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Abstract: Field deployment is critical to developing numerous sensitive impedance transducers. 
Precise, cost-effective, and real-time readout units are being sought to interface these sensitive im-
pedance transducers for various clinical or environmental applications. This paper presents a gen-
eral readout method with a detailed design procedure for interfacing impedance transducers that 
generate small fractional changes in the impedance characteristics after detection. The emphasis of 
the design is obtaining a target response resolution considering the accuracy in real-time. An entire 
readout unit with amplification/filtering and real-time data acquisition and processing using a sin-
gle microcontroller is proposed. Most important design parameters, such as the signal-to-noise ratio 
(SNR), common-mode-to-differential conversion, digitization configuration/speed, and the data 
processing method are discussed here. The studied process can be used as a general guideline to 
design custom readout units to interface with various developed transducers in the laboratory and 
verify the performance for field deployment and commercialization. A single frequency readout 
unit with a target 8-bit resolution to interface differentially placed transducers (e.g., bridge config-
uration) is designed and implemented. A single MCU is programmed for real-time data acquisition 
and sine fitting. The 8-bit resolution is achieved even at low SNR levels of roughly 7 dB by setting 
the component values and fitting algorithm parameters with the given methods.  
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1. Introduction 
Recently, real-time sensing and detection are revolutionizing many services such as 

healthcare, home automation, transportation, etc. Moreover, there is a push to develop 
more field-deployable biosensors for medical diagnostics and environmental monitoring 
applications. Motivated by this, there has been a surge in the development of new trans-
ducers targeting a wide range of biosensing applications for detecting proteins, ions, tem-
perature, etc.  

Label-free impedance biosensors are famous prototypes for point-of-care real-time 
applications such as toxins, viruses, whole-cell, bacteria, nucleic acids, detection, or tissue 
impedance modeling [1–6]. Two-, three-, or four-electrode transductions are used for var-
ious impedance measurements. In general, the ratio between the voltage across the refer-
ence electrode (RE) and the working electrode (WE) and the current flowing between the 
working electrode and the counter electrode (CE) yields the impedance of a specific inter-
face (solution electrode) [1,7] or tissue [8], cell culture [9], etc. The variable impedance of 
the transducer is generally estimated by AC electrochemical impedance spectroscopy 
(EIS) [1]. The EIS method measures the medium or interface’s impedance at multiple fre-
quencies [10,11]. Next, proper fitting techniques estimate the impedance model from the 
spectrum [12]. However, for the development of a simple real-time, field-deployable 
readout interface, a single frequency AC excitation [1,3] is generally a good alternative for 
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applications where the model of the interface or tissue is known a priori and the quantifi-
cation of a specific analyte or change in the impedance due to bio-recognition is desired. 
One method to quantify the transducer impedance change is measuring the amplitude 
and phase of the response signal (current or voltage) with respect to a reference signal in 
real-time [13]. 

However, one challenge in the design of readout interfaces for label-free real-time 
single-frequency measurements is that the total change in the impedance of the transduc-
ers is often only a few percent over the entire full range of detection. For example, capac-
itive transducers for measuring certain hepatotoxins in water have been presented in [2], 
where the total electrode–solution interfacial capacitance changes by only 1% over the 
entire range of concentrations. A similar issue is associated with the developed label-free 
transducers for detecting Cholera toxins in [14] and Cryptosporidium at lower concentra-
tions [15]. The impedance phase change at sub-Hz frequency is employed to detect human 
interleukin-8 in serum with sub-pg/mL sensitivity [16]. The results indicate a phase 
change of only 173 m∘ over a baseline impedance phase of −86.6∘, at the minimum de-
tection level and an overall sensitivity of 220.4 m°/decade (approximately 0.25%). The re-
sistance of the ultra-sensitive interdigitated electrodes designed in [17] changes by 
roughly a couple of percent over the full range of PfHRP2—a malaria biomarker—con-
centrations in human saliva. The non-faradaic EIS biosensor for detecting C-reactive pro-
tein in a complex medium, such as human blood, reports a fractional impedance change 
of approximately 2.5% at the minimum detection limit [18]. The capacitance of the devel-
oped DNA sensors changes by roughly 3% for the reported concentrations [19]. To com-
plicate matters, avoiding physical damage to the functional layer and nonlinear distortion 
effect on the response require that the magnitude of the applied AC excitation remain 
small (typically < 50 mV) [1,3,7]. The result is that the absolute value of the transducer 
output voltage is small, leading to a full-scale change in the voltage in the order of hun-
dreds of microvolts. Moreover, suppose we assume that the transducer’s output voltage 
will be detected with a modest resolution of 8-bits. In that case, the sensor must be able to 
detect changes in the transducer’s output voltage that are less than 1 μV.  

The readout process for the abovementioned sensitive transducers is straightfor-
ward, using laboratory-grade bench-top test equipment for characterization, but very sen-
sitive instrumentation is required for large-scale deployment. As a solution, differential 
sensing with a bridge circuit that acts similar to intermediate secondary transduction and 
a sensitivity booster is proposed in [20]. Two capacitive transducer chips, each with a pair 
of electrodes (functionalized WE and chemically non-functional CE providing the electri-
cal signal path in the solution), are placed in the opposite bridge legs and generate a dif-
ferential sensing response. Although with the differential capacitive bridge designed in 
[20], the effects of common-mode noise, drift, and temperature variation can be further 
decreased and sensitivity enhanced, there is still a need for small, inexpensive, and low-
power readout to reach a particular required resolution and make the commercialization 
of the developed transducers in this structure feasible [8,9]. 

Figure 1 shows the block diagram of the differential sensing unit utilized in [20] in-
terfaced with high-level generic blocks of a readout system, amplification, filtering, and 
digitization. The transducers are designed to sense the change in the transducer imped-
ance due to bio-recognition with respect to the reference networks differentially. Ampli-
fication/filtering is typically required with the expected weak and noisy sensor response. 
For real-time and low-cost operation, an MCU performs both the task of data acquisition 
and processing (fitting) and any extra required digital adjustments. The MCU acquires the 
response and excitation source signals and measures the amplified response signal mag-
nitude and differential phase (with respect to the excitation source) in real-time. 
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Figure 1. General block diagram of a differential bio-sensing unit interfaced with signal amplifica-
tion and filtering unit and a microcontroller (MCU) for low-cost real-time operation and field de-
ployment. The transducers are designed to sense the change in the transducer impedance due to 
bio-recognition with respect to the reference networks differentially. Amplification/filtering is typ-
ically required with the expected weak and noisy sensor response. For real-time and low-cost oper-
ation, an MCU performs both the task of data acquisition and processing (fitting) and any extra 
required digital adjustments. 

Some factors limit the performance of the generic sensor interface units shown in 
Figure 1 if implemented with discrete commercially available components. Typical preci-
sion opamps that would be used in this application have input referred noise voltages that 
are on the order of tens of nV √Hz⁄ . Therefore, to maintain a practical input signal-to-noise 
ratio (SNR) greater than 1, with microvolt-level transducer output voltages, the effective 
noise bandwidth of the sensor interface circuit could be limited to only a few tens of hertz. 
Moreover, approximately 60–80 dB voltage gains will be required to effectively use an 
ADC for data acquisition. Extreme amplification and filtering require highly accurate 
component matching, extensive shielding, and careful circuit design. Data acquisition and 
the specific algorithm implemented in the MCU for data processing in Figure 1 should be 
performed simultaneously with no need to transmit or store the raw data in external 
memory. Therefore, the algorithm processing speed and the ADC sampling rate should 
be carefully adjusted. Lower complexity, power consumption, and overall cost are other 
design goals to avoid limiting the potential of the sensor. 

This paper proposes a comprehensive, fully differential readout interface design suit-
able for tiny sensor response signals generated differently. A study of the design tradeoffs 
between overall sensor system complexity and performance at low cost, particularly with 
small fractional detection impedance change (< 1%), is given. Each readout interface 
block shown in Figure 1 was analyzed and designed based on the required resolution, 
overall gain, SNR, etc. It is shown here that extreme amplification and filtering require-
ments can be met with the careful design of a two-channel digital acquisition and pro-
cessing (sine fitting) utilizing a single microcontroller. A theoretical design procedure and 
a practical discrete implementation example are presented here, targeting mainly real-
time, low-cost operation for less than 1% full-scale change in the transducer’s output 
voltage, and an 8-bit characteristic change resolution. In Section 2, design methods con-
sidering the most important performance parameters, such as overall gain, bandwidth, 
SNR, common-mode rejection ratio (CMRR), sampling rate, signal fitting algorithm, and 
real-time implementation for each of the readout blocks; amplification, filtering, and data 
acquisition/processing are explained in detail. The implementation results, board charac-
terization, and real-time operation and sensitivity verification are presented in Section 3. 

2. Materials and Methods 
A reasonable assumption for the differential sensing unit shown in Figure 1 is that 

less than a 1% full-scale response change with the bio-recognition event is expected before 
any amplification. The change in the transducer’s impedance (𝑍 ) has a linear relationship 
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with the change in the medium’s concentration. Thus, the differential output voltage of 
the sensing unit is linearly related to the transducer fractional impedance change, and the 
source voltage (1) shows this linear relationship. 𝑉 − 𝑉 ≈ 𝛼 𝑉 ,  (1)

where 𝑉 − 𝑉 , is the differential output voltage of the sensing unit, 𝛼 is a proportionality 
constant, , is the transducer fractional impedance change, and 𝑉 ,  is the AC excita-
tion source voltage.  

Before discussing the amplification stage, it is mandatory to examine some typical 
values for the expected differential voltage. Let us consider a typical excitation signal (VAC) 
with an AC amplitude of 1 − 100 mV. Assuming the case with 𝛼 = 1, and < 1%, the 
maximum change in the amplitude of the bridge output will be less than 1 mV. If the 
target resolution for the sensor is set to the typical 8-bits, then the expected least-signifi-
cant bit (LSB) of the response will be several microvolts. With the minimum response sig-
nal level knowledge, the proceeding amplification and filtering stages can be designed, 
and parameters such as required gain, matching, bandwidth, etc., can be decided. How-
ever, dealing with such small signals requires the careful consideration of parasitic, noise, 
and any unwanted interfering signals and trying to minimize such effects and achieve the 
dynamic target range; these design considerations are discussed in the following. 

2.1. Amplification and Filtering Analysis 
Two critical design parameters for the amplification and filtering unit will impact the 

accuracy and precision of a fully differential readout circuit for detecting tiny fractional 
changes at the output: common-mode-induced differential conversion and noise. The 
common mode rejection ratio (CMRR) criteria here is the amplification and filtering inter-
face’s ability to reject the common mode output voltage (for example, an equal DC signal 
required to bias the differential transducers) and amplify the differential output voltage 
change due to the transducer impedance change with detection. Failing to reject the com-
mon mode at the output, considering the high required differential gain, will lead to an 
unpleasant common mode to differential conversion that not only gives rise to a false de-
tection signal but also limits the dynamic range. Noise will affect the lower detection limit 
and shrink the dynamic range. Various sources causing common-mode to differential con-
version and SNR degradation at the interface’s output before ADC are analyzed in the 
following section. Based on this analysis, parameters such as the gain of each stage for a 
cascaded design, effective noise bandwidth (ENB) of the filter, and the required matching 
sensitivity can be determined and based on the best achievable SNR at the board output, 
a potential suitable fitting algorithm in the data acquisition unit can be picked and de-
signed. 

2.1.1. Common Mode to Differential Conversion 
With the typical available full-scale voltage of the ADCs, 𝐴 , on the order of (1 −5 V), a three-stage amplification and filtering interface is proposed here, as shown in Fig-

ure 2. One stage of amplification and two identical bandpass filtering stages are responsi-
ble for providing a total differential gain that amplifies the initial full-scale differentially 
sensed output of roughly 1 mV to match the full-scale range of the ADC. A multiple feed-
back bandpass topology is chosen for the fully differential filters [21]. The filter’s gain, 
center frequency, and bandwidth can be flexibly tuned with the multiple feedback topol-
ogy. Therefore, a total differential gain in the order of 70 − 80 dB is approximately re-
quired. To estimate the amount of needed common mode rejection, consider the case with 𝛼 = 1/2 in (1). With |𝑉 | = |𝑉 | = |𝑉 , | equal to tens of millivolts (based on the excita-
tion source amplitude < 100 mV) and the differential LSB change at the sensing unit out-
put, |(𝑉 − 𝑉 ) |, will only be several microvolts.  
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Figure 2. The three-stage amplification and filtering unit, proceeding the differential sensing unit 
and succeeding the data acquisition and fitting unit. A fully differential amplification followed by 
a cascaded two-stage bandpass filter provides the differential gain and filters the unwanted noise 
for certain minimum SNR. It is critical to maintain good matching in the feedback ratios of the pe-
ripheral components, as shown in (3), to achieve the overall target CMRR. |𝑉 , | and |(𝑉 − 𝑉 ) | will be amplified by the common mode to differential 
gain and differential gain, respectively. To maintain the desired resolution, criteria (2) 
should be satisfied so that the differentially amplified sensing signal at the LSB level is at 
least twice the interference caused by the common mode to differential conversion: 

, .|( ) |, . , > 2,  (2)

where 𝐴 , , is the common mode-induced differential gain, 𝐴 , , is the differential 
gain. |(𝑉 − 𝑉 ) |, and 𝑉 ,  are the minimum differential voltage and the common 
mode voltage at the output of the sensing unit, respectively. The abovementioned criteria 
(2) sets the minimum for the 𝐶𝑀𝑅𝑅 = ,, , to around 100 dB which, with 𝐴 ,  

of around 70 − 80 dB, requires the 𝐴 ,  to be at least −30 to −20 dB. If the required 
minimum 𝐶𝑀𝑅𝑅  is not reached, the target resolution will not be achieved.  
• Effect of component matching and tolerance 

Ideally, the CMRR of a fully differential circuit would be infinite. However, in reality, 
the CMRR is limited by the CMRR of each stage in the circuit and by matching the periph-
eral components. Typical fully differential amplifiers for precision measurements provide 
relatively high CMRR values of around 100 dB. However, when configured as a fully dif-
ferential amplification stage, as shown in Figure 2, the CMRR of each stage is determined 
not only by the CMRR of the Opamp but also by the matching between the two symmet-
rical feedback ratios 𝛽 =  and 𝛽 = . If 𝛽 = 𝛽 +  and 𝛽 = 𝛽 − , 
therefore, 𝛽 − 𝛽 =  Δ𝛽 and 𝛽 + 𝛽 =  2β. The stage CMRR is derived in [22]: 𝐶𝑀𝑅𝑅 ≈ ,  (3)

where 𝐶𝑀𝑅𝑅 ,  is the effective CMRR of each stage, 𝐶𝑀𝑅𝑅  is the typical CMRR 
of any given Opamp, and , is the feedback matching ratio. Therefore, inevitable degra-
dation in 𝐶𝑀𝑅𝑅  is expected with the worse matching ratio of the feedback net-
works. 



Biosensors 2023, 13, 77 6 of 24 
 

For a given stage with a differential voltage gain, 𝐴 , , 𝑅 = 𝐴 , 𝑅 , the re-
sistance, 𝑅’s tolerance Δ𝑅, is included as 𝑅 = 𝑅 ± Δ𝑅, 𝑅 = 𝐴 , 𝑅 ± Δ𝑅. Feedback ra-
tio matching is related to the component tolerance using the following derivations: 

= = , ±( , ) ± , ±( , ) ±, ±( , ) ± = ±( , )± ,  (4)

For ≪ 1, ± = ( , )(  ) ≈ ( , ),  (5)

where , is the percent tolerance of a resistance. Based on (6), a lower component toler-
ance is required to maintain a given feedback-matching ratio for a higher differential gain 
of a stage. For the design and implementation of a multistage fully differential amplifica-
tion unit, as shown in Figure 2; (3), and (5) determine the required degree of component 
matching tolerance based on the known differential gain distribution and total 𝐶𝑀𝑅𝑅. 
• Effect of cascaded stages 

The abovementioned design criteria are regarding singular stages; now, given that 
several stages participate in the amplification and filtering before the data acquisition, it 
is helpful to understand each stage’s contribution to the total CMRR. In [23], the contribu-
tion of each stage, on the total CMRR, of a cascade of 3 differential stages is investigated, 
and an approximate formula, (6), is derived. ≈ + ,, + ,,  ,, ,  (6)

where, 𝐶𝑀𝑅𝑅 , is the total effective CMRR of the cascaded stages, 𝐶𝑀𝑅𝑅  is the 
CMRR contribution of the individual amplification stage, 𝐴 , , and 𝐴 ,  are the differ-
ential to differential and common mode to common mode gains of each of the 3 stages, 
respectively. If the output common-mode voltage, 𝑉 , of the fully differential amplifiers 
before ADC, are set externally at 𝐴 /2, to cover the full ADC dynamic range equally, 
then the 𝐴 ,  for all stages would be 1. Thus, if the two filtering stages are identical, with 
the same gains, based on the (6) effect of the CMRR of the first stage on the 𝐶𝑀𝑅𝑅  is 
dominant compared to higher stages. Therefore, component matching in the first ampli-
fication stage significantly affects the total CMRR and common mode to differential con-
version, and this is specifically important for implementation and debugging. 

2.1.2. Noise Analysis  
In addition to the common-mode-to-differential conversion, noise is also a primary 

limitation on the performance of the sensor readout circuitry. The presence of thermal 
noise, if the noise floor is greater than the detection signal around the lower detection 
limit, will decrease the dynamic range. Two primary sources of noise are involved in the 
general block diagram of the biosensor in Figure 1.; the total noise generated by the elec-
trodes and differential sensing unit and noise generated by the amplification block. Quan-
tization noise and sampling clock jitter are also issues, but the quantization noise effect is 
negligible if the utilized ADC resolution is higher than the required response target reso-
lution. The clock jitter gains more importance at high sampling rates (hundreds of MS/s 
or GS/s) for higher frequency excitations; this effect will be considered and discussed sep-
arately in sub-Section 2.2.2. 

Given the small magnitude of the electrode response on the order of several micro-
volts at LSB of detection, the noise of proceeding stages plays a vital role in determining 
the minimum expected SNR. The typical input referred voltage noise density for differen-
tial precision amplifiers is several √ . If a gain of 70 − 80 dB is targeted utilizing the 
multistage amplification, the total output noise voltage density contributed by the 
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amplifiers will be on the order of several √ . Moreover, the noise associated with the 
peripheral resistors and noise from the transducer itself will add to the total output noise 
density. Therefore, considering wide-band amplification stages without filtering, the min-
imum SNR value before ADC could obtain even less than 0 dB. However, the amount of 
in-band noise can be significantly reduced if bandpass filtering is performed. The quanti-
tative analysis of the expected noise level presented in the following determines the 
method to calculate the required reduction in noise and effective noise bandwidth (ENB) 
of the filter. 

The noise model of the electrodes and the equivalent circuitry with noise sources for 
the differential sensing unit and amplification stage are required for the noise analysis. 
The differential bridge model utilizing capacitive transducers presented in [20] is adopted 
here as the differential sensing unit. The noise model for the differential sensing unit with 
the noise sources included for noise analysis is shown in Figure 3a. 

 
Figure 3. Utilized noise models for the two primary noise contributing blocks; (a) the bridge as the 
differential sensing unit, with the series RC model for the capacitive transducers and balancing net-
works, all the noise sources in the bridge are thermal type (b) differential amplification stage with 
the associated thermal noise sources for the peripheral resistors, and input-referred current and 
voltage noise sources of the Opamp. 

In Figure 3a, 𝑅 , 𝐶 , 𝑅  and 𝐶  are the RC-balancing networks made with arrays 
of digitally controlled capacitors and resistors to balance the bridge for the AC signal path. 𝑅  resistors are DC-balancing resistive paths that provide a stable DC bias to the working 
electrodes and equal DC voltage at 𝑉  and 𝑉 . The solution–electrode interface in this 
study is modeled with series RC, the resistive parts (𝑅  and 𝑅 ) are modeling solution 
resistance and the capacitive parts (𝐶  and 𝐶 ) are the interface capacitance. Gesteland 
et al. show in [24] that the noise of a metal microelectrode can be modeled as the thermal 
noise of a resistance in a narrow band of frequency, where the corresponding resistance 
is the real part of the electrode–solution interface impedance. Therefore, the associated 
noise sources with the electrodes and balancing resistors in the differential sensing unit is 
in series with the corresponding resistances in Figure 3a and are all representing thermal 
noise model for the resistance, i.e., 𝑉 = √4𝑘𝑇𝑅, with units of V/√Hz . 𝑘 is the Boltz-
mann’s constant, 𝑇 is the absolute temperature and 𝑅 is the corresponding resistance. 
For a perfectly matched and balanced bridge case, with 𝐶 = 𝐶 = 𝐶 = 𝐶 = 𝐶 , 𝑅 = 𝑅 = 𝑅 = 𝑅 = 𝑅 , the noise contribution of the differential sensing unit can be 
derived based on the model in Figure 3a as follows: 𝐸 , = 𝑉 , + 𝑉 , = ( ) 𝑉 + ( ) 𝑉  ,  (7)

where 𝐸 , , is the output referred noise power density of the bridge, and 𝜔 = 2𝜋𝑓 , 
is the angular frequency of the operation. The electrodes makeup and solution 
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conductivity for capacitive transducers are set so that at the frequency of operation, the 
reactive part of the interface impedance is dominant, 𝑅 < |1/𝑗𝐶 𝜔 | → 𝑅 𝐶 𝜔 < 1. 
[1]. The value of the DC-balancing resistors, 𝑅 , are much larger than the magnitude of 
the transducer impedance not to load the functional electrode impedance and decrease 
sensitivity, therefore, knowing that 𝑅 𝐶 𝜔 ≪ 1 leads to 𝑅 𝐶 𝜔 ≫ 1 [20]. 

Based on the abovementioned considerations, (7) can be simplified as follows: 𝐸 , ≈ ( ) 𝑉 + ( ) 𝑉  ,  (8)

The noise model for a fully differential Opamp with the associated feedback resistors 
[25,26] is shown in Figure 3b. Again, the resistors have the thermal noise voltage model 
in series, and 𝐸 , 𝐼 and 𝐼  are the Opamp input referred voltage and current noise 
sources, respectively. The power density of the Opamp noise sources have the units of V /Hz and are defined as; 𝐸 = 𝑒 (1 + ), 𝐼 = 𝐼 = 𝑖 (1 + ). 𝑒  and 𝑖 , are 
the opamp input referred voltage and current white noise powers. 𝑓  and 𝑓 , are the 
voltage and current noise power density corner frequencies. The output referred noise 
power density of each amplification and filtering stage is 𝐸 , , For the case of a noise-
less excitation source, the total root mean square (rms) noise voltage at the output of the 
amplification and filtering board is obtained from (9). 𝐸 , = (𝐺 𝐺 𝐺 𝐸 , + 𝐺 𝐺 𝐸 , + 𝐺 𝐸 , + 𝐸 , ) 𝑑𝑓 ,  (9)

where 𝐸 ,  is the total rms noise voltage at the board output. Here, it is also assumed 
that the output common mode voltage is set externally and adequately filtered. The out-
put referred noise power density of the bridge, 𝐸 , , and the output referred noise 
power density of each amplification and filtering stage, 𝐸 , , is multiplied by the 
square of the noise gain, 𝐺 = 1 +  of the proceeding stages, then summed and inte-

grated over the bandwidth of the interface (lower, 𝑓 , to higher, 𝑓 , 3 dB cut off fre-
quency). The output referred noise power density of each differential amplification and 
filtering stage is obtained from (10).  𝐸 , = 𝐺 𝐸 + 𝑅 𝐼 + 𝐼 + 2 𝑉 + 2 𝑉 ,  (10)

where 𝑉 = 4𝑘𝑇𝑅 , and 𝑉 = 4𝑘𝑇𝑅 . Assuming 
𝑓𝐻−𝑓𝐿𝑓𝐿 < 1, ≪ 1, ≪ 1 and ≪ 1, yields (11). For a 4th-order bandpass filter (consisting of two stages in this design) 𝐸𝑁𝐵 = 1.025(𝑓 − 𝑓 )  [25,27] Note that if 𝑓 > 𝑓  and 𝑓 > 𝑓 , the effect of flicker 

noise must be included, as well. Based on (11), the ENB of the required overall filtering to 
obtain 8-bit resolution at a given expected SNR can be determined using the typical ap-
plication values for the bridge components. 

𝐸 , ≈ √𝐸𝑁𝐵 ×
⎷⃓⃓⃓⃓
⃓⃓⃓⃓⃓⃓
⃓⃓⃓⃓⃓ 𝐺 𝐺 𝐺 (𝑉 + 𝑉 ) +2𝐺 𝐺 𝑉 + 2𝐺 𝐺 𝑉 +𝑒 𝐺 𝐺 𝐺 + 𝐺 𝐺 + 𝐺 + 𝑖 2𝐺 𝐺 𝑅 + 2𝐺 𝑅 + 2𝑅 +2𝐺 𝑉 + 2𝐺 𝑉 + 2𝑉 + 2 𝑉

  (11)

Thus, the minimum expected SNR is computed by knowing the minimum expected 
rms differentially sensed and amplified signal with a defined resolution and the total rms 
noise signal after filtering. The required ENB can be adjusted accordingly. 𝑆𝑁𝑅 = 20 × log , . ( ) ,, ,   (12)
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where 𝐴 , . (𝑉 − 𝑉 ) ,  is the minimum expected rms differentially sensed and 
amplified signal for a given resolution. In practice, however, for low-frequency (< 10 kHz) 
measurements, the effect of flicker noise cannot be neglected entirely, and other sources 
of non-ideality, such as the transducer functional layer instability and environmental 
noise, may also add to the estimated total output referred rms noise, and even lower ENB 
might be required. There are also practical limitations on realizing filter bandwidth on the 
order of 10s of hertz. The minimal bandwidth leads to a longer response settling time for 
step-type input variations. Sometimes the dynamics of analyte binding are fast, and the 
readout interface should be able to follow the relatively fast variations in the response 
signal. Therefore, the bandwidth should be set considering the amount of allowable noise 
and the fast settling requirement. Although a higher filter bandwidth leads to worse SNR, 
proper further digital signal processing techniques with suitable sine-fitting algorithms 
can effectively act as an additional filter and even extract the signal information buried in 
the noise, and this is described next. 

2.2. Real-Time Digitization and Fitting 
For any biosensor’s deployment, the transducer’s characteristic change should ulti-

mately be quantified. In general, the response is an electric DC or AC signal that needs to 
be acquired in real-time for field deployment. The complex impedance of the solution–
electrode interface can be measured in real-time by extracting the amplitude and phase 
data from the amplified transducer’s response signal. While amplitude information can 
be obtained using the response signal, the phase should be measured differentially with 
respect to some reference signal. In the two-channel data acquisition system, shown in 
Figure 4, the ADC alternatively samples the excitation voltage (i.e., the source signal) as a 
reference for differential phase measurement and the output of the amplification/filtering 
block (i.e., the response signal). To automate this, the digital system must be able to extract 
the amplitude and differential phase quantities from the digitized signal using a specific 
algorithm and in real-time for field deployment. Simultaneous data acquisition and real-
time processing become feasible using ring buffers without sacrificing memory. The ADC 
samples the source and response signals and writes the data into the designated ring 
buffer. A sine fitting algorithm implemented within the microcontroller reads the samples 
consecutively and applies the fitting algorithm to a specific number of samples as a batch. 

 
Figure 4. A single microcontroller is utilized to both digitize the source and response signals. The 
built-in ADC samples the source and response signals alternatively. The samples are stored in ring 
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buffers, and MCU computes the amplitude and differential phase information. The results are 
stored in a ring buffer for external communication. 

The fitting results containing the amplitude and differential phase information are 
written in another ring buffer. The MCU uses the results for balancing-related computa-
tions or external communication via UART. The key parameters for the data acquisition 
and fitting unit design are the ring buffer length, ADC sampling rate, type of the sine 
fitting algorithm, and the number of samples required for each round of fitting, consider-
ing the expected signal and noise levels. Additionally, as the processing occurs in real-
time using a single MCU, it requires a computationally efficient code and algorithm. The 
design process is explained in the following. 

Sine-fitting algorithms are traditionally seen in ADC testing and characterization [28] 
and impedance/frequency response measurements [29]. 

Researchers have recently recognized the utility of sine-fitting algorithms for the real-
time processing of the transducer output voltage [29,30]. There are many different ap-
proaches to sine-fitting, each with varying degrees of suitability in low-cost, real-time 
sensing applications. To design an accurate real-time sine fitting, the designer must set 
many parameters such as sampling rate, SNR, ADC resolution, record length, etc. Unfor-
tunately, there is no general study of important factors for sine fitting of biosensor re-
sponse in real-time; thus, the designer must study these tradeoffs for each design. This 
section will present a detailed analysis of the various tradeoffs for the abovementioned 
design parameters concerning sensing requirements. The results will help the designer 
pick the proper sine fitting algorithm based on the available budget, expected noise floor, 
required dynamic range, and accuracy with specific DSP hardware capabilities. 

In general, sine-fitting algorithms can be classified as either iterative or non-iterative. 
Although providing better accuracy in some applications, iterative algorithms, such as the 
IEEE standard 4-parameter sine fitting [28], are not the best candidates for real-time im-
plementation. By nature, the convergence of these algorithms might require multiple iter-
ations, and data storage requires additional memory usage. Non-iterative algorithms, on 
the other hand, offer better real-time solutions, considering their relatively more straight-
forward implementation. However, the accuracy of a non-iterative approach with small 
and noisy signals and compatibility with low-cost general-purpose microcontroller im-
plementation needs to be considered for real-time and field deployable applications. 

The non-iterative sine parameter extraction algorithm, IEEE standard 3-parameter 
sine fit (3PSF) [31], is reviewed for the design requirements in this paper.  

The 3-parameter sine parameter extraction is based on the assumption that the exci-
tation source frequency (𝑓 ) is known, and only the amplitude, initial phase, and DC off-
set of each singular channel are estimated. A brief theoretical review of the 3PSF is avail-
able in [31–33]. The real-time implementation of 3PSF in a low-cost microcontroller can be 
greatly simplified by using coherent sampling; therefore, simplified 3PSF with coherent 
sampling is considered for performance comparison here. Consider a sequence of 𝑁 sam-
ples (𝑘 = 0, 1, . . 𝑁 − 1) of a sine wave represented as follows: 𝑦[𝑘] = 𝐴 cos(2𝜋 𝑘 + 𝜑) + 𝐷𝐶.  (13)

where 𝑓  is the sampling rate for both channels (source and response), sine wave fre-
quency 𝑓 , amplitude 𝐴, initial phase 𝜑, and offset 𝐷𝐶. The source and response signals 
are derived from the same generator; therefore, they share the same frequency 𝑓 . If the 
ratio of 𝑓 /𝑓  is known, the 3 parameters 𝐴, 𝜑, and 𝐷𝐶 can be estimated for each chan-
nel, in the least squares sense, using 3PFS, as shown in [31]. The real-time implementation 
of 3PSF in a low-cost microcontroller can be significantly simplified by using coherent 
sampling; therefore, simplified 3PSF with coherent sampling is considered for perfor-
mance comparison here.  

If the estimated signal, 𝑦[𝑘] is expressed as follows: 
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𝑦[𝑘] = 𝐴 cos 2𝜋   𝑘 + 𝐴 sin 2𝜋   𝑘 + 𝐷𝐶  (14)

With some simple algebra using the coefficients 𝐴  and 𝐴  for each channel, the 
amplitude and phase of 𝑦 are estimated as in [31]. 𝐴 = 𝐴 + 𝐴   (15)

𝜑 = tan ( ).  (16)

where 𝐴 and 𝜑  are the estimated amplitude and initial phase. Coherent sampling is 
achieved when 𝑓 𝑓⁄ = 𝑀 𝑁⁄ , where 𝑀 and 𝑁 are relatively prime integers and repre-
sent the total number of input periods in the record and the total record length, respec-
tively. Under the assumption of coherent sampling, 𝐴 , 𝐴  and 𝐷𝐶 are defined as fol-
lows: 𝐴𝐴𝐷𝐶 = ⎣⎢⎢

⎡2/𝑁 ∑ 𝑦[𝑘]cos (2𝜋   𝑘)2/𝑁 ∑ 𝑦[𝑘]sin (2𝜋   𝑘)1/𝑁 ∑ 𝑦[𝑘] ⎦⎥⎥
⎤
.  (17)

For a known input frequency, the given ratio of 𝑓 /𝑓  and the ratio of 𝑀/𝑁 remains 
fixed. Hence, a lookup table rather than a function can be used to compute the sinusoidal 
values, cos (2𝜋   𝑘 ) and sin (2𝜋   𝑘) , dramatically reducing the required processing 
time. A primary concern, however, remains the effect of uncertainty in the 𝑓 /𝑓  ratio, as 
well as jitter in the sampling clock, in the presence of very low SNR signals. Therefore, the 
effects of the oversampling ratio of the ADC and the SNR of the signal, as well as clock 
jitter and computational resource requirements, will be studied before algorithm imple-
mentation. The principal investigated performance metrics in the analysis and compari-
sons are the estimated percent amplitude error (𝜖 ), and percent differential phase (𝜑  
= 𝜑 − 𝜑 ) error (𝜖 ).  

2.2.1. Additive White Gaussian Noise 
To see the effect of noise on the resolution of the sensor, let us assume the noise, 𝑛 , 

is additive white Gaussian noise. For a noisy, coherently sampled signal, 𝑦 [k] = 𝐴cos 2𝜋   𝑘 + 𝜑 + 𝐷𝐶 + 𝑛 ,  (18)

the estimation parameters in (17) are independent and unbiased in the presence of white 
Gaussian noise. In this case, the expected values of the estimation parameters are: 𝐸 𝐴 =𝐴 = 𝐴 cos 𝜑, 𝐸 𝐴 = 𝐴 = 𝐴 sin 𝜑, and 𝐸 𝐷𝐶 = 𝐷𝐶 = 𝐷𝐶. The covariance matrix, 𝐶 , 
of the 3PSF with coherent sampling is [32]: 

𝐶 = ⎣⎢⎢⎢
⎡ 𝜎 0 00 𝜎 00 0 𝜎 ⎦⎥⎥⎥

⎤
.  (19)

where 𝜎  is the variance in the additive white Gaussian noise. The estimated amplitude 
parameters, 𝐴  and 𝐴 , in the presence of noise, are statistically analyzed and defined in 
[32,33], with their expected values 𝐴  and 𝐴 , and equal variance 2𝜎 /𝑁. The amplitude 
and initial phase 𝐴 and 𝜑, are functions of the statistically defined random variables 𝐴  
and 𝐴 . The mean and variance of a function of two random variables 𝑓(𝐴 , 𝐴 ), can be 
approximately derived based on a Taylor series expansion of the function about the ex-
pected values of the associated random variables 𝐴 , 𝐴 , as shown in [32,34]: 
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𝐸 𝑓 𝐴 , 𝐴 ≈ 𝑓 𝐴 , 𝐴 + ( 𝐶 + 2 𝐶 + 𝐶 ),  (20)

𝑣𝑎𝑟 𝑓 𝐴 , 𝐴 ≈ 𝐶 + 2 𝐶 + 𝐶 ,  (21)

where 𝐸 𝑓 𝐴 , 𝐴  and 𝑣𝑎𝑟 𝑓 𝐴 , 𝐴  are the mean and variance of the function 𝑓 𝐴 , 𝐴 . Using (19)–(21), the mean and variance of the estimated amplitude and initial 
phase can be derived as a function of SNR: 𝐸 𝐴 ≈ 𝐴 + ≈ 𝐴 1 + ∙ , 𝑣𝑎𝑟 𝐴 ≈ 𝜎   (22)

𝐸[𝜑] ≈ 𝜑, 𝑣𝑎𝑟(𝜑) ≈ ∙  (23)

where 𝐸 𝐴 , 𝑣𝑎𝑟 𝐴  and 𝐸[𝜑], 𝑣𝑎𝑟[𝜑] are the mean and variance of the estimated am-
plitude and initial phase, respectively. Based on (22), the amplitude estimation is biased 
with noise present. When alternate sampling is used, as shown in Figure 4, the initial 
phase of the response signal is measured with reference to the source signal, therefore: 𝑣𝑎𝑟 𝜑 = 𝑣𝑎𝑟 𝜑 + 𝑣𝑎𝑟[𝜑 ] − 2𝑐𝑜𝑣 𝜑 , 𝜑 ,  (24)

where 𝑣𝑎𝑟 𝜑  is the variance of the differential phase, and 𝑣𝑎𝑟 𝜑  and 𝑣𝑎𝑟[𝜑 ] are the variance of the initial phase estimation of response 
and source signals, respectively. When the source and response signals are corrupted by 
additive noise, the initial phase estimations are independent (i.e., 𝑐𝑜𝑣(𝜑 , 𝜑 ) 
= 0). From (23) and (24), if the same record length is assumed for both channels (N), the 
variance of the differential phase can be derived as: 𝑣𝑎𝑟 𝜑 ≈ +   (25)

The 3PSF algorithm can effectively reduce the effect of noise on the acquired data 
based on (22)–(25). If the ratio of 𝑀/𝑁 is chosen considering the actual SNR at the lower 
limits of detection, better resolution can be achieved.  

2.2.2. Sampling Clock Jitter  
Sampling clock jitter causes uncertainty in 3PFS estimation results. The uncertainty 

caused by sampling clock jitter can be modeled as a normally distributed random variable 𝛼  with zero mean and standard deviation equal to 𝜎  [35]. A coherently sampled signal 
with jitter is modeled as follows: 𝑦 [𝑘] = 𝐴𝑐𝑜𝑠(2𝜋𝑓 (𝑡 + 𝛼 ) + 𝜑) + 𝐷𝐶 = 𝐴𝑐𝑜𝑠(2𝜋𝑓 𝑡 + 𝜃 + 𝜑) + 𝐷𝐶, (26)

where 𝜃  is a normally distributed random variable with zero mean and standard devi-
ation 2𝜋𝑓 𝜎 = σ. In the presence of jitter, the 3PSF is no longer an unbiased estimator 
for 𝐴  and 𝐴 , the expected values for the three parameters are as follows:  𝐸 𝐴 = 𝐴𝑒 cos 𝜑,  (27)

𝐸 𝐴 = −𝐴𝑒 sin 𝜑,  (28)

𝐸 𝐷𝐶 = 𝐷𝐶, (29)

𝐶 = ⎣⎢⎢
⎢⎡ (1 − 𝑒 )(1 − 𝑒 cos 2𝜑) 0 00 1 − 𝑒 1 + 𝑒 cos 2𝜑 00 0 1 − 𝑒 ⎦⎥⎥

⎥⎤
,  (30)
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If the initial phase, 𝜑, is assumed to be constant, the covariance matrix of the estima-
tor in the presence of jitter, 𝐶 , is derived in (30). The approximate mean and variance 
of the amplitude and initial phase estimation with jitter present, using (27) and (28), are 
as follows: 𝐸 𝐴 ≈ 𝐴𝑒 + (1 − 𝑒 )(𝑒 + 𝑒 ),  (31)

𝑣𝑎𝑟 𝐴 ≈ (1 − 𝑒 )(1 − 𝑒 ), (32)

𝐸[𝜑] ≈ 𝜑 , 𝑣𝑎𝑟(𝜑) ≈ (1 − 𝑒 )(𝑒 + ), (33)

In the presence of jitter, the estimations for the source and output initial phases are 
independent, i.e., 𝑐𝑜𝑣 𝜑 , 𝜑 = 0. The differential phase variance is derived 
using (24) and (33): 𝑣𝑎𝑟 𝜑 ≈ { 1 − 𝑒 (𝑒 + ) + 1 − 𝑒 (𝑒 + )},  (34)

If we examine the mean error in the estimated amplitude using (31) from above: lim→ 𝜀 = [ ]  = 𝑒 − 1,  (35)

where 𝜀  is the amplitude estimation relative error. Although it is seen in (35) that the 
amplitude mean error will never reach zero even with the largest number of samples for 
3PSF, which is also claimed in [35], with an optimized large record length 8-bit detection 
resolution for both amplitude and phase is achievable even at non-realistically high jitter 
standard deviation of around π radians. 

Based on the obtained results, 3PSF can maintain the target 8-bit resolution at jitter 
standard deviations, even close to 2π radians, by controlling the record length. 

It is worth mentioning that the obtained result for this analysis depends on the source 
and sampling frequency. The maximum allowable jitter using an ADC with a resolution 
of 𝑅 bits, and a sine wave input with an amplitude equal to the ADC full-scale and a 
frequency of 𝑓 , to have a jitter-induced error of less than half LSB is inversely propor-
tional to (2𝜋𝑓 2 ) [36]. The maximum allowable jitter, therefore, grows smaller if the sine 
wave has an amplitude smaller than full-scale, higher frequency, and with higher resolu-
tion for the ADC. For example, jitter considerations gain more importance for sensors with 
hundreds of 𝑀𝐻𝑧 or 𝐺𝐻𝑧 level excitation frequencies or when the response signal is not 
sufficiently amplified to the ADC’s full-scale range at lower detection limits. 

2.2.3. Non-Coherency 
A fundamental assumption while simplifying the implementation of the real-time 

3PSF algorithm is that the data belong to a coherently sampled sine wave. However, de-
pending on the source sine wave generator’s accuracy level, the desired source frequency 
may deviate from its actual value. The result will be that the record will not contain exactly 𝑀 cycles of the input signal, and the readily hard-coded lookup table for computing the 
sinusoidal values, cos (2𝜋   𝑘) and si n 2𝜋   𝑘  will no longer represent correct samples, 
leading to errors in the estimated amplitude and initial phase. The effect of a shift in the 
source frequency, Δ𝑓, can be modeled by assuming a shift in the 𝑓  such that [32]: Δ𝑓 = 𝑓 − 𝑓 = ( . ) ,  (36)

where 𝑄 is the integer part, and 𝛿 is the fractional part of the residue. The result is a shift 
in the number of periods being sampled. Now, if the cycles in the presence of shift in 𝑓 , 
are 𝑀 = 𝑀 + 𝑄. 𝛿, the actual waveform, can be expressed as follows: 
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𝑦 [𝑘] = 𝐴 cos 2𝜋 . 𝑘 + 𝜑 ,  (37)

where 𝑦 [𝑘] are the samples of the waveform, including a frequency deviation. Using 
(15) and (17), the amplitude is estimated as follows: 

𝐴(𝑄. 𝛿) = { ∑ .   + [2/𝑁 ∑ 𝐴 cos(2𝜋 . 𝑘 + 𝜑) sin(2𝜋   𝑘)] } /   (38)

which can be further simplified as a function of ∆𝑓 to be: 𝐴(∆𝑓) = 𝐴[sinc (𝑁 ∆ + 2𝑀) + sinc (𝑁 ∆ ) + 2sinc(𝑁 ∆ + 2𝑀)sinc(𝑁 ∆ ) cos(2𝜑 + 2𝜋𝑁 ∆ )] / ,  (39)

The initial phase estimation, as a function of 𝑄. 𝛿, can be derived using (16) and (17): 𝜑(𝑄. 𝛿) = tan ( / ∑ ( . ) (   ) / ∑ ( . ) (   ) )  (40)

which can be further simplified and written as a function of frequency deviation, ∆𝑓: 𝜑(∆𝑓) = tan [tan(𝜑 + 𝜋𝑁 ∆ ) (   )( ∆ )],  (41)

With the realistic assumption that the shift in the input frequency is much smaller 
than the sampling frequency (Δ𝑓 ≪ 𝑓 ), (39) reveals that the amplitude estimation accu-
racy is highly dependent on the record length 𝑁. The larger the record length, the greater 
the amplitude estimation error for a given Δ𝑓. On the other hand, if Δ𝑓 ≪ 𝑓 , (41) simpli-
fies as follows: 𝜑(∆𝑓) ≈ 𝜑 + 𝜋𝑁 ∆ ,  (42)

(42) indicates that, with a shift in the input frequency, regardless of the size of the 
sample record, there will be a linear phase error associated with the phase estimation. This 
error can be effectively mitigated if the output signal phase is measured with respect to a 
signal that shares the same frequency generator with the response.  

2.2.4. Real-Time Microcontroller Implementation Considerations 
For real-time implementation, any algorithm must perform mathematical operations 

with the individually taken samples from each channel, store the results in specific varia-
bles, and regularly update them with each incoming sample. The implementation cost is, 
therefore, the number of mathematical operations, functions, lookup tables, and the num-
ber of memory positions to hold the variables per fixed amount of data within each re-
cording. One can estimate the execution time based on the number of clock cycles required 
by a specific MCU for each math operation. For the simplified 3PSF with a known excita-
tion frequency, the values of sin(2𝜋𝑓 𝑡 ) and cos(2𝜋𝑓 𝑡 ) can be pre-computed using 
a singular lookup table. For comparison, the non-iterative ellipse fit algorithm [37] re-
quires additional matrix operations other than the trigonometric functions and square 
root calculations that could be implemented with lookup tables. The real-time 3PSF is ef-
ficiently implemented within an MCU, with the computational cost as low as six variables, 
four multiplications, six additions, and one lookup table.  

3. Results 
Provided the theoretical analysis of the critical factors limiting the performance of a 

fully differential amplification/filtering and data acquisition/processing board, a readout 
interface is designed, fabricated, and tested for target 8-bit impedance sensing resolution. 
Board implementation and performance verification procedures are discussed in this sec-
tion.  
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3.1. Differential Amplification and Filtering Implementation 
The Block diagram and the implemented boards of the amplification and filtering 

units interfacing a differential impedance sensing bridge are shown in Figure 5. A custom 
differential impedance sensing bridge with fixed series RC impedances (𝑍  and 𝑍 ) 
mimicking the electrode–solution interface impedance and balancing networks (𝑍  and 𝑍 ) composed of a digitally tunable resistor and capacitor array [20] is interfaced with the 
designed readout for performance verification. The DC biasing resistors (𝑅 = 50 𝑘Ω) are 
not shown on the schematic for simplicity but are included on the board, as shown in 
Figure 3a. The first fully differential amplification stage is fabricated on the same board as 
the differential sensing unit to minimize the interferences caused by wiring and external 
connections. Details about the part selection and component values using the proposed 
design methodology are explained in the next section. 

 
Figure 5. (a) The implemented amplification and filtering board interfaced with the differential im-
pedance sensing unit: (b) The block diagram of the differential impedance sensing unit and the de-
veloped readout. The first amplification stage is placed on the same board as the sensing unit to 
avoid interferences with the small sensing response signal caused by external connections. 

3.1.1. Effect of Component Matching and Tolerances 
The three-stage amplification is configured to provide a total differential gain of 70 𝑑𝐵, to amplify the sensing unit’s full-scale output to 𝐴  of the ADC. The differential 

precision amplifier, Analog Devices Inc., Wilmington, MA, USA, LTC6363 is picked as the 
critical component of the amplification and filtering unit. The typical 𝐶𝑀𝑅𝑅 , for 
LTC6363 is 110 dB. To maintain a total 𝐶𝑀𝑅𝑅 of around 100 dB for the readout, a com-
mon mode-induced differential gain of around −30 dB is required based on (2). Figure 6a 
shows the percent degradation in 𝐶𝑀𝑅𝑅 /𝐶𝑀𝑅𝑅  for various 𝐶𝑀𝑅𝑅 , ver-
sus the percent feedback matching ratio obtained from (3). Given a typical value of 𝐶𝑀𝑅𝑅 = 110 dB, feedback matching ratios better than 0.001% are required to ob-
tain a 𝐶𝑀𝑅𝑅  of 50 dB. A stable common-mode voltage is provided for each differ-
ential difference amplifier using an on-board voltage regulator, Analog Devices Inc. 
LT3021, and the voltage amount is equal to half of the ADC full-scale reference voltage 
( = 0.6 V). Therefore, considering (6), adjusting the feedback matching ratio of the first 
amplification stage plays a critical role in the total readout 𝐶𝑀𝑅𝑅. 
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Figure 6. (a) Percent degradation in the ratio of the CMRR of a fully differential stage (𝐶𝑀𝑅𝑅 ) 
and Opamp typical CMRR (𝐶𝑀𝑅𝑅 ) for various 𝐶𝑀𝑅𝑅 , versus percent change in match-
ing ratios of peripheral resistors constructing the feedback network (Δ𝛽/𝛽); (b) Percent resistance 
tolerance (Δ𝑅/𝑅) for various differential stage gain, 𝐴 , , versus percent feedback ratio mismatch 
(Δ𝛽/𝛽). 

The plots of the required percent component tolerance for various stage gain, 𝐴 , , 
versus percent feedback ratio mismatch using (5), are shown in Figure 6b. Stages with 
higher allocated differential gain are less sensitive to component tolerances to obtain a 
given feedback matching ratio. 

The peripheral surface-mount resistors and the capacitors of the differential amplifi-
cation and filtering circuit were measured one by one in every purchased batch (contain-
ing at least 10 with 1% tolerance), and the ones with the closest values to obtain the match-
ing ratio of better than 0.001% were mounted on the boards. The values of the resistors in 
the amplification and filtering stages to achieve a gain distribution of 30 × 10.6 × 10.6 
are; 𝑅 = 300 kΩ, 𝑅 = 10 kΩ, 𝑅 = 𝑅 = 16 kΩ, 𝑅 = 𝑅 = 750 Ω, R = 𝑅 = 10 kΩ. 

3.1.2. Noise Considerations and Filtering Unit 
The input referred noise voltage, and current of the LTC6363 are 2.9 nV/√Hz and 

0.55 pA/√Hz, respectively. With the known gain distribution and resistance values of the 
amplification and filtering stages and typical values for the electrode impedance models, 𝑅 = 200 Ω, 𝐶 = 100 nF using (8) the output referred noise of the readout board before 
ADC is 75.231 μV/√Hz. For an 8-bit resolution and 1% change in the impedance and 𝑉 = 50 mV  the LSB of the differentially amplified sensing signal with the gain of 70 dB, is 3.34 mV . Considering the fast response settling requirements, by picking an 
ENB of 270 Hz, the expected SNR at the minimum response level obtained from (9) is 7~9 
dB. A bandwidth of 265 Hz is chosen for the bandpass filter, and with the available com-
mercial component’s values for the capacitors 𝐶 = 𝐶 = 47.3 nF, the center frequency of 
the filter is expected to be approximately 1.03 kHz.  

3.2. Real-Time Signal Acquisition and Sine Fitting 
With the derived expressions in Section 2.2. the amplitude and phase estimation er-

rors are good indicators of better noise immunity with various sample record lengths and 
specific accuracy requirements. To evaluate the reasonably achievable dynamic range for 
the sensor with the expected level of noise, jitter, and frequency accuracy, an optimized 
record length for a known 𝑀 𝑁⁄  is required. Thus, theoretical derivations are verified 
with numerical MATLAB simulations. For the subsequent analysis, we assume two sine 
signals (source and response) with an equal frequency of 1 kHz, amplitude of 1 V, the 
relative phase difference of 45°, and equal DC offset of 0.6 𝑉, that are generated using 
MATLAB. The sampling rate, 𝑓 , and input frequency, 𝑓 , are constant and equal to 
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55 kS/s and 1 kHz, respectively. The values 𝑀 and 𝑁, are changed for multiple simula-
tions, providing record lengths of 256, 512, and 1024 samples with 5, 9, and 19 cycles, 
respectively, to maintain the fixed 𝑀 𝑁⁄  ratio.  

The ultimate metric of interest for a biosensor is to achieve a particular resolution. 
Therefore, the pointed non-idealities and their effect on 3PSF estimation are also examined 
here under the resolution (8-bit) context. The resolution of the sensor output is defined, 
considering a full-scale voltage at the input of the ADC, 𝐴 , and the full-scale target 
phase difference, 𝜑 . One performance criterion given a target of 8-bit resolution is the 
estimation mean error and standard deviation remaining within the ± 𝐴 2⁄  and ± 𝜑 2⁄  range. The estimation errors (mean and standard deviation) and resolution lines 
are normalized to full-scale values to demonstrate a more generic reference plot. For each 
non-ideality effect, the normalized estimation parameters of interest with their percent 
mean error and percent standard deviation are shown, and normalized resolution lines 
are also drawn on the plots as an indicator of the best achievable resolution with different 
levels of additive noise, jitter, and shift in the excitation frequency. 

3.2.1. Additive Noise 
The expected minimum SNR value at the output of the implemented amplification 

and filtering board is 7~9 dB. The analysis in Section 2.2.1 confirmed that an optimized 
record length for 3PSF improves both amplitude and differential phase estimation accu-
racy. To optimize the record length with the expected SNR, the estimation mean and 
standard deviation normalized percent errors obtained from the theoretical derivations 
(22)–(25) are simulated using MATLAB. Figure 7 shows the normalized mean amplitude 
and differential phase estimation error and the associated standard deviation for response 
SNR ranging from −5 to 30 dB and 1000 simulations at each point. The SNR at the 
source is fixed and set to 30 dB for the simulations. Apparently, with a larger record 
length, lower uncertainty in the estimation is achievable, even for SNR values less than 0 dB.  

 
Figure 7. 3PSF (a) percent mean amplitude and (b) percent mean differential phase estimation errors 
with their normalized standard deviations (error bars) vs. SNR. Normalized to full-scale resolution 
lines demonstrate the best achievable resolution by considering the standard deviation (error bars) 
with the degrading SNR and increasing record length (N). 

The results in Figure 7 show that the 8-bit target resolution with SNR values even 
less than 5 dB is achievable with 𝑁 =  1024. 
• Oversampling 

Numerical analysis with varying sampling rates and low SNRs is also carried out for 
3PSF to confirm if a higher sample rate leads to better estimation performance in a noisy 



Biosensors 2023, 13, 77 18 of 24 
 

environment. For the numerical simulations, the oversampling ratios range from 4 to 256, 
and the input SNR is assumed to range from −5 to 35 dB. The simulations for the 3PSF 
produce an average percent error within 1% both for the amplitude ratio and the differ-
ential phase for the 256 samples in the record. The produced estimation results show that 
with a lower sampling-to-excitation frequency ratio, 3PSF can deliver reliable results at 
very low SNRs, with even four samples taken per period.  

Although the greater number of samples within a record generates more accurate 
results with worse SNR levels, this might limit how fast the results could be produced at 
very low (sub-Hz) excitation frequencies. In [38], it is shown that utilizing 3PSF for a sub-
Hz sensor response can produce an impedance estimation variance of 1% while the record 
covers only 11% of the whole period. Therefore, 3PSF is flexible for various excitation fre-
quencies and signal-to-noise ratios. Consequently, it is concluded that at low SNRs, 3PSF 
with coherent sampling provides accurate results without oversampling. Therefore, the 
only limiting factor on the sampling rate is set by the real-time processing requirements. 

3.2.2. Jitter 
Based on derivations (31)–(34) for 3PSF in the presence of jitter and numerical simu-

lations, the mean of the amplitude and differential phase errors with their normalized 
standard deviations for 1000 simulations at each point is plotted in Figure 8. The jitter 
standard deviation (𝜎) varies from 0 to 2𝜋 for all the simulations. 

 
Figure 8. 3PSF (a) percent mean amplitude and (b) percent mean differential phase estimation errors 
with their normalized standard deviations (error bars) vs. jitter standard deviation (𝜎). 3PFS can 
maintain 8-bit resolution with even unrealistic jitter standard deviations close to 2𝜋  by record 
length control at 55 kS/s sampling rate. 

Although it is seen in (35) that the amplitude mean error will never reach zero for 
3PSF [35], with a record length of 1024, the 8-bit detection resolution for both amplitude 
and phase is achievable even at non-realistically high jitter standard deviation of around 
π radians. 

3.2.3. Shift in Excitation Frequency 
Figure 9a shows the normalized amplitude estimation versus the deviation in the 

source frequency Δ𝑓 at various numbers of acquired cycles (𝑀 = 5, 9,19 and 37) both for 
the theoretical derivation (39) and numerical simulation, with 𝑓 =  55 kS/s and 𝑓 =1 kHz. For a higher numbers of samples, with approximately equal input frequencies and 
a constant sampling rate, the fitting accuracy becomes much more sensitive to uncertainty 
in the ratio of 𝑓 /𝑓 . Figure 9b shows the zoomed-in plot of the amplitude error with non-
coherency for 𝑁 = 1024, 𝑀 = 19. For 8-bit detection resolution, a frequency deviation of 
approximately 5 Hz can be tolerated, while if the resolution is relaxed to 4-bit, the safe 
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frequency deviation is raised to 22 Hz. However, with the typical accuracy level of on-
chip sine wave generators utilizing phase-locked loops (PLL) or direct digital synthesis 
(DDS) for discrete implementation, at kHz range, this amount of non-coherency is not a 
concern for amplitude estimation.  

 
Figure 9. 3PSF (a) amplitude estimation for a various number of samples within a record (b) 
zoomed-in Mean amplitude percent error for N = 1024, M = 19, and normalized percent detection 
resolutions vs. source frequency deviation. The plots also validate that the theoretical derivations 
for the non-coherency effect follow the numerical simulations accordingly. 

However, at the MHz or GHz range, the accuracy of the generated sine wave is more 
of a limiting factor while picking the record length.  

The theoretical (41) and numerically simulated initial phase estimation of the source 
and response with non-coherency are shown in Figure 10. A deviation in the source fre-
quency will result in a linear increase in the initial phase, but the slope of this change, as 
derived in (41), is equal for both source and response signals, as they share the same fre-
quency from a mutual source. Therefore, the resultant differential phase estimation for 
the alternate sampling scheme will not be affected by frequency deviation for any record 
length. 

 
Figure 10. 3PSF initial phase estimation vs. source frequency deviation for 𝜑 = 45°, 𝜑 = 90°. The plots obtained for N = 1024, M = 19. When the frequency of the source and 
response signals is generated from a mutual source, the linear phase estimation error for both has 
the same slope. 

It should be clarified that, as seen in Figure 9a, the estimated amplitude will reach 
zero when the shift in the frequency leads to an integer number of acquired cycles 
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difference (i.e., 𝛿 = 0 or when ∆𝑓 = 𝑓 , see (39)), causing a discontinuity in the initial 
phase estimation at the same points. 

3.3. Board Characterization 
The fabricated amplification and filtering board is characterized by measuring the 

total differential gain and common-mode-induced differential gain to verify the expected 
board total CMRR. For the differential gain measurement, the Audio Precision 2272 in-
strument is used to provide a very small differential sinusoidal input signal with a 0.1 mV  amplitude. The magnitude of the differential voltage at the output of the filter-
ing board is measured using a digital multimeter. The differential phase of the board out-
put with reference to the source signal is measured by an oscilloscope. The gain magni-
tude and differential phase are measured and recorded for multiple frequency points at a 
range from 0 to 2500 Hz. Common-mode-induced differential gain is characterized with 
the same method, except for a 1 V  voltage applied to the inputs of the board.  

The measurement characterization graphs in Figure 11a show that the interface board 
can achieve a center frequency at 1.02 kHz, a maximum differential gain of 3330.33 𝑣/𝑣 corresponding to 70.44 dB, and a bandwidth of 265 Hz. The maximum common mode 
induced differential gain shown in the measurement graph of Figure 11b is −25.7 dB, 
which yields a total CMRR of 96.14 dB. 

 
Figure 11. The amplification and filtering board characterization for differential gain magnitude and 
differential phase verifies a center frequency of 1.02 kHz, bandwidth of 265 Hz, and a differential 
gain magnitude of 3330.33 𝑣/𝑣 corresponding to 70.44 dB; (a). Maximum common mode induced 
differential gain magnitude is verified at −25.7 dB, which yields a total CMRR of 96.14 dB; (b). 

3.4. Performance Verification 
The amplification and filtering board is connected to the Texas Instruments Inc. MSP-

EXP432P401R launchpad shown in Figure 5a for real-time data acquisition and sine fit-
ting. The utilized key features of the single microcontroller are 48 MHz master clock rate, 
14-bit, 1.2 V differential (two channel) ADC. Considering the acquisition of 1024 samples 
for each sine fitting operation satisfies 8-bit detection resolution requirements with 7~9 dB 
expected minimum SNR. The sampling rate is adjusted at 55 kS/s to accommodate the 
needed real-time processing time. For the real-time fitting operation, each sample is 
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multiplied by the corresponding sin (2𝜋𝑓 𝑡 ) and cos(2𝜋𝑓 𝑡 ) from a lookup table and 
results consecutively added to produce the 𝐴  and 𝐴  for each sine fitting. 

3.4.1. Real-Time Operation and Sensitivity  
The readout sensitivity is tested using the same block diagram of Figure 5b. The test’s 

target is to detect a total 1% fractional capacitance change on one of the bridge impedances 
with an 8-bit resolution. A symmetrical bridge is configured by replacing 𝑍 and 𝑍  
with the two fixed equal series RC impedances of 100 nF and 220 Ω. After balancing the 
differential bridge using digitally tunable 𝑍 and 𝑍  networks, the 8-bit sensitivity is 
tested by additively changing the capacitance of the 𝑍  with 8 pF, 16 pF, 32 pF, 64 pF, 128 pF, 256 pF, 512 pF, and 1 nF values. The test mimics an 8-bit 
detection resolution for a total 1% (  ) fractional change of the capacitance in the sym-
metrical differential bridge. The real-time response amplitude and differential phase with 
reference to the source signal are demonstrated in Figure 12. 

  
Figure 12. Sensitivity to 1% capacitance change with 8-bit resolution and real-time processing veri-
fication for the implementation of the readout board. The obtained amplitude from the real-time 
3PSF for 8 pF, 16 pF, 32 pF, 64 pF, 128 pF, 256 pF, 512 pF and 1 nF capacitance change at a symmet-
rical impedance bridge with a fixed capacitance of 100 nF; (a). the obtained real-time differential 
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phase and the corresponding amplitude can be used to compute actual capacitance change for a 
known bridge impedance model; (b). 

The results show a distinct amplitude change at each consecutive capacitance change 
step compared to the initial balanced state amplitude. The change of amplitude values 
compared to the initial state at each binary weighted capacitance change is 4 mV, 6 mV, 16.5 mV, 59 mV, 118 mV, 285 mV, 552 mV, and 1142 mV, correspondingly 
from the 8-bit to a 1-bit resolution. The 8-bit, 7-bit, and 6-bit amplitude levels are shown 
in an inset zoomed-in plot of Figure 12a after a 10-point moving average. The real-time 
differential phase is shown in Figure 12b, together with the corresponding amplitude, can 
be used to algebraically compute the exact values of the capacitance change with the 
known bridge impedance model [20]. The obtained results in Figure 12 reveal that the 
readout is sensitive to a 1% capacitance change with an 8-bit resolution. Moreover, the 
results confirm that the developed interface can produce the processed response success-
fully in real time. The developed readout board could be interfaced with various custom-
designed differential impedance sensing units with known impedance models, and the 
given design procedure could be employed for various precision-demanding applica-
tions. 

4. Discussion 
At the lower limits of detection for impedance biosensors, differential sensing and 

single frequency measurement with sufficient amplification and filtering are promising 
methods for real-time and field deployable implementation. However, when the response 
is still small and comparable to the noise level even after amplification, the resolution of 
the biosensor is significantly affected by the noise level. Moreover, the clock jitter will 
induce additional noise and degrade the SNR. Real-time digitization and processing with 
3PSF, in expected low SNRs (even SNR < 0 dB), can lead to a higher resolution and better 
noise-immune operation. The algorithm can be implemented within a single MCU to pro-
cess the digitized data in real time with an optimized number of samples per fitting to 
achieve a specific target resolution. With the assumption of a known operation frequency 
for the implementation of 3PSF, it is proven that a non-ideal shift in the source frequency 
and sampling clock jitter will affect the estimated response amplitude at any detection 
resolution. However, with typical accuracy levels of sine generation and the fact that both 
sampling clock and source signals are driven by a single sinusoidal source in most cases, 
jitter and source frequency shift will have a minor effect on the detection resolution both 
in terms of amplitude and differential phase at the lower sampling rates (i.e., tens to hun-
dreds of KS/s). The real-time processing of the data obtained from the biosensor will elim-
inate the need for data storage and memory requirements and lead to lower costs for the 
overall system. A less complicated data processing algorithm with lower memory require-
ments, such as 3PSF, facilitates using the same microcontroller for data processing and 
other calibration or balancing of the differential system, e.g., the bridge-based system [20]. 
More straightforward data processing and less complicated readout implementation that 
are compatible to interface with ultra-sensitive transducers are crucial for the commercial-
ization of cheaper biosensors. 

5. Conclusions 
A readout interface board suitable for high-precision impedance measurement, par-

ticularly for biosensing applications, is designed and implemented. The provided design 
details are first-hand knowledge for researchers in the field of impedance sensors and 
biosensors requiring precise measurement with specific resolution and accuracy. Moreo-
ver, the procedure provided here for developing a real-time data-acquisition unit is a 
guideline for making custom-designed, low-cost, and real-time digitization and pro-
cessing units for numerous sensitive transducers that are currently being characterized 
with lab instrumentation. Therefore, utilizing the information provided in this paper for 
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less complicated and yet accurate real-time readout facilitates the deployment of trans-
ducers for various in situ applications.  
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