analysis models. PROC
DISCRIM calculates the generalized squared distance (Rao,
1973). Each observation (response variable) is then assigned
a probability of belonging to a given group based on the gen-
eralized squared distance from the group mean. The response
variable can thus be grouped into one of the two groups. If the
classification is based on the pooled covariance matrix, then
the resulting discriminant function is linear (Rao, 1973). If
the classification criterion is based on the individual within−
group covariance matrices, it results in a quadratic discrimi-
nant function.

As the number of observations was small for each
experiment,  separation of the data into training and testing

data sets further reduced the number of data in the “test” data
set. Therefore, to increase the robustness of our classification
models, we used two different validation techniques:
leave−1−out and bootstrap analysis.

In the leave−1−out method, for a given data set with n
observations, one observation is randomly removed. The
model is developed using the rest (n − 1) of the observations,
which is called the training or calibration data set. The single
observation is now used as a validation/test data set. This
process of data separation is continued to create n training
and testing data sets. For each pair of training and testing data
set, the model is developed and validated. The performances
of the model (classification accuracies) on n number of
validation (test) data sets were determined, and the average
classification accuracy was noted.

THE BOOTSTRAP APPROACH

Bootstrap analysis is an emerging and relatively novel
concept to validate a given model in a rigorous manner. Since
our data sets, in most cases, consisted of less than 30 observa−
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Table 3. Calculation of the refined estimate of true total error due to bootstrapping
for 10°C (50°F) meat samples analyzed by quadratic discriminant analysis.

Data Set Err (B, O*) Err (B, B*) Err (O, O*) Bias/Optimism Refined Estimator Accuracy

October, 2002 0.1989 0.1656 0.2444 0.0333 0.2777 0.7223
March, 2003 0.0316 0.0000 0.0000 0.0316 0.0316 0.9684
May, 2003 0.0305 0.0043 0.0000 0.0262 0.0262 0.9738
March−May 2003 0.1489 0.0460 0.2000 0.1029 0.3029 0.6971
Combined (October, March, May) 0.2395 0.2073 0.2400 0.0322 0.2722 0.7278

tions, it was obvious that the error would be very high. In
addition, the process of splitting this data set into training and
testing sets in the ratio 3:1 or 2:1 would make the training set
even smaller. This would introduce a higher percentage of er-
ror and a greater degree of uncertainty. To minimize this error
and create a better sampling procedure for validating the
model created with a small data set, it was decided to use
bootstrapping. The approach described by Panigrahi et al.
(1998) was used. For our study, 1000 bootstrap samples, each
with 50 observations, were created. A single bootstrap sam-
ple was created by randomly drawing n observations with re-
placements from the original sample set. The classification
developed on each bootstrap sample was validated against
the original sample (data set), and the associated estimates of
error of prediction were determined. For N bootstrap sam-
ples, the average estimates of error of prediction were further
calculated. As this error of prediction is reported to be biased
(Efron, 1983), the following method, as proposed by Effron
and Tibshirani (1993), was used to determine the refined
bootstrap estimator (error):

� First, use the original sample as both the training (O)
and validation (O*) set. Let the error rate for this test
be Err (O, O*).

� Next, compute the error rate for both training (B) and
validation (B*). Let this error rate be denoted by Err (B,
B*).

� Finally, use the bootstrap sample as the training set and
the original sample as the validation set. Compute the
error. Let this error be Err (B, O*).

� The bias or optimism of the simple bootstrap analysis
is now defined as the difference between Err (B, O*)
and Err (B, B*) averaged over the N bootstrap samples.
The refined bootstrap estimator is now given by the op-
timism added to Err (O, O*).

The results obtained by the LDA− and QDA−based
bootstrap technique were corrected for the bias using the
process described above, and the refined (or “true”) bootstrap
estimator/error  rate was calculated for the classification
models developed. The mean total classification accuracy
achieved for each group was also calculated from these
refined estimators. Table 3 shows a typical refined estimate
of true total classification error for the different data sets
computed by the above method for bootstrap analysis. These
results were compared with the classification results obtained
from discriminant analysis (both LDA and QDA) based on
leave−1−out cross−validation.

For this study, a total of five data sets were used for the
development and evaluation of the classification models
(table 4). Data sets 4 and 5 were created by combining the
primary data sets (1, 2, and 3). This combination was done to
increase the number of data sets, and to create data sets with
additional variability that might be specific to meat/experi-
mental conditions on a given experiment date.

RESULTS AND DISCUSSIONS
MICROBIAL ANALYSIS

Figure 5 shows a typical growth curve of spoilage bacteria
(log10 cfu/g) obtained for the beef samples during the
experimental  period at 10°C and 4°C. From the figure, it is
evident that the meat samples stored at 10°C undergo
spoilage at a faster rate than the meat samples stored at 4°C.

LDA AND QDA WITH LEAVE−1−OUT CROSS−VALIDATION
FOR SAMPLES STORED AT 10°C

The classification results by LDA and QDA obtained for
the meat samples stored at 10°C (50°F) and cross−validated
by the leave−1−out method are shown in table 5. The highest
overall classification accuracy obtained by LDA was about
87.1%. For QDA, the highest overall classification accuracy
obtained was 87.5%. The overall classification accuracies
achieved by LDA and QDA were very similar (with a
maximum of 4% difference in overall accuracies). For
individual groups, the highest accuracies obtained by LDA
were 92.3% and 100% for the unspoiled and spoiled samples,
respectively. On the other hand, quadratic discriminant
analysis provided the highest accuracies of 100% and 88.9%,
respectively, for the unspoiled and spoiled meat samples. For
one data set (March 2003), 0% classification accuracy was
provided by QDA for the spoiled samples. The small number
of spoiled samples (5) as compared to the number of
unspoiled samples (26) could be one of the reasons for this
low accuracy. Overall, the unequal distribution of the number
of unspoiled (<6.0 log10 cfu/g) and spoiled samples (> 6.0
log10 cfu/g) could be one of the reasons for the observed
variations among the classification accuracies.

LDA AND QDA WITH BOOTSTRAPPING FOR SAMPLES
STORED AT 10°C

Table 6 summarizes the classification results by linear and
quadratic discriminant analysis validated by bootstrapping.
It can be seen that the highest overall accuracy achieved by
LDA was 85% and was provided by two data sets (March
2003 and May 2003). QDA similarly provided overall
accuracies >96% for these two data sets. However, when

Table 4. Data sets used for building the classification models.

Period Data Collected

Storage
Temperature

(°C)
No. of

Observations Data Set

October, 2002 10 45 1
4 32

March, 2003 10 31 2
4 24

May, 2003 10 24 3
4 18

March−May, 2003 10 55 4
4 42

Combined 10 100 5
(October, March, May) 4 74
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Figure 5. A typical growth curve of spoilage bacteria (log10 cfu/g) in beef samples stored at 10°C and 4°C, respectively.

these two data sets were combined, both methods showed an
accuracy of approximately 70% for the combined data set
(March−May 2003). This type of variation in classification
accuracy has been observed by Ridgway et al. (1999) while
combining data sets. In their study, using a conducting poly-
mer−based electronic nose to classify mite infestation in
wheat, they obtained a classification accuracy of around 80%
when they considered the weeks of storage separately. How-
ever, when they combined the weeks of storage, the classifi-
cation accuracy went down. Ridgway et al. (1999) reasoned
that this drop in accuracy might be due to major changes in
the sample (wheat) composition between the first and second
week of storage. Thus, for this study, the variation in the ex-
perimental conditions pertaining to the temperature, relative
humidity, storage conditions, handling of the meat packets,

and meat sample conditions (related to the feed, sex, age, and
breed of the animal) could contribute to this variation in accu-
racies.

Additional analyses of within−group accuracies indicated
the highest accuracy for the unspoiled meat samples by LDA
to be 89.08% (table 6). The maximum accuracy for the
spoiled meat samples was 10% higher than that obtained for
the unspoiled ones. In fact, three data sets (October 2002,
May 2003, and combined) yielded above 90% accuracies for
the spoiled samples when analyzed by LDA and bootstrap-
ping. This result is similar to the results obtained when the
same three data sets were analyzed by LDA with leave−1−out
cross−validation. QDA with bootstrapping provided the
highest classification accuracy achieved (100%) for the
unspoiled samples and 93.78% for the spoiled samples.

Table 5. Classification accuracies obtained by leave−1−out cross−validation for meat samples stored at 10°C (50°F).
Cross−Validation Accuracy (%)

No. of Samples Linear Discriminant Analysis Quadratic Discriminant Analysis

Data Set Total Unspoiled[a] Spoiled[b] Unspoiled Spoiled Total Unspoiled Spoiled Total

October, 2002 45 33 12 66.67 91.67 73.33 69.70 83.33 73.33
March, 2003 31 26 5 92.31 60.00 87.10 100.00 0.00 83.87
May, 2003 24 14 10 71.43 100.00 83.34 100.00 70.00 87.50
March−May, 2003 55 40 15 65.00 66.67 65.45 75.00 46.67 67.30
Combined
(October, March, May)

100 73 27 68.49 92.59 75.00 69.86 88.89 75.00

[a] Unspoiled = <6.0 log10 cfu/g.
[b] Spoiled = >6.0 log10 cfu/g.

Table 6. Classification accuracies (based on refined estimate of true total error) obtained
by bootstrap based validation for meat samples stored at 10°C (50°F).

Cross−Validation Accuracy (%)

No. of Samples Linear Discriminant Analysis Quadratic Discriminant Analysis

Data Set Total Unspoiled Spoiled Unspoiled Spoiled Total Unspoiled Spoiled Total

October, 2002 45 33 12 64.59 91.04 71.70 68.80 81.84 72.23
March, 2003 31 26 5 89.08 69.61 85.87 100.00 80.46 96.84
May, 2003 24 14 10 75.77 99.56 85.67 99.92 93.78 97.38
March−May, 2003 55 40 15 68.52 74.19 70.02 73.84 58.92 69.71
Combined
(October, March, May)

100 73 27 66.53 93.00 73.51 70.35 78.65 72.78
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Table 7. Classification accuracies obtained by leave−1−out cross−validation for meat samples stored at 4°C (37°F).
Cross−Validation Accuracy (%) Cross−Validation Accuracy (%)

No. of Samples Linear Discriminant Analysis Quadratic Discriminant Analysis

Data Set Total Unspoiled[a] Spoiled[b] Unspoiled Spoiled Total Unspoiled Spoiled Total

October, 2002 32 25 7 60.00 28.57 53.13 84.00 0.00 65.63
March, 2003 24 21 3 76.19 100.00 79.17 100.00 0.00 87.50
May, 2003 18 12 6 33.33 16.67 27.78 66.67 16.67 50.00
March−May, 2003 42 33 9 60.61 55.56 59.50 84.85 33.33 73.80
Combined
(October, March, May) 74 58 16 62.07 25.00 54.05 62.07 43.75 58.10
[a] Unspoiled = <6.0 log10 cfu/mL.
[b] Spoiled = >6.0 log10 cfu/mL.

LDA AND QDA WITH LEAVE−1−OUT CROSS−VALIDATION
FOR SAMPLES STORED AT 4°C

The highest overall classification accuracy achieved by
LDA and leave−1−out cross−validation was 79.17%
(table 7). The highest overall classification accuracy pro-
vided by QDA was around 8% higher than that provided by
LDA. The differences in overall classification accuracies
between LDA and QDA varied from 4% to 22%. However,
the overall classification accuracies obtained for the samples
stored at 4°C were lower than those obtained for the 10°C
samples. The smaller samples sizes for the 4°C storage
condition (as compared to 10°C) could be one of the reasons.
In addition, the sampling intervals were 1 day for the meat
stored at 10°C, as compared to 3 days for the samples stored
at 4°C. This increased sampling interval for the 4°C samples
might have contributed to this variation. This observation is
similar to findings that high inconsistencies existed in the
microflora and the resultant volatile production in processed
poultry (Senter et al., 2000).

The Cyranose 320� was used for classifying microwave−
cooked turkey samples by Mueller et al. (2002), who used all
32 sensors to obtain a sample recognition confidence of
100%. Our experiments did not use all 32 sensors of the
Cyranose−320� as we did not take into consideration the
sensors related to humidity information. Our study also
differs from that of Mueller et al. (2002) in that they dealt
with warmed−over flavor where humidity might not be an
issue. Moreover, they used neural networks for data classifi-
cation. We anticipate that the classification accuracy for our
study could be increased by using neural network techniques.

Additional investigation of within−group accuracies re-
vealed 76.19% accuracy by LDA for the unspoiled samples.
The spoiled samples were classified with a maximum
accuracy of 100%. For QDA, the highest accuracy achieved
for the unspoiled samples among all experiments was 100%.
On the other hand, the spoiled samples were classified with
a maximum accuracy of 43.75%.

LDA AND QDA WITH BOOTSTRAPPING FOR SAMPLES
STORED AT 4°C

The results of the classification accuracies of meat
samples (stored at 4°C) using LDA and QDA with bootstrap-
ping are presented in table 8. The maximum accuracy
obtained by LDA and bootstrapping was 85.64%, which was
provided by the March 2003 data set. A maximum accuracy
of 98.48% was obtained by QDA and bootstrapping with the
March 2003 data set. QDA with bootstrapping performed
better than LDA in classifying the meat samples. This
indicated that a non−linear classifier like QDA performed
better than a linear classifier like LDA. The comparison of
overall classification accuracies between LDA and QDA
indicated that the accuracies could vary between 10% and
25% with bootstrapping. Boothe and Arnold (2002) reported
that the data obtained from poultry samples stored at 4°C
using a conducting polymer electronic nose clustered more
closely than the data obtained from samples stored at 13°C.
This variation was attributed to the greater diversity in
volatile compounds generated when the poultry samples
were stored at a higher temperature (13°C). We observed
similar trend in our analysis.

The maximum classification accuracies obtained for the
unspoiled and spoiled samples by LDA were 83.63% and
99.83%, respectively. Using QDA, the maximum classifica-
tion accuracies obtained for the unspoiled and spoiled
samples were 100% and 87.88%, respectively.

SUMMARY AND CONCLUSIONS
A Cyranose−320� electronic nose system was used to

classify beef stored at 10°C and 4°C into two classes
(“spoiled” and “unspoiled”). The electronic nose system was
used to acquire the raw signals only. The acquired signals
were pre−processed to reduce noise and were then processed
to build statistical−based classification models. The statisti-
cal techniques used to build the models were linear and

Table 8. Classification accuracies (based on refined estimate of true total error) obtained
by bootstrap based validation for meat samples stored at 4°C (37°F).

Cross−Validation Accuracy (%)

No. of Samples Linear Discriminant Analysis Quadratic Discriminant Analysis

Data Set Total Unspoiled Spoiled Unspoiled Spoiled Total Unspoiled Spoiled Total

October, 2002 32 25 7 62.56 59.32 61.80 86.55 77.36 84.51
March, 2003 24 21 3 83.63 99.83 85.64 100.00 87.88 98.48
May, 2003 18 12 6 44.71 56.38 48.36 73.06 73.58 73.25
March−May, 2003 42 33 9 57.18 62.77 57.21 84.11 52.26 77.26
Combined
(October, March, May)

74 58 16 61.87 12.78 50.72 61.40 58.28 60.45
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quadratic discriminant analysis. The performances of the de-
veloped models were validated using leave−1−out cross−val-
idation and bootstrapping.

The highest overall classification accuracy obtained for
the meat samples stored at 10°C by LDA and cross−validated
by the leave−1−out method was about 87.10%. QDA also
provided similar accuracies (87.50%) when cross−validated
by the same method. With bootstrapping, overall classifica-
tion accuracy obtained by QDA increased by 10% (97.38%).
The highest overall accuracy obtained with LDA and
bootstrapping was 85.87%.

For the samples stored at 4°C, LDA and leave−1−out
cross−validation provided the highest overall accuracy of
79.17%. The highest accuracy obtained with QDA by the
same method of cross−validation was 8% higher. With
bootstrapping, the highest classification accuracies obtained
were 85.64% and 98.48%, respectively, by LDA and QDA
methods. The overall classification accuracies obtained by
QDA were higher (from 4% to 25%) than those obtained by
LDA for the meat samples stored at 4°C.

This study indicated the capability of an electronic nose
system to classify stored beef into two classes (“spoiled” and
“unspoiled”). Our ongoing work focuses on the use of neural
networks for developing classification models and will be
presented in future reports. Future work will also include the
use of different extracted features and validation of the
classification models on larger data sets.
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