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CHAPTER 1. REVIEW OF SCALAR STATISTICAL ANALYSIS FOR 

COMPUTER EXPERIMENTS 

Many scientific investigations rely on computer models for simulating plausible real sit­

uations. This is especially useful when physical experimentation is too expensive or even 

impossible (e.g. climate modeling). In trying to describe the complexities of reality, some 

computer models are themselves very complex and are therefore expensive to run, in terms 

of computational resources and time. For example, a single run of a climate model may take 

weeks on a high performance computer. At the end of the run, the storage and analysis re­

quirements of the output data raise additional difficulties. In response to some of these issues, 

a recent approach proposes to use statistical models as less computationally demanding surro­

gates of such complex computer models. More precisely, based on a number of selected runs 

of the computer model, one builds a statistical model to predict the output of the computer 

model for untried runs. These statistical surrogates do not exactly match the computer model 

output in a new situation, but they have the capability to describe the associated uncertainty. 

Ideally, the completed statistical model would not require as many computational resources 

as the original computer model. In this chapter we provide a brief survey of the literature 

dealing with the statistical analysis of computer experiments producing univariate output. We 

do not discuss the design aspect of the methodology. The notation throughout this chapter 

corresponds to that used in each paper. 

Sacks et al. (1989) was among the first papers to give a detailed account of the motiva­

tions for, as well as the issues associated with the design and statistical analysis of computer 

experiments. In this paper the computer model can be viewed as a deterministic function 

y(x), in which the output y depends on an input vector x. The input is sometimes called a 
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site, as this methodology parallels spatial statistics methods. The lack of random error (and 

associated absence of any need for replication) leads to important distinctions when compared 

with physical experimentation. For example, the bias is the only component of the adequacy 

of a response-surface model fitted to the output data. However, the authors point out that 

statistical components are nevertheless present in this context. Indeed, the selection of the 

inputs x at which to run the computer model can be viewed as an experimental design prob­

lem. Also, the uncertainty characterization of the output predictions resulting from the fitted 

models is a statistical problem. This paper treats y(x) as a realization of a stochastic process 

Y(x). Furthermore, it is assumed that Y is, in fact, a regression model 

k  
nz) = E/v,w+z(z) 

i=i 

where the random process Z ( . )  has mean zero and covariance V (zi, £2) = a 2 R ( x i , x 2 ) .  Given 

a set of inputs S = (xi, ...,£„) chosen according to a planned experiment, the authors suggest 

a kriging approach to statistical analysis and prediction at a new input x. Namely, the best 

linear unbiased predictor (BLUP) is 

^) = f(z)^ + r'(z)A-X^-F/)) 

and its mean squared error is 

M S E [ y ( x ) \  =  E [ y { x )  -  y { x ) ] 2  =  a 2 [ l  - cC~V] 

where 

f { x )  =  [ f i ( x ) , — , f k ( x ) ] , F =  [ f ' ( x  1 ) ,  . . . , / ' ( % & ) ] , # =  R { x i , x j ) , r ( x )  =  [ R ( x i , x ) ,  . . . , R ( x k , x ) ]  

. The statistical parameters are estimated by maximum 
0  F ' ^  

and c  =  ( f ( x ) ,  r ( x ) ) ,  C  =  
\ F  R  

likelihood. 
/ 

In his discussion to the above paper, Morris (1989) points out that the interpretation of 

the deterministic function y(x) as a realization of a stochastic process might not be appealing 

to some statisticians who associate this setting with frequentist replication. In a later paper, 
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Currin et al. (1991) took a Bayesian viewpoint and y ( x )  was treated as a highly dimensional 

unknown parameter on which one can put a highly dimensional prior distribution. Thus, the 

prior knowledge about y(x) is represented by a Gaussian process Y(%). Given a set of inputs 

S = (x\,..., xn), then Y$ is assumed to be normal with vector mean E(Ys) = Us and covariance 

matrix cov(Ys,Ys) = crss- Then the prediction at a new site x is given by the posterior mean 

V ( x )  ~  l ^ x \ S  —  f ^ x  +  ̂ x S ^ s S  ~  A ' S )  

and the prediction error variance is given by the posterior variance 

-i 
®x\S — ®xx ~ &xS®SS^Sx• 

The parameters are estimated by maximum likelihood. Under the assumption of normality, the 

kriging and Bayesian methods give the same point predictions at each x . Notice, however, that 

the Bayesian formula for the prediction error does not incorporate the prior mean whereas the 

kriging MSE formula incorporates the prior mean. While a Bayesian approach to the analysis 

of error-free data can be traced back at least to O'Hagan (1978) and the implementation in 

Currin et al. (1991) is not fully Bayesian, this paper is an important reference for recent papers 

implementing fully Bayesian computer output models (to be discussed later). The paper also 

makes important contributions to the design aspect of the methodology, but we do not discuss 

them here. 

Maximum likelihood estimation is usually the method of choice for fitting stochastic process 

parameters in both approaches discussed above. A common choice of correlation between the 

responses at two input vectors x  and x '  in the above papers is the Gaussian correlation: 

d  
R ( x , x ' )  =  J J  e x p ( - y î | z i -  -  x [ \ p ' )  

2 = 1 

with d  the input dimension. While a small to moderate number of parameters 0  is not a 

problem for optimization algorithms, some difficulties are noticed when a large number of 

parameters need to be estimated. Welch et al. (1992) report that an input dimension of 

d — 20 or larger is difficult to handle by optimization algorithms, but suggest that in practical 

problems only a few dimensions among the d are "active" and require their own correlation 
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parameter values. The rest of "inactive" dimensions share a common value of #, which usually 

is close to zero. They propose a likelihood optimization algorithm that starts with common 

values for 9 and p parameters. At the next stage, according to the "leave-one-out" principle, 

each dimension is given, by rotation, its own parameters 9 and p while the rest of dimensions 

receive a common set of parameters 9 and p. The dimension which leads to the largest increase 

in likelihood is "separated" from the rest of dimensions and it is entitled to keep its own set of 

parameters 9 and p. The procedure continues until the likelihood does not increase significantly. 

At that point, the inactive dimensions will share a common, small value of 9. The authors 

also propose a variation of this algorithm due to the difficulty of handling both parameters 

9 and p at once. This new algorithm focuses more on the 9 parameters as they appear to 

be more important. Thus, the dimension leading to the largest increase in the likelihood is 

discovered by allowing only the 9 parameters to be different, while the p parameters are kept 

the same, for computational convenience. In the analysis of computer experiments, the "leave-

one-out" principle has also been used in cross-validation in order to assess the fit of the model. 

Alternatively, one can run the expensive code at new inputs and compare the output against 

the predictions of the model, provided one can afford to make new runs. 

In an application paper illustrating this methodology, Mitchell and Morris (1992) considered 

two examples. The first example involves a system of differential equations modeling the 

combustion of methane. The output considered, the ignition delay time in a combustion 

reaction, is a scalar. The input is 7-dimensional, with each component corresponding to a 

particular reaction rate of interest. A total of 50 runs were made and the authors considered a 

product of cubic correlations, one factor corresponding to each input component, to fit these 

output data. The univariate cubic correlation is given by 

= 1 "6 (I) + 6 ( t )  | 2 | < Ï  

r(z) = 2 (l -1!) * -  < [2| < e  

R ( z ) — 0 |z| > 9 ,  

where z  is the difference between the values of a common component of two input vectors 
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and 9  is a parameter associated with that input component. The second example involves 

a finite element simulation model of the compression molding of an automobile hood. The 

authors considered four inputs to the code, which are physical characteristics of the process, 

and 15 code runs were made. The output is multivariate in nature and consists of 5 filling 

times for each of the 469 nodes of the finite element discretization of the mold surface. For 

reasons of computational efficiency, each component of the multivariate output was modeled 

as a univariate Gaussian process with component-dependent mean, but the parameters of the 

cubic correlation were assumed to be common for all components. 

The paper by Morris et al. (1993) represents, a departure from the mainstream literature 

dealing with statistical analysis of computer experiments. The authors consider computer 

models that produce, at little additional cost, derivatives of the output with respect to the 

components of inputs. Therefore each run of the model produces a vector of data, composed 

of the scalar output itself and its d derivatives with respect to the d components of the input 

vector. From this prospective, one can see it as one of the first papers considering statistical 

analysis of multivariate computer output. The correlation matrix is composed of block matrices 

corresponding to correlations between response and derivatives acquired at a site. Another 

novelty in this paper is that it uses information other than the output itself, which is the 

information provided by the derivatives. Thus, the authors hint at considering the code as a 

"gray box" rather than a "black box", having a lot of information to offer besides the output 

itself. Moreover, the derivative data augments the output data and the authors use this new 

set of data in covariance, or second-order moments. The most straightforward use of auxiliary 

information is in the first-order moment, as explanatory variables in a regression model. Due 

to the non-similarities (in a loose sense) between a function and its derivatives, it is unlikely 

that this auxiliary information would be of much use as explanatory variable in a regression 

model. 

In an application to an inverse problem, Morris and Solomon (1995) use design and analysis 

of computer experiments techniques to predict unknown contaminant concentrations, based 

on measurements of the same concentration function at a finite set of spatio-temporal points. 
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More precisely, the concentration function c ( x , t ) ,  which can also be studied theoretically as 

the solution of a partial differential equation of advection-dispersion on the set (x,t) € [0,1] X 

[0,1], is measured at the end of a one-dimensional tube and a set of data c(l, t\),..., c(l, tn) is 

obtained. The task is to construct a statistical model to predict the initial conditions c(x, 0), 

x E [0,1], at the beginning of the temporal process. The authors demonstrate the feasibility 

of the method by selecting six test functions as initial conditions to be predicted. 

Aslett et al. (1998) suggest a sequential methodology for optimization problems involving 

the design and analysis of computer experiments. In this paper, the goal is to optimize a 

computer output that depends on a set of inputs. The methodology proposes to construct a 

predictor at the early stages based on an initial design and analysis using methods referenced 

above. After an assessment of its accuracy, the predictor is used for preliminary optimiza­

tion. Then new subregion(s) of interest in the input space are identified. The sequential 

methodology is applied again to this new, smaller input space until no further improvement 

in the optimization algorithm is noticed. This sequential methodology is demonstrated in an 

application using a circuit simulator. 

McMillan et al. (1999) give an application of the Gaussian correlation R  to a protein 

activity example. The effects of some chemicals on protein activity are investigated and the 

authors propose the semiparametric model Y (x) = fT(x)(3 + Z(x) + e, where Y(x) is the 

observed protein activity and x is a vector of eight categorical explanatory variables. The 

stochastic terms are Z ~ N(0,(t^R) and e ~ N(0,a^I). Notice the presence of the random-

error term e, which does not appear in the methodology of computer code statistical analysis. 

This error term implies that the the physical observations Y are not interpolated exactly by 

this model; this is the usual statistical framework for the analysis of physical observations. It 

i s  a s s u m e d ,  h o w e v e r ,  t h a t  a n  a d d i t i o n a l  " l a y e r "  Z  o f  u n c e r t a i n t y  w i t h  i n t e r - s i t e  c o r r e l a t i o n  R  

is present. Another difference here is that the components of the input are categorical, and 

t h e  a u t h o r s  p r o p o s e  a  m o d i f i c a t i o n  o f  t h e  G a u s s i a n  c o r r e l a t i o n .  S p e c i f i c a l l y ,  i f  x , -  i s  t h e  i t h  

component of x and has k levels, then the factor exp(—0j|xt- — Z;|Pt) in the Gaussian correlation 

is replaced by f|j=i exp[-#,j|T(z, = j) - /(x- = j)|], where /(x,- = j) is 1 if takes level j and 
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zero otherwise. 

A few recent papers have described implementations of a fully Bayesian approach to com­

puter experiments. In one of these papers, Kennedy and O'Hagan (2000) show that it is 

possible to use faster approximations of a slow running computer code as auxiliary infor­

mation in regression-type models. The authors demonstrate that there are situations where 

approximations at various levels of accuracy can be used in a more sophisticated model. More 

precisely, let zt(x) denote a computer code output of accuracy level t and input x. In their 

example, z was the output of a hydrocarbon reservoir finite element code with porosity and 

p e r m e a b i l i t y  a s  i n p u t s  a n d  t  r e p r e s e n t e d  t h e  r e s o l u t i o n  o f  t h e  c o d e :  t h e  b i g g e r  t h e  v a l u e  o f  t ,  

the more accurate the code. The output of such a code consists of several time series (various 

well measurements), but they selected as an output for their example a scalar given by the 

pressure readings from a single well at a single point in time. The autoregressive model sug­

gested was zt(x) — pt-izt-\(x) + 6t(x), with <5(.) independent of z<_i(.),...,zi(.). The process 

<5(.) has a stationary Gaussian distribution generating infinitely differentiate trajectories to 

reflect the smoothness of the code output. The implementation is fully Bayesian as the authors 

i m p o s e d  p r i o r s  o n  t h e  p a r a m e t e r s  a s s o c i a t e d  w i t h  t h e  f i r s t  a n d  s e c o n d  o r d e r  m o m e n t s  o f  z t ( x ) .  

Kennedy and O'Hagan (2001) used the statistical models for computer codes presented 

earlier as ingredients in a Bayesian methodology for calibrating the computer models. In their 

context, calibration is the operation of choosing the parameters of a mathematical model that 

best fit a set of physical observations. However, the authors consider the calibration to be 

a preliminary operation to be addressed before considering other statistical issues, such as 

prediction of other physical observations. The observations z,- are written as z,- = £(i) + e,- = 

prj(xi, 6) + J(z,-) + e,-, where e,- is the observation error, £(.) is the "true" process, ??(.,.) is the 

computer model output, pis a regression parameter and <$(.) is a model inadequacy function. 

The authors also distinguish between the calibration inputs 6 (that one wishes to learn about) 

and the rest of variable inputs x having known values for each of the observations used for 

calibration (e.g. rainfall levels in a hydrological model). The computer code ??(.,.) has a prior 

stationary Gaussian distribution, separable with respect to the inputs, and independent of the 
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stationary Gaussian distributions of <S(.) and e .  The covariance of ??(.,.) produces infinitely 

differentiate trajectories, reflecting the smoothness of the code output. Prior distributions are 

attached to the parameters of the first two moments of rj(.,.), £(.) and e, and a fully Bayesian 

approach is adopted. 

In another application involving a hydrocarbon reservoir, Craig et al. (2001) used physi­

cal well pressure data at the bottom of the hole and at various past times from six different 

wells in order to predict bottom hole well pressure at different future times. The procedure 

implemented is fully Bayesian. They also have available a computer model of the reservoir 

running at a user-specified resolution and having various inputs such as the reservoir's geom­

etry, permeability and porosity. The inputs are gathered in a vector x. From various outputs 

available the authors choose the bottom hole well pressure at various past and future times. 

A set of n runs %i,..., xn of the computer code is also available. The connection between the 

set of n output computer model runs and the physical data is made through the assumption 

that there exists a unique and unknown input xQ at which the computer model provides the 

best fit for those data. A prior distribution is associated with XQ. A direct link between the 

data and the set of n output computer model runs is established by integrating XQ out of the 

total likelihood. Finally, a predictive distribution for the bottom hole well pressure is derived, 

conditioned (among other variables) on the output data collected from n runs of the computer 

model output at future times. 

The next chapters of the dissertation outline methodologies for statistically analyzing mul­

tivariate computer output. The examples considered are based on finite difference solvers of 

differential equations. The motivation comes from the interest in some applications to evalu­

ate the whole spatio-temporal output at various input configurations. Chapter 2 proposes a 

method aimed at preserving the nonlinearity of such differential equations. It deals specifically 

with situations in which the output can be easily saved and analyzed. Chapter 3 suggests ways 

to cope with situations where this is not feasible, especially due to a large temporal dimension 

of the output. Chapter 4 discusses preliminary work on two additional applications, each based 

on alternative methodologies. 
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CHAPTER 2. STATISTICAL ANALYSIS OF COMPUTER 

EXPERIMENTS FOR FINITE DIFFERENCE CODES: SMALL 

TEMPORAL DIMENSION 

Dorin Drignei and Max D. Morris 

2.1 Introduction 

Many complex phenomena being subject to scientific inquiries are better understood through 

the development and use of computer simulation models, or "codes". Over time, the computer 

codes used for simulations become more and more complex reflecting a continuous improve­

ment in the understanding of these phenomena. However, the increasing complexity of the 

computer codes is sometimes of limited value due to the accompanying increase in demand 

on available computational resources. A recent approach to this problem is to develop faster 

running surrogates for slow running computer codes. These faster (or "cheaper") surrogates 

are approximations of the original codes, however, and so do not exactly match their outputs. 

Therefore the error introduced by using a surrogate also needs to be characterized. 

Statistical models seem to be a natural choice as surrogates since one can achieve both 

point-wise prediction and uncertainty (error) characterization. The statistical approach to 

this problem is outlined in Sacks et al. (1989) and Currin et al. (1991), which are among 

the earliest works in this area. These papers discuss modeling of computer codes for which 

inputs can be of very high dimension, but focus on a single scalar-valued output. Input vector 

values are sometimes called "sites" or "locations" in the input space, following an analogy with 

geostatistics where related "kriging" methods are used. A computer experiment consists of a 

number of code runs at various input configurations. Since these runs are sometimes expensive, 
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it is necessary to choose the inputs carefully in the experimental region to render the statistical 

surrogates as efficient as possible. This is the design aspect of the statistical methodology. Once 

the design inputs have been chosen, the computer code output will be obtained and modeled 

statistically. In many cases the statistical model is described in a Bayesian context where a 

stationary Gaussian process is prescribed as a diffuse prior for the computer code output at 

specific inputs. The posterior distribution of the output at a new input site, i.e. one not 

included in the design, will then act as a surrogate for the slow-running computer code. In 

other words, one can obtain statistical predictions of the slow-running code output at untried 

inputs in the experimental region from which the design inputs were selected. The hope is 

that these statistical predictions are of good quality and at the same time substantially less 

computationally demanding than a single new run of the computer code. We shall use this 

Bayesian approach throughout this study. 

The statistical methodology described above may not be satisfactory in some situations, 

however, due to a lack of enough data or violations of various assumptions. Since the data 

generating mechanism is known, although complicated, a natural place to look for additional 

information to strengthen the methodology is the computer code itself. This has been referred 

to in the literature as "opening up the black box" (e.g. Kennedy and O'Hagan 2001). How­

ever, due to the wide variety of computer codes available, there is no unified framework for 

extracting useful information or assessing how much information is enough. Therefore, only 

isolated attempts to exploit computer code information have been recorded in the literature. 

For example, an earlier work by Morris at al. (1993) suggested that some codes describing 

functions produce derivatives of those functions with respect to the components of the input, 

at little or no additional cost. The authors augmented the output function data with a set 

of derivative function data, thus increasing the accuracy of predictions. The diffuse prior sta­

tionary Gaussian process was used as the statistical surrogate model in this methodology. The 

question of whether or how to exploit black box information has appeared constantly through­

out the literature. Sacks et al. (1989) in their rejoinder pose the question 'Black box or gray 

box?' and agree with a discussant that subject-matter expertise needs to be reflected in the 
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statistical methodology whenever possible. More recently, Kennedy and O'Hagan (2001) note 

that their Bayes approach treats the computer code as simply a black box but acknowledge 

that exploiting black box information could be a powerful approach. In his discussion to the 

paper by Kennedy and O'Hagan (2001), Wynn (2001) argues that "it is useful to know what is 

going on inside the black box", alluding to the need to exploit information about the computer 

code, especially for differential equation solvers. The differential equation models express re­

lationships that often reflect physical laws (e.g. conservation laws) and involve derivatives of 

functions of interest with respect to some arguments such as time and/or space. These are 

deterministic models in the sense that once the relationship and starting values are provided, 

then the functions of interest (or solutions) can, in principle, be known without error at any 

spatio/temporal point in the domain of interest. However, in practice, their solutions provide 

guidance rather than perfect prediction of the observations since any model only approximates 

the reality. In this study we statistically model virtual observations which are numerical out­

put of such differential equations, as opposed to the physical observations. The solutions of 

the differential equations, in particular in the nonlinear case, exhibit sophisticated dynamics 

for which some of the assumptions of the statistical methodology referenced above may fail. 

The computer codes considered in this paper are finite difference numerical solvers of dif­

ferential equations. In general, the input vector for such a computer code is a set of initial 

conditions and/or a set of parameters and the output is multivariate, such as time series or sur­

faces. The computer experiments consist of evaluating the multivariate output, i.e. executing 

the code, for several input vectors and assessing the influence of the inputs on the output. We 

shall use computer code information and suggest second-order nonstationary statistical models 

that will mimic more realistically the dynamics of these computer codes. This is particularly 

useful for nonlinear differential equations since the statistical simulator proposed here inherits 

the code's nonlinear behavior through the nonstationary structure derived from output data. 

To illustrate the methodology we shall use a competing species differential system from math­

ematical ecology. It will be shown that a nonlinear statistical model derived from the structure 

of the computer code is a good representation of the mathematical model whereas the statist!-
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cal model based on a stationary Gaussian prior process for the output fails to represent basic 

properties. The findings of the analysis are strengthen by a proof that the statistical method 

proposed here has good asymptotic statistical properties. 

2.2 Example: Competing Species Model 

2.2.1 The Mathematical Model 

Computer models of scientific interest are often based on large systems of nonlinear equa­

tions involving many variables. The system we describe here is much simpler, yet it has many 

of the features of important computer codes and will allow an extensive comparison of the sta­

tistical methods to be developed later in this chapter. This example comes from mathematical 

ecology and is known as the Lotka-Volterra competition model. It is a theoretical description 

of two species that compete for the same food and are allowed to diminish each other's growth 

by direct interaction. The dynamics are formulated mathematically as a nonlinear system of 

t w o  o r d i n a r y  d i f f e r e n t i a l  e q u a t i o n s  w h i c h  h o l d s  f o r  a n y  t i m e  t  i n  a n  i n t e r v a l  [ 0 ,  L \ :  

(2.1a) XW = #r#i(Z)(A-i -

(2.1b) A^f) = ̂ (f)^ - NsM) -

The system (1) can be written in a more compact vector form as 

(2.1') jV'(f) = /(;,A[(f)) 

with / being the bivariate function appearing in the right hand side of (2.1). If initial con­

ditions A^i(0) and A^O) are provided then this system will have a unique pair of solutions 

N2{t)). These represent the two species sizes Ari and N2 at a point t in time and are 

continuously differentiate. As determined by (2.1), the species size temporal evolutions are 

influenced by a logistical term of growth rate r for each species and interaction terms between 

the two species characterized by the parameters a. Here K\ and are called the saturation 

levels of the two species and are positive constants. The model has a rich set of dynamics 

depending on the relationship between the various parameters appearing in the system (2.1). 

Kot (2001) provides a full analysis of these dynamics. Of particular interest to us is the case 

«12 > and «21 > when one species eventually becomes extinct and the other converges 
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to the corresponding saturation level K ,  depending on the initial conditions. More precisely, 

if M(0) > ^2(0) then N\(t) converges asymptotically to Â'i whereas N2(t) converges to zero. 

Likewise, if M(0) < %(0) then N2(t) converges to I<2 whereas M(^) converges to zero. If 

TV^O) = -^(O) then no species wins the contest and they will share the object of competition. 

In this study we will conduct a computer experiment to investigate the influence of the 

initial conditions iVi(O) and A^O). We fix the parameters in model (2.1) to some values that 

correspond to the above scenario: A'i = K2 = 2, o-12 = <*21 = 1.75. Also, we fix n = r2 = 8 and 

limit our study to the time interval [0, L] = [0, 3]. The experimental values (Ari(0), Ar
2(0)) will 

be selected from the square [0.005, 0.1] X [0.005, 0.1]. We have chosen not to include the case 

(Ari(0), Ar
2(0)) = (0, 0) in order to avoid the resulting trivial solution. Figure 2.1a-c illustrates 

the three typical cases mentioned above. However, depending on the specific values of the initial 

conditions, the species sizes N\ and N2 will approach their limiting values faster or slower. For 

example, if Ar
1(0) is much bigger than N2(0) then the first species wins the competition very 

quickly. On the other hand, if Ar
1(0) > N2(0) but their difference is small then species 1 still 

wins the competition but in a longer time. Figure Id shows the region of initial conditions 

considered and a sample of D = 20 design points in this region. The problem in this study 

is to find statistical models that predict species size functions A^, N2 corresponding to new 

pairs of initial values in this region without actually solving the system (2.1), given that the 

system has been solved for the set of D = 20 pairs of initial values appearing in Figure 2.Id. 

(Over-plotted is a set of P = 100 testing sites.) 

2.2.2 Finite Difference Approximations 

Nonlinear systems of differential equations can rarely be solved analytically, even though 

solutions exist. In these situations one relies on numerical approximations of the true solution. 

A common practice is to approximate the derivatives involved by scaled differences of the 

corresponding function evaluated at neighboring points on a grid. The resulting procedure 

i s  c a l l e d  t h e  f i n i t e  d i f f e r e n c e s  m e t h o d .  I n  o u r  c a s e ,  t h e  t i m e  i n t e r v a l  [ 0 ,  L ]  i s  d i v i d e d  i n t o  M  

subintervals of equal size h= jj. Denote by to, ti, ...,tM the end points of these subintervals. 
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The system (2.1) can be rewritten in the numerical form 

(2.2a) #!((.+,M,M = %-7Vi(t,)(#i - %)) - ̂ Ni(t,)^((,) 

(2.2b) = ^^(t,)^ - JV2(f,)) - =^7V2(t,)7Vi(f,) 

for i  =  0,1,. . . ,  M  -  1, or equivalently 

(2.2a') Ni(f,+i) = Ni((.) + A[^-Ni(^)(A\ - ̂ i((,)) -

(2.2b') jV2(4+l) = A((.) + %^2(^)(A"2 - ̂ 2(f,)) -

For sufficiently small h ,  the sequence ( N i , N 2 )  approximates ( N i ,  N 2 )  at t o ,  t \ , ..., t M -  The time 

step h needs to be small in order to guarantee that accumulated errors in (2.2') are bounded. 

The numerical scheme (2.2) is called the Euler's method which is the simplest method based 

on finite differences. We mention that there are many other finite difference methods, some of 

them better than Euler's (see Lambert 1991), but we choose the later because its simplicity is 

helpful in introducing the ideas of this study. 

2.2.3 Local truncation errors 

The system (2.2') can be rewritten as 

(2.3a) OWVi^+i) - [7Vi(f,-) + A(^Ni(%)(A"i - Ni(f,)) - D^JVift,)^))] 

(2.3b) 0=N2(W - [^(f,-) + A(^(%)(A-2 - Â^f,)) - ̂ ^(f,-)^,-))]. 

The local truncation errors are defined as the (generally non-zero) quantities obtained by 

introducing the true solution (A^, A^) of the differential system into the right side of these 

equations, that is 

(2.4a) Ti(f,-+i) = #i(t,-+i) - [jVi(f,) + (%)(A'i - A^f,-)) - ̂ ^(WA^f,-))] 

(2.4b) %.+!) = A^+i) - [ATgM + /%AT2(W(A-2 ' ̂(^)) - ̂ #2 WNt,))]. 

Taking into account (2.1) and Taylor series arguments, the system (2.4) can be rewritten as 

(2.5a) Ti(W = ATi(f,+i) - [Afi(%) + AA^f,-)] = ̂ <(Z.) + 

(2.5b) %+!) = N2(f,+i) - [ATzM + AA^f,)] = ̂ A%) + Ag. 

Assuming that N \  and N 2  have finite second order derivatives at any point in [0, L ] ,  one obtains 

Ti(t{+i) = 0(h2) and T2(ti+x) = 0(h2). The reminders Ri and R2 contain h of order 3 or 

higher and are considered negligible in this study. Hence the Euler's finite difference method 
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used here is said to be of order 2. 

The local truncation error can be thought of as a residual quantity and provides a measure 

of accuracy of the finite difference scheme. To draw a parallel with statistics where the residuals 

play a key role, let's consider Y to be a vector of data and X_ be an "explanatory" vector of Y 

in a simple linear regression model. If Y denotes the predictor of Y then 0 — Y — (/?o + 0iX) 

for some parameters @o,/3However, if one introduces the data vector into this prediction 

relationship, then one obtains a vector of residuals e = Y — (/30 + Pi2L) which represent a 

measure of accuracy of the regression prediction. Clearly there are similarities between the 

two situations: the data vector is analogous to the true solution of the differential equation, 

the regression predictor is similar to the numerical solution of the finite difference equation, 

the regression relationship is similar to the finite difference scheme and finally the regression 

residuals are akin to the local truncation errors. 

As we shall see later, output predictions based on a statistical model of local truncation 

errors can be more accurate than statistical predictors derived directly from observed output. 

The main gain is the preservation of the nonlinearity of the system, resulting in more realistic 

statistical predictions. 

2.2.4 Design Selection 

The design aspect of the problem is concerned with the choice of the input vectors, in our 

case with the pair of initial values (iVj(O), N2(0)) within the region of interest [0.005,0.1] x 

[0.005, 0.1]. One approach is to choose the input vectors to cover the space thoroughly in some 

sense. Let di, d2,..., do be the D input vectors to be chosen. A Latin Hypercube Design (LHD) 

is defined as follows. Denote by tt an arbitrary permutation of 1,2, ...,£>. Divide each axis of 

the region into D — 1 intervals of equal length and denote by ii, i2,..., in the end points. Then 

define dk = (%&, *%-(&)) for Ar = 1,2,..., D. While an LHD has good one-dimensional projections, 

it is not always an attractive design; for example, a design that puts all the points on the main 

diagonal of the design region is an LHD. The LHD can be more useful when it is constructed 

in conjunction with other criteria that quantify other desirable design properties. A maximin 
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distance design of minimum index (or simply a maximin) is a set of points d i , d 2 , d o  that: 

a) maximizes the minimum intersite distance d(D) = min1-J[dist(c?,-, dj)], and b) minimizes the 

index J(D), the number of pairs (i,j),i < j for which dist(d;, dj) = d(D). Unrestricted max­

imin designs of moderate size generally contain a large proportion of points on the boundary 

of the design region and therefore do not have good one-dimensional properties. On the other 

hand, unrestricted LHDs are sometimes referred to as "space filling" designs. Morris et al. 

(1993) considered compromise designs and showed evidence that a maximin design within the 

class of LHDs can perform better than either an LHD constructed from randomly selected 

permutation 7r, or an unrestricted maximin design. The search for a maximin LHD was based 

on a point-exchange algorithm. Here we shall take a less sophisticated but practical approach, 

by simply selecting the maximin LHD within a relatively large list of randomly chosen LHDs. 

In Figure 2.Id is illustrated the experimental region for the pair of initial conditions along 

with a set of D — 20 design sites. This design was selected according to a maximin criterion 

from a list of 1,000,000 randomly generated LHDs, and had a minimum inter-point distance 

of d(D) = 0.0180, and index J(D) = 7. While this empirical approach is perhaps easier to 

implement and more straightforward than the exchange-point algorithm, it has the main dis­

advantage of not searching for a (local) optimum in a coherent way and therefore not focusing 

all the resources in the "correct direction". Unless the number of input dimensions is relatively 

small so that a reasonably large list of randomly chosen LHDs can include many possible LHDs, 

it is perhaps better to use a search algorithm than this empirical approach. 

2.3 Statistical Methodology for Computer Experiments 

The aim of this methodology is to obtain statistical models that predict a fine-grid numerical 

solution for a new set of initial condition pairs, given that the fine-grid simulator has been run 

for a well-chosen set of initial conditions pairs. This problem originates in an effort to find 

less expensive surrogates for computationally expensive simulators. While direct application 

of Euler's method to the Lotka-Volterra competition model is not computationally demanding, 

it has the advantage that the statistical surrogates developed here can be tested against fine 



18 

grid validation solutions computed for a large set of new inputs. Empirical assessment of 

predictor performance cannot be based on the data used to fit the statistical model, since all 

the statistical predictors presented in this study will interpolate exactly the output data at the 

design sites. 

2.3.1 Direct Extension from the Scalar to the Multivariate Case 

2.3.1.1 Output Data 

The Euler's finite difference method (2.3) was used to obtain numerical solutions on a fine 

grid of Mj = 15, 000 time intervals for each of the D = 20 pairs of initial conditions plotted in 

Figure 2.Id. We have chosen such a large Mj due to the slow convergence of the Euler method. 

The numerical solutions were retained at time points corresponding to a coarser sub-grid of 

Mc = 15 intervals (e.g. every 1000^ point from the computed series). Note that this is not 

equivalent to running the code (2.3) for hc = L/Mc. Qualitatively, the numerical solutions 

obtained on the fine grid for hj — L/Mj are closer to the exact solution of (2.1) than the 

numerical solutions that would be obtained on the coarse grid for hc — L/Mc. In the sequel, 

M will be equal to Mc if not otherwise specified. Since there are two species size functions, 

the data to be analyzed is an M X 2 x D array. We do not include the data at the starting 

time since we always know what the initial conditions are and there is no need to regard them 

as data to be modeled. As a numerical feature, all the data must be in the interval (0,2) 

since one cannot have species of negative size and the species size cannot grow beyond the 

saturation constants K\ = I<2 = 2. Notice that the Mx2xD = 15x2x20 array is relatively 

small which allows saving and analyzing the output data with a relatively small effort. In our 

case the number of time points (or temporal dimension) was relatively small. However, there 

are situations (see next chapter) where this number of time points cannot be chosen as small. 

Different techniques need to be applied to the resulting large set of output data. 

Most of the current statistical methodology for computer experiments treats the output as 

a scalar. It has been suggested in the literature (Kennedy and O'Hagan, 2001, p.435) that 

instead of treating the output as multivariate, one can augment the set of input variables by 
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a number of variables equal to the number of output dimensions and then treat the output 

as scalar. For example, in our case, there are two input variables (the two initial conditions) 

and two output dimensions (species and time). The suggestion is to index the output by four 

inputs and apply the current methodology for scalar output. This amounts to 2DM design 

sites and leads to the specification of a (2DM) x (2DM) covariance matrix for all data, which is 

numerically unstable for practical values of D and M unless more assumptions are made. (One 

such assumption allowing decomposition of the variance matrix into a Kronecker product is 

discussed in this study.) At each input point there are two functions that represent the species 

size over time. Let Yjt denote the output value produced by the fine grid solver for species 

i — 1, 2, input vector d (i.e. pair of initial conditions) and time point t. This is a shorter version 

of the more cumbersome, yet complete, notation N used in section 2.2.2. We will consider a 

statistical model in which the two species sizes are correlated, since the mathematical model 

that produced them specifies interaction between species. 

2.3.1.2 The likelihood function 

The data are a three dimensional array of size M x 2 x D .  This arrangement facilitates the 

specification of a covariance matrix as a Kronecker product. Since the two theoretical solutions 

of the system (2.1) are infinitely differentiate in time, one can assume a Gaussian correlation 

corresponding to the time dimension, i.e. 

This correlation produces infinitely differentiate trajectories. Next we will represent the fact 

that the two species size functions are correlated, with the correlation matrix 

Finally, we will assume again a Gaussian correlation corresponding to the two dimensional input 

of initial conditions. The reason for this choice is a theoretical result stating that the solutions 

of differential equations depend smoothly on the initial conditions as long as the function / in 

CT{U ,  t j )  = exp(~8T(U  - t j ) 2 ) ,  i , j  =  1 , . . . ,  M .  
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(2.1') is smooth in all its variables (e.g. Hartman 1964). Thus, the input correlation will be 

the product correlation 

Coid i ,  d j )  = exp(—0D! ( d i ( l )  -  d j ( l))2 -  ÔD 2 ( d i (2 )  -  d j ( 2))2), i , j  =  1,. . . ,  D  

and d i  is the i t h  two dimensional input vector of initial conditions, (iVi(O), A^O)). Let Y_  

denote the reshaped, vectorized form of the three dimensional array of data {Yjt}, with the 

time as the inner dimension and input as the most outer dimension. It will be assumed that 

y = TV (All, ^2), 2 = CD 8 (Cz ® Cf), 

where "®" represents the Kronecker product. The likelihood of the multivariate normal dis­

tribution can be written as 

^T,P, <ay) = (27T(7)-^D/2| det(2)|-i/2exp[-_L(y _ //l)'p]-:(y - //I)]. 

Maximum likelihood estimates (MLEs) of the parameters involved (0T,P, &DI , #d2 , FI, <r2) will be 

obtained by maximizing the likelihood function above. In manipulating the likelihood function, 

it is worth pointing out some algebraic simplifications associated with the Kronecker product, 

specifically [S]_1 = C^®(C^®C^) anddet(S) = det(C.o)2Mdet(C2)MDdet(C'r)2'D- These 

are helpful in avoiding numerical instabilities. The MLE for /i is p, — iy and the MLE 

for cr2 is â2 = 2MB (— — l/t)zp]-1(y — 1p). The other parameter estimates are obtained 

numerically by iterative maximization of the likelihood function, or equivalently by minimizing 

the objective function 

I(»T,  r , e D u  » D ,  IB  =  log fà 2 )  +  l o g ( d ^ c °»  +  ' ° g ( d ; t ( C z ) )  + MMÇl l l .  

The numerical values of the MLEs in our demonstration exercise are: j j ,  = 0.6599, à 2  = 0.3956, 

6j = 8.3251, 0£>, = 7.5660, 0£>2 — 6.1805, p = —0.4564. 

The correlation between time series at each location is estimated to be negative. This 

i s  to be expected since, on approximately the last two thirds of the time interval [0, L], the 

two functions behave completely differently depending on who wins the competition and on 

approximately the first third they behave more or less similarly. Therefore the correlation 
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parameter p  is expected to be negative, although not close to -1. Because of this behavior, 

one could argue that it might be possible to improve our model by specifying a C% that varies 

with time t. However, this would require care since the overall correlation would no longer be 

of product form. 

2.3.1.3 Prediction 

Let do = (AT1(0), iV2(0)) be a new input vector, that is a pair of initial conditions not 

included in the D-point experimental design. The goal of the statistical model is to predict 

the fine-grid solution at the M coarse-grid time points, without actually running the fine-

sca l e  s imu la to r  a t  do -  ( I n  f a c t ,  h e r e  w e ' l l  r un  t he  f i ne - s ca l e  s imu la to r  o f f - l i ne  a t  s e l e c t ed  d 0  

vectors, but only to assess the accuracy of our statistical predictors.) Let Cy+ be the design 

covariance matrix CD augmented by a row and column corresponding to the correlations 

between the output data at the new input vector do and the D design input vectors, that is 

the correlation matrix corresponding to the augmented input set D+ = {t?i,..., dp, </0}- Then 

the prior covariance matrix corresponding to the M X 2 X (D + 1) augmented array of output 

da t a  i s  £ +  =  Cg+  <S> (C% ® Cj ) .  Deno te  b y  S j " o  D  t h e  m a t r i x  co r r e spond ing  t o  t h e  f i r s t  2MD 

elements of each of the last 2M rows of £+ and, likewise, Cd0,D the vector of first D elements 

of the last row of Cd+ • Notice that 

® (Q, ® Cr))((V ® (<%-! ® Cf')) = 

® ((C2(glCT)(C^ = (Cjo,f)Cg^) (g) /2M-

Then the posterior mean vector at the new site d o ,  which is the usual point predictor suggested 

by minimization of expected squared-error loss, is 

Y-d0 — M+ Sj0)D[SI] l(Y_— m1) = ^1+ [(Crfo.oCjQ1) ® hM](YL — nl)-

Y_do may be "de-vectorized", that is reshaped in a 2 x M array corresponding to the two 

species size functions at do- The last expression shows that the posterior mean involves only 

the correlation between the design sites, not the correlation matrices Cg and CT- Moreover, 

the posterior mean of a species at a time point depends only on the output data for that 
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species at the same time point f,. Denote by St the matrix corresponding to the last 2 M 

elements of each of the last 2M rows of £+ and, likewise, the last element of the last row 

of CD+. To derive a similar expression for the posterior covariance, notice that 

^CWQ^.y) = Ej, - EJ,d[E]-'E+iD' = 

Cj. ® (Cg ® Cr) - (8 (Ca ® CT))(C^ ® (C^ (g,® (Cg 8 Cr)) = 

The posterior covariance at do is 

a2(E+ - E+^PT'Ej^') = a2(C* - CD»,DC-D
LC'M)(CI®CT). 

Notice that the main diagonal of the posterior covariance at do gives the marginal posterior 

variances at each i = 1,2 and t = 1,M. That is, the marginal posterior variances are all 

equal to a2(Cd0 — Cj0i£)Cy1C^o D), which again involves only the correlation between do and 

the design set. The prediction standard errors are defined as the square root of the marginal 

posterior variances. 

2.3.2 Using Black-Box Information 

In section 2.2.3 we reviewed the concept of local truncation error as a measure of accuracy 

of the finite difference scheme. We drew a parallel with statistics and showed that the local 

truncation errors are similar in some ways to statistical residuals. In this section we will 

model the numerical local truncation errors as opposed to modeling the numerical solutions as 

described in section 2.3.1. By doing this, we will make use of numerical information about the 

accuracy of the computer code and therefore here it will no longer be treated as a black-box. 

In section 2.3.1.1 we described the output data as a M X 2 x D array containing the 

subset of the fine-grid numerical solution that corresponds to the coarse grid. Here we will 

obtain numerical local truncation errors by replacing the true solutions with their fine-grid 

approximations (denoted Yjt in section 2.3.1) in relationship (2.4): 

(2.6a) rj£, = Yl,^ - [Ylu+hc(ftYlu(IÛ-Ylu)-
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(2.6b) - V|,,+1 - [Ylu + K(%Ylu(I<2 - %) -

for z — 0,..., M — 1 and d—1, . . ,  D. 

Let 2Zy denote the vectorized form of the numerical local truncation errors ( j  =  1,2). 

Following the general arguments presented in section 2.3.1 for modeling Y_, we now use the 

same approach to model Ty as a function of initial conditions, species and time. In particular, 

we specify a covariance matrix that is a scaled Kronecker product of three correlation matrices 

corresponding to its three dimensions prior to vectorization, 

= ̂ 2 = r2(Cf, (8 (C2 ® Cr)). 

We shall assume again 

Co id i ,  d j )  = exp(—#D! {d i ( l )  -  d j ( l))2 -  9 D 2 ( d i ( 2) -  d j (2 ) ) 2 ) ,  i , j  =  1,. . . ,  D  

and 

Unlike in the case of direct modeling of the numerical solutions (section 2.3.1.), here time-

independence will be assumed for the numerical local truncation errors, that is CT = IM- We 

shall prove in the Appendix A that if the numerical local truncation errors are assumed time-

independent, the statistical predictor converges almost surely to the exact solution of the ODE 

system when the coarse time step hc — L/Mc converges to zero. In other words, the statistical 

predictor has good properties as long as the coarse time step hc = L/Mc is small enough. 

The numerical results show that time-independence of the numerical local truncation errors 

does not necessarily mean time-independence of the predicted numerical solutions. In fact, the 

point predictors of the numerical solutions will be quite smooth as functions of time. This is 

not to say that if one assumes time-dependence for the numerical local truncation errors the 

statistical method does not work. We fitted both linear and cubic correlations for numerical 

local truncation errors in the time dimension (not shown here) and the method seems to work 

well. However, we see the time-independence assumption as an important practical advantage 

since it eliminates the need to estimate parameters associated with CT- Maximum likelihood 
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estimates (MLEs) of the parameters (yu,p, @D2, r2) will be obtained by maximizing the 

likelihood function, which is similar to the one presented in section 2.3.1.2. The MLE of p, 

is fi = and the MLE of r2 is f2 = ^(TY - l/i/p]"1 (Ty - 1/i). The MLEs of 

(Pi 9DI-I6d2) are obtained numerically by minimizing the objective function 

HP,  OD,,  ED 2 \X? )  =  ! „ g ( f 2 )  +  l o g ( J e ; ( C o ) )  +  l o g ( d e
2

t ( C 2 ) ) .  

The MLEs are: ft = —0.0020, f2 = 0.0016, = 6.7505, 9d2 = 5.8905, p = -0.3445. There 

seems to be a significant negative correlation between local truncation error time series, as was 

also the case in our direct modeling of the output series in section 2.3.1. It was expected that 

fi is somewhat close to zero because the local truncation errors represent deviations from zero, 

both positive and negative. 

In order to predict at a new input vector d 0  =  (7V%(0), A^2(0)) we shall use a simulation ap­

proach. The algebraic formulae of section 2.3.1. also apply here for predicting local truncation 

errors. The posterior mean is 

±1 = /4+ [(C4,,DC%1) 8 W](Ty - /2l) 

and the posterior covariance is 

The Choleski matrix of the posterior covariance is 

Ty^C^C^C^(C^OZ,(C2)' ® W 

and it will be used in the simulation process. For output prediction at a given d 0 ,  R  — 19 

simulated values of TY are drawn from this posterior multivariate normal distribution. Each of 

these simulations has been reshaped in a 2 x M array corresponding to the two local truncation 

error time series T1,y and T2,Y, corresponding to equations (2.6a) and (2.6b) respectively. 

Finally, the relationship (2.6) is used to obtain R simulations for Yjt and Y$t : 

p.'a) %,,, = + 

(2.7b) = % +  h(%Yl t (K 2  - %,) - + 1%,  
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for i  = 0,M— 1 and d  =  d 0 .  It will be shown in the Appendix A that Y  at d  — dg  converges 

strongly to the exact solution of (2.1) as hc converges to 0. The solution of equations (2.7) 

can be thought of as a coarse-grid Euler solution "corrected" by a statistical prediction of the 

local truncation error. The median and percentile-based prediction intervals have been used 

to summarize the prediction. 

2.4 Coarse Numerical Solutions Used as Auxiliary Information 

In some situations, numerical solutions corresponding to a grid of an intermediary size are 

available at little computational cost. One can incorporate them as auxiliary information in 

the statistical model in order to improve it. Moreover, there is more than one way one can 

make use of this information. A direct way is to use these values as covariates in a regression-

type model. This is in the spirit of Kennedy and O'Hagan (2000), who used low-level accuracy 

computer output data as auxiliary information in order to predict high-level accuracy computer 

output. 

We consider the use of auxiliary information in the form of a numerical solution on a grid 

o f  Mc t ime  in t e rva l s .  He re  Mc i s  a  pos i t i ve  i n t ege r  such  t ha t  M /  >  Mc >  M c  and  he  — 

That is, the grid to be used in calculating the auxiliary information is of resolution between that 

of "fine" and "coarse" grids discussed above. The closer is Mc to Mc, the less computationally 

expensive (but also less accurate) is the numerical solution to (2.3). In our numerical results 

we will use Mc = 2Mc = 30. Denote by X%
dt the array of output corresponding to he, for 

species i — 1,2, input vector d (i.e. pair of initial conditions) and time point t, again at time 

points corresponding to only the coarsest sub-grid Mc — 15. A modeling strategy generalizing 

the approach presented in section 2.3.1. will be presented first. The prior assumption is that 

Y_= N{n0l + Hi2L, c2£), with £ = Cy <gi (C2 <§) CT), where 

Co(d i ,  d j )  =  exp(-tfy, ( d i (  1) - d j ( l))2 - 0£>2(d,(2) - d j (2))2), i , j  = 0,1,..., D ,  

CT {U ,  t j )  =  exp ( -0 r ( f j  -  t j ) 2 ) ,  i , j  =  1 , . . . ,  M  
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and 

a . ( " v  

v P 1 ) 

The regression parameters and variance estimates are obtained analytically as 

[Ao, Al] = 

and 

<72 = 1 
:(H — Moi — MiiO'P] 1(H - Mol — Mi2Q, 

2MD 

whereas the rest of the estimates are obtained by numerical optimization of the likelihood. 

The numerical values of these estimates are: fio = 0.0056, fi\ = 1.0135, <r2 = 0.0068, 6t = 

46.0022,i = 12.6430, &D2 — 8.4192, p = —0.0867. Denote by X_do the vector of auxiliary data 

at a new site do (restricted to the coarse grid only). Then the posterior mean vector is 

i- d 0  
= MoI + MiXio + 1 ( ¥ -~  Mol- MiA) = 

Mol + Vl2Ldo + [(CDO&CJJ,1) <%> I-ZM] (Z. - Mol - MlA) • 

The marginal posterior variances are equal to a2(Cd0 — C^^C^C^ D). 

Apart from this direct way of using the auxiliary information, there is another possibility 

which follows the lines of section 2.3.2. Denote by TJ
d'f (j = 1,2) the coarse numerical trun­

cation errors obtained as in (2.6) for the numerical solution X and Tx denote their vectorized 

form. We shall assume again that 

= #Wi + ® (G, ® Cr))), 

with 

Co(d i ,  d j )  = exp(-#£>! ( d i (  1) -  dj ( l))2 -  0D 2 ( d i (2) -  dj (2 ) ) 2 ) ,  i , j  =  1,. . . ,  D, 

1  p  

and CT — I  M (time-independence). The MLEs of the parameters involved are: 0y1 = 

9.9764,0u2 = 8.2074, p = -0.1368, f2 = 0.0005, fi0 = -0.0008 and fix = 1.2694. Simi­

larly, the regression parameters and variance estimates were expressed analytically and the 
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rest of the estimates are obtained by numerical optimization. If Tj denotes the vector of 

coarse numerical truncation errors at a new testing site do, then the posterior vector mean is 

id0 — Mol + MiZ^ + [{Cdo^Cjr)1) ® I2m\{T} — Mol - Mi2Z'Y) 

and the posterior covariance is r 2 (Cd 0  — n) (Cz ® Im) -  Next, R  simulations are 

obtained from this posterior multivariate normal distribution, and each of them is reshaped 

in a 2 x M array corresponding to the two numerical local truncation error time series T1'1 

and f2,Y. As in section 2.3.2, the relationship (2.7) is used to obtain R simulations Y for the 

numerical solutions. Again, the median and percentile-based prediction intervals are used to 

summarize the prediction. It is proved in the Appendix A that Y at d = do converges almost 

surely to the exact solution of (2.1) as hc converges to zero. This ensures good asymptotic 

properties of the statistical model. 

2.5 Results 

In addition to the D  = 20 design points, Figure 2.Id displays a set of P = 100 prediction 

(test) sites. This test set was also selected according to a maximin criterion from a list of 

1,000,000 random LHDs. The minimum inter-point distance for this set is d(P) = 0.0030, 

and the index of this testing set was J(P) = 4. The points are widely spread and ensure a 

reasonably good coverage of the experimental region. 

Recall that the time interval of study is [0, L]  = [0, 3]. Data have been saved only at M c  = 15 

equally spaced points t = 11,..., ti5. Figures 2.2a-b present species size Ni(tg) in the middle 

of the time interval at (§, point predictions and 90% prediction intervals across the 100 test 

sites for both approaches presented in section 2.3.1 (direct) and section 2.3.2 (local truncation 

error based, abbreviated TER in the sequel) with R = 19 simulations for the later method. 

Similarly, Figures 2.2c-d present species size A^(^), point predictions and 90% prediction 

intervals across the P = 100 test sites at time tg for both approaches. One can notice a better 

actual probability coverage for the TER method. Moreover, the direct method predicts species 

size values outside the interval (0, 2) which is not in agreement with the mathematical model. 

An even sharper distinction between the two methods can be noticed in Figure 2.3, which shows 
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plots analogous to those in Figure 2.2, but at the end of the time interval, <15. TER method 

seems to better represent the mathematical properties of the phenomenon. For example, TER 

correctly predicts that at time ^5 one of the species has almost won the competition for most 

of the testing sites. The direct method presented in section 2.3.1 predicts confidently that at 

time tis the species size functions can take any value in (0,2) and beyond! 

Figures 2.4 and 2.5 show plots similar to those in Figures 2.2 and 2.3, but here auxiliary 

information has been incorporated into the statistical models according to the methodology 

presented in section 2.4. Auxiliary information has been especially useful for the direct method 

since the coarser approximation correctly reflects the general shape of the species size time 

series. For example, Figure 2.5 shows that the direct method successfully predicted the correct 

winner of the competition at f15. However, the auxiliary information has not been as helpful 

in predicting the species sizes in the middle of the time interval at as it is shown in Figure 

2.4. Also notice in Figure 2.4 that the prediction intervals are unrealistically narrow for the 

direct method in the cases where the competition has not been resolved by tg. This is due to 

the stationary nature of the statistical model used in the direct method. 

Figure 2.6 shows, for each of the M c  = 15 time points, the proportion of P =  100 nom­

inal 90% prediction intervals that actually include their corresponding fine-scale solution (or 

"coverage"). One can notice that the direct method has low coverage of the true values in 

the second half of the time interval, whereas the TER method has a more realistic coverage 

with an overall mean coverage closer to the 90% target. When auxiliary information has been 

used, the direct method improved toward the end of the time interval, but mean coverage at 

intermediate times is only about 40% and the overall mean coverage is about 79%, still far 

from the target. We should also note that the uncertainty associated with parameter estimates 

is not accounted for in this study. Rather, the parameters have simply been replaced by their 

MLE values in the predictions. (As an aside, notice that the horizontal axis of the plots in 

Figures 2.6 through 2.11 represents the index of the set of Mc = 15 time points. While the time 

interval of study is continuous, here we want to emphasize the discrete nature of the recorded 

output data.) 
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Table 2.1 RMSE measures 

M Direct (NAI) TER (NAI) Direct (AI) TER (AI) 

RMSE 

SRMSE 

0.2738 

0.2851 

0.1069 

0.1163 

0.0610 

0.0634 

0.0347 

0.0574 

N 2  Direct (NAI) TER (NAI) Direct (AI) TER (AI) 

RMSE 

SRMSE 

0.2757 

0.2869 

0.1342 

0.1355 

0.0543 

0.0570 

0.0509 

0.0625 

Table 2.1 shows a summary of the overall Euclidean distance between the true values and 

predicted values at each testing site d and time point t when no auxiliary information (NAI) 

was available and when auxiliary information (AI) has been used. This distance based measure 

is sometimes called root mean square error (RMSE) and is defined as 

RMSE 
\ 

P Mc 

c  d—1t—1  

Table 2.1 also shows the statistical root mean square error (SRMSE), which incorporates the 

prediction error. For the direct method, this is defined as 

SRMSE =  
P M, 

d=11=l  

where is the posterior variance at each testing site. For the TER method a simulation-based 

SRMSE has been used, which is defined as 

saMSE = 
, P Mc -, R 

J fp  Z ~ Yd , t , i ) 2 } ,  
1V±C^ d= 1 t=1 n i=l 

with R the number of simulations (R  = 19 here). When comparing the Direct and TER 

methods, TER does a better job when no auxiliary information has been used. When auxiliary 

information was available, RMSE statistics for TER are still smaller, although the SRMSE for 

N2 is larger for the TER than for the direct method. However, the SRMSE measure for the 

direct method incorporates posterior variances which are un realistically small, as the plot of 

actual probability mean coverages in Figure 2.6c shows. Thus, the direct method SRMSE 

for N2 is an overly optimistic measure. While the coarse grid output data used as auxiliary 

information had a bigger impact on the direct method, it is worth noting that reliable coarse 
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data are not inexpensive for all applications (see next chapter) and therefore one should balance 

the cost versus improvement of the results. 

Figures 2.7-2.10 show time series for prediction and true values at four different test sites 

among the P = 100. They could be considered qualitatively representative for all P — 100 

sites. The D — 20 design sites plotted in Figure 2.Id show that few correspond to cases 

where M(0) % iV2(0); most of the design sites correspond to situations where there is a clear 

winner of the competition during the time interval considered. When A'i(O) % 7V2(0), there 

will eventually be a winner, but not during the time interval considered here. This region 

of the input space could be challenging for the statistical predictors considered here because 

the available information from the training set of design points might not correctly reflect 

the characteristics of species size functions. Therefore special attention will be paid to this 

region. Figure 2.7 corresponds to the testing site A = (0.0463, 0.0760) which is inside the 

experimental region and reasonably far from iVi(0) ~ iV2(0). It shows a situation in which 

both the direct and TER methods predict correctly, with or without auxiliary information 

being used. Figure 2.8 corresponds to the testing site A = (0.0655,0.0942) which is near the 

boundary of the experimental region, but far from iVi(0) % 7V2(0). The direct method without 

auxiliary information predicts negative values for the species size N\ and values beyond the 

species saturation level (equal to 2 here) for the species size /V2. This clearly violates the 

restrictions of the mathematical model considered here. However, the quality of the predictions 

is greatly improved for the direct method when auxiliary information is used. The TER 

method accurately predicts the true values, with or without auxiliary information. Figure 2.9 

corresponds to the testing site A — (0.0731, 0.0693) which is inside the experimental region 

and close to 7Vi(0) % 7V2(0). The direct method without auxiliary information tends to predict 

a no-winner situation (which is the main diagonal's property), although the pair of initial 

values considered is not on the main diagonal and species N\ wins the competition at about 

£15. This error at 115 is fixed, however, when auxiliary information is available, although the 

second half of the time interval is still badly covered by the 90% prediction intervals. The 

TER method predicts the true values accurately although the prediction bounds are wider in 



31 

the second half of the time interval, reflecting a greater uncertainty about the dynamics of the 

species size functions. Finally, Figure 2.10 corresponds to the testing site A = (0.0069,0.0108) 

which is both near the boundary of the experimental region and close to iVi(0) % A^(0). 

The direct method without auxiliary information confidently predicts the wrong winner of 

the competition, that is the first species has a better chance of winning when in fact the 

second species wins. The TER method is completely unsure about which species will win 

the competition, as indicated by the prediction interval of maximum logical size at 115, that 

is the interval (0,2). This clearly makes the TER prediction interval useless as a predictor 

for this testing site at <15, but not misleading. Panels e — h show that auxiliary information 

improves the qualitative performance of both the direct and TER methods. Prediction intervals 

are incorrect for both methods at intermediate times, but are broader for the TER method 

which gives a more accurate indication of predictive uncertainty. To see more clearly that the 

auxiliary information was helpful for the TER method at A = (0.0069, 0.0108), in Figure 2.11 

are plotted the prediction summaries shown in Figure 2.10 along with the R = 19 simulations. 

When no auxiliary information has been used, about half of the simulations tend to choose the 

first species as a winner, while the other half tends to choose the second species. Adding the 

auxiliary information greatly improves the predictions in the sense that all simulations choose 

the correct winning species. 

2.6 Conclusion 

This study showed evidence that code information can be used to improve the fidelity 

of statistical predictions of model output. The example presented in this study illustrates 

a methodology exploiting code information that could be useful in situations involving slow-

running finite difference codes. This example is simple and has pedagogical value in the sense 

that it has properties, such as nonlinearity, underlying more complex models, although it is not 

demanding in terms of computational resources. The fine grid numerical solution takes only 

about 2 seconds per run in MATLAB on a 1GB RAM, 400MHz 64-bit processor workstation. 

The TER (AI) method with R = 19 takes about the same time as a numerical solution on a 
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grid with intervals of size h c j 4 .  The RMSE measures for a numerical solution computed on a 

grid of this size, and restricted to grid of size hc for comparison, are RMSE(Ari)=0.0456 and 

RMSE (iV2)=0.0458 which are comparable to those of the TER (AI) method. Additionally, 

the statistical methods provide prediction bounds, which are especially accurate for the TER 

method. In general, the accuracy of the TER method and the computational resources that 

it requires depend on the particular problem studied. While this chapter focused primarily on 

introducing a statistical method (TER), the next chapter will present a more computationally 

demanding example where all the statistical simulators are more accurate than numerical 

solutions requiring comparable computational resources. 
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Figure 2.10 Prediction and true values at testing site A=(0.0069,0.0108) 
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Figure 2.11 Simulations and true values at testing site A=(0.0069,0.0108) 
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CHAPTER 3. STATISTICAL ANALYSIS OF COMPUTER 

EXPERIMENTS FOR FINITE DIFFERENCE CODES: LARGE 

TEMPORAL DIMENSION 

Dorin Drignei and Max D. Morris 

3.1 Introduction 

In chapter 2 we analyzed statistically a computer experiment of a finite difference solver of 

differential equations. We suggested methods for constructing statistical predictors as surro­

gates for output of the code at a fine resolution. These methods involve multivariate output 

and can be considered, in some sense, generalizations of the univariate output methods pre­

sented in Sacks et al. (1989) and Currin et al. (1991). The first method was a direct extension 

of the existing methodology. In a demonstration exercise this method was not especially suc­

cessful in representing important details of the mathematical model (section 2.3.1), but it 

improved when intermediary grid resolution numerical solutions were used as auxiliary infor­

mation in regression type models (section 2.4). We then suggested a second method that 

exploits computer code information derived from numerical local truncation errors (section 

2.3.2) and demonstrated that the resulting statistical predictions can be more accurate surro­

gates in the exercise. When this method is used, the fine grid output data is saved on a coarser 

grid with increments small enough for the statistical method based on local truncation errors 

to work. The output data set is saved and analyzed without significant computational effort 

because the resulting coarse grid set of points is relatively small. While this approach could be 

used for a wide class of differential equations models, there are cases where it is not applicable 

because even a coarse grid, in order to be reliable for our purposes, must have increments that 
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are small relative to the total time interval of the simulation . This results in a large set. of 

coarse grid points, and saving and manipulating such large amounts of output data becomes 

a problem. The climate models are important examples for which this situation may occur. 

This chapter will discuss the limitations of the methods proposed in chapter 2 and suggest 

alternative ways to analyze such large data sets. Here we deal with a computer experiment 

of a finite difference code solver of a partial differential equation (PDE) system, in a situation 

where the output data set has a large temporal dimension, e.g. a long simulation interval 

relative to characteristic dynamics of the modeled system. We shall modify the two methods 

presented in chapter 2 so that these data will be analyzed in two stages and only a fraction 

of them will be saved, at a small number of time points dividing the temporal space into 

intervals of equal length. The first stage in both methods proposes analyzing these data by 

conventional methods developed for the statistical analysis of computer experiments. The 

second stage in the first method consists of modeling the output data at the intermediary time 

points by discrete-time Brownian bridge (DBB) processes, which are autoregressive processes 

constrained to pass through the data saved at the equally spaced time points above. This is 

a fast method but the predictor has the shape of a linear interpolator and is therefore not 

of high quality. To overcome this weakness, the second stage in the second method consists 

of modeling the numerical local truncation errors at the intermediary time points by DBB 

processes. This method is slower, but the predictors of the numerical solutions are more 

curvilinear and of higher quality. Intermediate grid resolution output data can be used as 

auxiliary information for both methods. This option, however, adds a non-negligible amount of 

computational effort into the statistical prediction scheme. We will show that all the statistical 

predictors presented for this example are more accurate than the numerical solutions requiring 

comparable computational time. 

3.2 Output data 

To demonstrate methods, we shall use output data from a numerical solver of PDEs de­

scribing a two-dimensional model of a thin fluid layer such as shallow water. These equations 
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are (Gill 1982, but also Jiang et al. 1995, Poje et al. 1996, Jones et al. 1997): 

(3-la) # + + = 0 

(3.1b) ^ ^ + (y-, + + F" 

(3.1c) # + + "% = -9# - (/o + 

A brief discussion of (3.1) will follow in order to describe the data and the experimental space. 

The system of PDEs (3.1) has been used to describe the large scale motions of the oceans 

surface. According to Jiang et al. (1995), in this model it is assumed that a dynamically 

active and thin upper layer of water with density p lies above an infinitely deep and motion­

less layer with a different density. Here, h(x,y,t) is the elevation above the bottom of the 

u p p e r  l a y e r  o f  a  p o i n t  s i t u a t e d  a t  t h e  s u r f a c e  o f  t h e  w a t e r  w i t h  h o r i z o n t a l  c o o r d i n a t e s  ( x ,  y )  

at time t. The vector (u(x,y,t),v(x,y,t)) is the velocity of this surficial point along the two 

horizontal dimensions. Equation (3.1a) describes mass conservation, and is a statement about 

the mass remaining constant in a unit volume of a moving fluid. Equations (3.1b) and (3.1c) 

need to be considered together and represent momentum conservation. Essentially they state 

that the acceleration of a moving particle is the sum of forces acting per unit mass. Indeed, if 

w — (u, v), the left part of (3.1b-c) is the acceleration, the time derivative of velocity, obtained 

by the chain rule of calculus: 

d  d u  d t  d u d x  d u d y  d u  d u  d u  . d u  d u  d u  d v  d v  d v ,  
a = â y =  W d i + a i é i + ë i d i  =  *+31"+%"= 

The right hand side of (3.1b-c) is the sum of the acting vector forces such as the pressure 

<  d h  d h  >  
<  d x  '  d y  >  force H), the Coriolis force ((/0 + / 3 y ) v ,  - ( / 0  +  / 3 y ) u )  resulted from the Earth's daily 

spinning, the fluid viscous force v V 2 ( u ,  v )  =  zv(|^j + + § p - )  and the wind forcing 

( F U , F V )  with F v  = 0 and F u { y )  —  —  j j ^ c o s ( 2 i t y )  *  (1 -  4 a ( y  - .5)), where y  is the latitude 

coordinate normalized to the interval [0,1]. These forces are discussed in more detail by A pel 

(1987). The functional form of the wind forcing is similar to that used by McCalpin (1995) 

who introduced an asymmetry factor in the expression of the sinusoidal shaped wind forcing 

appearing in other papers such as Jiang et al. (1995) and Jones et al. (1997). The forces 

presented above depend on parameters of which some are known accurately and others are 

known only to be within some ranges. Jiang et al. (1995), Jones et al. (1997) among others 
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list the known parameters and conduct numerical studies aimed at clarifying the dependence of 

the PDE solutions on the less well-known parameters. These studies included visual, informal 

inspection of the output data for various parameter configurations. For example, Jiang et al. 

(1995) were interested in whether the plots reveal time periodicity of the numerical solutions, 

whether the contour plots of the function h at various time points are symmetric, etc. For 

the purpose of this chapter we shall consider that all parameters are accurately known except 

for three: u the fluid viscosity, r the wind stress and a the wind asymmetry. In order for 

the system (3.1) to have a unique solution (h, u, v) one needs to specify initial and boundary 

conditions. The PDE system (3.1) is intended to describe the surface motion of a mid-latitude 

ocean such as the North Atlantic and it is specified on a rectangular space domain fi=900 

km x 1,800 km. This system is written in Cartesian coordinates here, although it can also 

be written in spherical coordinates which is a more realistic but more complicated form. At 

t h e  i n i t i a l  t i m e  t  =  0  t h e  f l u i d  i s  c o n s i d e r e d  a t  r e s t ,  t h a t  i s  u ( x ,  y )  =  0  f o r  a n y  ( x ,  y )  i n  Q .  

The water surface has elevation h{x,y) = h0 = constant at t = 0 for any (a:,y) in fi. For 

the boundary conditions, the water is considered at rest on the boundary of Q and the water 

surface has elevation h — ho on the boundary of at any time t. The initial elevation has 

been set at ho = 500 m, as in Jiang et al. (1995). The PDE system (3.1) runs on a finite 

time interval [0, T], In fact, physically realistic solutions are considered only on an interval 

[To,T], To > 0, since the model undergoes a spin-up (or burn-in) period [0, To]. Depending on 

applications, To could be months or years and T could be years, decades or even centuries (on 

high-performance computers). Due to limited computational resources, here we shall consider 

approximately To=0.5 years and T=1.5 years. 

The PDE system (3.1) is nonlinear and must be solved numerically since, in general, no 

analytical solution is available. One common approach is to approximate the continuous time 

PDE solutions on a discrete grid embedded in [To, T] x $7, by approximating the derivatives 

appearing in (3.1) with scaled finite differences. Since there is no unique way to approximate 

these derivatives, there is a variety of finite difference schemes for the same problem. Here we 

have chosen a finite difference scheme described in Poje et al. (1996) in which derivatives are 
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approximated over three contiguous time values: 

(3.2a) = + 

(3.2b) 2%''' = + + + + + ̂  
n+1 n-1 , n. ^VV?., \ ^yh™ / 5? <5? 

(3-2c) 2At''1' - - ( u i , j ~ î É £ ~  +  ̂ "2^") ~  -  (/o +  P y j ) u i , j  +  +  Â ^ ) y t \ r  

Notation used in these equations is defined as 

h i , j  —  h i + i , j + i + h i + i j - h i j + i - h i } j , u ™ j  —  2  ! J  1  '  v ? > i  ~  g  '  ~  u " + i j - u " - i , r  

<**<; ~ M"+i,j - 2u"j + ui-i,j^yulj ~ ui,j+1 - - MiJ+i ~ 2u^' + uL-v 

The approximation scheme (3.2) can be rewritten as: 

(3.3a) /#' = + 2A,[-(^, + 

(3.3b) uï+x = ul~1+2At[-(ulj^^-+v-lj^^-)-g-§^-+(fo+Py:j)vlj+v'{-^2+-^2)ulj+F^j} 

(3.3c) - I/o + 

The scheme (3.3) iteratively computes the approximate solutions starting with the initial values 

and inherently introduces an approximation error at each time step. For this error to be small 

enough to prevent unacceptable accumulation, the increments At, Ax and Ay, which appear 

in the approximation of derivatives, need to be small. From the papers mentioned above 

a n d  f r o m  o u r  o w n  a s s e s s m e n t  i t  a p p e a r s  t h a t  t r i p l e t s  o f  g r i d  s i z e s  s u c h  a s  ( A t ,  A x ,  A y )  —  

(20min, 20km, 20km) yield good numerical solutions. In fact, in our analyses we shall consider 

a wider range of grid size triplets, as will be described below. Similar wide ranges of grid size 

triplets have been considered in Poje et al. (1996) and Jones et al. (1997) in their studies. It 

is important to point out that the finer the grid, the more accurate the numerical solutions 

but also the more computationally intensive the solution will be. 

Next we introduce the notion of numerical local truncation errors which will play an impor­

tant role in the development of the statistical methodology. Let (Atc, Axc, Ayc) be a triplet 

g r i d  s i z e  a n d  ( A t i ,  A x i , A y i )  b e  a n o t h e r ,  f i n e r  t r i p l e t  g r i d  s i z e .  H e r e  w e  r e q u i r e  A t i  =  2 ~ k l  A t c ,  

Ax\ = 2~k2Axo, A?/i = 2~ksAyc for some non-negative integers &i, &2, &3 (at least one must 

be positive) so that the points on the original coarse grid form a subset of those on any finer 

grid. If h, u and v are the solution of (3.3) with (At, Ax, Ay) — (Ati, Axi, Ayi) and i,j, n are 

indices corresponding to the coarser grid then 
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(3.4a) £(/!)»"' = - {ft"J1 + 2A,,[-(^§& + &§£t>]} 

(3.4b) £(.)?"' = <+' - «J' + 2Aic[-«,.^ + + I/o + *,)«& + 

"<2^? + + Fij]} 

(3.4c) E(v)--1 = „»t'_Kj>+2Att[-(^gi + <i^)-!,g|-(/0+/3w)^+„(3|I + 

are the numerical local truncation errors. Thus, they are obtained by introducing a fine grid 

numerical solution into a coarser finite difference scheme. Chapter 2 provided more details 

on these quantities which are in some respects analogous to residuals in a statistical analy­

sis. We shall use them in the next sections to introduce statistical models incorporating code 

information. 

We now turn to discussing the form of the data used in the statistical analyses. The goal 

of this chapter is to conduct and analyze statistically a computer experiment on the effects of 

the three unknown parameters u, r and a, gathered in a vector 7 = (y, r, a). The experiment 

consists of selecting a small number of three dimensional parameter vectors and computing the 

corresponding fine grid numerical solution using system (3.3). Using these calculated values as 

data, the analysis will produce statistical predictors of fine grid numerical solutions at untried 

parameter vectors. The design region and the ranges of parameters considered are plotted in 

Figure 3.1. The ranges of these parameters are chosen so that the solutions are numerically 

stable (given the grid size triplets considered) and physically realistic. A number D = 20 

of parameter vectors 7 were selected according to a maximin latin hypercube design (LHD) 

within a list of 1,000,000 randomly generated LHDs. This selected set of points provides good 

coverage of the design region. This design is probably not the globally optimum design within 

the set of all possible LHDs, however our emphasis here is on analysis rather than experimental 

design. To see qualitatively how much the behavior of this model varies over the design region, 

we plotted in Figure 3.2 contour plots of finite difference h, u and v solutions at the end of 

the experimental time for parameters situated in the corners of the box denoted 'A' and 'B' in 

Figure 3.1. There are substantial qualitative differences between these solutions, ranging from 

almost symmetric (corner 'B') to asymmetric, spatially complex dynamics (corner 'A'). The 
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Figure 3.1 Design and testing sites used in the computational experiment 
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grid on which computed output data will be saved is ( A t c ,  A x c ,  A y c )  =  ( 5 0 m i n ,  9 0 k m ,  9 0 k m ) .  

We found by trial and error that numerical solutions corresponding to a grid coarser than this 

are unbounded, numerically unstable for the PDE parameters considered here. The instability 

is usually associated with explicit schemes in time, where the solution values at a time step 

are calculated directly from the values at previous time steps. Scheme (3.2) is an example of 

an explicit scheme. There are also implicit schemes, where the computation of the solution 

value at a time step requires solving a set of simultaneous equations. The explicit schemes are 

easier to implement than the implicit ones, but the implicit schemes usually are stable for any 

grid increments. We did not investigate the later type of schemes here. While the numerical 

solutions generated by the (Atc, Axc, Ayc) grid size triplet appear to be numerically stable 

and have the expected qualitative properties on the time interval considered, more accurate 

solutions will be computed at the D = 20 parameter values using the fine grid solver with 

(At,f, Axf, Ayj) = (12.5mm, 15km, 15km). Then only the subset of fine grid output data 

corresponding to the coarser grid of size (Atc, Axc, Ayc) is retained in the analysis. This will 

generate a four-dimensional array of data of size (_/Vq + 2) X Ng X NQ xD — 10, 003 X 10 X 20 X 20 

which, even though it is the coarse grid, still requires approximately 350MB computer memory. 

The size of this data set makes it difficult to save and manipulate all the values. Since 

specifying a general global covariance model for these data is practically impossible because of 

the large time dimension, we will suggest two-step methods to handle these large data sets. We 

shall take advantage of the fact that each of the Nfi X Nq X D time series of length + 2 is very 

smooth and therefore locally approximately linear. More precisely, we break the above four-

dimensional array of data into m smaller arrays of size Nm X N§ X Nq X D, with Nm = [A^/m] 

the largest integer smaller than N^/m, so that each of the m X N§ X Nq X D time series of 

length Nm is approximately linear. Informal inspection of several time series suggests that m 

could be about 8 or larger in our study. We shall take m = 8 which implies Nm = 1,250. 

The methods we introduce in sections 3.3 and 3.4 require saving only a small portion of the 

complete data set. Specifically we define a relatively small subset A of time index values, and 

will need to retain the entire output array at only these times for each run, resulting in a data 
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array of size 1 ( A )  X N §  X N q X D  where I  is the size of A. The method presented in section 3.3 

requires A = Ai = {1, Nm + 1,2Nm + 1,..., mNm + 1} of size m + 1 and the method presented 

i n  s e c t i o n  3 . 4  r e q u i r e s  A  =  A 2  =  { 1 ,  2 ,  3 ,  N m  +  1 ,  N m  +  2 ,  N m  +  3 ,  2 N m  +  l , 2 N m  +  2 ,  2 N m  +  

3,..., mNm + l, mNm + 2, mNm + 3} of size 3(m +1). The first step in each method is to specify 

a statistical model for data at these end points. In the second step, conditional on the data at 

the end points, very simple statistical models for the output data at other time points will be 

suggested. However, the two methods differ in that the statistical model developed in section 

3.3 is applied directly to model output, while that in section 3.4 is applied to the numerical 

local truncation errors and, as a result, better mimics the dynamics of the system. 

Optionally, one can use output data at an intermediate level of accuracy as auxiliary 

information in regression-type models. Let (Ati, Ax,-, Ay,-) = (50min, 45km, 45km) be an 

intermediate grid size triplet and the corresponding output data equally spatio-temporally 

sampled at the coarse grid of size (Atc, Axc, Ayc). Notice that this intermediary grid is finer 

that the coarse grid because, although the time points of the two grids coincide, the spatial 

points of the intermediary grid include as a subset the spatial points of the coarse grid. As 

above, one can break this new four-dimensional array of coarser output data into m sub-arrays 

and save the end points. Also, one can use formula (3.4) to obtain coarser grid numerical local 

truncation errors. In section 3.5 we shall develop regression-like models using these coarser 

data as an explanatory variable. 

We close this section with a remark about choosing the coarse grid. From our empirical 

a s s e s s m e n t  f o r  t h i s  e x a m p l e ,  a  c o a r s e r  g r i d  w i t h  i n c r e m e n t s  l a r g e r  t h a n  ( A t c ,  A x c ,  A y c )  =  

(50min, 90km, 90km) leads to an unbounded accumulation of the statistical predictions of the 

numerical solutions, given the chosen experimental region of the inputs. Therefore a coarser 

grid would be useless from the standpoint of statistical prediction method involving numerical 

local truncation errors. Unfortunately, we do not have a clear rule for choosing such a working 

coarse grid with maximal increments. As a rule of thumb, the coarsest grid for which a bounded 

numerical solution is obtained can be used as a starting grid. This information is available from 

theoretical considerations in some situations or empirical assessments, as it was the case in this 
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example where the grid (At c ,  A x c ,  Ayc) = (50mm, 90Arm, 9 0 k m )  was the coarsest grid that we 

found to provide a valid, bounded numerical solution over the entire simulation time interval. 

If this grid is too coarse and the statistical predictions of numerical local truncation errors 

accumulate unboundedly, then one should refine gradually the coarse grid until acceptable 

grid increments are found. For the example presented here no refinement of the above coarse 

grid was necessary. We should caution at this point that it is possible for other numerical 

schemes to allow choosing a coarser grid (e.g. implicit methods). However, if the application 

requires, maybe it is better not to work with the coarsest grid allowed by the numerical scheme. 

As we pointed out earlier, Jiang et al. (1995), among others, conducted numerical experiments 

to study the dependence of the solutions on the unknown parameters. Some of the features 

studied, such as the symmetry and periodicity of the solutions, are not visible unless the set of 

output data used in such studies is reasonably large. Hypothetically speaking, had we choose 

a numerical method that allows working with only, say, a 4 X 8 spatial grid instead of a 10 x 20 

spatial grid, we probably wouldn't be able to see as clearly the two spatial gyres appearing in 

the contour plot of function h in Figure 3.2. Then we would be required to choose a larger set 

of spatial grid points to meet the goals of the study, even if the numerical scheme allows us to 

work with a very coarse grid. 

3.3 Direct approach to statistical modeling of the numerical solutions 

This method is based on a two-step strategy. The first step is to model the sampled 

/(Ai) x x NQ x D array of numerical solution data. Then a DBB model conditioned on 

values at times in Ai will be used to simulate data at the rest of the time points. 

3.3.1 Modeling the /(Aj) x N§ x NQ X D  array of numerical solution data 

Let Yjjj denote generically any of the fine grid output data or u-j at time £ 6 1 : Aro, 

spatial indices i  G 1 : NQ,  j  G 1 : NQ and design site 7 G 1 : D .  Here, for example, 1 : NQ 

denotes the set {1,2,..., NQ - 1, NQ} of size NQ = 10,001. Let {tk}k=i,...,m+i be the subset of 

time indices t that belong to A%. Then • is the data saved at the Ax x (1 : ) x (1 : 
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N q ) x (1 : D )  sub-array of indices. Note, however, that only the time index has changed in 

this sub-array of indices. Statistical models of the same form will be used for the h, u and 

v output data, however they will be modeled separately of each other. We shall model this 

to have different values for h ,  u  or v .  Due to the rectangular structure of the data array, it is 

natural to model the correlation matrix of the normal distribution as a Kronecker product of 

correlations corresponding to time, space and inputs. However, because this would require a 

great computational effort (there are two spatial dimensions in addition to the time and inputs 

dimensions considered in the example of chapter 2), the approach we have chosen is to assume 

that the elements of array Y are spatially uncorrelated. To account for spatial non-homogeneity 

a location-dependent mean is assumed. Thus, if Y^j is the (m + 1) X D array of data Y^k- • in 

v e c t o r  f o r m a t  a t  l o c a t i o n  ( i , j ) ,  t h e n  Y t - j  i s  m o d e l e d  a s  w i t h  =  C 7 i 7  ®  C t  

the correlation matrix not dependent on spatial locations. It is assumed that C^(%-, %) = 

exp[ ~ 6 r ( t j  -  t T - ) 2  -  6 a { t f  -  t ° ) 2  -  # „ ( ^  -  t j ) 2 ]  with i , j  =  1 , . . . ,  D  and t T , t a , t 1 '  the linearly 

transformed coordinates of the PDE parameters to [0,1], and Ct(si,sj) = exp[—0t(s,- - Sj)2] 

w i t h  i , j  =  1 , . . . ,  m  +  1  a n d  s  t h e  v e c t o r  o f  m  +  1  e q u a l l y  s p a c e d  p o i n t s  d i v i d i n g  [ 0 , 1 ]  i n t o  m  

subintervals. These correlations generate infinitely differentiable trajectories and their choice 

is based on out knowledge of the smoothness of the exact solutions of the PDEs and their 

and smooth dependence of the system on the parameters involved. A similar statistical model, 

consisting in different means and a common covariance matrix has been also considered by 

Mitchell and Morris (1992) for a compression molding code. The likelihood can be written as 

In the computational implementation, the formula T7 ^ — C ^ 0 CT 
1 has been used to avoid 

numerical instabilities. The statistical parameters are obtained by likelihood maximization. 
l'p-i y  

The means and variance estimators are j and 

subset of data Y^j as a realization of a Gaussian process allowing the statistical parameters 

L ( 8 T , 6 u , 0 a , 0 t ,  < T  ;  Y )  —  

D m N Z N n  
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The MLEs of 9 are obtained iteratively by minimizing 

-2Iog(£) «X log(<r2) + + l°s(d^Cg)). 

The estimates of #'s and a are: [0T, 8a, 6„, 8t, â]h = [0.5483,0.0263,1.1559, 2.1229,5.3990] 

for the h data, [8T,6a,êv,êt,â]u = [0.8045,0.0551,2.1459,2.8327,0.0185] for the u data and 

[Ôr, 8a, K, 0t, à]v = [0.8534,0.0358,1.5159,4.3171,0.0142] for the v data. 

3.3.2 Modeling the output data at other time points 

In section 3.3.1 we presented a model for only a fraction of the output data. This smaller 

amount of data corresponds to time points at the ends of intervals over which the output time 

series were considered to be approximately linear. The remaining data in each output time se­

ries will be modeled as discrete-time Brownian bridge (DBB) stochastic processes, constrained 

to pass through the small subset of points considered in section 3.3.1. For simplicity, the time 

series modeled as DBBs will be considered independent conditionally on their end points. The 

Appendix B contains a derivation for the DBB constrained to pass through two prescribed 

end points. The iterative relationship between elements in such a time series is simple, making 

it very easy to simulate realizations. In Figure 3.3 are plotted ten simulations from such an 

DBB process. It will also be proved that the marginal expectations of the DBB lie on the 

straight line connecting the two end points and that the marginal variances are quadratic in 

time, being zero at the extremes and attaining their maximum in the middle. The simulations 

appear to confirm these theoretical findings. Therefore, an important underlying assumption 

is that each complete output time series is approximately locally linear and its subsample of 

size m + 1, if linearly interpolated, is a good approximation of the complete time series itself. 

Let y^- denote YL with k = 1,..., m, and t an integer between and 4+i- To recapitulate 

the notation used in this section, the data Y^j has been partitioned in two sub-sets: Y^* • 

represents the data Y*,• . at time indices in A%, whereas Yj'f, denotes Yj-, at the rest of time N(W ' FITIJ 1 1L1J 

indices, with t  belonging to the k t h  time interval (4, t k + i )  among the m  intervals. An estimate 

of the DBB variance based on the pooled Y^ • time series, under the assumption that these 

pooled time series are independent conditional on their end points Y*\ -, is 



56 

100 200 300 400 500 600 700 800 900 1000 

Figure 3.3 Ten simulated realizations of a DBB 
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p,2 _ 1 . y f 1 Y^jVm~1rjVm~t+1 n/<+1'fc i y4+1 N„-t y t , k  \2-i-) rp i  
" D B B  D m N g N *  , j , k  <• 7Vm-l ^t=l L iVm-t ' 1,iJ A'm-i+1 A/m-<+l J/- lne 

results are: [«tdb^/i); ̂ DBB{U) ' I  &DBB{V ) ]  — [0.10514; 0.00057; 0.00061] X 10-3. Here NM = 

1,250. It is important to notice that this estimator involves all the output data - , but the 

required sums can be accumulated as the numerical solution is computed, at little additional 

cost in memory or arithmetic, and in particular does not require storage of the complete out­

put. The DBB process requires estimating only one parameter, the variance, and its simplicity 

is particularly useful here. 

As a postscript, we note that the success of this approach depends on the local linearity 

of the time series, and that an interpolated model of the data at Aj explains most of the 

variability in the entire data set. to illustrate this, we observe that treating the pooled time 

series j as traditional autoregression processes in t (that is, unconditional on the end points) 

for the purpose of estimating the pooled noise variance results in an over-estimate because the 

constraints specific to DBB are not taken into account. Indeed, had these time series been 

treated as usual autoregressions, unconditional on their end points, the results would be: 

[^AR{h)'i ^ar{u); ctar(u)] = [0.72998; 0.00344; 0.00317] x 10-3, which are considerably larger 

than the conditional variance estimates reported above. 

3.3.3 Prediction at a new site 70 

The two steps below summarize the prediction of the complete output time series at a new 

testing site. 

3.3.3.1 Simulation from the posterior distribution 

The posterior distribution at the new site based on the model in section 3.3.1 will be used 

t o  obtain predicted values at time points in A% and at each location (i,j). For example, if m=8 

and the output data correspond to h, these are in fact the predicted values for {h\k-\tk G Ai} 

at 70, with Ai = {1,1251, 2501, 3751,5001,6251, 7501,8751,10001}. The mean vector of this 

posterior distribution is 

M,'., = ̂ Jl + - w,jl) = + [(C,,^ ® Q) * (C-^ 8 c,-i)](y^ - = 
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A'ijjH" [(^70,7^7,7) ® ̂ m + l](l-4',j f J ' i , j l ) i  

where 7m+1 is the identity matrix. The square root (Choleski) of the posterior covariance 

matrix, which will be used in the actual simulation, is 

j] = * cnoi(Q). 

We shall obtain R  simulations from this posterior distribution, where the statistical parameters 

will be replaced by their estimates. 

3.3.3.2 DBB simulation 

Next we shall "connect" the above predicted values through DBBs to obtain predicted 

values at intermediate time points. Consider, for a simpler explanation, that the function of 

interest is again h and m = 8. Let h\ - (r) be the rth simulated value for h\ - and h}2^l(r) be 

the rth simulated value for h}2^1. Simulated values at time points between I and 1251 will 

be obtained from a simulated DBB of standard deviations as estimated in section 3.3.2 and 

constrained to pass through these two simulated values. One conditional simulation is executed 

corresponding to each unconditional simulation in step 3.3.3.1. Thus, R simulations for the 

first temporal segment among m segments of the output time series at location (i, j) have been 

completed. The rest of m — 1 segments are completed similarly. Simulation summaries such as 

median and percentile-based prediction intervals will be reported at each of the NQ = 10001 

time points and each spatial location (i,j). It is important to notice that there are two distinct 

sources of uncertainty here: one that corresponds to the model described in section 3.3.3.1 and 

the second that comes from the model described in section 3.3.3.2. The simulation method 

presented provides a way to simultaneously handle both sources of uncertainty. 

3.4 A statistical model incorporating code information 

In this section we shall use a model similar to the one presented section 3.3.1 as a starting 

point and successively add information extracted from the finite difference code. The intent is 

to correct for the linear approximation in a meaningful, more dynamically correct way. 
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3.4.1 Modeling the /(A2) X N q X N q X D  array of numerical solution data 

As in section 3.3.1 we first model a subset of the output data. Here, groups of three tem­

porally consecutive data are sampled, as opposed to section 3.3.1 where each group consisted 

of data at only one time point. Again let Y^j denote genetically any of the fine grid output 

data h, u or v at design site 7, with (tk,i,j, 7) in the A% X (1 : N§) X (1 : NQ) X (1 : D) array 

of indices. The reason for sampling groups of three temporally consecutive data is that each 

such group allows calculation of numerical local truncation errors at one time point, accord­

ing to the relationship (3.4). We shall again model Y^j-, , with 4 in A2, using a Gaussian 

process. If Yjj is the (m + 1) X D array of data Y^j in vector format at location 

then Yj j is modeled as N(FIIJL,A2TLTL), with r7)7 = Cin <g> Ct, where Cin is defined as in 

section 3.3.1 and Ct corresponds to A2 (independence among spatial locations is assumed). 

The formulae for the MLEs of //,-j and a2 are similar to those presented in section 3.3.1 and 

the MLEs of the parameters 6 associated with the covariance matrix are obtained numerically. 

These MLEs for 0's and <r's are: [êT,êa,9v,9uô]h = [0.5488, 0.0290,1.2233, 2.9983,2.7707] 

for the h data, [6T, 8a,èu, Ôt, â]u = [0.7482, 0.0441,2.4283,3.7532,0.0118] for the u data and 

[0T,da, 9V, 6t, cr]v = [0.7502, 0.0286,1.6999,5.3258, 0.0101] for the v data. In this section Ct has 

d i m e n s i o n  3 ( m  +  1 )  s i n c e  m o r e  t i m e  p o i n t s  h a v e  b e e n  s a m p l e d .  W e  s h o u l d  c a u t i o n  t h a t  a s  m  

increases there is a possibility that Ct will become numerically unstable. This instability is due 

to an increase in the the dimension of Ct as well as to large correlations within groups of three 

consecutive time points. Since the distance between the time points within each cluster of 3 is 

so small and Ct is based on the distance between these time points, the rows (or columns) of 

Ct corresponding to the clustered points are almost equal, which contributes to its numerical 

instability. Should this situation occur the effects of numerical instability may be minimized by 

writing Ct as yet another Kronecker product Ct — Cta®Cth where Ct„ has dimension m +1 and 

Ctb has dimension 3. Ctb is the "within-groups" correlation matrix and Cta is the "between-

groups" correlation matrix. This, however, adds a new factor in the Kronecker product of the 

overall correlation matrix and adds somewhat to the time required by our implementation of 

the likelihood maximization algorithm because the Kronecker function "kron" in MATLAB is 
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called one more time at each iteration in the optimization process. 

3.4.2 Modeling the intermediary numerical local truncation error data 

In section 3.3.2 it was shown that along with the numerical solutions one can obtain also the 

numerical local truncation errors E. Here we shall assume that the numerical truncation error 

time series are approximately locally linear and can be modeled within relatively short intervals 

as DBBs just as the numerical solutions were modeled in section 3.3.2. Thus, it will be assumed 

that a complete fine grid approximate local truncation error time series of length NQ = 10001 

can be partitioned in m subsampled time series which are approximately linear. As was the 

case in modeling output directly, informal inspection of several such numerical local truncation 

error time series reveals that m — 8 would be a good choice. An estimator of the DBB variance 

is similar to the one presented in section 3.3.2 with numerical truncation error data E instead 

o f  n u m e r i c a l  s o l u t i o n  o u t p u t  d a t a  Y .  T h e  t h r e e  D B B  v a r i a n c e  e s t i m a t e s  c o r r e s p o n d i n g  t o  h ,  u  

and v are: VDBB{U)', <ÏDBB{V)] = [0.80005; 0.01166; 0.00971] x 10~3. These estimates 

are smaller than those in the previous section because for this example the numerical local 

truncation errors are smaller in absolute value than the numerical solutions. 

3.4.3 Prediction at a new site % 

The following three steps summarize the prediction at a new site. 

3.4.3.1 Simulation from the posterior distribution 

The model developed in section 3.4.1 will be used to obtain R  simulated output values at the 

3(m + l) time points indexed by A2. If m— 8 and the output data to be predicted is h, these are 

simulated values for {/&,•*• |4 G A2} at 70, with A2 = {1,2,3,1251,1252,1253,2501, 2502,2503,..., 

10001,10002,10003}. These simulated values will be obtained from the posterior distribution 

at the new testing site 70 of the model in section 3.4.1. This posterior distribution is mul­

tivariate normal of dimension 3(m + 1), with mean vector and covariance matrix similar to 

those presented in section 3.3.3.1 for modeling Y, with formulae modified to accommodate 
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time index values from A2 rather than Aj. 

3.4.3.2 Local numerical truncation error simulation 

Each simulated group of three consecutive output data will be used to obtain a simulated 

numerical local truncation error. Consider again the example m — 8. Let r = 1,..., R and 

be simulated values for (&L,%,%), be simu-

lated values for ( u } j ,  u f j ,  u f j )  and (r/j(r), v f j ( r ) ,  v f j ( r ) )  be simulated values for ( v - j ,  v f j ,  v f j ) ,  

respectively, obtained in section 3.4.3.1. For each r = 1these simulated values will be 

used in formula (3.4) to obtain R simulated local truncation errors for E(h)}j, E(u)jj and 

E(v)\y This process will be applied to obtain R simulated values for E(h)\j, E(u)\ j and 

E(v)\j, at all t in A%. Notice that output numerical solutions saved at time points in A2 in 

fact produce numerical truncation errors only at time points in A1; according to the relationship 

(3.4). 

3.4.3.3 DBB simulation 

Let E ( h ) j j ( r )  and E ( h ) j j S 1 ( r )  be simulated values for E ( h ) j j  and E ( h ) j j 51, with r = 

1,..., R. Simulated values for the local truncation errors at time points between 1 and 1251 will 

be obtained by simulating DBBs connecting these two simulated values and variance estimated 

is section 3.4.2. Therefore we have R simulated values for E(h)\ • at each spatial location 

with t between 1 and 1251. Similarly, R simulated values for each E(u)\^ and E(v)jj will be 

obtained at each spatial location (i,j) and t between 1 and 1251. Next, the relationship (3.4) 

w i l l  b e  u s e d  i t e r a t i v e l y  t o  o b t a i n  R  s i m u l a t e d  v a l u e s  f o r  t h e  n u m e r i c a l  s o l u t i o n s  h ,  u  a n d  v  

at time t + 1, given the simulated numerical local truncation errors at time t — 1 and the 

values of the numerical solutions at times t — 1 and t, with t between 2 and 1252. Thus, 

simulated outputs for the first temporal segment among the m is completed. It is important 

to notice that these simulated values for the numerical solutions obtained iteratively at the 

final time steps t = 1251, t = 1252 and t = 1253 will be different from the simulated values 

for the same output data obtained in section 3.4.3.1 above from the posterior distribution. 
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The later simulated values can be regarded as a version of those obtained in 3.4.3.1, updated 

with information about the dynamics of the PDE system provided by the finite difference code 

through the use of formula (3.4). These updated simulated values will replace those obtained in 

3.4.3.1 at time steps t = 1251, t = 1252 and t = 1253. This re-setting of simulated output helps 

prevent a faster accumulation of the errors when the iterative relationship (3.4) is used for the 

next temporal segments. To generate simulated values for the second temporal segment among 

the m, with t between 1254 and 2503, we use the updated simulated values for the numerical 

solutions in the relationship (3.4) in order to generate R updated simulated values for the local 

truncation errors E(h)jj51, E(u)}2j51 and E(v)j251. These, along with the R simulated values 

for i?(/i)|®01, E(u)^01 and E(v)2^1 obtained at step 3.4.3.2, will be used as end points in 

DBBs of variance estimated in section 3.4.2 to simulate values for the local truncation errors 

at time steps between 1251 and 2501. As above, these will be used in the relationship (3.4) to 

obtain iteratively R simulated values for the numerical solutions at time steps t between 1251 

and 2503. The R simulated values for the numerical solutions at time steps t = 2501, t = 2502 

and t = 2503 obtained as a result of this iteration will replace those obtained in section 3.4.3.1 

from the posterior distribution, and the outputs for the second temporal segment among the 

m is simulated. The rest of the simulated temporal segments will be obtained similarly. Thus, 

there will be R simulated numerical solutions generated at each of the NQ = 10001 time steps 

and each of the NQ X NQ = 11 X 21 spatial indices. Medians and percentile-based intervals will 

be reported to summarize the prediction. 

3.5 Coarse numerical solutions as auxiliary information 

In this section we shall present methods for using auxiliary information provided by coarser 

numerical solutions which are less expensive but not as accurate as a fine-grid numerical 

solution. This is similar, in some respects, to the method presented in Kennedy and O'Hagan 

(2000). However, here we look more closely at the output data generating mechanism and 

incorporate code information into our statistical method (section 3.5.2). 
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3.5.1 The direct approach 

This method will follow closely the steps presented in section 3.3. Let • • denote gener-

ically any of the coarse grid (At\, Ax\, At/i) output data - or v\ - at design site 7 and 

X K̂
{ • be X sampled at the Ai X (1 : NQ) X (1 : NQ) X (1 : D) array of indices. Then the fine 

grid data F,j are modeled as N(P<-jl +njjXjj, a2^^), with T7i7 = CIN®CT. Here, Y-j and 

X,- J are the (to + 1) X D arrays of output data and X^^ respectively, in vector format 

at location (i, j). The MLEs for the regression parameters and the variance are 

(A?,,, À1,,) = ([i,i,j]T;.yi,iJ])-1([i,iJ]'r^y,J) 

and 

<5'2 = D m N x N y  53(^'J ~ ~  f * h  *  =^'j)'r2.l(—~ ~ ~  * ̂ , j ) -
0  0  i , j  

The MLEs of the parameters 0's are obtained by numerical maximization of the likelihood. 

We obtained = [0.5698,0.0339,1.3033,2.4214,3.5714], = 

[0.7819,0.0592,2.2296,3.0891,0.0149], [Ô?, ^]^ = [0.9251,0.0430,1.5846,4.3096,0.0104]. 

The correlation matrices used are the same as in section 3.3. 

Next, simulated values for the fine grid numerical solutions at intermediate time points 

need to be obtained. One option is to regress the fine grid output data on the coarse grid 

output data and then model the residuals as DBBs. This approach, however, requires saving 

and manipulating the complete sets of fine and coarse grid output data in order to obtain 

regression coefficient estimates and residuals, which we try to avoid to minimize the requirement 

for computational resources. Instead, we model the difference between fine and coarse output 

data as DBBs. This approach does not require a great computational effort since the DBB 

variances can be estimated simultaneously with output data generation. These estimates are 

[^DBB(H)', Ô'DBBIU), PDBB{V)} = [0.12180; 0.00108; 0.00118] x 10-3. In contrast, we were able 

to model the fine grid output Y at time points in Ai by regression on the coarse grid output 

(as described at the beginning of this section 3.5.1) because this regression approach for the 

end points did not require a great computational effort. 

In order to predict at a new site 70 the coarse numerical solution will be generated first. 
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Denote by X** • the vector of coarse numerical solutions at time points in A%. Then R  

simulated values for the fine grid numerical solutions at time points in Ai will be obtained 

from the posterior distribution of mean vector 

M i , j  —  /Zijl+ /4j * 2 L y 0  , i , j  +  ®  -  /4i *  

where K . l 0 , i , j  is the vector of coarse output data at location ( i , j )  and new site 70. 

The posterior covariance matrix at the new site will have the same form as the one presented 

in section 3.3 since it is not influenced by the first order moment. A total of R simulations 

yVj(r) will be obtained from this posterior distribution. The prediction will be completed 

with the simulation of fine grid numerical solutions at the intermediate time points. For 

e x a m p l e ,  s i m u l a t i o n s  a t  t i m e s  t  b e t w e e n  1  a n d  1 2 5 1  w i l l  b e  o b t a i n e d  a s  a  s u m  b e t w e e n  X ^ Q < i j  

and simulations from DBBs of variance estimated above and end points Y * 1  •  A r )  — X * \ , , and yoIIIJ v ' yOi'tj 

^7o,ij'(r) — where t i  — 1 and t 2  = 1251. Medians and percentile-based intervals will be 

reported as prediction summaries. 

3.5.2 Method incorporating code information 

The auxiliary information provided by the coarse numerical solution can be used in an 

alternative way. If . and are the fine and coarse output data saved at the points 

A2 X (1 : N Q) X (1 : A^q) X (1 : D )  then Y _{J can be modeled as N ( f i < - j l  + f i j j X j j ,  <r2r7i7), 

with T7i7 = C7j7 ® Ct, with Ct of dimension 3(m + 1), and where y,j and X_i,j are the fine 

and coarse data in vector format at location (i,j). The MLEs for the parameters (/^j,/ze- •) 

and a2 are similar to those in section 3.5.1 and the correlation parameters 6 in the covari­

ance matrix will again be estimated by numerical maximization of the likelihood. These 

estimates are: [9r, 9a, 8U, 9t,a]h — [0.5258, 0.0350,1.2704,3.1578,2.2063] for the h output data, 

[êT,ëa,êv,dt,à]u — [0.7342, 0.0448,2.4591,4.1238, 0.0101] for the u output data and, finally, 

[§T,ffa, êt, o\v — [0.6402, 0.0328,1.5951,5.1747,0.0095] for the v output data. The difference 

of the fine and coarse grid numerical local truncation errors will be modeled locally as DBBs. 

The corresponding estimates are [ctobB(A); VDBB(U)] &DBB(V)] — [0.20208; 0.00101; 0.00131] X 

10~4. In order to predict at a new site 70 one must first obtain R simulated fine grid numerical 
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solutions at time points in A% from the posterior distribution based on the above multivari­

ate normal distribution. Each of these will be used to produce a single set of R simulated 

fine grid numerical local truncation errors E(h)\k-(r), E(u)tkj(r) and E(v)\k-(r) at time points 

tk in Ai by using the relationship (3.4). In the case m — 8, if e(/i),-j, e(u)-j, e(u)-j and 

e(h)l2j, e(u)l2j, e(v)l2j denote the coarse grid numerical local truncation errors at time points 

ti = 1 and t2 = 1251, then simulated values for the difference between fine and coarse grid 

numerical local truncation errors at time points t between and t2 will be obtained by using 

DBBs with fixed end points E(h)*j(r) - e(/i)|1
J- and E(A)^(r) - e(/i)-^-, E(u)j^(r) - e(u)j*j and 

E(u)lj(r) - e(u)lj, E(v)l^(r) - e(u)*j and E(v)t2-(r) - e(v)fj, respectively. Simulated values 

for the fine grid numerical local truncation errors at intermediate time points between t\ and 

t2 will be obtained by adding coarse grid numerical local truncation errors to these DBB sim­

ulations of differences. Now we are in the situation described in section 3.4. Simulated values 

for fine grid numerical solutions at intermediate time points will be obtained iteratively from 

the relationship (3.4), therefore simulating the first temporal segment among the TO. These 

simulated values for the fine grid numerical solutions at t2, t2 + l,t2 + 2 obtained iteratively 

will replace the former ones, obtained from the posterior distribution. The procedure will be 

repeated for all m temporal segments. Medians and percentile-based intervals will be reported 

as predictions. 

3.6 Results 

The methods presented in the previous sections will be tested by comparing the predictions 

against the fine grid numerical solutions at a set of P = 20 new testing sites which are 

plotted as open circles in Figure 3.1. These were obtained as a maximin LHD within a set of 

1,000,000 LHDs (the same process used in constructing the experimental design, section 3.2) 

and are considered representative for the rest of untested sites. In terms of computational 

t i m e ,  o n e  r u n  o f  f i n e  g r i d  n u m e r i c a l  s o l u t i o n  w i t h  ( A t ,  A x ,  A y )  =  ( 1 2 . 5 m m ,  1 5 k m ,  1 5 k m )  

takes about 100min on a 1GB RAM, 400MHz 64-bit processor workstation in MATLAB. The 

coarse grid solution corresponding to (Afi, Azi, Ayi) = (5QminA5km,A5km) which was used 
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as auxiliary information in section 3.5 takes about 5.5 min. The prediction with R  = 19 

for the Direct method of section 3.3 takes about 6.5min and the prediction method based 

on code information presented in section 3.4 takes about 11.5min per testing site, again with 

R — 19. The later method is slower because it requires the use of relationship (3.4) at each 

iteration. The computational time for the predictions of section 3.5 is approximately the 

sum of the computational times reported above. More precisely, the Direct method using 

auxiliary information takes about 5.5min + 6.5min = 12min per testing site, whereas the 

method based on local truncation errors using auxiliary information takes about 5.5min + 

11.5min = 17min per testing site. The predictions were also compared against a numerical 

solution of intermediate grid size triplet (At, Ax, Ay) = (25mm, 30km, 30km) taking about 

13.5 min, that is about 8 = 23 faster than the fine grid numerical solutions since its grid 

increments are twice as big in each direction. This computational time required to solve the 

problem on the intermediate size grid is comparable to that of the statistical predictions. 

The prediction accuracy measures considered here are the mean coverages (COVER) of 

the fine grid solution and an overall Euclidean distance between the fine grid solution and 

predicted values over the set of P = 20 testing sites. For example, to evaluate the measures 

for the function h, one possibility is to define this distance as the root mean square error 

does not account for the prediction error. Another measure is the statistical root mean square 

error 

where h \  - n o  ( r )  is the r t h  simulation of A* ; this measure does incorporate the prediction 

error. These measures were evaluated at only 1,001 equally spaced time points among the 

NT = 10, 001 due to computer memory limitations. However, since the time series are highly 

smooth one can consider that one output datum is representative for 10 other output data 

in its centered temporal neighborhood. Moreover, only R = 19 simulations were considered, 

where Â* - is the median among simulations at each point (i , j , t ,  70).  This measure, however, 
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again due to computational limitations. One can argue that this is a small number of sim­

ulations by statistical standards, but in some problems more simulations cannot be afforded. 

Because of these reasons perhaps one should regard the results presented in Table 3.1 with 

some reservations. However, it appears that some patterns in this table develop more clearly 

than others and these are that we want to emphasize. The extreme order statistics for the 

R = 19 simulations at each point will provide 90% prediction intervals. In Table 3.1, Direct 

(NAI) refers to the direct approach presented in section 3.3 where no auxiliary information 

provided by a coarse numerical solution has been used. TER (NAI) refers to the method pre­

sented in section 3.4 based on local truncation errors without using coarse numerical solutions 

as auxiliary information. Direct (AI) and TER (AI) refer to these two methods based on auxil­

iary information provided by a coarse numerical solution, which was the subject of section 3.5. 

The mean coverage provided by all methods seems to be reasonably close to the 90% target. 

When no auxiliary information (NAI) has been used, the SRMSEs are somewhat smaller 

for the TER method than for the Direct method. By these measures, the TER method seems 

to be better than the Direct method, although it costs more. The last two columns of Ta­

ble 3.1 show the results obtained when the coarse numerical solution with (Af,-, Az,-, Ay,) = 

(50mm, 45km, 45km) has been used as auxiliary information according to the method pre­

sented in section 3.5. The Direct method seems to perform better than the TER. Also, when 

compare the (AI) versus (NAI), the use of auxiliary information improved the accuracy mea­

sures for each method, the Direct and TER (except for the SRMSE of h in the TER case). 

Note however that the improvement seems to be more substantial in the case of the Direct 

method. 

To have a better understanding of these results, we calculated the discrepancy measure 

b etween the fine grid numerical solution and the intermediate resolution grid (Ati, Ax\, Ay/) = 

(25min, 30km, 30km) numerical solution. This measure is similar to the RMSE formula above, 

with the intermediate numerical solution replacing the medians. Notice that there is no noise 

associated with this intermediate numerical solution, and therefore the SRMSE measure has no 

meaning here. These are RMSE(h) = 1.8914, RMSE(u) = 0.0056 and RMSE(v) = 0.0045. 
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All the statistical methods described here provide predictions of much better accuracy than 

this intermediate grid numerical solution, at a comparable cost. 

We visually inspected several time series of numerical solutions and numerical local trun­

cation errors at different resolution levels for different design sites and noticed that the fine 

and coarse grid numerical solution time series are "more similar" (in a loose sense) than fine 

and coarse grid numerical local truncation error time series, which perhaps explains in part 

why the coarse grid output was more helpful as auxiliary information for the Direct than for 

the TER method. These results appear to be in some agreement with the findings in chapter 

2 where the addition of auxiliary information improved the Direct method far more than the 

TER method. However, it is not easy to directly compare the results presented in the two 

chapters because the nature of the two systems of differential equations is different: the system 

analyzed in chapter 2 has two steady states (winner and loser) for most of the input points, 

whereas the system of PDEs presented here does not have a similar property. 

Table 3.1 Coverage, RMSE and SRMSE measures 

h Direct (NAI) TER (NAI) Direct (AI) TER (AI) 

COVER 0.92893 0.90399 0.94403 0.94281 

RMSE 0.18833 0.18269 0.15654 0.17368 

SRMSE 0.24550 0.21005 0.19601 0.21642 

u Direct (NAI) TER (NAI) Direct (AI) TER (AI) 

COVER 0.95306 0.93782 0.95633 0.94210 

RMSE 0.00117 0.00122 0.00098 0.00107 

SRMSE 0.00153 0.00138 0.00127 0.00127 

V Direct (NAI) TER (NAI) Direct (AI) TER (AI) 

COVER 0.91189 0.92526 0.93668 0.95604 
RMSE 0.00080 0.00082 0.00066 0.00074 

SRMSE 0.00099 0.00095 0.00082 0.00095 

While Table 3.1 showed average results over the design space, it is also useful to look at 

predictions at particular testing sites. Figure 3.4 shows predictions for a testing site somewhere 

close to the center of the experimental region. More specifically, the parameters corresponding 

to this site are: the fluid viscosity v = 710.5, the wind stress r — 0.0421 and the wind 

asymmetry a = 0.026. For this site, we have chosen a separate spatial location for each 
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function h,u and v as follows: the grid point (i , j)  = (3,15) for h, (i , j) = (4,15) for u and 

(i,j) = (4,9) for v. Then the fine grid time series is plotted along with point predictors and 

90% prediction intervals corresponding to the Direct (NAI, AI) and TER (NAI, AI) methods. 

Also plotted is the intermediate resolution grid with Ax/ = 30km numerical solution (denoted 

'C30') at the same testing site and spatial locations. For the purpose of plotting only, the 

time series of length NT = 10, 001 were divided into 100 equally spaced intervals and only the 

101 end points of these intervals were retained. This has little effect on the appearance of the 

figure because the time series are quite smooth. Since the DBB is linear in the marginal means 

as shown in the Appendix B, the Direct (NAI) method prediction inherits this locally linear 

shape. The point predictors, however, are accompagnied by prediction intervals which provide 

coverage that is close to the nominal value as Table 3.1 shows. The predictions produced by 

the TER (NAI) method are qualitatively better since predictions of numerical local truncation 

errors that are locally linear will be transformed into curvilinearly shaped predictions for the 

numerical solutions by using the relationship (3.4). When auxiliary information (AI) has 

been used according to the method of section 3.5, the predictions provided by the Direct 

method are no longer piece-wise linear. Rather, these predictors borrow from the shape of 

the coarse numerical solutions used as auxiliary information. One can notice that all the 

statistical prediction time series are more accurate than the corresponding time series C30 of 

the intermediate resolution grid requiring comparable resources, which is in agreement with 

the overall RMSE results. 

3.7 Conclusion 

We presented methods of statistical analysis for multivariate computer output of finite 

difference solvers when the temporal dimension is large. The main challenge is the need to 

avoid saving and manipulating the resulting very large sets of output data. We suggested 

and demonstrated two-step methods that require saving only a small fraction of these data. 

All the statistical methods presented here result in more accurate predictions than a faster 

running finite difference solver using comparable resources. There are however noticeable 
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differences among these statistical methods for this example. When no auxiliary information 

has been used, the method based on direct analysis of the output is faster but less accurate 

than the method based on the analysis of the numerical local truncation errors. The statistical 

predictors using auxiliary information in regression type models are somewhat slower but more 

accurate than the statistical predictors that do not use auxiliary information. Overall, taking 

into account the computational resources used and the accuracy, the analysis suggests that 

the statistical method based on local truncation errors without auxiliary information and the 

statistical method using auxiliary information and analyzing the numerical solutions directly 

are better. However, the differences in performance between all these statistical methods 

are relatively small and results could be different for other computer models. One possible 

explanation why none of these statistical methods distinguishes itself in performance from the 

others is that this performance depends in large on the DBB processes since most of the output 

data is modeled by such a stochastic process. One way to reduce the influence of the DBB is 

to improve the local linearity assumption of the time series by increasing m, the number of 

approximately locally linear segments. However, this requires saving more output data and 

the prediction procedure associated with the TO-f 1 end points of DBBs will be slower. Another 

way to increase the performance of the statistical predictors, which we did not investigate here, 

would be to replace the DBBs with stochastic models that are smoother in time. However, such 

stochastic models need to be simple enough to simulate from and to allow obtaining parameter 

estimates simultaneously with the numerical solution. 
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Figure 3.4 Predicted and true h time series at spatial location 

(%J) = (3,15) 
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CHAPTER 4. TWO ADDITIONAL CASES OF MULTIVARIATE 

COMPUTER OUTPUT STATISTICAL ANALYSES: INTRODUCTORY 

IDEAS 

4.1 A statistical pilot study for characterizing the uncertainty in scaling 

AOGCM results 

There is a continuing scientific debate about the extent to which human activities influence 

the climate.  An important tool used in computational investigations is  the climate scenario.  

According to the IPCC 2001 report, a climate scenario is a "plausible representation of future 

climate that has been constructed for explicit use in investigating the potential impacts of 

anthropogenic climate change". While there are various methods for constructing climate 

scenarios, the most commonly used are based on output from a coupled Atmosphere-Ocean 

General Circulation Model (AOGCM) which is based on several sub-models corresponding to 

atmosphere, ocean, ice, etc, that are coupled to form a meaningful model of the global climate. 

Mathematically, the model is a large, nonlinear system of partial differential equations which 

are solved numerically. Solving the system requires a massive computational effort and only 

a few institutions in the world are equipped to run AOGCMs. Even on high performance 

computers configured for this specific task, the average computational time is measured in 

weeks. Another limitation of the AOGCMs is that the spatial resolution used is still too 

coarse (hundreds of kilometers) for explaining local effects. Moreover, there is uncertainty 

from various sources that accompanies the solution. For example, the forces used in the model 

are not perfectly known and the errors associated with them propagate through the system. 

Another source of uncertainty originates in the feedbacks from processes that are not resolved 

by the model (e.g. thunderstorms) but have an important role in the large scale motion of the 
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system. The IPCC 2001 report gives an extensive account of the various sources of uncertainty 

associated with the AOGCMs. One possible approach to reducing the uncertainty is to run a 

large set of AOGCMs that cover the range of the unknown parameters or quantities. However, 

because each individual run requires considerable computational effort, this is an expensive 

approach. Alternatively, one could obtain more runs from simplified global models which 

are faster than the AOGCMs and are intended to reproduce their large scale behavior, such 

as global mean temperatures. A recent approach combines a few AOGCM runs with such 

faster simple global models to predict AOGCM results at untried runs. In this section we 

evaluate the variability in the climate simulated by AOGCM experiments, by means of using 

a limited number of slow runs and a faster running simple model. In other applications the 

focus is on characterizing the variability that corresponds to various emission configurations of 

greenhouse gases (e.g. CO2) and aerosols. However, the range of these emissions is quite large 

and it requires careful planning of the experiment to obtain the optimal effect with a small 

number of slow runs. 

In the sequel, by an AOGCM control run we mean an AOGCM run without any CO2 

emission increase over the period of study. A more realistic AOGCM run is to assume an 

increase in the CO2 emission over the period of study (most of it due probably to human 

activities). The CO2 emission is greenhouse-gas forcing which is an input in the AOGCM 

model and influences output variables such as temperature and precipitation. At the initial 

time of this more realistic AOGCM run it is assumed that the level of CO2 is the same as in the 

control run, then gradually the CO2 level is increased over the time period of study. In order 

to study the effect of the initial conditions, it is customary to take "snapshots" at several time 

points in the control run and use them as initial conditions in the AOGCM runs that assume 

increase in the CO2. These runs then form an "ensemble" (Cubasch et al. 1994, Mitchell 

et al. 1999). The elements of an ensemble are conceptually similar to statistical replicates, 

and several such runs provide an empirical assessment of the variability due specifically to 

the initial conditions. This study is concerned with modeling statistically the elements of an 

ensemble. 
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There are several versions of AOGCMs in use today throughout the world. The AOGCM 

used in this study is the NCAR Community Climate System model. The ensemble consists 

of four elements with initial conditions determined by snapshots at four different times of the 

control run (which is not a member of the ensemble). The four times were selected to be 

sufficiently far apart to ensure "uncorrelation" between the snapshots. Each member of the 

ensemble is the spatio-temporal temperature output from the model forced with 1% per year 

increase in the CO2 over the period of study, which is 70 years starting from 2002. In fact, only 

the 70 summer averages of output temperature at a 16 X 16 pixel region covering the western 

part of North America and a small part of the Pacific ocean were retained for analysis. 

Pattern-scaling is a method of combining a few AOGCM slow runs with information pro­

vided by simpler models. Mitchell et al. (1999) suggest the use of predictors of separable form 

T*(x,y,t) = T(t)P(x,y), where x is the longitude coordinate, y is the latitude and t is time, 

so that T* is a predictor for the actual AOGCM output temperature. The global mean tem­

perature T is obtained from faster running, simplified climate models and P(x,y) is a scaling 

pattern estimated from the slow AOGCM runs. 

Here we shall modify the above approximation in a statistical model which will provide a 

way of characterizing the variability associated with the prediction. In particular, the covari-

ance function that describes the spatial structure of the errors from pattern scaling will be 

found using a nonstationary model applied to the ensemble results.  Let r = 1 , . . . ,n be the n 

slow AOGCM runs. Then T*(x, y, t, r) = T{t, r)P(x, y) + e(x, y, t, r) is a statistical model that 

could be used for this purpose. In our case the ensemble has 4 members of which 3 are used for 

the estimation of the scale pattern and the 4th is used for prediction to test the model. Thus, 

n = 3. The 16 X 16 X 70 X 3 four dimensional array of data corresponding to (x, y, t, r) will be 

reshaped in a vector format, with x the most inner dimension and r the most outer. The above 

statistical model can be written in a more compact form as T* = TP+e, with r the design ma­

trix of size 162 by 162 X 210 and P the vector of regression parameters, of length 162. The OLS 

estimated regression parameters at each pixel (x,y) (after reshaping them back in a 16 X 16 

matrix) is the actual estimated scaled pattern and is plotted in Figure 4.1a. The residuals ê 
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{241j375,59.967) 

Figure 4.1 Estimated scale pattern, standard errors and prediction 
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appear to be uncorrelated in the t  and r dimensions but correlated in the space dimensions x 

and y. Therefore we shall assume a block diagonal covariance matrix /210 ® S256 for residuals, 

written for simplicity as a Kronecker product. It is convenient for our modeling purpose to 

reshape the vector of residuals in a matrix j of size 256 X 210, where the rows correspond to 

(x, y) and the columns correspond to (t,r) so that the columns are uncorrelated among each 

other, but the elements of individual columns are correlated. We shall fit a nonparametric and 

nonstationary model as described in Nychka et  al .  (2002) for the newly reshaped residuals Z. 

Thus one can consider that there are 210 replicates of a random vector Z of length 256 whose 

mean is 0 and covariance matrix is E. Probably the decomposition of E most often used is the 

eigenvalue decomposition, that is E = with D the diagonal matrix of eigenvalues and 

M/ the matrix of eigenvectors, which form a basis for the Euclidian space of dimension equal 

to the size of the covariance matrix. When the size of E is large, there are typically many 

small positive eigenvalues, so the determinant is close to zero and thus the covariance matrix 

is unstable to algebraic operations such as computing its inverse. 

Nychka et al. (2002) suggest working with an alternative basis, such as a multiresolution 

wavelet. Under this basis, the inner matrix D in the decomposition of E is nondiagonal, but 

a large number of off-diagonal elements are typically "small". The idea is to enforce sparsity 

in the square root of the inner matrix by replacing these small off-diagonal elements with 

zero. More precisely, let Ê = ^ 52?=i ZiZ\ denote the sample estimator of S. Then the 

square root of the inner matrix in i ts  eigenvalue decomposition is H = D1 /2  = (yp^Ey?' - 1)1 /2 .  

The procedure then is to retain all diagonal elements of H and set to zero all off diagonal 

elements with absolute value below a prescribed threshold, such as the 98% quantile for the 

absolute value of the elements of H. Denote by H this sparse approximation of H. Then 

E = is an estimator of E which is more stable to algebraic operations. The square 

root of the diagonal elements of E are the estimated marginal standard errors at each spatial 

location (after reshaping them in a 16 X 16 matrix) and are plotted in Figure 4.1b. Since 

the errors are correlated, one should use a generalized least squares (GLS) criterion instead of 

the OLS. Although not done here (but possibly in a future draft), a more statistically correct 
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analysis would require reestimating the GLS regression parameters (called scaled pattern in 

this application) as P — [r'(7 ® S""1)r]_1[r'(/ ® Ê_1)T*]. Then the new GLS residuals would 

be treated as the previous OLS residuals in order to reestimate S by the method of Nychka et 

al. (2002). This iterative procedure would continue until convergence in the estimated scale 

pattern and covariance matrix is achieved. 

Figures 4.1c and 4.Id show results for the 4 t h  member of the ensemble: the global mean 

temperature, AOGCM temperature and prediction at two pixels for which the estimated scale 

pattern is above and below 1 respectively. In both cases the global mean temperature is out­

side the 95% prediction bounds. This shows evidence that the statistical model presented here, 

although simple, could discriminate between the global mean temperature and pixel-wise tem­

perature time series. However, for this pilot study, the variability associated with the estimated 

parameters is not included in the prediction bands. The parameters were simply replaced by 

their estimates in the regression prediction. A more elaborate study requires including the 

variability associated with the estimated scale pattern as well as the variability associated 

with the pixel-wise standard errors estimates resulted from the nonparametric nonstationary 

model presented above. 

4.2 Stochastic closure for multi-scale simulations 

This section outlines a statistical method for predicting fine grid multivariate output re­

stricted on a coarser grid, when coarse grid numerical solutions are available. The method 

is illustrated through an example based on an ocean model that appears in Greatbatch and 

Nadiga (2000) and, if successful, will be applied to other models of interest. The mathematical 

form of this ocean model is 

(4.1) § + = 

with ip the velocity streamfunction, q = V2 i f> + f3y = the potential vorticity and 

+ the Jacobian of the these functions. The sinusoidal wind force F and 

the dissipation D are described in the referenced paper. The function of interest in this study 

is the velocity streamfunction ip. After boundary and initial conditions are imposed, the model 
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(4.1) is implemented in a finite difference scheme, with an adaptive, changing time step. Two 

spatial grids are considered: a fine grid of 101 X 201 points and a coarse grid of 26 X 51 time 

points. The fine grid leads to a slower running, more accurate code than the coarser grid. The 

fine grid run takes about 7.5 hours in FORTRAN on a 1GB RAM, 400MHz 64-bit processor 

speed workstation whereas the coarse grid takes about 22min. The problem here is to find a 

statistical model that runs on the coarse grid and predicts the fine grid output at the coarse 

grid points. This is a part a larger problem (described below) dealing with the study of local 

effects. 

Suppose we want to run a fine scale model because we want to study regional effects. The 

"brute force" approach would be to actually run the fine scale model, obtain output and look at 

the region of interest. This would require large amounts of computational resources. Instead, 

one could sample a number of smaller spatial regions and run the fine scale model for each of 

these regions separately (after necessarily adapting the boundary conditions). Since these are 

smaller regions relative to the whole domain, the fine grid model run for these regions would be 

faster than the global model run with the same grid size, but would still require a considerable 

amount of computational resources. The task is to build a statistical model that would relate 

the fine and coarse grid output for each of these regions. The statistical parameters estimates 

are based on the whole sample of spatial regions. If one is interested in local effects for a certain 

region included in the larger domain, then this becomes a statistical prediction problem for 

that new region, based on the sampled regions. In what follows, we only describe a statistical 

model that would relate fine and coarse grid output for a certain region. We do not develop the 

full study involving sampled smaller regions. As a first step in this direction, we shall develop 

a statistical model that would relate fine and coarse grid output on the whole domain of the 

ocean model. The assumption then is that a similar statistical model could be developed for 

any subregion of the domain. 

Let Y be a stochastic process defined as Yi,j , t+ i = ptYijj  + veij jx/l  — Pt2, with p t  — e~% ,  

where dt is the adaptive coarse temporal increment, i and j are indices corresponding to a 3 X 3 

moving window over the 26 X 51 coarse grid and e are independent standard normal random 
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variables. This process is considered a stochastic kernel defined over a 3x3 window. The coarse 

grid numerical  model produces a numerical  approximation J(i , j , t)  of the Jacobian J(i , j , t) .  

Denote by J the stochastic process (called stochastic Jacobian in the sequel) resulting from the 

convolution of the coarse numerical Jacobian and the stochastic kernel Y defined above. More 

precisely, | J2k,i={-1,0,1} J{i+l,j+k, t)Yi+ij+k,t• The coarse numerical model runs with 

this stochastic Jacobian J replacing the coarse grid numerical Jacobian J, and a stochastic 

velocity streamfunction V'ij,; is obtained at the end of the run. The hope is that this stochastic 

velocity streamfunction is a good prediction of the fine grid velocity streamfunction restricted at 

the coarse grid. The statistical task was to find estimates for the parameters a and a appearing 

in the expression of Y, that provide the best fit for the statistical model tA. The main difficulty 

is that the temporal dimension of the problem is very large and, due to the non-linearity of 

the problem, likelihood or least-squares numerical optimization would require a run of the 

stochastic coarse numerical model at each step. Therefore, an iterative numerical optimization 

requires large amounts of computational resources itself. Our preliminary approach was to 

compute the root mean square error (RMSE) between the fine grid velocity streamfunction 

(restricted at the coarse grid) and its statistical predictor on a grid of values (suggested 

by physicists) for the statistical parameters. Then declare as estimates that combination of 

statistical parameters that minimize RMSE. Data and predictions were retained at each 100</l 

coarse grid time point. Due to the smoothness of the time series involved, the RMS Es based 

on the whole time series and those based on data sampled at each 100t/l time point will not 

differ too much. As an aside, since the numerical scheme is time adaptive, perhaps we need to 

change this sampling scheme to a more adaptive one, by using the time step as an indicator. For 

example, if the time step becomes small in a temporal sub-interval, then we should probably 

sample more time points there. 

We considered two RMSE measures. The first involves individual time points and is defined 

as RM S ET = YJJÎ E?=i[26«5i»JVT ~ fa.r)2], where NT = 40 is the number of 

retained time points and R is the number of prediction simulations. The second measure 

involves averages over time and is defined as RM SE A = \J ̂  ErLi [26*51 ~ V*t,j,r)23-
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We considered R — 2 for computational convenience, and the results are presented in Table 

4.1. The best agreement when time averages are involved corresponds to a = 0.046 and 

a = 1.2. The estimated values obtained for the time averaged RMSE measures are in agreement 

with the expectations of the physicists involved. It was surprising, however, to see that the 

estimates were different for RMSE involving time sequences. It is not clear whether this change 

in estimates reflects a real qualitative difference between the stochastic output and its time 

average, or is an artifact due to small R and/or small NT- One could increase R and iVy, but 

this would require additional computational cost and storage space for the larger data sets. 

Table 4.1 RMSE measures 

(AM%) a = 0.375 a = 0.187 a — 0.046 

a — 0.1 
a = 0.4 

a = 0.9 

a = 1.2 

a — 1.8 

0.9151 (0.4036) 

0.9185 (0.4071) 

0.9832 (0.3305) 
1.6182 (0.4667) 
7.7810 (3.8878) 

0.9146 (0.4019) 

0.9189 (0.4005) 

0.9444 (0.3365) 

1.3839 (0.3668) 

8.1109 (3.9034) 

0.9114 (0.4012) 

0.9220 (0.4122) 

0.9444 (0.3425) 

1.0991 (0.3053) 

3.8200 (1.8035) 
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APPENDIX A. PROOF OF ALMOST SURE CONVERGENCE FOR 

THE TER STATISTICAL MODEL 

A.l No auxiliary information 

Denote F = CD ® C2 of size q — 2D. Then the MLE of r2 is 

^ ® (ct' g) - m) = 

1 1 q M * 

WQ(ZY - AD'tr-1 ® IM)(TV - Al) = Wq E r^E(r5 - WL< ~ /'*)]-

11 rsi—^ with fi = "i/pj-Ti . From section 2.2.3 it follows that the exact local truncation errors appear­

ing in (2.4) are of order h\. Consider the limit as hc approaches zero. Since 0 < hj < hc, then 

hj converges to zero also, which implies Tv —T converges to 0. Thus Tv is asymptotically of 

order /i2 also. The MLE of /t is 

^ ^ r-j(l'Tf) ^ MO(/j:)i:L=ir-j ^ , 

l'p]-u r^(l'l) r-j 

where the 'dot' stands for the time series as a vector. To see this more clearly, the absolute 

value of an arbitrary unweighted local truncation error term in the numerator can be written 

as 
MM M 

II'ILI = ! E Tï*\ s E I%i < ki E(fpp) = mo(i>î) 
k~ 1 À:=l k=1 

where Upp is the upper bound of all second order derivatives of the exact solutions of (2.1). 

Here the local truncation error has been approximated by its leading, second order term in the 

remainder of the Taylor series (2.5). It follows 

„ _ MO(hi)T,l ,= t  rrj  
f Mq =° {h% 
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which implies f — 0(h1).  Table A.1(a) shows an asymptotic study for f as h c  becomes smaller. 

Notice that f/hc seems to converge to zero, f/h2
c seems to converge to a non-zero constant 

and fjh\ appears to grow unboundedly. Thus, there is empirical evidence that r behaves as 

h2, indeed. The marginal distributions of Td\ and Td't appearing in (2.7) are standard 

normals of mean 0(h2
c) and variance O(h^). The relationship (2.7) can be rewritten as 

(A.la) Yl. ,„ = f i , ,  + WftyJJK, -  -  ̂ Yl tYl t)+0(hî)+0mZ\i, ,  

(A-lb) ?l,w  = Ylu  + hJ^Y^K, -  Ylu)  -  + 0(h\) + 0(hl)[Z\lu .  

for standard normal random variables [Z]\ <t and [Z]d t  .  Notice that the statistically predicted 

local truncation errors Td 'J  and Td 'J  in (2.7) are of the same order of magnitude, i .e.  0(h2) ,  

as the fine numerical local truncation errors in (2.6). The relationship (A.l) can be rewritten 

as 

(A.2a) J2j=oa j^d,t t + : i  
=  {ti ,  yj t t t ,  Y£,t i  '  

(A.2b) J2j=oa j^d,t ,+ J  — h c(f>2 ( t% , Yj t . ,  Y2
t .  ,h c) ,  

with CkQ — —1, oi\ — 1, 

W = -  %,)  -  + 0(Ac)  +0(Ac)[Z]^  

^((.', %,, %, ̂ ) = (^% (^ - %) - ̂ %y^) + o(ac) + 0(^)m^. 

In a more compact vector form the relationship (A.2) can be written as 

(a.2') = w(f,', , w, 

where the vectors Y_ and (f> are two dimensional. 

Next, we shall use a fundamental result stating that the numerical solution is convergent 

if and only if the finite difference scheme is consistent and zero-stable. The reader can consult 

Lambert (1991) ,Theorem 2.2, for more details. Loosely said, the finite difference scheme is 

consistent if its local truncation error divided by hc converges to zero as hc converges to zero and 

the finite difference scheme is zero-stable if small perturbations of the finite difference scheme 

re su l t  i n  s ma l l  pe r t u rba t i ons  o f  i t s  numer i ca l  so lu t i on .  A  cons i s t ency  c r i t e r i on  i s :  Y l j = o a j  =  

0 and <Ht,N.(t),0)/J2}=o{jotj) = f_{t,N_(t)), with / defined in (2.1'). The first consistency 

condition is obviously satisfied. The second consistency condition is satisfied since if hc — 0 

then the stochastic terms 0(hc)[Z]\ t> and 0(hc)[Z]d ^ are identically zero, except perhaps for 
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a set of zero probability. Finally, the method is zero-stable if it satisfies the root condition, 

which in this case is equivalent to the fact that the only root of the characteristic polynomial 

J2j=oajx^ 's on the unit circle. Table A.2(a) shows empirical evidence of convergence in mean 

square since the RMSE measures appear to converge to zero as hc converges to zero. However, 

this mean square convergence is weaker than the strong convergence and therefore Table A.2(a) 

does not show direct empirical evidence of strong convergence. 

A.2 Auxiliary information used 

Denote by he an intermediate time-step so that 0 < hj < he < h c  and let X be the 

corresponding numerical solution to (2.1). Denote T_x the vector of local truncation errors 

obtained as in (2.6), with X replacing Y. Also, it will be assumed that Tx is of order h2 when 

hc (and he) converges to 0. The proof will be similar to that in section A.l, although some 

steps require further attention. The MLE of n = [/io,Mi] is 

a = ([l,^]'[s]-i[i,r^])-:([i,r^]'p]-it^), 

assuming that the inverse matrix exists. Writing S = T 0 I M it can be shown that 

B.r*rt=r,B.z*i- ( Of"#*'#) ' 

^EUiyae'i) z^,ryctifz$) / 

and 

E( V? p-L M > rpY 1 ^ 
[I,Tx]'[S]~1Tr = [ J=1 ,J 

1 p- l  jrpX' rpY \  
i, j=l 1  i , j  4? J 

Then 

[yio.ai]' -
det([I,rA']'[E]-i[l,r*]) 

EL.,rçM'mEUlya'zX))- EU ly'agiKUnM'ip 

"EU. IW'A'UMEU LY'A'LXM + EU LY'D'TIJEUI LY'ŒÎ'ÏX)] 

where the determinant is 

det([I,I^]'[S]-1[l,TA']) = 
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IE itfa'DHE rgaî'î$)]-tE lya'z&MtE r«œu))-
i , j = 1  i , j  =  1  i , j = 1  î j  =  l  

[£ rrja'Dllè r;i(lfVjl)]-[Ê r-'a'r^)]2. 
«,j=i ij=i i,i=i 

It will be shown at the end of this proof that det([ 1, T_ x] '  [E] ~1  [1, T_ x]) = M2hA
cA{h c), where 

A(hc) converges to a strictly positive constant as hc converges to zero. Then 

» = M ,h lA { K )  [Af'O(Ag) + Af20(A«)] = 0{kl)  

and 

Finally, the MLE of r2 is 

T2 = T^-d1' - Aol-/'ilVi'i - ® 1 M ) ( H Y  - m l - h T x )  =  

•k È i«C(r5-A,-/i ,zg)(r£-/i»-A,ig)]- ^ -0(*i).  
"  i , j = l  t = 1  V  

which implies f = 0(/i2). This can also be seen empirically in Table A.1(b), where the 

intermediate step size he = 15^2s has been used. Next, a similar argument as in section A.l 

can be used to prove almost sure convergence of the statistical simulations to the exact solution. 

Empirical evidence of this convergence is shown in Table A.2(b). The reason these SRMSE 

measures are much smaller than the ones presented in Table 2.1 is that the intermediary grid 

size numerical solution X is quite informative here since he is small. 

We close this proof by showing that det([I, T^]'[E]_1[i, TA]) = M2hAA(h c) ,  where A(h c)  

converges to a strictly positive constant as hc —> 0. Indeed, 

* K U , z ? r r p r , u . r * D  - r g a ' i s É  R i ' t f U ) ]  -  Œ  i t f a W =  
i , j  =  1  i , j  =  1  i , j = 1  

u4 1 1 i  M q M 

i , j — 1  i , j — 1  k = 1  i , j — 1  k =  1  

where the indices i,j are combinations of species and input vector indices. The expressions 

of the local truncation errors as they appear in the relationship (2.5) have been used in this 

equality, with the reminders Ri and being neglected. Denote by A(h c)  the last factor in the 
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expression of the determinant. Then, as M —> oo (or, equivalently, h c  —> 0), A(h c)  converges 

to 

ié lyitÊ ru<r F M O W M - I I :  r u < r  [ ' W W R -
i , j = 1 i , j = 1 1/0 i,i=l 1/0 

Denote by jV"(£) the vector of second order derivatives at an arbitrary point in [0, L\.  This 

vector has length q and its components are N"(t) ,  i  = 1,. . . ,  q.  

The 2x2 matrix [1, iV''(i)]T_1[i, jV''(£)] is non-negative definite because 

for any 2x1 vector a. Then, for any t  G [0, L], 

[È = det([i,jv"W]T-^i,A["(()]) > o. 
i , j = 1  i  j = l  i , j = 1  

Rewriting and integrating this inequality on [0, L], one obtains 

Finally, from the Schwartz inequality for the function J21 j=i one has 

T AÈ ly'W*> IT C é rïMMr = t£ z f WW?-
LJ0 i,j=1 ^ 1/0 ij=l t,j=l jLJ0 

The inequality is strict because the function is not constant. 
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Table A.l Asymptotic study of the noise standard error 

(a) Ac 0.2000 0.1000 0.0500 0.0250 

f//&c 0.2005 0.1023 0.0513 0.0256 

1.0027 1.0230 1.0257 1.0220 

f/bc 5.0137 10.2298 20.5134 40.8816 

(b) Ac 0.2000 0.1000 0.0500 0.0250 

0.0070 0.0038 0.0019 0.0010 

f/ag 0.0349 0.0380 0.0387 0.0387 
0.1746 0.3802 0.7743 1.5498 

Table A.2 Asymptotic study of convergence 

(a) Ac 0.2000 0.1000 0.0500 0.0250 

rmse { N R )  0.1069 0.0299 0.0213 0.0117 

srmse(m) 0.1163 0.0448 0.0244 0.0138 

rmse(#2) 0.1342 0.0406 0.0244 0.0129 

srmse(at2) 0.1355 0.0584 0.0286 0.0138 

(b) Ac 0.2000 0.1000 0.0500 0.0250 

RMSE(Ni) 0.0026 0.0013 0.0013 0.0008 

SRMSE(#i) 0.0041 0.0025 0.0017 0.0009 

rmsefats) 0.0024 0.0014 0.0011 0.0006 
srmsefns) 0.0035 0.0022 0.0015 0.0007 
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APPENDIX B. DERIVATION OF THE DISCRETE-TIME BROWNIAN 

BRIDGE RELATIONSHIP 

In this Appendix we shall derive an explicit, iterative expression for the DBB constrained 

to pass through two prespecified, fixed ends. We also show that the marginal means lie on the 

straight line connecting the two end points and that the marginal variances are quadratic in 

time. Let A be the autoregression A;+i = A,- + <7€,+1, with i — 1,..., N. We shall consider that 

N, X\ and A/y are fixed constants. The method of derivation is based on rewriting conveniently 

the likelihood of the autoregression and discarding successively proportionality constants. In 

the sequel, "oc" signifies "proportional to". The likelihood of the above autoregression is 

( X  e x p {  — +  Xp{_2 + + ... + A| + À2 — A/v-lAyy — XN-2'^-N- 1 — ... — -Y1A2)} 

— exp{ — -£ï\Xn-1 — Xn-1 (XN  + Xn-2) + ̂ N-2 + -^N-3 + ••• +  ̂ 3 + -^2 —  ^N-3^-N-2 — . . .  — 

X1X2]} = exp{-^j[[Xat_i - (^f- + Xn
2~2 )]2 - + XN-2)2 + Xn-2 + Xn-3 + ... + A| + 

A| — Aat_3Ajv_2 — ... — A1A2]} oc exp{—^-[[Ayv-i — + Xn
2~2 )]2 + |A%_2 — Xf^_2{^- + 

XN-Z) + A^_3 + ... + A3 + XI — Ayv—4 A^v—3 — ... — Ai A2]} = exp{ —^-[[A/v-i — + 

... - Aj A2]} OC EXPJ-G^LLX/V-I -  + XN
2 '

2  )]2  + |[A^-2 - (^F- + 2A^-3)]2  + |[Ajv_3 -

(^4~ + 3X%~4 )]2 - |(^- + 3X]^~4 )2 + A^r_4 + ... + A| + A| — AJV_5AAT_4 - ... - AIA2]} OC 

••• oc exp{-^r ELw-i 2(jv-/)" (iV-t+iw-7+i vY»-i)]2} = exP{~2^2 E^* 

Since Ai and A'/v are considered constants, it follows that the last expression is proportional 

to L(A2,..., Ayv-i|Ai, Ayv, <t). Therefore this conditional likelihood implies that the iterative 

process 
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(*) Xi — N_ i + lX]v + jv_,-+1 A,-_i + N_i+1 

with e,- independent and identically distributed iV(0,1) and i  — 21, provides an 

expression for the DBB constrained to pass through (1, Ai) and (N, A'jy). 

Next we shall prove by induction that the marginal means of the DBB are situated on the 

straight line connecting (1, Ai) and (N, Ayv). Obviously, (1, Ai) is on this straight line and 

the statement is true since EXi = Ai. Suppose (i - 1, EXi-i) is on the straight line. Then 

EXi-1 = Ai + (A/v—Ai)-^^- which implies EA,_i = A;v ̂ jy+A'i ̂ it1 • Taking expectations 

in (*),  i t  follows that  EX{ — A/v + jy-t+iEX{-1 — + jv-t+i jv_ i  + 

A i —  XNJ^Ï + Ai^5ii which proves that (i ,EXi) is also on the straight line. 

We now derive the expression for the marginal variances. Denote u, = var(Xi).  Then V{ — 

(f=ÎTT^-i+^Afel which implies v {  = (r2[w^ï + (N~*')2 Ek=N-i+i fcpTT)] + ui(^r)2-

Since =  I  _ _L_ a nd V l  = 0 it  follows that  v t  = a2[^^ + (N -  i)2(Wzï+ï ~ yti]  = 

°"2[a/^7+1 + N-âi ~ ] ~ (j2[(^r -  0 _ {%~j} ] — 0-2(z _ 1)(1 _ W=î)- 11 is clear that 

VN = 0 and that the marginal variance is quadratic in * — 1, attaining its maximum half way 

between 1 and N. These results allowed us to use DBB in chapter 3 as an ingredient in the 

locally linear approximation of smooth and large sample size time series. 

We close this Appendix with a comment on the brownian bridge process. If x,  y are real 

numbers and L > 0, then a brownian bridge process is a continuous time Gaussian process 

A(,0 < t < L such that A'o = x, EXt = x + (y — x)£ and cov(A<, As) = min(s,t) — It is 

easy to show (see also Borodin and Salminen 2002) that Al — y almost sure. Also, it is clear 

that the marginal means are linear in time and var(At) = t( 1 — ^) are quadratic in time. A 

simple time discretization of such a continuous time brownian bridge is not very helpful for 

simulation purposes because of the large dimension of the resulting covariance matrix. Instead, 

the iterative process derived in this Appendix requires less computational effort. A similar 

discrete-time brownian bridge process has been used as an importance sampler by Durham 

and Gallant (2002). Their derivation, however, is based on a time discretization of a brownian 

bridge written as the solution of a stochastic differential equation, while the derivation in this 

Appendix is more elementary. 
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