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To understand the effect of Co doping on the magnetic entropy changes in Gd2Al phase, a series of

Gd2AlCox alloys with 0� x� 0.6 were synthesized by arc-melting and the crystal structure was

analyzed by XRD. The magnetic properties were investigated, and the entropy changes were calcu-

lated for a magnetic field change of 50 kOe. All the as-cast alloys doped with Co exhibited greater

magnetic entropy changes than the original binary Gd2Al phase. The main reasons attributed to this

are the increase of ferromagnetic interaction indicated by the disappearance of cusp and sharp drop

in magnetization and the reduction of the critical field required to trigger the field-induced transi-

tion below 50K in Gd2Al phase after Co alloying.VC 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4900782]

I. INTRODUCTION

Many rare earth (R)-based intermetallic compounds

have attracted significant interest over the past two decades

due to their large magnetocaloric effect (MCE) from

ultra-low temperature to room temperature.1–7 The ternary

Gd-Co-Al system has been intensively studied due to the

interesting magnetic properties and potential applications as

magnetic refrigerants working near liquid nitrogen tempera-

ture in both glassy and crystalline states.8,9 Gd-Co-Al system

exhibits table-like MCE suitable for the ideal Ericsson cycle

which has been obtained in Gd53Co19Al28 and Gd52.5Co16Al31
compositions.10 In Ref. 10, we reported that the alloys’ mag-

netic entropy change (�DSM) curves fit the experimental data

very well above 65K. However, the calculated �DSM values

are always lower than the experimental data when the temper-

ature is lower than 65K. It was speculated that it may be due

to dissolution of Co in the Gd2Al phase or by the magnetic

interaction among the component phases.

The magnetic properties and MCE of R2Al (R¼Nd,

Gd, Tb, Dy, Ho, Er) compounds have been widely studied,

especially for the Gd2Al phase.
11,12 However, the authors are

not aware of any reports on the effect of alloying on the

structure and magnetic properties of these alloys. In this

work, our aim is to clarify the reason accounting for the pres-

ence of table-like MCE that is reported previously by study-

ing the effect of alloying Co in the Gd2Al phase. Gd2AlCox
(x¼ 0, 0.05, 0.1, 0.2, 0.4, and 0.6) alloys are synthesized,

and their structure and the magnetic properties are reported.

The results show that the increase of ferromagnetic interac-

tion and the reduction of the critical field of metamagnetic

transition by Co alloying result in the improvement of the

MCE of Gd2Al phase.

II. EXPERIMENTAL

The Gd-Co-Al ternary alloy was prepared from 99.9%

Gd, 99.9% Al, and 99.99% Co by arc-melting in a Ti-

gettered argon atmosphere in an arc furnace (purity is pre-

sented by weight percent). The arc-melted ingot was flipped

over and remelted four times to ensure homogeneity. Weight

loss was negligible during arc melting. The phase purity of

the alloys was verified by powder x-ray diffraction (XRD)

using a PANatytical X’pert Pro diffractometer with Co Ka
radiation. The generator voltage and tube current were 45 kV

and 40mA, respectively. Continuous scanning with step size

of 0.008356� and count time of 200.66 s/step were employed

in order to obtain data with good signal-to-noise ratio. The

magnetization measurements were performed in a supercon-

ducting quantum interference device (SQUID) magnetome-

ter, MPMS XL-7 from Quantum Design, Inc.

III. RESULTS AND DISCUSSION

Fig. 1 shows the XRD patterns of the as-cast alloys with

compositions of Gd2AlCox (x¼ 0.05, 0.1, 0.2, 0.4, and 0.6)

for phase identification. It can be seen that within the resolu-

tion of XRD, three samples, Gd2AlCo0.05, Gd2AlCo0.1, and

Gd2AlCo0.2, have the Gd2Al main phase and Gd3Al2 minor

phase. Gd2Al and Gd3Al2 crystallize in the Co2Si-type struc-

ture with the space group of pnma and Gd3Al2-type phase

with the space group of P42nm, respectively. Some peaks of

Gd3Al2 minor phase separated from Gd2Al phase within the

range of 2h less than 50 degrees are indicated by downward

arrows. According to the Gd-Al binary diagram,13 Gd2Al

can be formed by a peritectic reaction of the liquid and the

Gd3Al2 phase. So, the presence of some minor Gd3Al2 in the

Gd2Al alloy is reasonable. With the increase in Co content,

some Bragg peaks indicated by blue asterisks within the

ranges of 2h less than 50� belonging to Gd57.5Co20Al22.5
phase are present in the XRD patterns of Gd2AlCo0.4
and Gd2AlCo0.6. The Gd57.5Co20Al22.5 phase crystallizes
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in the orthorhombic crystal system with the space group of

Pbam.14

Fig. 2 shows the temperature (T) dependence of mag-

netization (M) of the Gd2AlCox (x¼ 0.05, 0.1, 0.2, 0.4, and

0.6) alloys in the presence of 0.1 kOe magnetic field. It is

worth noting that all the Co doped samples in this figure

were measured under cooling. To illustrate the influence of

Co on the magnetic properties of Gd2Al, the M-T cooling

curve of a binary Gd2Al alloy with applied field of 1 kOe is

also shown in the inset. XRD measurement on Gd2Al

(not shown) suggests that it adopts single phase structure

within the resolution. For the Gd2Al alloy, magnetization has

a cusp at around 48K, which is related to a paramagnetic to

antiferromagnetic transition. These results are consistent

with Li et al.15 Furthermore, Gd2Al sample undergoes a

ferromagnetic transition at 270K. This higher temperature

ferromagnetic transition in Gd2Al phase was reported in previ-

ous works.11–15 Gd3Al2 phase undergoes a ferromagnetic

transition near 270K.16 The ferromagnetic transition in the

Gd2Al sample can be attributed to the transition of minor

Gd3Al2 phase, whose quantity is so small that it can not be

detected by XRD. Magnetic measurement is more sensitive

for the ferromagnetic phase. So, the minor Gd3Al2 phase can

be detected in theM-T plot.

For all the Co doped alloys, the magnetization decreases

with increasing temperature below 80K. No cusp in the mag-

netization can be found in these alloys. For the Gd2AlCo0.6
alloy, a characteristic of the saturation in magnetization can

be observed when temperature is lower than 50K. In addi-

tion, a sharp drop in magnetization for all compositions can

be found near 70K. The sharp drop in magnetization near

70K is the transition between paramagnetic to ferromagnetic

phase. Disappearance of features of cusp and the presence of

sharp drop in magnetization suggest that ferromagnetic inter-

action increases in the Co doped samples with increasing Co

content. In addition, for the Gd2AlCo0.05 and Gd2AlCo0.1
alloys, a ferromagnetic transition can also be observed near

270K, which comes from the Gd3Al2 phase as shown in

the inset of Fig. 2. Further increasing the Co content, the fer-

romagnetic transition becomes weak in Gd2AlCo0.2,

Gd2AlCo0.4, and Gd2AlCo0.6 samples near 270K. Therefore,

Fig. 2 illustrates that Co doping in Gd2Al phase acts to

weaken the ferromagnetic interaction of Gd3Al2 phase

whose transition temperature is near 270K and strengthen

the ferromagnetic interaction when the temperature is lower

than 70K.

The magnetization isotherms of Gd2Al, Gd2AlCo0.1,

Gd2AlCo0.2, and Gd2AlCo0.6 alloys at different temperatures

with applied magnetic field between 0 and 50 kOe are shown

in Fig. 3. It can be seen that all the four samples undergo a

metamagnetic transition induced by external magnetic field

when temperature is lower than 40K. This field-induced

transition in Gd2Al phase was first reported by

Oesterreicher.17 For Gd2Al, the magnetization increases line-

arly with increasing field above 60K. For Gd2AlCo0.1, the

magnetization process below 10 kOe shows features of ini-

tial saturation for all measured temperatures that are from

the ferromagnetic secondary phases of Gd3Al2 whose transi-

tion temperature is about 270K. However, for Gd2AlCo0.2
and Gd2AlCo0.6, the magnetization increases linearly with

the increase in field when temperatures are higher than 90K,

which confirms the weakening of higher temperature ferro-

magnetic interaction in the samples; the magnetization pro-

cess below 10 kOe at temperatures lower than 80K also

shows the features of initial saturation, which can be

ascribed to the ferromagnetic interaction induced by Co

doping.

The critical field, HT, which induces the metamagnetic

transition at a given temperature, is defined as the magnetic

field at the maxima of dM
dH

vs. H.18 All the HT data of the

Gd2AlCox samples derived from the magnetization process

at 40K are depicted in Table I. It can be seen that HT for all

the Co alloyed samples is lower than that of the un-doped

Gd2Al.

The magnetic entropy changes (�DSM) with an applied

field change from 0 to 50 kOe calculated by using the M-H
data in Fig. 3 are shown in Fig. 4. The maximum of �DSM

FIG. 1. XRD patterns of the Gd2AlCox (x¼ 0.05, 0.1, 0.2, 0.4, and 0.6)

alloys.

FIG. 2. Temperature (T) dependence of magnetization (M) of the Gd2AlCox
(x¼ 0.05, 0.1, 0.2, 0.4, and 0.6) alloys. The inset shows M-T plot of a binary

Gd2Al alloy.

183908-2 Huang et al. J. Appl. Phys. 116, 183908 (2014)
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(�DSMmax) for all samples are depicted in Table I. It is worth

noting that the isothermal magnetization and demagnetiza-

tion of the Gd2Al alloy were measured and the results (not

shown) suggested that when the temperature is below 20K,

the hysteresis for the Gd2Al metamagnetic transition is small

but detectable. However, when the temperature is above

20K, the hysteresis is so small that it can be neglected. So,

the effect of hysteresis of metamagnetism on the net mag-

netic entropy changes is ignored because many of the mag-

netization isotherms are measured above 20K (see Fig. 3). It

can be seen from Table I that all the �DSMmax of the samples

with Co doping are greater than that of Gd2Al alloy. For

Gd2AlCo0.2 alloy, the maximum of magnetic entropy

changes is 7.9 J/kgK near 47.5K, which is about 20% larger

than that of binary Gd2Al, 6.5 J/kgK. The reason can be

attributed to the decreasing of critical magnetic field HT after

alloying. The decreasing of HT can enhance the area between

two magnetization curves, which favors the improvement of

magnetic entropy changes. Furthermore, for the Co doped

alloys, �DSMmax increases and reaches the maximum of

7.9 J/kgK for Gd2AlCo0.2 and then decreases. From the struc-

ture analysis and magnetic measurements, it is known that

there is minor Gd3Al2 phase or Gd57.5Co20Al22.5 phase in the

Gd2AlCox samples. The maximum magnetic entropy

changes of Gd3Al2 and Gd57.5Co20Al22.5 under 0 to 50 kOe

field is only 3.5 J/kgK (Ref. 16) and 5.5 J/kgK,14 respec-

tively. So, their presence in the samples has no contribution

to the increase of magnetic entropy changes. The further

FIG. 3. Isothermal magnetization measured at different temperatures under applied field from 0 to 50 kOe. (a) Gd2Al; (b) Gd2AlCo0.1; (c) Gd2AlCo0.2; (d)

Gd2AlCo0.6.

TABLE I. Structure within the XRD resolution, Critical field (HT) at

40K, maximum magnetic entropy change (�DSMmax) for DH¼ 50 kOe of

Gd2AlCox (x¼ 0, 0.05, 0.1, 0.2, 0.4, and 0.6) alloys.

Alloys Structure HT (kOe) �DSMmax (J/kgK)

Gd2Al Gd2Al 38.2 6.5

Gd2AlCo0.05 Gd2AlþGd3Al2 35.0 7.5

Gd2AlCo0.1 Gd2AlþGd3Al2 36.1 7.8

Gd2AlCo0.2 Gd2AlþGd3Al2 35.1 7.9

Gd2AlCo0.4 Gd2AlþGd57.5Co20Al22.5 35.0 7.5

Gd2AlCo0.6 Gd2AlþGd57.5Co20Al22.5 32.5 7.4

FIG. 4. The magnetic entropy changes under 0–50 kOe magnetic field

changes for Gd2AlCox (x¼ 0, 0.05, 0.1, 0.2, 0.4, and 0.6) alloys calculated

from magnetization isotherms.
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decreasing of �DSMmax when Co composition is increased is

due to the presence of Gd57.5Co20Al22.5 secondary impurity

(see Fig. 1).

In our previous work,10 Gd52.5Co16.5Al31 and

Gd53Co19Al28 alloys were found to exhibit a table-like plat-

form in their magnetic entropy changes with the magnitude

of about 7.0 J/kgK in the region from 47.5K to 77.5K.

However, near 47K, the magnetic entropy changes for the

component phases Gd2Al, Gd2Co2Al, and Gd Co0.74Al1.26
are about 6.5, 5.4, and 5.9 J/kgK, respectively,10 which are

lower than 7.0 J/kgK. It suggests that materials which consist

of the above three phases cannot have the magnetic entropy

change larger than 7.0 J/kgK. Transition temperature of

Gd2Al phase occurs near 50K. So, the reason for the pres-

ence of the table-like magnetic entropy changes over 7.0 J/

kgK was assumed to be attributed to the improvement of the

MCE in Gd2Al phase due to the dissolution of Co.10 In this

work, all the ternary Gd2AlCox alloys with x less than 0.6

possess greater magnetic entropy changes near their individ-

ual magnetic transitions than that of the binary Gd2Al alloy.

These results confirm that the presence of table-like mag-

netic entropy changes near 50K can be attributed to the con-

tribution from the Gd2Al phase with Co alloying.

IV. CONCLUSIONS

In summary, Co alloying can increase the ferromagnetic

interaction near the antiferromagnetic transition about 48K

and reduce the critical field of the field-induced transition in

the Gd2Al phase. It is responsible for the enhancement of mag-

netic entropy change from 6.5 to 7.9 J/kgK near 48K for

Gd2Al phase with DH¼ 50 kOe. This improvement in mag-

netic entropy change can be said to account for the presence of

“table-like” MCE in the Gd52.5Co16.5Al31 and Gd53Co19Al28
composites with magnitude of 7.0 J/kgK below 65K.
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