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The objective of this work is to develop a fast method for modeling time-domain 
ultrasonic wave scattering in plates. Due to the possible excitation of multiple plate modes 
and dispersive behavior of these waves, the scattered signal can be very complicated. The 
model that is presented in the following, can be valuable tool in real-time inspection or 
development of new inspection techniques for the aircraft safety inspection. Inspection of 
the structural integrity of an aircraft involves, in part, the inspection of rivots for existence 
of cracks. Rivots can be checked using eddy-current probes or regular contact ultrasonic 
transducers. However, for inspection of rivots that are hidden by a top layer (e.g. 
lap-joints), a better technique may be to excite a guided ultrasonic wave which can travel in 
the plate under the joint and interrogates the hidden rivot. The scattered signal can be 
picked up by the same transducer in the pulse-echo mode. 

This problem can be solved exactly by utilizing brute force algorithms such as finite 
element or finite difference techniques. However, these algorithms require large amount of 
computer time and are impractical for real time inspection applications. Since speed in 
modeling is an important criteria, in this work we will only focus on an approximate model 
for both transducer and the scattering process. An example of a common set-up is shown 
in 1. Our approach is based on the assumption that the transducer is in the far-field of the 
signal scattered from the hole/crack. Also, it is assumed that the transducer has finite 
temporal and spatial bandwidth. These are not limiting assumptions since in practice they 
are always true. 

In the following, we present a brief review of plate wave theory. We will model the real 
transducer excitation by the plane wave superposition. In other words, we solve the plate 
problem with a plane wave incident on one side and then reconstruct the finite transducer 
case by superposing the plane wave solutions. Next, we take advantage of the reciprocity 
theorem and calculate the voltage in the receiving transducer due to backscattered or 
transmitted signal. Finally, we compare the modeled signal with the experimental signals 
for both transmission and reflection case. 
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Figure 1: Inspection of rivot-holes for the existence of cracks using oblique incidence contact 
transducers. 

PROBLEM STATEMENT 

The focus of this paper is to solve for the scattering field due to reflection and/or 
transmission from the rivot-holes with or without cracks in thin plates. To solve this 
problem, we first present solutions to the wave propagation in plates. This solution will 
form a basis for the work presented in this paper. The propagation of ultrasonic wave in 
elastic plates is a classical problem and can be found in many textbooks (for example 
see [1]). The standard method for solving this problem is to express the solution in terms of 
plane waves which are characteristic modes of an infinite medium made of the plate 
material. So the governing equations for the waves propagating in plates can be written as 

Tij,j + pw2Ui = 0 

Tij = ).JiijUk,k + p,( Ui,j + Uj,i) 

(1) 

(2) 

where Tij is the stress component in the solid, Ui is the displacement component, p is the 
density, A and p, are the Lame constants, and w is the temporal frequency. In addition to 
the above equations, a set of boundary conditions is also prescribed for both sides of the 
plate. Displacement component Ui can be written in terms of scalar potential function q, 
and a vector potential function 1/J. In this paper, we are only concerned with a 
two-dimensional case where there is no displacement or variation in the X2 direction. Hence, 
the solution to the plate problem can be written in the form 

¢( Xl, X2) = (ALc cos k~X3 + ALs sin k~x3)ei(klXl-wt) 

1/J2( Xl, X2) = (ATe cos k1x3 + ATs sin k1x3)ei(k1x1-wt) 
(3) 

(4) 

where kl is the wavenumber and k2 = Jk~ - ki (a = p,S for pressure and shear). By 

prescribing a boundary condition, we can solve for unknown coefficients ALe> and ATe> where 
a = c, s. For the case under study, the two sides of the plate have traction-free boundary 
condition except for the contact transducer footprint where a traction is prescribed. Clearly, 
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Figure 2: Contact transducers on a thin plate: a) the transmis~ion set-up (pitch-catch), and 
b) reflection set-up (pulse-echo). 

four independent equations are needed to solve for the four unknown coefficients. The 
traction boundary conditions for the two surfaces of the plate at X3 = +h, -h (assuming a 
plate with thickness 2h) provides the needed four equations. As shown in Figure 2, contact 
transducer is placed on the top surface of the plate. The boundary conditions for this 
problem can be approximated with prescription of a stress field on the area of the contact 
transducer footprint. The stress field due to this transducer can be expressed in terms of 
plane waves weighted with an appropriate angular spectrum. 

J f( kl )eikl Xl dk1 (5) 

J e-(kl _kc)2 eiklXI dk1 (6) 

where kc is the center spatial frequency of the contact transducer. All stresses are zero for 
the surface at X2 = -h. The problem can be solved by expanding the solution in terms of 
the plane waves solution. For a plane wave incidence case, the coefficients can be calculated 
by solving the linear system of equations T A = B. T is a known matrix that depends on the 
plate thickness and material property, A is a vector containing the unknown wave 
amplitudes, and B is a vector representing the forcing function. 

The transmission problem consists of modeling the pitch-catch signal traveling in a 
plate, as shown in Figure 2a. By using Auld's reciprocity theorem [2] and assuming receiver 
and the transmitter having the same response, the signal of the receiver can be written as 

Set) J J THceiver(Xl)U3(Xl)dxldw 

J J Tinc(X r - Xl)U3(Xt}dx 1dw 

T and U can be represented by Fourier integrals (angular spectrum). Consequently, the 
voltage can be written as 

By switching the order of integration and simplifying 

Since f( k1 ) is small for real {kd much greater or smaller than kc, above integral can be 
calculated on a finite interval. 

(7) 

(8) 

(9) 

(10) 
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Next, we present an approximate solution to the transducer response to the reflected 
signal from the edge of a semi-infinite plate. Unlike the case for the infinite plate, there is 
no closed-form solution for this case. Since most of the energy is reflected back from the 
edge of the plate, it is reasonable to assume that the reflected signal is similar to that 
reflected from an infinite half-space. By assuming this, we are ignoring the corner scattering 
and interaction between top and bottom quarter spaces. Using Auld's reciprocity theorem, 
the voltage due to the reflected signal can be written as 

(11) 

where ni is the unit vector normal to the surface and Tine can be calculated using only the 
incident coefficients and total displacement u is given by 

u = uine + ureJ :L + ureJ:T (12) 

where uine is the incident displacement, ureJ :L is the reflected displacement due to the 
L-incidence and ureJ:T is the displacement due to the T-incidence. The reflected signal from 
a hole or a crack can be approximated by the reflected signal from the back-edge of the 
plate with an amplitude correction factor. The factor by which the amplitude is decreased 
can be calculated independently. 

The integrals in Equations (10) and (11) can be evaluated numerically. The numerical 
evaluation of these integrals can be carried out in two different stages. First, the integral 
over the wave-number kl is calculated for a fixed w. Then, the second integral can be 
evaluated using a fast Fourier transform (FFT) algorithm. 

All the experiments, were carried out using a contact transducer as shown in Figure 2. 
The contact transducer was placed on the plate coupled with a thin layer of fluid. Acquiring 
signal in this fashion can be a difficult task due to signal instability. It was observed that 
minor movements of the transducer could change the shape of the signal. This could be due 
to the sensitivity of the measurement to the couplant thickness that changes with changing 
pressure inserted by hand on the transducer. 

A pair of Stavely 2.25 MHz contact Rayleigh wave (30 degree angle) transducers are 
used for the experiment. The transducer's frequency response can be accurately 
approximated with a Gaussian centered at 2 MHz and with a lie value at 2.0 ± 0.3 MHz. 
The spatial spectrum is also modeled by a Gaussian with a lie value at ke ± 2.5 1/mm. The 
transducer is excited with a broad-band pulse and the signal is received by the same 
(pulse-echo mode) (Figure 2b) or a similar (pitch-catch mode) (Figure 2a) transducer. The 
time signals are digitized using a Tektronix digital scope. The plate is made of aluminum 
with a thickness of 1.55 mm. The hole is circular with a diameter of 5 mm and has smooth 
boundary. To simulate cracks, a 2 mm notch was cut along the radius, i.e. at a 90 degree 
angle to the perimeter of the hole. In this paper, all crack measurements were done 
assuming a crack normal to the wave-front. In all cases, the experiment is done by manually 
positioning the transducer. 

RESULTS 

In this section, analytical results are compared with the experimental signals. In the 
transmission experiment, the transducers are placed 52 mm apart on an aluminum plate 
with a thickness of 1.5 mm. First, we consider the transmission case where no hole or flaw is 
present as shown in Figure 2a. In this case, pure plate modes are present and the analytical 
result is exact. As shown in Figure 3, there is a good agreement between the model and 
experiment. The signal is composed of two distinct parts which are contributions of first 
symmetric and antisymmetric modes (So and Ao). There is an additional hump in the tail 
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Figure 3: Experimental and theoretical transmission signals on a thin plate, signal shown for 
a case with fd = 3. 

of the experimental signal that is not predicted by the model. This component may be due 
to an internal echo in the contact receiver. Figure 4 and 5 show the transmission signals in 
the presence of the hole with and without a crack, respectively. The model signal is 
obtained by multiplying the transmitted signal shown in Figure 3 by an attenuating factor 
that is determined from the geometry of the shadowing object using Kirchoff approximation. 
Note that model and experimental signals are very similar except for a difference in 
amplitude. Differences in amplitude are in the order of uncertainties that is expected in an 
experiment using a contact transducer. These uncertainties are due to contact force and 
couplant variations. 

To measure the reflection signal, the transducer was placed 28 mm from the edge or the 
hole (see Figure 2b). Figure 6 shows good agreement between the model and experimental 
signals for the case of reflection from the back-edge of the plate. The simulated result of the 
reflection from the back-edge provides the basis for calculation of the reflected signal from 
the hole and crack. The signal from the hole or crack are obtained by multiplying the 
back-edge signal by a factor which is determined by the geometry of the reflector using 
Kirchoff approximation. Figures 7 and 8 show the results for the reflection from the hole 
and reflection from a hole with crack, respectively. The existence of the flaw is evident in 
Figure 8 as two extra peaks. The two extra peaks are additional time delayed reflections 
from the crack for both Ao and So modes. In cases where signal to noise ratio is high, the 
distance between transducer and the object can be increased to reduce interference between 
Ao and So signals. 

The results indicate that the reflected signal is a better tool in detecting a crack 
emanating from the side of a rivot hole. This is because the effect of the crack on the 
reflected signal is evident as a separate and relatively strong component. While for the 
transmission case, only the amplitude of the signal is changed. Since an amplitude reduction 
can be a result of many different factors, it is not very useful. While time characteristic of 
the reflected signal changes significantly in the presence of the crack. The relative amplitude 
of the crack signal may also be used as an indicator of the length of the crack. Furthermore, 
the reflected signal should be present for each excited propagating mode in the plate. 
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Figure 4: Experimental and theoretical transmission signals on a thin plate in the presence 
of a hole, signal shown for a case with fd = 3. 
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Figure 5: Experimental and theoretical transmission signals on a thin plate in the presence 
of a hole and a crack, signal shown for a case with fd = 3. 
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Figure 6: Experimental and theoretical reflected signals from the plate edge on a thin plate, 
signal shown for a case with fd = 3. 
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Figure 7: Experimental and theoretical reflected signals from a hole with no crack present on 
a thin plate, signal shown for a case with fd = 3. 
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Figure 8: Experimental and theoretical reflected signals from a hole with a crack present on 
a thin plate, signal shown for a case with fd = 3. 

Hence, it is possible to cross-correlate the reflected signals for different modes to achieve a 
better signal to noise ratio. This is specially true when distance between the transducer and 
the hole is large enough such that different modes separate in time. This is an important 
issue since for small separations the signals from different modes may interfere with each 
other. For cases where there is a small separation between the transducer and the 
rivot-hole, it is advantageous to use a transducer that can excite only one mode at a time, 
hence avoiding the interference problem. 

SUMMARY 

In this work, we have presented a fast approximate model for predicting transducer 
response to transmission and reflection signal from rivots and cracks emanating from them. 
This technique can model almost any type of commercial transducer response on plates. 
The comparison of the simulated results with the experimental result showed an very good 
agreement between the model and the experiment. In fact, due to instability of the 
measurement system, a more accurate model would not be advantageous. As the next step 
to further speed the numerical implementation, the integrals may be evaluated 
asymptotically. This task is currently under way and results will be presented in the future. 
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