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INTRODUCTION 

The sensitivity of the propagation of an elastic wave to 
changes in the microstructural details of a material is well 
known. 1 In particular, numerous experiments have shown that the 
attenuation of the wave is sensitive to the inclusions, voids, 
cracks, grain boundaries, twin boundaries, interphase boundaries, 
magnetic domain walls, dislocations, substitutional impurities of 
a material. For attenuation studies in metals, ceramics and poly
crystals, three formulas, each for different wavelength regimes, 
are generally used in the quantitative interpretation of experi
mental results. 1- 3 If A is the wavelength of the elastic wave 
and <D> is the average grain diameter, then in the Rayleigh regime 

(A » D), a = A1<D>3A4, in the stochastic regime (A~ D), a = 
Az<D>AZ, and in the diffusive regime (A«D), a = A3/<D>-1. By 
fltting the data to these formulas, one tries to infer <D>. 

In practice, however, these formulas prove to be only semi
quantitative since the measurements seldom exhibit the indicated 
power law behaviors for A. 3 Additionally, they are not the only 
formulas used. For example, in the Rayleigh regime, relations 

3 4 6 4 3 . such as a = Al<D >A and a = Al<D >A /<D > are also used. Slnce 

<Dn> * <D>n and since usually <DZn>/<Dn> » <Dn>, a variety of 
quantitative predictions on the same data are possible. 

Recently, there have been several attempts at a more unified 
theory of the attenuation and its relation to microstructure sta
tistics. 4 ,5 The work with a clear applicability to elastic wave 
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propagation is that by Evans et al. 4 who assume the attenuation 
equals ncr where n is the density of scatterers and cr is the total 
cross section of a scatterer averaged over the distribution of 
scatterers. Using the experimentally determined grain distribu
tion, they obtained good agreement between theory and experiment. 

In this paper, we also discuss a unified theory. But in con
trast to nearly all previous treatments we follow a first prin
ciples approach, using developments from other multiple scattering 
problems and adapting them to the elastic' wave case. We then 
present several simple, standard approximations. In the process 
we will clarify the validity of the commonly made assumption that 
a = ncr, and will also compute the effective speed, illustrating 
its complementary character to the attenuation. Our principal 
objective is to pres'ent the formal analysis necessary to treat 
systematically the dependency of the wave propagation on micro
structural statistics. 

FORMAL ASPECTS 

-7 
The displacement field u.(r) associated with propagation of 

an elastic-7wave through an in6omogeneous ~aterial, described by a 
density per) and elastic stiffness C. 'kl(r), obeys the integral 
equationS' 7 1J 

(1) 

in which all the details about the inhomogeneity are contained in 

-7 
V •• (r) 

1J 
(2) 

-7 -7 
The fields op(r) and oCijkQ(r) are defined relative to homogeneous 

fields pO and C~jkQ' 
-7 7 

op(r) = per) - pO 

These homogeneous fields a~e arbitrary, but often are chosen to 
be the ~verage density <per»~ and average elastic stiffness 
<c. 'kQ(r» or the density ~nd elastic-7s~iffness of an embedding 
mealum. The functions u~(r) and g~.(r-r') are the displacement 
field and Green's functi5n for the1 ftomogeneous material: 
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(3) 

and 

(4) 

We take Cijk! to be isotropic and defined by the Lame parameters 

AO and ~o. Also 

where a. is a unit vector and k equals a (or ~ ) for longitu
dinal (§hear) waves. For an unBounded isgtropicOmaterial,~'7 

gij = 4np!W2 [.V~ /:oR + a: i a:; e";R - /:oR)] (5) 

where 

c/ = (AO + 2~)/po 
0 

~2 0 = ~ /po 
0 

It is convenient to rewrite (3) as 

L?(~O) u~ = 0 
1J J 

with 

o -7 
L .. (k) 

1J 

(6a) 

(6b) 

(7) 

(8) 

-7 
The basic problem is to find <u.(r» from (1). More specifi-

-7-7 1-7 
• A ik·r ,.. ik1{·r cally, S1nce <u.> = a. e = a.e , the problem is to find k. 

To do so requir~s fin~ing a new 6perator K .. (k), the effective 
wave number operator,S such that <u.> sati§fies 

1 
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rL~. (k) + K .. (k)] <u.> = 0 L ~J ~J J 
(9) 

In general K .. (k) will be a complex number whose real part is 
related to tfiJ shift in phase velocity of the incident wave and 
whose imaginary part is related to the attenuation. 

For compactness in the development of our formal analysis, 
we rewrite (1), (4) and (7) in an operator notation 

LOuo = 0 

o 0 u=u -gvu 

Then, by use of the scattering operator T defined by 

T UO = vu 

we rewrite (1) as 

u = UO + gOTuO 

so the average field is simply given by 

But from this equation it follows that 

o 0-1 u = (I-g <T» <u> 

Therefore, we can write an integral equation for <u> 

<u> o 0 = u + g K<u> 

where 

(10) 

(11) 

(12) 

(13a) 

(13b) 

Operating with LO on both sides of (13a) reduces it to the desired 
form; namely, 
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(Lo + K)<u> = 0 

Since (3b) can be rewritten as 

<T> = K(I_gOK)-l 

837 

(13c) 

we note that for a k satisfying I-gOK(k) = 0 the <T> matrix has 
a pole, and, at the same time, (13c) is satisfied. Thus finding 
a (complex) k value for which (13c) has a plane wave solution is 
equivalent to locating a pole of <T>. 

With the re-introduction of subscripts and arguments, (7) is 

~ 0 -? ~ " ik·; L .. (k) + K .. (k) a. e = 0 
1J 1J J 

If <u.> is longitudinal (a. = K.), this equation is equivalent 
to 1 1, 1 

(l4a) 

If <u.> is transverse (a. = K. and K.K. = 
. 11 to 1 1 1 1 

0), then the equation is 
equ1va ent 

k2 = R2 + (0)-1 (k)" " I-' IJ K.. K. K. 
o 1J 1 J 

(l4b) 

Hence, the basic problem can now be stated as evaluating the func
tion K .. (k) and solving (14) for k. 

1J 

Evaluating K .. (k) is easier said than done. Finding suitable 
approximations t01K .. is a more proper statement of the task at 
hand. A convenient~Jsystematic way to approximate K .. is to expand 
the power series in (13). Before doing so, we first1tewrite T in 
the standard mUltiple scattering form9 

T = L t a + L L tagOt~ + L L L tagOt~gOtY + 
a a ~:;i:a a ~:;i:a y:;i:~ 

where t a is the scattering operator for an individual scatterer 
(a grain, void, etc.). Then by inserting T into (13) and expanding 
the power series, we find that 
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(15) 

where 

(16a) 

(16b) 

etc. 

These expressions have the feature of establishing a hierarchy 
for the statistical information required to evaluate the series. 
For example, the evaluation of the third term requires the first 
three statistical correlation functions, but not the fourth. 

SIMPLE APPROXIMATIONS 

The simplest approximation is 

K ~ K(I) = <~ta> (17) 
a 

Regarding a as statistical variable, we write 

K = )fda P(a)t(a) = nt 

where Pea) is the probability of finding a scatterer with the 
properties denoted by a (grain size, shape, orientation, etc.). 
The basic equation to be solved becomes 

k2 = N 2 + ( 0)-1 - ()~ ~ u .\0 +2 j.I nt.. k K.K. 
o 1J 1 J 

(IBa) 

or 
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k2 = R2 + ( 0)-1 - (k)A A P ~ nt. . K. K. 
o 1J 1 J 

(18b) 

The single-site scattering operator bears a simple relation 
to the scattered amplitude. To establish it, one starts with (10) 

-+ -+ 
ik 'r 

-+ A 0 
t. . (r)a.e 

1J J 

-+ -+ 
= v .. (r)u.(r) 

1J J 

-+ -+ 
A -ik'r multiplies both sides by a.e and then integrates both sides 

1 over all space to find 

-+ -+ f .-+ -+ +ik 'r 
A A -+ -1k'r -+ 0 a.a. dr e t .. (r)e 

1 J 1J 

A f -+ -ik'; -+ -+ = a. dr e v .. (r) u . (r) 
1 1J J 

If a. = K., then6 ,7 
1 1 

2 
K.K.t .. (k) = 4nP2W A(k) 

1 J 1J (1 
o 

~hereAA(k) i~ the longitudinal, forward scattered amplitude. If 
a. = K. and K.K. = 0, then 

1 1 1 1 
2 

K. K. t .. (k) = 4nP2w B(k) 
1 J 1J ~ 

o 

where B(k) is transverse, forward scattered amplitude. Hence, 
(16) reduces to 

k2 = (12 + 4nnA(k) (19a) 
o 

and 

(19b) 

For compactness we will replace these two equations by 
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(20) 

In the context of mUltiple scattering of scalar waves, the approxi
mation embodied in (20) was first proposed by Foldy10; later, 
Lax 11 named it the quasi-crystalline approximation. From (16) 
and (17) one sees that the approximation clearly neglects corre
lations among the individual scatterers. This approximation has 
been used by various investigators in elastodynamic effective 
medium problems. 12 Recently, attempts to go beyond this approxi
mation have been made, but have been restricted to the Rayleigh 
regime. 13-15 

and 

By 

Often the solution to this equation is approximated by 

k2 = k2 + 4nnf(kO ) 
o 

even further approximated by 

k = k + 2nRe{f} + i2nIm{f} 
0 k k 

0 0 

use of the optical theorem 

a= 
4nIm{f} 

k 
0 

(21) 

(22) 

From the imaginary part of k, the attenuation of power becomes 

C1 = 2Im{k} = no (23) 

Thus, we see that the validity of (23) requires small correla
tions among the scatterers (to justify (17)) and 

4nnlfl « k (24) 
k 0 

o 

(to justify (22). Since If I > Im{f} ~ 0, we can re-interpret (25) 
as 

C1 « k 
o 

i.e., the attenuation over a wavelength is small. 

(26) 
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CALCULATIONS AND CONCLUSIONS 

We have solved (20) and (21) for the effective phase velocity 
and attenuation for an inhomogeneous material modelled by randomly 
positioned spherical pores in stainless steel as a function of 
k a and the porosity, c. In Fig. 1 the results are shown for 
(21) as a function of 5 evenly distributed values of c between 
.01 and .05. The attenuation, when divided by k c, is seen to 
be a nearly universal function of k a: beyond kOa = 1, the 
curves coincide, and below k a = 1,0the curves ngarly coincide 
as they exhibit only slight 3isplacements from one another. 
The sensitivity of the phase velocity to c and k a is restricted 
to k a < 3 and is very weak. As seen in Fig. 2,osolving the 
moreOrigorous approximation (20) produces nearly the same results, 
the principal difference being a small increase in the displacement 
of the attenuation curves for k a < 1. The coincidence of the 
curves for k a > 1 remains, andOthe curves for practical purposes 
are identica~ to those obtained by solving (21). Solutions of 
(20) and (21) for k a up to 10 and c up to 0.25 exhibit the same 
features as just de~cribed. For high c, the minimum in phase 
velocity around k a = .5 is more pronounced. The existence of a 
minimum in phase ~elocity is consistent with the results of Sayers 
and Smith.1S 

Next, we examined jhe sensitivity of these features by fixing 
the porosity, c = 4n <a >N/3V, but varying the radii according to 
a di~tribution law. For the distribution law we chose the log
normal function, 

2 2 
~ e-(!n~/a) /20 

~P(a) = a 0~2n 

which has a characteristic length, ~, and has its width and skew
ness controlled by o. As shown in Fig. 3, for small 0 the dis
tribution is sharply peaked and nearly symmetrical about ~/a = 1, 
but for large 0 the peak moves to smaller values of ~/a and becomes 
very unsymmetrical about the peak values. For this distributed 
radii model we only solved (21), the less rigorous result. The 
results are shown in Figs. 4 and 5 for c = 0.01, 0.03, and 0.05. 
In Fig. 4, 0 = .01, which is a sharply-peaked disfribution about 
~ = a; hence, as one would expect, the results are identical to 
Fig. 1. When 0 = .1, modest variation about ~ = a occur, but as 
shown in Fig. 5, the previously discussed general features are 
unaltered. In fact, the only mentionable difference between 
Figs. 1, 4, and 5 is a slight displacement downward (~ 5%) of 
the large k a tail in the attenuation curve of Fig. 5. 

o 
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The prediction of (21) for the relative phase velocity 
and scaled attenuation (dashed curves) for spherical 
pores of identical radius as a function of k a and c. 
The pore radius is a; the porosity is c; andOthe wave
number of the host is k. The porosity varies from 
0.01 to 0.05 in steps o~ 0.01. 
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Fig. 2 The predictions of (20) for the relative phase velocity 
and sealed attenuation (dashed curves) for spherical 
pores of identical radius as a function of k a and 
c. The pore radius is a; the porosity is c;oand the 
wavenumber of the host is k. The porosity varies 
from 0 .01 to 0.05 in steps 8f 0.01. 
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Fig. 4 The predictions of (21) for the relative phase velocity 
and scaled attenuation (dashed curves) for spherical 
pores with log-normal distributed ra~ii as a function 
of k ~ and c. The porosity c = 4n<a >N/3V and equals 

o 0.01, 0.03 and 0.5. 0 = 0.01. 
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From the calculations completed to-date, all based on the 
independent scatterer approximation, there appear to be three 

847 

basic conclusions: the attenuation, when appropriately scaled, 
exhibits a nearly universal behavior; the phase velocity is less 
sensitive then the attenuation to variations of k a and c; and 
both v and a are insensitive to modest variationsoin pore radius. 
The nearly universal behavior exhibited by the attenuation suggests 
a simple procedure for estimating the averag~lpore size and poro
sitY: If a/k is plotted as a function of k ,the value of 
k- at which ~he curve peaks is the average gize and the inverse 
o~ proportionality constant between the experimental curve and 
the universal curve is the porosity. Of course, this procedure 
is valid only when the independent scatterer approximation is 
valid. In addition, the sensitivity of the "universal" features 
to larger variation in pore radius needs investigation. 
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DISCUSSION 

A. Nayfeh (University of Cincinnati): There is a tremendous amount 
of work which has been done on periodic media in, for example, wave 
propagation in fibrous composites and layered media. Since you 
have this model, did you try to see what you would predict for at
tenuation in periodic media? My understanding is that attenuation 
will only occur if you have randomness; if you have periodic struc
tures, you don't have any attenuation at all. At the same time, if 
you go into the very low frequency regime you get the law of mix
tures. If you have very high frequencies, then you will see both 
components of the mixture. 

J.E. Gubernatis (Los Alamos National Laboratory): No, we have not 
looked at the perioaic case. If it is periodic, it's not going to 
attenuate. I don't know if anybody's ever proven that, but it's 
a feature of the random medium that induces the attenuation. The 
periodic medium that you are concerned with acts as a certain fil
ter. There are some questions regarding whether you have a random 
medium or a periodic medium. If you go to low frequencies, to 
what extent can you expect the effective behavior predicted to 
match up to the effective behavior observed? By that, I mean that 
you have a situation which is more random than it is periodic. It 
is not clear that the periodic situation in that limit adequately 
describes the effective behavior predicted for something which is 
more random-like. 

A. Nayfeh: If you use a very high frequency don't you expect to have 
a spread in the modes whereby you can identify the matrix by itself 
and the inclusion by itself? 

J.E. Gubernatis: Yes. 

A. Nayfeh: If it compares with the dimension of the inclusion, then 
you can see both materials. 

J.E. Gubernatis! At high frequency, the wavelength is small. I would 
then think that if you would go to a situation where you're replac
ing the wave by a ray, it has only a certain probability of inter
secting a certain type of material. Now, in the case that we have 
here, we have a material host and a pore. We haven't considered 
the case where we would have two phases of materials doing the 
scattering. 

G.S. Kino: (Stanford University): There's a great deal of literature 
on this very subject. For instance, Lifshitz and Parkonovski is 
the standard one that everybody refers to and they've all come out 
with simple laws at the low frequency end and then, in my opinion, 
a rather suspect law as they get up in frequency. Evans and I and 
several other people have done a paper about five years ago on this 
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very subject. In ceramics where we looked at the scattered power, 
we did it for the use of the exact solution for the pores, and put 
in the distribution. You get something that looks rather like the 
cross-section of the scatterer, averaged over all of the distribu
tion, essentially, so it rises and flattens off. All these curves 
seem to come up and flatten out. It is terribly difficult to rec
oncile that with the perturbation theories. A number of people 
have tried to do this. Again, the results are sort of suspicious. 
Does yours agree with these? 

J.E. Gubernatis: This is one of the things which we are really at
tempting to test. Our curve doesn't flatten off because of the way 
we plotted it. 

G.S. Kino: Yes, I realize that. Why did you plot it that way? 

J.E. Gubernatis: Because I saw that all the curves were about the 
same. It just sort of struck me that this made a little bit more 
sense to me. On the one hand, we wanted a dimensionless parameter, 
so a has units of inverse length. Ko has units of inverse length, 
so that was natural. But then when r did that and looked at the 
numbers, it struck me that there was something else there, and I 
divided by C and I got that. That is something that -happened. 
What you're saying is rhat there are some very simple formulas 
which people have used which try to predict how the attenuation 
will behave in certain limiting regimes. The experiment doesn't 
always exhibit that particular behavior, but the nature of the ap
proximations, to the extent I understand them, basically assume 
that all the scattered regions are independent. One of the at
tempts here was simply to take that particular approximation and 
see what's in there. What does it really truly predict? And you 
don't see these laws coming out. Now, relative to what you did 
with Evans, et al., I want to actually address those kinds of ques
tions, and explore the fact that it seems that the extreme sizes 
of the particles are the controlling feature in determining attenu~" 
ation. 




