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Abstract 

This study uses the Method for Object-based Diagnostic Evaluation (MODE) technique 

to examine and compare the statistics of drought attributes over the upper Colorado River 

basin (UCRB). The drought objects are based on the standardized precipitation index (SPI) 

and the standardized precipitation evapotranspiration index (SPEI) on a 36-month timescale 

(SPI36 and SPEI36, respectively). The drought indicators are calculated using monthly 

precipitation as well as minimum and maximum temperatures from the Precipitation-

Elevation Regression on Independent Slopes Model datasets from 1948 to 2012. MODE uses 

paired object attributes such as centroid distance, orientation angle, area ratio, and 

intersection area and a combination of parameter thresholds to determine the number of 

objects identified and retained in the merging and matching process in the two fields. Using 

MODE run with convolution radius of 0 (no smoothing) and an area threshold of 4 grid 

points, this study computes and analyzes object statistics including centroid locations, areas 

and intensity percentiles. Results of the analysis show that SPI36 produces more drought 

objects than SPEI36. Although the spatial patterns are roughly similar leading up to almost 

similar statistics of object attributes, such as locations of the object centroids, the SPI36 
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produces higher percentile intensity of drought objects than does SPEI36, which is clearly 

obvious in the 90th percentile intensity of drought objects. The largest difference between 

SPEI36 and SPI36 occurs in the area of drought objects during the early 2000s when the 

region experienced multi-year drought resulting from increased warming of the atmosphere. 

This study demonstrates the use of MODE as a tool to evaluate and monitor drought event 

over the UCRB.  

 

 

Keywords: MODE, SPEI, SPI, Drought objects, UCRB, Denver Water 

 

1. Introduction 

Droughts and pluvials are at the heart of many research studies because of their profound 

impact on water supplies (e.g., McCabe et al. 2004; Seager et al. 2008; Schubert et al. 2009; 

Cook et al. 2014a, 2014b). Recently, the potential changes in frequency, duration, magnitude 

and impacts of such events over the coming decades have gained attention (Meehl et al. 

2000; Cook et al. 2015). Droughts and pluvials are opposing events that historically have had 

significant economic impact on various sectors including agriculture and water resources 

management. This makes them events of interest to a major water utility in our region of 

study, Denver Water. For example, the U.S. Department of the Interior Bureau of 
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Reclamation reported that "Since 2000, the Colorado River Basin has been experiencing a 

historic, extended drought that has impacted regional water supply and other resources, such 

as hydropower, recreation, and ecologic services". Reservoir storage in Lake Mead and Lake 

Powell has declined since the beginning of this persistent drought. Recently, Burgman and 

Jang (2015) estimated that drought-related agricultural loss in 2012 was worth tens of 

billions of U.S. dollars. Matthai (1969) reported that the 1965 flood on many streams in the 

South Platte River basin, resulting from three days of intense rains, caused damage worth 

US$508.2 million, with 75% of the losses recorded in the Denver metropolitan area. The 

1976 catastrophic flash flood along the Big Thompson River left 139 dead, with an estimated 

property damage of US$35 million (Jarrett, 1990) while the historic Boulder flood of 9 – 15 

September 2013 resulted in disaster emergencies being declared in 14 counties. These events 

can play an important role in depleting and polluting water systems and can lead to water 

shortages for both human consumption and agricultural purposes. Because of the potential 

impacts on ecosystems, humans, and animals, there is a great need for further understanding 

of the spatial characteristics of these extreme events.  

Drought is complex in nature and it can be defined in different ways: agricultural, 

hydrological, meteorological, and socioeconomic (American Meteorological Society 1997; 

Dracup et al. 1980; Trenberth et al. 2007). The complexity of this extreme has resulted in its 

monitoring and characterization using different indices. This study builds on our previous 

work (Abatan et al. 2017) that used the standardized precipitation index (SPI; McKee et al. 
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1993; Guttman, 1998) and standardized precipitation evapotranspiration index (SPEI; 

Vicente-Serrano et al. 2010) to examine extended droughts and their associated physical 

processes for a multi-decadal period (36-month) in the upper Colorado River basin (UCRB). 

We use the SPI and SPEI because of their simplicity, widespread application, and 

endorsement by the World Meteorological Organization (WMO, 2006) and the research 

community as an important tool to monitor drought at different time scales and locations.  

Previous studies on drought indices have typically relied on traditional verification 

metrics based on contingency tables and/or various forms of subjective visual evaluations. 

Often, these techniques can be misleading (Ahijevych et al. 2009), and they may not provide 

much information that is of interest to users (Davis et al. 2006a). The inherent limitations 

associated with traditional approaches have led to the development of novel, new spatial 

verification techniques, including various object-based methods (Ahijevych et al. 2009; 

Brown et al. 2011; Gilleland et al. 2009). Object-based techniques have obvious direct 

application to the study of drought areas; these methods include the Contiguous Rain Area 

approach (CRA; Ebert and McBride, 2000; Ebert and Gallus 2009), the Method for Object-

based Diagnostic Evaluation (MODE; Davis et al. 2006a, 2006b, 2009), and the Structure-

Amplitude Location approach (SAL; Wernli et al. 2008), amongst others. The SAL approach 

provides information about three specific characteristics of objects but has limited ability to 

directly compare sets of objects (Gilleland et al. 2009). The CRA approach estimates the 

magnitude of forecast error associated with forecast displacements, as well as biases in 
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overall intensity, and thus provides guidance regarding the amount of error that is not 

explained by these factors (denoted pattern error in the CRA formulation). One limitation of 

the CRA is that objects are matched only when they are contiguous (Gallus 2010). In 

contrast, the MODE approach does not require matched objects to be contiguous and is able 

to measure and compare a wide variety of object attributes (e.g., area, location, size, shape). 

This method makes it possible to evaluate characteristics of matched and unmatched objects 

in observed and model fields that would not be considered by the CRA (Davis et al. 2006a). 

Moreover, MODE is highly configurable and can be set up to meet the specific interests of 

individual users for specific applications (Bullock et al. 2016).  

MODE was specifically developed for verification of gridded forecasts (e.g., from 

numerical weather prediction systems) compared to gridded observations. The method has 

largely been used to verify the forecasts of rainfall fields (e.g., Davis et al. 2006a, 2006b; 

Ahijevych et al. 2009; Davis et al. 2009; Gallus, 2010), which are difficult to evaluate due to 

the “double-penalty” issue in which displaced forecast fields are penalized as both false 

alarms and misses. Also, MODE has been applied to other meteorological variables, such as 

vector wind fields (Fowler and Bullock 2010). Mittermaier and Bullock (2013) used MODE 

and the time-domain version of MODE (which adds time as a third dimension) to explore the 

spatial and temporal characteristics of total cloud cover over the United Kingdom. However, 

until now, the application of object-based methods to climatological applications, such as 

drought evaluation have remained largely unexplored. 

This article is protected by copyright. All rights reserved.



7 
 

Here, we apply MODE to a climatological study of drought. We perform this exploration 

by comparing attributes of drought objects defined using the SPEI and SPI. We apply MODE 

to examine the spatial structure of spatially extensive droughts treated as objects. For this 

study, the drought objects are produced by SPEI and SPI at a 36-month timescale over 

UCRB. We focus on object attributes such as the location of object centroids, object areas, 

and intensity percentiles.  

    

2 Study area, data and methods  

2.1. The study area 

As the name implies, UCRB is the upper division of the Colorado River in the American 

Southwest. The basin occupies an expanse of about 284,380 km2. The flow from the UCRB, 

which is highly regulated by several compacts, serves the water requirements of the five 

basin states: northern Arizona, Colorado, New Mexico, Utah, and Wyoming (Figure 1). 

Diverse topographic features with the Wasatch Mountains in the west and the Rocky 

Mountains in the east characterize the basin. The relief ranges from 3,636 m (highest peak of 

the Wasatch; Mount Nebo) to 4,400 m (highest peak of the Rocky Mountains; Mount Elbert) 

above sea level. The complex topographic features result in the region experiencing 

difference climatic conditions. While the west is characterized by the maritime climatic 

conditions, the interior is characterized by continental climatic conditions. The region is 

semiarid in nature and the climate regimes over the basin that occur in the cold (October-
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March) and warm seasons (April-September) is highly variable. The annual average 

temperature ranged from 5.1 to 7.9 °C, and the mean annual precipitation ranged from 510 to 

1,060 mm. A large portion of the UCRB's accessible water comes from snowmelt during 

spring and heavy rainfall during summer (Christensen et al., 2004; Christensen and 

Lettenmaier, 2007). The precipitation events come mainly from frontal storms from the 

Pacific Ocean and convective storms whose moisture comes from the Gulf of Mexico or the 

Gulf of California (Barry, 1992). 

 

2.2 Data 

We use the monthly mean maximum and minimum temperatures and precipitation 

datasets from the Precipitation-Elevation Regression on Independent Slopes Model (PRISM; 

Daly et al. 1994, 2008) to derive the drought indices. We use PRISM as opposed to, say, 

station data because it provides observation-based data on a regular grid and it attempts to 

account for elevation effects that could be important in a mountainous region like the UCRB. 

The gridded datasets are available on a 4 km × 4 km spatial resolution from 1895–2012. 

However, we analyze data for the period 1948–2012 for consistency with our earlier study 

(Abatan et al., 2017). The analysis focuses on 36-month periods ending in December. For 

example, using a 36-month running window, the data for December 1950 is aggregated from 

the mean from January 1948 to December 1950. Similarly, data for December 1951 come 

from the mean from January 1949 to December 1951, etc. The focus on the 36-month 
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timescale was chosen to properly address the climate information needs of the Denver Water 

resources managers; in particular, the information necessary for planning water management, 

both for maintaining supply and adequate operating revenue.  

 

2.3 Indices  

Since there is no single method of assessing and describing drought severity that is 

suitable for all circumstances and users (Lloyd-Hughes, 2014), this study relies on the 

analyses of 36-month timescale SPEI and SPI to examine drought episodes over UCRB. The 

use of this timescale arises because Denver Water managers are especially interested in 36-

month droughts for regional water resources planning and management. 

The SPI is a multiscalar index developed for use in Colorado by McKee et al. 1993 to 

monitor drought and wet spells. The SPI algorithm, based solely on precipitation, permits 

expression of drought and wet spells in terms of precipitation deficits, percent of normal and 

probability distribution. The SPI is advantageous as it is simple to calculate and can be used 

effectively in all seasons of the year because of its avoidance of a dependence on soil 

moisture. This makes the index important for characterizing drought (wet spells) conditions 

for different applications. The multiscalar and standardization properties of SPI offers robust 

application of the index across different geographical regions at different timescales. At 

shorter timescales (e.g., 3 and 6 months) SPI can be used to indicate agricultural and 

meteorological drought, while at longer timescale it is useful for hydrological drought.  
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But there are also shortcomings to SPI. Since SPI is based on precipitation data alone, it 

fails to account for the influence of evaporation and transpiration on the climatic water 

balance. Hayes et al. (1999) indicated that application of SPI at shorter timescales (1, 2, or 3 

months) in regions with normally low seasonal precipitation totals can be misleading because 

SPI gives a similar result to the percent of normal representation of precipitation. Despite 

these limitations, SPI has gained widespread acceptance and use because of its versatile and 

simple nature. Detailed expositions of the SPI methodology and applications can be found in 

studies such as McKee et al. (1993), Guttman, (1998), Lloyd-Hughes and Saunders (2002).  

Vicente-Serrano et al. (2010) proposed the SPEI as an extension to the SPI as a more 

sensitive tool for drought evaluation for a changing climate. It is a modification of the SPI 

that incorporates potential evapotranspiration in its algorithm using the Hargreaves formula 

(Hargreaves and Samani, 1985), thus allowing for a more refined evaluation of the surface 

water balance. As a result, SPEI combines the advantages of being multiscalar (like the SPI) 

and accounting for the contribution of temperature to water balance (Chen et al. 2013). The 

SPEI is obtained by fitting a log-logistic Pearson III distribution to the climatic water 

balance. Details appear in Vicente-Serrano et al. (2010), Beguería et al. (2014), and Yu et al. 

(2014). 

We calculate the 36-month SPEI and SPI (hereafter SPEI36 and SPI36) based on the 

PRISM monthly rainfall and temperature (minimum and maximum) values at each grid point 

over the UCRB using the SPEI library (Beguaría and Vicente-Serrano, 2013) developed for 
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the R software suite (R Development Core Team, 2012). As stated earlier, we define the 

drought indices at 36-month starting from January and ending in December of the third year 

for annual increments over the period 1950–2012 and we focus further analysis only on the 

periods ending in December.  

 

2.4 MODE 

 MODE is an object-based technique that represents a class of spatial verification 

methods. The MODE technique was developed independently for weather forecast 

verification purposes by Davies et al. (2006a, 2006b), but follows the same overall paradigm 

as earlier work in the field of image analysis proposed by Chen and Wang (2002). The 

objective is to identify localized and episodic features of interest in 2-dimensional scalar 

fields and compare features in the two fields (generally a forecast and an observed field) to 

identify which features best correspond to each other (Davies et al. 2009). The MODE 

process involves object identification based on specified thresholds, object attributes 

measurement, objects merging, objects matching, and comparison of object attributes 

between the two fields. MODE is inherently flexible. It allows users to determine how 

merging and matching of objects in two fields are implemented. In addition, as in this study, 

MODE can be adapted to better meet the specific verification needs of the user (Davies et al. 

2006a). This implies that the user can specify parameters of interest (such as centroid 

location, shape {orientation angle and aspect ratio}, intensity, area) and compute their 
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statistics (such as standard deviation, median of intensity percentiles, maximum of median 

interest (MMI)) for individual objects in either field, and for the identified (matched) pairs of 

objects between the two fields. Therefore, MODE offers users a flexible way to learn about 

specified characteristics in individual datasets, but also immediately about commonalities 

(hits) and differences (misses) between, traditionally, a forecast and observations. Of course, 

we can use MODE to characterize any one or more fields, none has to be an observation, and 

both can be different observational datasets without involving forecast or other model output. 

In essence, MODE may be used to compare any two fields (field1 and field2). In this study, 

field1 is SPEI36, while field2 is SPI36. As MODE normally operates on two input datasets, 

we use SPEI36 and SPI36, respectively as input fields. 

MODE uses two basic steps to identify objects in meteorological fields. First, the raw 

data is convolved. This is basically a smoothing process using a convolution radius to 

remove unnecessary local scale variability. Secondly, the convolved data field is masked by 

applying a threshold (T) on the intensity of the fields, returning a binary matrix of zeroes, 

where the threshold was not surpassed, and non-zeroes (ones), where the selection criteria 

(threshold) were fulfilled. This can be done for multiple criteria, and where all of them pass 

their corresponding thresholds, these locations are then further analyzed, while any other 

information in cells that don’t fulfill the thresholds are eliminated.  

To identify coherent objects, and to compare objects between the fields, a step called 

“merging and matching” is performed (for details see Davies et al. 2006a, 2006b, and 
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Bullock et al. 2016). MODE uses a fuzzy logic algorithm (Yager et al. 1987) to merge the 

retained information of the masked convolution fields into contiguous areas (objects). This is 

done individually in both forecast and observed fields. Using an iterative process, the 

“matching” step then attempts to identify corresponding objects between forecast and 

observed fields. The fuzzy logic algorithm considers many attributes of the objects to 

calculate a metric known as the total interest function that ultimately determines which 

objects are to be merged and matched. The attributes of each object pair used as input in the 

fuzzy logic engine to calculate the total interest are centroid distance separation, orientation 

angle difference, intersection area, and area ratio. Given two objects, the area ratio is 

calculated by dividing the area of the smaller object by the area of the larger object, while the 

intersection area is the fraction of the overlap area divided by the average of the areas of the 

two objects. Other attributes of interest include union area and symmetric difference. The 

union area is the total area that is in either one or both of the two objects, and the symmetric 

difference is the area inside at least one object, but not both. Further details on the object pair 

attributes and the computation of the total interest appear in Davies et al. (2009) and Johnson 

and Wang (2012). For guiding the precise identification of a match between objects in the 

two fields, the total interest function is assigned a threshold value. MODE typically uses a 

total interest threshold value of 0.7. Pairs of objects in the two fields that exceeds this 

threshold value are considered a match. For all matches, the values in the masked 

convolution field are then replaced with the original values in order to retain the real 
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intensities (note, the convolution led to an artificial smoothing to reduce noise, but for 

locations identified as part of objects, the true intensities are needed). All statistics are then 

calculated for each pair of matched objects as well as for each single objects in the separate 

fields. 

MODE is run once all the necessary input and parameter thresholds are set. The summary 

statistics generated are written separately for each 36-month into the MODE output database, 

where they are available for inspection, analysis, and synthesis. The output files contain 

information for all of the attributes for individual drought objects (simple and merged 

cluster) and matched drought objects (simple pairs and cluster pairs). Detailed information 

can be found in the MET_Users_Guide2. Among the information in the output file for 

individual objects is the percentile of intensities (e.g., 10th, 50th, and 90th) inside the object, 

the centroid locations of the object, and the area of the object. However, for matched objects, 

MODE output such statistics as critical success index, total interest, and intersection area. 

Other statistics such as bias can be calculated for the matched objects. For the climatology 

analysis in section 3.3, we extract the median value of the attributes of interest for each 

drought index separately and for each year to form a time series (an example is shown in 

Table 3 for 1960). Then we compare the temporal evolution of the median of the attributes of 

drought objects from SPEI36 and SPI36 using a box-whisker plot. Prior to the analysis in this 

study, we perform a normality test on the time series of the attributes to assess if the data 

                                                            
2 https://dtcenter.org/met/users/docs/overview.php 
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series are normally distributed (see Appendix A1–A2). For the time series that are normally 

distributed, we use the Welch Student's t test to assess the significant of the difference of two 

means for SPEI36 and SPI36 series, while we use Kolmogorov-Smirnov test statistics for the 

non-normally distributed series. Because the area of drought objects vary spatially, we take 

the logarithm of the area time series for clarity of analysis. Further, we use the paired t test to 

assess the statistical significance of the difference in distributions of the median of attributes 

of merged cluster drought objects between SPEI36 and SPI36. 

 

2.5 Parameter threshold 

Objects are identified in the two fields and statistics of attributes of the objects are 

calculated and compared. Next, we take average of the statistics of object attributes in order 

to obtain the climatological characteristics of SPEI36 and SPI36 drought and pluvial objects. 

Thus, comparisons are at the climatological level.          

As previously stated, MODE determines the number of objects retained in the merging 

and matching process by a combination of the convolution radius, area threshold, and the 

intensity threshold. This implies that variations in these parameters can impact the number of 

objects identified. It is worth noting that Davies et al. (2006a) suggested a minimum 

convolution radius of four grid lengths. We performed a sensitivity analysis to examine the 

influence of different parameter choices on the number of objects. For the drought analysis 

(intensity threshold <= –1.0), four cases were examined to compare the number of resulting 
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objects. We use: 1) convolution radius equal 0 (no smoothing) and an area threshold of 4 

(hereafter; R0A4D), meaning that only contiguous regions of at least 4 connected grid-cells 

would make up objects; 2) convolution radius equal 4 and area threshold of 4 (R4A4D); 3) 

convolution radius equal 0 and area threshold of 6 (R0A6D); and 4) convolution radius equal 

4 and area threshold of 6 (R4A6D). We repeated the same case samples for pluvial (intensity 

threshold of +1.0), leading to 1) R0A4P; 2) R4A4P; 3) R0A6P and 4) R4A6P. For the 

analysis presented in the next section, we focus on some of the attributes relevant for the 

study domain, such as centroids location, area and intensity percentiles. Lastly, we compute 

and compare the statistics of these attributes for the SPEI36 and SPI36.     

 

3. Results and discussion 

3.1 Sensitivity to threshold selection 

In order to explore the sensitivity of the results to the retained number of objects and to 

selected parameter threshold, we applied MODE analysis to PRISM-derived SPI and SPEI 

using different combinations of area threshold and convolution radius. Figure 2 shows the 

temporal evolution of the number of drought objects identified for different combinations of 

parameter choices. For clarity of text, Table 1 gives an overview of the number of objects for 

each index and for each parameter threshold. It can be seen that the number of objects is very 

sensitive to the combination of parameter choices. In particular, it appears that the number of 
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objects depends more strongly on the value of convolution radius, and less on the area 

threshold. Although R0A4 and R0A6 show similar patterns (Figs. 2a, b), the number of 

objects produced by both SPEI36 and SPI36 for the R0A4 combination is higher than in 

R0A6 (Table 1).    

A similar temporal pattern (Figs. 2c, d) and approximately an equal number of objects 

(Table 1) is found for the comparison between R4A4 and R4A6 for drought events. 

However, there is a large disparity in the number of objects between R0A4 and R4A4, and 

also between R0A6 and R4A6. The SPEI (SPI) R4A4 objects is about 42% (36%) of SPEI 

(SPI) R0A4 objects, while SPEI (SPI) R0A6 drought objects is slightly more than twice SPEI 

(SPI) R4A6 objects. The contribution of convolution radius to the number of objects is 

noteworthy; while the area threshold has little influence, the convolution radius is dominant 

in determining the number of retained objects. Comparison of the number of retained objects 

due to a combination involving R0 and R4 indicates that the higher number of objects in this 

study benefits from the case with no convolution radius (R0). Because we use indices based 

on monthly average data that are aggregated over a further 36-month timescale, it is 

reasonable to suggest that the resulting fields are already very smooth, and further smoothing 

of the indices using a convolution radius of four grid lengths as suggested by Davies et al. 

(2006a) is not necessary for this study, and in fact, convolution might further water down the 

signal.  
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The figures give evidence on the selection of reasonable values of area threshold for 

defining objects. So, given the above results, we conclude that a combination of convolution 

radius of zero (R0) and area threshold of four grid lengths (A4) is ideal for producing 

sufficient number of objects to allow statistical analyses, while avoiding objects with only 

one or two grid points, which might represent a structure too small to resolve. Having a good 

number of objects will also permit an adequate statistical analysis of the object attributes. 

Hence, for the remaining analysis in this study, we compare the statistics of SPEI36 and 

SPI36 drought objects attributes using MODE run with R0A4 parameter selection. 

 

3.2 Sample output of MODE objects and attributes 

Figure 3 shows the results of the application of MODE to SPEI36 and SPI36 datasets for 

1960. The spatial distribution of drought in SPEI36 and SPI36 is shown in Figs. 3a and 3b, 

while the merged cluster of single drought objects identified for SPEI36 and SPI36 is shown 

in Figs. 3c and 3d. The colored numbers in the figures indicate cluster pairs of objects that 

were matched between the two fields. While Table 2 presents the total interest values of the 

simple single drought objects between the two indices, Table 3 gives the information and 

statistics of merged cluster drought objects identified by the two drought indices (Fig. 3). 

From Table 2, there are 7 simple single drought objects in SPEI36 and 10 simple single 

drought objects in SPI36 fields. 
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The aggregated total interest values (Table 2) indicate a good match between the simple 

single drought objects depicted by the two drought indices (not shown). The total interest 

values for the matched objects are considerably higher than the 0.7 thresholds; the values 

range from 0.7046 to 1.00. In particular, there is a perfect match in SPEI36–SPI36 simple 

drought object pairs (1, 1), (2, 2), and (6, 7), with a total interest of 1.00. The statistics of 

some of the attributes of these objects reflect this good match (Table 3). Using the 0.7 total 

interest threshold, we observe a match between SPEI36 object 4 and SPI36 objects 4 and 5.  

Because there is a double match with SPEI36 object 4, SPI36 objects 4 and 5 are considered 

as a cluster. Similarly, there is a match between SPI36 object 7 and SPEI36 objects 5 and 6. 

The result of a double match with SPI36 object 7 yields a cluster of SPEI36 objects 5 and 6. 

Hence, the merging of objects within each field and the corresponding matching of simple 

object pairs between the two fields result in a total of 6 matched (merged  cluster) objects 

between SPEI36 and SPI36 fields (Figs. 3c and 3d).      

The total object area in SPEI36 is 14024 grid-points, while it is 12557 grid-points in 

SPI36 (Table 3). The difference in area between the matched object pairs is about 10%, or 

1467 grid-points. Also, differences between the centroids distance are small, indicating that 

both drought indicators produce objects at about the same location. For instance, the centroid 

distance for cluster pairs object 2 is 0.37, while it is 4.5 for cluster pairs object 6 (Fig. 3). 

Consistent with the objects area and centroids, the median of drought intensity within the 

objects vary slightly from one object to another. For example, the median of the 50th 
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percentile intensity of drought objects ranges from –1.05 to –1.59 in SPEI36, while it ranges 

from –1.05 to –1.58 in SPI36.  

Overall, the sample result presented here indicates that both SPEI36 and SPI36 produced 

drought objects over UCRB, although there is a slight difference in magnitude, location, and 

areal extent. The climatology of individual objects, in which this sample is a part, will be 

discussed in section 3.3, while the statistics of matched objects (cluster pairs) will be 

addressed in section 3.4. 

 

3.3 Results of individual drought objects   

3.3.1 Statistics of simple single drought objects 

This section examines and compares the distributions of the median values of various 

object attributes (e.g., intensity {e.g., 10th, 50th and 90th percentiles}, centroid location 

{latitude and longitude}, and area) for all simple single drought objects from SPI36 and 

SPEI36. 

Table 4 shows the summary of the mean values of the median of the 10th, 50th, and 90th 

percentiles intensity, centroid location, and area attributes of SPI36 and SPEI36 drought 

objects. Although the median of the percentile intensity attributes from SPI36 compared well 

with that from SPEI36, there are still slight differences. The SPI36 has drought intensities 

that are slightly higher than that of SPEI36 (Fig. 4). For the 10th percentile intensity attribute, 

the mean intensity for SPI36 is approximately the same with that of SPEI36 (Fig. 4a). The 
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difference in mean intensity between the two indices, calculated using the Kolmogorov-

Smirnov two-sample test statistics for non-normal data (Appendix A1) at the 5% level, is not 

statistically significant (p-value = 0.37). For the 50th percentile intensity attribute (Fig. 4b), 

the mean drought intensity in SPEI36 is slightly lower than that of SPI36 (Table 4). 

Similarly, the difference in mean for the 50th percentile intensity attribute of the drought 

objects is not statistically significant (p-value = 0.08). The Kolmogorov-Smirnov test of 

significance for the difference between the two means indicates that the difference in mean of 

the 90th percentile intensity attribute of the drought objects from SPI36 and SPEI36 is not 

statistically significant at the 5% level as p-value equal 0.06. 

The summary of the mean values of centroid locations (latitude and longitude) of drought 

object for SPI36 versus SPEI36 is shown in Table 4. For SPEI36, the median value of 

centroid latitude ranges from 36.0 to 42.5 °N, while for SPI36 it ranges from 36.4 to 41.9 °N. 

On average, the statistics of centroid latitude of drought objects show that the latitudes of 

drought objects retained by the two indicators are comparable, with approximately similar 

mean values. Based on the Student's t test, there is no significant difference between their 

means (t = 0.09, p-value = 0.93). As in the centroid latitude, the median of centroid longitude 

for SPEI36 ranges from 106.5 to 110.8 °W, while for SPI36 it ranges from 106.5 to 111.8 

°W. Although both indicators locate the drought object at about the same longitude, objects 

in SPI36 are displaced slightly further west than in SPEI36. The test of significance for the 

difference of two means indicate non-significant difference between the means of the 
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centroid longitude of drought objects from the two indices; t = –0.07, p-value = 0.94. In 

general, the statistics of centroid locations of drought objects in SPEI36 and SPI36 are 

similar. 

As with the number of objects identified by the two indices, the size of drought area can 

vary; leading to different median and mean values among two fields. So, given the fact that 

the area of drought objects vary in size and structure, the idea here is to examine the 

distributions of the median and mean values and then assess which of these statistics is 

suitable to represent the area attribute of drought objects. For 2007 drought, SPEI36 

identified 2 simple drought objects with areal extent given as {15, 1046}, leading to mean 

and median having the same value (530.5 grids), respectively. On the other hand, SPI36 has 

4 simple drought objects. The areal extent in rank order gives {6, 14, 17, 461}, leading to 

mean value of 124.5 grids and median value of 15.5 grids. Above results indicate the impact 

of the number of objects on both statistics. Overall, the Kolmogorov-Smirnov test indicates 

that the difference in mean of the mean value of area attribute of the drought objects between 

SPI36 and SPEI36 is not statistically significant at the 5% level as p-value equal 0.2921. 

Similarly, there is no significant difference in mean of the median value of area attribute of 

the drought objects between SPI36 and SPEI36 (p-value = 0.4055). These results suggest that 

users can and should apply the statistics that is appropriate to their need.      
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3.3.1.1 Composite statistics of simple single drought objects  

This section summarizes the statistics of distributions discussed earlier, using concise 

box-whisker plots. The box-whisker plots offer a simple yet visually striking comparison of 

the drought attribute statistics. For the climatology of each of the object attributes in section 

3.3.1, we extract a full range of statistics, such as the 5th percentile, first-quantile (25th), 

median, third-quantile (75th), 95th, and mean. 

Figure 4 shows the statistics of 10th, 50th, and 90th percentile intensity attributes of 

drought intensity within objects for SPEI36 and SPI36 for the period of 1950–2012. The 

median of drought intensity for SPEI36 and SPI36 are slightly different from each other. 

Also, the spread in SPI36 is slightly wider than in SPEI36. Once more, this is likely the result 

of the number of drought objects identified (Fig. 2a). The median value of the 10th percentile 

intensity attribute is –1.02 and –1.03 for SPEI36 and SPI36, respectively. The 50th percentile 

intensity attribute shows that median value in SPEI36 is about 2% lower than that of SPI36. 

The median values are –1.08 and –1.10 for SPEI36 and SPI36, respectively. In contrast to the 

10th and 50th percentile intensity attributes, the 90th percentile intensity attribute has large 

median difference. The median values for SPEI36 and SPI36 drought objects are –1.17 and –

1.22, respectively. This indicates that SPI36 has severe drought intensities within the objects 

than SPEI36, even though mean values are nearly the same. 

Figure 5 shows the distribution of statistics of the median of centroid location attribute 

for SPEI36 and SPI36. For the centroid latitude of drought objects, although the statistics are 
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quite close, the distribution of the median statistics is slightly more spread out in SPI36 than 

in SPEI36  (Fig. 5a). However, Fig. 5b shows that centroid longitude of drought objects in 

SPI36 is located slightly west of the location in SPEI36, with the spread in location also 

greater than that of SPEI36.  

Figure 6 shows the statistics of area attribute of drought objects from SPEI36 and SPI36. 

Consistent with the spread in the percentile intensity attribute, the spread in drought area is 

slightly wider in SPI36 than in SPEI36 further showing that the area of some of the drought 

objects in SPI36 is larger than in SPEI36. Although the median value of the distributions is 

the same, there are differences in other statistics. For example, both indices skewed to the 

right, but the tails are slightly different. Similarly the temporal mean in SPI36 is higher than 

in SPEI36 (Table 4).    

 

3.3.2 Statistics of merged cluster drought objects      

Further, we analyze the relationship between SPEI36 and SPI36 for merged cluster 

drought objects. We assess the statistical significance of the difference in distributions using 

the paired t test at the 5% level. As in the previous section, we present results only for 

intensity, centroids, and area attributes. As shown in Figure 7, there is a linear relationship 

between the two indices, although some scatter exists between the indices. For the 10% 

quantile attribute of drought intensity, the difference in intensity between the two indices 

during the period of study is very small, although SPI36 has higher magnitude at about 67% 
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of times. These values range between –0.03 and 0.15, with the exception of 2002 and 2003 

where the magnitude of the difference are –0.27 and –0.19, respectively. With this 

distribution, the paired t test indicates that there is no significant difference (p-value = 

0.9394) in the 10% quantile attribute of drought intensity from the two drought indices. The 

distribution of the difference in the 50% quantile attribute of drought intensity between 

SPEI36 and SPI36 shows that the values vary between –0.18 and 0.41, with SPI36 having 

higher drought magnitude than SPEI36 at about 75% of times. The analysis is supported with 

a paired t test statistic, where result shows that the difference is considered to be statistically 

significant (p-value = 0.0004). A similar result is shown for the 90% quantiles, where SPI36 

exhibits higher drought intensity (85%) than in SPEI36 (14%). However, it is noted that 

SPEI36 clearly identify higher drought intensity during the 2000s. The difference in drought 

intensity identified by the two indices ranges between –0.17 and 0.75. The difference in the 

90th percentile intensity attribute of drought objects between SPEI36 and SPI36 is 

statistically significant (p-value = 0.0001). Figure 8 shows the relationship between the 

drought indicators for the centroid locations of the merged cluster drought objects. A linear 

relationship exist between the SPEI and SPI centroid latitude (Fig. 8a), suggesting that both 

indices produce matched drought objects over UCRB at almost the same location. The result 

of the paired t test indicates that there is no statistically significant difference (p-value = 

0.6969) between the distributions of the SPEI and SPI centroid latitude. Similarly, we 

observe a nearly perfect relationship between SPEI36 and SPI36 for MODE centroid 
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longitude (Fig. 8b). As indicated by the paired t test statistic, the difference in the 

distributions of centroid longitude of merged cluster drought objects between the SPEI and 

SPI is not statistically significant (p-value = 0.8521). Figure 9 shows the scatter plots of the 

median and mean of area of merged cluster drought objects over UCRB. Few outliers are 

observed in the distributions of both the median and mean values of area of merged drought 

objects. Also, differences in the spatial patterns of the area of drought objects are evidence, 

as the scatter points deviates from the diagonal lines. The paired t test indicates that there is a 

statistically significant difference between the distributions of the SPEI36 and SPI36 area of 

drought objects. The p-value for median and mean values of area of merged cluster drought 

objects are 0.006 and 0.003, respectively. 

 

3.4 Results of matched drought objects   

3.4.1 Statistics of cluster pairs of drought objects 

Apart from the statistics of individual object attributes previously analyzed, MODE 

output files also provide information on the commonalities of drought objects from the two 

indices that can be explored. Among such information are the critical success index (CSI), 

the area and intensity biases. The object-based CSI is a measure of the frequency of matched 

objects. It is defined as the ratio of hits to the sum of hits, misses, and false alarms. In this 

study, an object is defined and counted as a miss when SPI-produced drought objects have no 

match in SPEI, while a false alarm is counted when SPEI objects have no match in the SPI. 
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This definition is analogous to that defined for forecast and observed systems (Davis et al. 

2006a, 2006b).     

Figure 10 shows the evolution of CSI over UCRB for the period 1950–2012. The gaps in 

the temporal pattern is a result of no drought objects during the period (Fig. 2a). The CSI is 

characterized by substantial interannual variability with higher values that indicate 

similarities between the spatial pattern of SPEI36 and SPI36 drought objects. Lower CSI 

values (< 1 standard deviation; 1Ã = 0.28) occur at about 27% of times, again confirming the 

similarity between the drought objects identified by the two indices. Further to the CSI, 

biases in the drought object attributes are examined. The area bias for all matched cluster 

pairs of drought object normalized by the average of all matched SPI36 areas for a given year 

is given as; 

                                                                                                      (1) 

Analogously, the intensity bias is given as;  

                                                                                                 (2) 

where B refers to bias and the superscript t refers to the year when there is drought object.  

Figure 11 shows the temporal evolution of area and percentile intensity biases for cluster 

pairs of drought objects. As shown in Fig. 11a, the area bias is very small confirming that 

both SPEI36 and SPI36 have roughly similar matched object sizes; supporting the CSI result. 
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However, there are periods when the drought object area in SPEI36 is wider than in SPI36, 

and vice-versa. With this, the area bias lies between ± 1Ã at about 86% (43 of 50) of times. 

The area of drought objects identified by SPEI36 is wider than that of the SPI36 only 4 times 

(bias > 1Ã), while the area of drought objects identified by SPI36 is wider than that of the 

SPEI36 only 3 times (bias < 1Ã). The bias in 10th and 90th percentile intensities within the 

cluster pairs of drought object areas is shown in Fig. 11b. The bias in 10th percentile 

intensity is small with values lying between ± 1Ã at about 70% of the period. SPI36 has 

higher intensity values than SPEI36 at about 22% (11) of the period (bias < 1Ã). Unlike the 

10th percentile intensity, the negative bias in 90th percentile intensity of drought object is 

obvious. This shows that SPI36 has more severe droughts than those identified by SPEI36 

during the period of study. The earlier period of the study from 1950 to 1980 is characterized 

by strong negative bias, while some of the later period from 1981 to 2012 is dominated by 

periods with no drought objects. This pattern is consistent with Figures 3d, 3e, and 5b of 

Abatan et al. (2017), although with differences in extreme magnitudes.       

 

4. Conclusions 

We use the MODE technique to examine and compare the statistics of attributes of 

drought objects from the SPEI and SPI at 36-month timescale UCRB. The two drought 

indicators are calculated using the monthly climate variables from PRISM datasets from 
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1948 to 2012. MODE identifies several parameters of interest, but, in particular, we focus on 

object attributes such as centroid location, area and intensity percentiles. To the best of 

authors' knowledge, MODE has been widely used to obtain statistics of attributes of the 

objects of wet extremes at weather timescales, but it has not been used to examine drought 

characteristics. Because of this, we perform a sensitivity test to determine the best 

combination of parameter thresholds suitable for the number of objects identified and 

retained in the merging and matching process. We observe that a combination of convolution 

radius equal 0 (no smoothing) and an area threshold of 4 grid points is well suited for this 

study, contrary to a minimum of convolution radius of four grid lengths suggested by Davies 

et al. (2006a) for precipitation evaluation. This study provides an important first-hand 

information in using MODE to examine multi-year drought conditions over UCRB. 

The distribution of the median of the percentile intensity of drought objects from SPI36 is 

similar to that from SPEI36, although slight differences exist. We find that SPI36 has severe 

drought intensities, but, the Kolmogorov-Smirnov test statistics for the difference of two 

means indicates that the difference in means is not statistically significant. However, using 

the paired t test for the distributions of the merged cluster drought objects, the results show 

that there is a statistically significant difference between the two drought indices. Despite the 

differences in intensity, the climatology results show that both indices place the centroids 

(latitude and longitude) of the drought objects at about the same location.  
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The area of drought objects is characterized by substantial variability in size and number. 

From the analysis of the individual objects, we find that SPI36 has more and larger drought 

objects than does SPEI36. However, MODE clearly identifies the 2000s multi-year droughts 

over the study domain that peaked in 2002 in SPEI36, consistent with the previous study by 

Abatan et al. (2017). This further highlights the importance of MODE utility in drought 

analyses. Being the first time that MODE is being used in drought analysis, we point out that 

object based verification methods, including MODE can complements existing methods. In 

other words, users, such as Water resource managers can gain a greater understanding for the 

features of interest, in this case, hydrological drought, by looking at multiple metrics. 

In order to examine further the similarities/differences between the two drought 

indicators, we analyze the object-based CSI and area and intensity biases of the matched 

drought objects. The higher value of CSI during the period of study is suggestive of a 

similarity between the area of matched drought objects identify by SPEI36 and SPI36. The 

negative bias in the 90th percentile intensity of drought objects further attests that some of 

the matched drought objects in SPI36 have more severe droughts that in SPEI36.  

In conclusion, at the timescale considered in this study, SPI produces higher percentile 

intensity of drought objects, which is clearly obvious in the 90th percentile intensity of 

drought objects. Although both indices produced drought objects at about the same location 

over UCRB, the large difference between SPEI36 and SPI36 occurred in the area of drought 

objects during the recent period when UCRB experience drought conditions, which previous 
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studies have linked to ongoing global warming. This indicated that drought indices that 

include the effects of temperature are increasingly important for drought evaluation and 

monitoring over UCRB. 
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Figure 1. Topography map of the upper Colorado River basin (UCRB). The outline of the map 
of the contiguous United States showing the location of UCRB is shown in the inset. 

 

Figure 2. Time series of the number of drought objects for different combinations of parameter 
choices in MODE. 
 
 
Figure 3. The spatial distributions of the values of (a) SPEI36, (b) SPI36, and clusters of drought 
objects identified for (c) SPEI36 and (d) SPI36 for 1960. The colored numbers in (c) and (d) 
indicate the objects that were matched between the two fields. 

 

Figure 4. The statistics of (a) 10th, (b) 50th and (c) 90th percentile intensity attribute within 
drought objects for SPEI36 and SPI36 for 1950–2012. 

 

Figure 5. Boxplot comparing the statistics of centroid (a) latitude and (b) longitude of drought 
objects between SPEI36 and SPI36 for 1950–2012. 

 

Figure 6. The statistics of area of drought objects for SPEI36 and SPI36 for 1950–2012. 

 

Figure 7. Relationship between SPEI36 and SPI36 median of the (a) 10th, (b) 50th, and (c) 90th 
percentile intensity attribute for merged cluster drought objects. 

 

Figure 8. Relationship between SPEI36 and SPI36 median of centroid (a) latitude and (b) 
longitude attribute for merged cluster drought objects. 

 

Figure 9. Relationship between SPEI36 and SPI36 (a) median and (b) mean of area of merged 
cluster drought objects. 

 

Figure 10. The CSI for matched drought object area. The horizontal dash-dash line is the 
standard deviation, Ã. 

Figure 11. Bias in (a) area and (b) percentile intensity of matched cluster pairs of drought 
objects. The horizontal dash-dash line is the standard deviation, Ã. 

Figure A1. Normality plot of (a, b) 10th, (c, d) 50th, and (e, f) 90th percentile intensity of 
drought objects from (top) SPEI36 and (below) SPI36. 
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Figure A1. Normality plot of (a, b) latitude, (c, d) longitude, and (e, f) area of drought objects 
from (top) SPEI36 and (below) SPI36. 
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Figure 3. The spatial distributions of the values of (a) SPEI36, (b) SPI36, and clusters of drought 

objects identified for (c) SPEI36 and (d) SPI36 for 1960. The colored numbers in (c) and (d) 

indicate the objects that were matched between the two fields.  

 

 

 

 

This article is protected by copyright. All rights reserved.



 

                               

 

 
 

Figure 4. The statistics of (a) 10th, (b) 50th and (c) 90th percentile intensity attribute within 

drought objects for SPEI36 and SPI36 for 1950–2012. 
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Figure 5. Boxplot comparing the statistics of centroid (a) latitude and (b) longitude of drought 

objects between SPEI36 and SPI36 for 1950–2012. 
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Figure 6. The statistics of area of drought objects for SPEI36 and SPI36 for 1950–2012. 
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Figure 7. Relationship between SPEI36 and SPI36 median of the (a) 10th, (b) 50th, and (c) 90th 

percentile intensity attribute for merged cluster drought objects. 
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Figure 8. Relationship between SPEI36 and SPI36 median of centroid (a) latitude and (b) 

longitude attribute for merged cluster drought objects. 
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Figure 9. Relationship between SPEI36 and SPI36 (a) median and (b) mean of area of merged 

cluster drought objects. 
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Figure 10. The CSI for matched drought object area. The horizontal dash-dash line is the 

standard deviation, Ã. 
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Figure 11. Bias in (a) area and (b) percentile intensity of matched cluster pairs of drought 

objects. The horizontal dash-dash line is the standard deviation, Ã. 
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Appendix:  

 

Figure A1. Normality plot of (a, b) 10th, (c, d) 50th, and (e, f) 90th percentile intensity of 

drought objects from (top) SPEI36 and (below) SPI36. 
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Figure A2. Normality plot of (a, b) latitude, (c, d) longitude, and (e, f) area of drought objects 

from (top) SPEI36 and (below) SPI36. 
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Statistics of Multi-year Droughts from the Method for Object-Based Diagnostic Evaluation 
(MODE) 

 

Abayomi A. Abatan1,*, William J. Gutowski, Jr., Caspar M. Ammann, Laurna Kaatz, Barbara 

G. Brown, Lawrence Buja, Randy Bullock, Tressa Fowler, Eric Gilleland and John Halley 

Gotway 

 
 

• Examination and comparison of the statistics of drought attributes over the upper 
Colorado River basin using the Method for Object-based Diagnostic Evaluation (MODE) 
technique. 

• Drought objects are based on the standardized precipitation index (SPI) and the 
standardized precipitation evapotranspiration index (SPEI) on a 36-month timescale 
(SPI36 and SPEI36, respectively). 

• SPI36 produces more drought objects than SPEI36.  
• SPI36 produces higher percentile intensity of drought objects than does SPEI36, which is 

clearly obvious in the 90th percentile intensity of drought objects. 
 

                                                            
1Corresponding author address: Abayomi A. Abatan, 3134 Agronomy Hall, Department of 
Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa 50011 USA.  

E-mail address: yomiabatan69@gmail.com 
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Table 1. Number of objects identified by drought indices relative to parameter threshold. 
 

Table 2. The total interest matrix for each SPEI36–SPI36 simple drought object pair for 
December 1960. 
 
Table 3. Attributes of merged cluster drought objects for December 1960. 
 
Table 4. Approximate mean values for drought objects attributes from the drought indices 
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Table 1. Number of objects identified by drought indices relative to parameter threshold. 

 
Drought index 

Drought parameter 
R0A4 R0A6 R4A4 R4A6 

SPEI 617 534 260 249 
SPI 680 573 244 241 
 

  

 

Table 2. The total interest matrix for each SPEI36–SPI36 simple drought object pair for December 1960. 

 

The bold values show total interest values greater than 0.7.  

 

  

  

 

  SPEI36 
 Object 1 2 3 4 5 6 7 

SP
I3

6 

1  1.0000   0.5188  0.5536  
2  1.0000  0.5717    
3  0.5393 0.9228   0.5350  
4 0.5167  0.6545 0.9189 0.6153   
5  0.5526 0.6802 0.7046    
6  0.6664 0.5466   0.8571  
7 0.5543    0.8636 1.0000 0.5817 
8      0.8532 0.5575 
9      0.8315  
10      0.5785 0.9697 
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Table 3. Attributes of merged cluster drought objects for December 1960. 

 
CLUS 
PAIR 

SPEI36 SPI36 
Intensity  

Area 
Location Intensity  

Area 
Location 

INT 10 INT 50 INT 90 Lat Lon INT 10 INT 50 INT 90 Lat Lon 
1 –1.12 –1.32 –1.56 505 42.4 –110.1 –1.08 –1.43 –1.77 528 42.4 –110.1 
2 –1.09 –1.13 –1.18 6 42.0 –107.8 –1.03 –1.05 –1.09 5 42.0 –107.9 
3 –1.01 –1.05 –1.24 30 35.8 –107.8 –1.04 –1.20 –1.61 19 35.9 –107.8 
4 –1.04 –1.12 –1.38 26 41.8 –107.5 –1.06 –1.24 –1.49 63 41.8 –107.5 
5 –1.15 –1.59 –1.96 13445 38.6 –109.2 –1.14 –1.58 –2.13 11891 38.7 –109.2 
6 –1.01 –1.09 –1.16 12 41.6 –108.6 –1.04 –1.17 –1.57 51 41.5 –108.4 

Sum -6.42 -7.30 -8.47 14024 242.31 -651.08 -6.39 –7.66 -9.66 12557 242.23 -650.89 
Mean -1.07 -1.22 -1.41 2337.3 40.38 -108.51 -1.06 –1.28 -1.61 2092.8 40.37 -108.48 

Median -1.06 -1.12 -1.31 28 41.72 -108.22 -1.05 –1.22 -1.59 57 41.64 -108.15 
Max -1.15 -1.59 -1.96 6 42.41 -110.15 -1.14 –1.58 -2.13 5 42.41 -110.12 
Min -1.01 -1.05 -1.16 13445 35.85 -107.45 -1.03 –1.05 -1.09 11891 35.89 -107.49 
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Table 4. Approximate mean values for drought objects attributes from the drought indices 

 
 
Drought Index 

Attributes of drought objects 
Percentile Intensity Centroid location  

Log10 Area 10th 50th 90th Latitude (°N) Longitude (°W) 
SPI36 –1.038 –1.130 –1.270 38.9 108.9 1.32 
SPEI36  –1.040  –1.110 –1.210 38.9 108.9 1.28 
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