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R E S P O N S E  T O  E D I T O R

Response to ‘Stochastic and deterministic interpretation of 
pool models’

We concur with Azizi- Rad et al. (2021) that it is vital to critically 
evaluate and compare different soil carbon models, and we wel-
come the opportunity to further describe the unique contribution 
of the PROMISE model (Waring et al., 2020) to this literature. The 
PROMISE framework does share many features with established 
biogeochemical models, as our original manuscript highlighted in 
Table 1, and our work builds upon model innovations developed by 
many different groups, including that of Azizi- Rad and colleagues. 
Yet, the PROMISE framework is distinctive due to where it places 
mechanistic emphasis, and how these mechanisms are formalized in 
the mathematical model structure.

The biogeochemical model inspired by the PROMISE frame-
work is individual- based and stochastic. This gives it two important 
 advantages: (1) PROMISE generates a distribution of residence times 
for particles in any given chemical state, and (2) PROMISE allows the 
user to explore the microbial mechanisms that shape this distribu-
tion. As Azizi- Rad and colleagues point out, even standard first- order 
decay models (e.g., CENTURY) yield a distribution of particle transit 
times through any particular pool. However, in such deterministic 
models, the shape of the distribution is entirely determined by pa-
rameter selection. By contrast, PROMISE incorporates stochasticity 
in particle movement. It also simulates microbial control over soil 
carbon cycling by linking the likelihood of chemical transformations 
to the proximity of decomposers. Thus, the user can explore how 
assumptions about microbial ecology, soil texture, and the chemistry 
of organic matter inputs influence carbon residence times in a given 
chemical state or pore size class. PROMISE is not the first soil carbon 
model to adopt a probabilistic approach (e.g., see Sierra et al., 2018). 
Nor is it the first model of its kind to represent direct microbial con-
trol over carbon fluxes— by now, such an approach is well established 
in the literature (e.g., see Sulman et al., 2014; Wieder et al., 2014; 
Woolf & Lehmann, 2019; among others). However, we contend that 
the PROMISE model is novel because it combines a probabilistic, 
individual- based simulation model approach with ecological mech-
anisms of organic matter transformation, which are directly inspired 
by empirical observations.

Azizi- Rad and colleagues also make the observation that no 
soil carbon model can truly be pool- independent. Obviously, the 
PROMISE model does store individual carbon atoms “in one or many 
state variables that account for its change through a mass balance,” 
to quote their definition. However, for a significant portion of the 

terrestrial ecology community, the term “pool” has a more specific 
meaning: it represents a cohort of substances or compounds with 
shared properties, specifically with shared carbon turnover dynam-
ics. Accordingly, membership in the pool is not just a question of 
having a certain mass, but also a matter of having a certain property: 
for instance, a predetermined chemical composition, an association 
with a certain aggregate size, or a particular turnover time. With 
this latter definition in mind, we promulgate our core argument in 
Waring et al. (2020): to predict the belowground fate of a particu-
lar organic matter compound, it is not especially important which 
conceptual pool it belongs to. What truly matters are the things that 
happen to the carbon compound on its way through the system, and 
the frequencies at which those things happen.

Thus, we contend that it is not the existence of modelled pools, 
but rather their definition, interpretation, and mathematical rep-
resentation that distinguishes PROMISE from its counterparts. As 
Azizi- Rad et al. (2021) point out, a pool in PROMISE could be defined 
as “chemical type X in pore size class Y.” Yet a particle's residence 
time in this state is not determined simply by the chemistry of X or 
by the dimensions of pore Y, but also by the particle's proximity to a 
microbe with appropriate enzymatic machinery. Thus, the dynamics 
of a given pool are not defined by parameters specific to that pool, 
but rather represent an emergent property of the whole model. In 
this way, the PROMISE framework directs our focus away from the 
definition of discrete pools, and onto the mechanisms that influence 
the physical movement and chemical transformation of specific frag-
ments or molecules of organic matter.
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