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Abstract 

This paper studies electric vehicle charger location problems and analyzes the impact of 

public charging infrastructure deployment on increasing electric miles traveled, thus promoting 

battery electric vehicle (BEV) market penetration. An activity-based assessment method is 

proposed to evaluate BEV feasibility for the heterogeneous traveling population in the real world 

driving context. Genetic algorithm is applied to find (sub)optimal locations for siting public 

charging stations. A case study using the GPS-based travel survey data collected in the greater 

Seattle metropolitan area shows that electric miles and trips could be significantly increased by 

installing public chargers at popular destinations, with a reasonable infrastructure investment. 

 

Keywords — Charging infrastructure; Battery electric vehicle; Range anxiety; GPS-based travel 

survey; Genetic algorithm.   
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1. Introduction 

The continued growth in motor vehicle use worldwide will inevitably have consequences 

on global crude oil demand and CO2 production. To avoid an increase in demand for oil 

proportional to the increasing number of vehicles, implementation strategies need to aim at the 

replacement of fossil fuels as the sole source of energy for automobiles. Within the U.S., the 

light-duty fleet, dominated by spark-ignited internal combustion engines that run on gasoline, 

accounts for more than 90% of the total U.S. gasoline consumption (Davis et al. 2012, EIA 2012). 

One of the pathways to sustainable petroleum displacement is a transition to the high-efficiency 

powertrain technologies, such as fuel-cell or battery-electric vehicles that could deliver better 

performance, higher efficiency, and zero tailpipe emissions (Kromer and Heywood, 2007; Lin et 

al., 2013). Electrification of light duty vehicles could reduce oil dependence and potentially 

reduce greenhouse gas emissions especially when implemented in conjunction with renewable 

energy generation to match the new electrical load. Consumer acceptance, technological 

advances, and policy measures are among the important factors for plug-in electric vehicle (PEV) 

market success. Many strategies have the potential to promote PEV deployment and market 

penetration, such as offering purchase subsidies and rolling out charging infrastructure in 

convenient locations in urban areas (Lin and Greene, 2011). More stringent regulations and 

technology-forcing mandates such as national highway traffic safety administration’s new 

corporate average fuel economy (CAFE) standards and California air resources board’s zero-

emission vehicle mandate, have also been initiated, intended for reducing light-duty vehicles’ 

petroleum use and mitigating negative environmental impacts from the transportation sector. 

However, the fear that the vehicle has insufficient range to reach the destination, referred 

to as range anxiety has been shown to be a significant obstacle to market acceptance of battery 

electric vehicles (BEV). Range anxiety not only discourages consumer acceptance but also 

restrains the social benefits of BEV, as the early adopters of electric vehicles may be forced to 

use the vehicle for short trips and drive fewer annual miles, compared how they may travel 

without range anxiety. In fact, a state preference survey conducted in the United Kingdom 

revealed that higher income group is more likely to consider a BEV as a second vehicle (Skippon 

and Garwood, 2011). One way to mitigate range anxiety is through the deployment of public 

charging infrastructure. Like all the alternatives to gasoline vehicles, the initial costs of building 

the refueling/recharging infrastructure would be high and decrease as the number of alternative 

fuel vehicles increases. Shell Oil Company estimated a mature hydrogen refueling infrastructure 

in the U.S., serving 100 million hydrogen vehicles, might cost hundreds of billions of dollars, 

that is, several thousand dollars per vehicle served (Ogden, 2005). The National Research 

Council (2013) estimated a $3,000 per vehicle charging infrastructure investment cost for BEVs, 

including the costs for installing home, workplace, and public chargers. These costs, seemingly 

enormous, are actually of the same order of magnitude as the money spent to build and maintain 

the infrastructure for conventional transportation fuels (Ogden, 2005). 
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To assist policy makers efficiently allocate public resources in aiding the deployment of 

charging infrastructure a systematic approach is needed to quantify the benefit of offering public 

charging opportunities, as well as to determine where to site charging stations subject to vehicle 

travel range constraints (e.g. Shukla et al., 2011; Wang, 2007). Various mathematical models 

have been proposed to optimize hydrogen refueling, electric vehicle charging, and battery 

swapping station siting, including flow-capture (Kuby et al., 2009), p-median (Nicholas et al., 

2004; Lin et al. 2008), set covering (Wang and Lin 2009, Frade et al. 2011), and agent-based 

(Sweda and Klabjan, 2011) approaches. In addition, the interaction of PEV charging with power 

grid infrastructure was considered in a few studies, such as the multi-objective charging station 

layout planning model proposed by Wang et al. (2010) and the stochastic program developed by 

Pan et al. (2010) that optimally sites battery swapping stations in a vehicle-to-grid system. 

Similar to refueling a conventional diesel or gasoline tank, hydrogen refueling and battery swap 

can be accomplished en route within a few minutes, though drivers might have to take a detour 

and travel some extra distance to find a hydrogen or battery swap station due to currently limited 

availability. Recharging the battery, however, takes a much longer time, from 30 minutes to 

several hours, depending on the charger power, battery size and its state of charge. Thus, it is 

preferred to charge a BEV at the activity destination where the vehicle is parked for a 

considerable period of time. However, most of the existing refueling and recharging station 

planning models ignore the constraints imposed by drivers’ travel activities. 

In this study we present a novel public charger infrastructure planning model that 

optimizes the location of public chargers while simulating driver travel and charging behavior. 

Installing chargers at the locations where many people park will not only increase the utilization 

but also increase the visibility, which might help to relieve range anxiety and promote BEV 

acceptance. Based on the multiday driving data collected from 445 instrumented gasoline 

vehicles in the Seattle metropolitan area, we simulate regional BEV drivers’ travel and charging 

behavior so as to quantify the benefits of building public charging infrastructure in reducing 

range anxiety and increasing electric miles. Specifically, range anxiety is measured by the 

number of interrupted trips and the missed vehicle miles, given the originally intended trips by 

each driver. To reduce the number of interrupted trips, a charger location optimization problem is 

solved to determine a set of locations where public chargers should be installed, as well as the 

type of chargers to be installed at each location.  In summary, contributions of this paper include: 

(1) assessing BEV feasibility based on the real world driving activities of the heterogeneous 

traveling population; (2) formulating the charger location optimization problem considering daily 

travel activity constraints; and (3) evaluating the impact of public charging infrastructure 

planning on promoting BEV consumer acceptance by simulating drivers’ driving and charging 

behavior.  
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2. Background and assumptions 

While BEV technology presents promising potential to displace gasoline with electricity, 

the limited range and charging constraints are among some significant drawbacks. The term 

“range anxiety” has been introduced to describe BEV drivers’ omnipresent concern of becoming 

stranded with an empty battery, away from the charging infrastructure. The lack of public 

charging infrastructure and long charging time are among the critical hurdles for a widespread 

deployment of BEVs. By and large, there are two scenarios when a BEV has insufficient range to 

finish the planned trips: First, a single long trip exceeds the vehicle range. Such a long trip could 

be accomplished by a BEV if a charging station, preferably a high rate charger, is available along 

the travel route. However, the additional stops and waiting time would usually cause 

inconvenience and disrupt the original travel plan. Second, the accumulated distance of multiple 

trips exceeds the BEV range before returning home to charge the battery. This case might be 

circumvented by offering within day charging opportunities at public locations and is the 

primary focus of the present paper.  

2.1. Electric Vehicle Charger 

Three charging levels were codified in the National Electric Code (NFPA, 2011) for 

charging plug-in electric vehicles. Level 1 charger, using a standard 120 voltage, 15 or 20 

ampere branch circuit that is commonly found in residential and commercial buildings in the 

United States, is suitable for overnight home charging and possibly workplace charging. Level 2 

charger, typically considered as the preferred method for charging BEVs, specifies a 240 voltage, 

single-phase, 30 ampere branch circuit. A system upgrade might be required to install a Level 2 

charger at private and public facilities. Level 3 charger, also referred to as fast charger, is a high 

voltage and high-current charging implementation. By delivering direct current (DC) directly to 

the vehicle’s battery pack, a BEV’s battery pack can be charged at a much higher rate. For 

example, a Level 3 charger allows a Nissan Leaf’s battery to be charged to its 80% capacity in 

30 minutes. The cost of such a specialized charger is dramatically higher, as its installation 

involves changes in the power infrastructure—requiring new transmission, sub-transmission, and 

distribution lines and so on (Lemoine et al., 2008; Hadley and Tsevetkova, 2008). Table 1 lists 

the charging power (Morrow, 2008) and costs (NRC, 2013), including both equipment and 

installation costs, of different types of chargers.  

Table 1 Electric Vehicle Charger Specification 

 Level 1 Level 2-Commercial Level 3 DC Fast Charger 

Charging circuit 120 V, 15 A 240 V, 30 A 50 V, 200 A 

Power (kW) 1.44 6 90 

Cost (US dollars) 700 5,000 50,000 

2.2. GPS based travel survey data 

GPS based travel survey data, collected from conventional gasoline vehicles and 

represents real world travel activities, provide a basis for assessing market potential and 

estimating energy consumption of plug-in electric vehicles.  For example, one day travel 
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activities collected from GPS-instrumented vehicles in St. Louis metropolitan area (Gonder et al., 

2007) and Austin, TX (Dong and Lin, 2012) have been used for analyzing Plug-In Hybrid 

Electric Vehicle energy efficiency. In addition, multiday vehicle data have also been used to 

analyze BEV range requirements in selected areas, including Winnipeg, Canada (Smith et al., 

2011) and the Atlanta, Georgia greater metropolitan area (Pearre et al., 2011).  

In this study, we use longitudinal travel data collected from conventional gasoline 

vehicles and assume that the motorists’ travel behavior remains unchanged when switching to 

BEV technologies. In addition to simplicity, this assumption is also justified by its market and 

policy relevance. First, travel adaptation is usually associated with an added cost or certain 

inconvenience. Over time, drivers might get used to the new norm and disregard the 

inconvenience. However, from the perspective of the industry, it is meaningful for the charger 

suppliers to understand how to satisfy charging demand without forcing behavioral changes. 

Whether this is cost effective or not is worth debating. Second, from policy makers’ perspective, 

one objective baseline for consensus infrastructure cost estimation is to assume no behavioral 

adaptation. Otherwise, infrastructure cost estimates may vary greatly depending on the level of 

behavioral adaptation assumed. At the current stage, there is no clear evidence on how BEV 

drivers will adapt to the limited vehicle range and long charging time. Therefore, assuming no 

behavior adaptation might be a practical and relevant approach for market assessment and policy 

discussion. 

3. Data description 

Puget Sound Regional Council (PSRC) conducted a household travel choice study, 

aiming to study how travelers change their travel behavior in response to tolling that varies by 

the location and time of day. The Traffic Choices Study (PSRC, 2008) recorded driving activities 

of 275 volunteer households in the Seattle metropolitan area for approximately an 18-month 

period (from November 2004 to April 2006). Among the participating households, 45% of the 

households own one vehicle, 48% own 2 vehicles and 7% own 3 or more vehicles, resulting in a 

total of 445 vehicles. On average each vehicle makes 4.8 trips and travels 30 miles per day. 

Figure 1 shows the map of the central Puget Sound region. The region includes five major 

cities—Seattle and Bellevue in King County, Tacoma in pierce County, Everett in Snohomish 

County and Bremerton in Kitsap County. The home locations of the instrumented vehicles and 

the popular destinations such as shopping malls and work places are plotted on the map. The 

majority of the volunteer households are located in Seattle, their travel destinations are in a much 

wider area.   
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Figure 1 The greater Seattle metropolitan area map.  

The traffic choice study dataset contains the time-stamped spatial information at the 

resolution of 4 records per minute. The geographic positioning system (GPS) receiver uses radio 

signals sent from satellites to determine the vehicle’s position. The spatial coordinates in latitude 

and longitude are stored in the on board unit and periodically communicated to a central 

computer using cellular wireless communications. To record and transmit data on a regular basis, 

the GPS devices instrumented on the participant vehicles are automatically turned on/off when 

turning on/off the ignition. This allows for continuous collection of vehicles’ daily travel 

activities, which is an essential requirement for the BEV feasibility analysis. Note that there is 

still possible discontinuity in the GPS tracking data due to temporary device failure, satellite 

signal loss or wireless communications interruption.  

Over 700,000 trips were collected. Table 2 describes the data fields of the trip record 

used in this paper. Though the GPS tracking data of the entire trip are available, we only 

consider the start and end locations of each trip, as well as the dwell time between two 

consecutive trips. Ideally, a trip’s start location should match the end location of the previous trip. 

However, gap exists in some cases. This is because, when it is turned on, a GPS device might 
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need some time to warm up before working properly. On the other hand, the end location of a 

trip, recorded by a GPS device, is more reliable. Therefore, the end locations are considered as a 

“stop”. In the dataset, the locations of trips are recorded by the latitude and longitude coordinates. 

As a driver may not always park at the same spot in a parking lot, some nearby latitude-longitude 

coordinate pairs might be associated with the same activity destination, such as a shopping mall 

or the driver’s workplace. Moreover, if a charger is available near a BEV driver’s destination, 

he/she might be willing to park at the charging station and walk a few minutes to the destination. 

Therefore, instead of using the exact geographic locations, each trip end is assigned to a grid cell. 

When a charger is placed in the grid cell, the driver can charge the BEV at the stop if necessary. 

The dwell time determines the time available to charge the battery. In particular, in the 

downtown area, each grid cell covers 0.5 by 0.5 miles; in suburbs, each grid cell covers 1 by 1 

mile; and in outer suburbs, each grid cell covers 5 by 5 miles. As a result, the entire Seattle 

metropolitan area is divided into 4129 grid cells, containing all the trip ends. 

Table 2 GPS Travel Data Description 

Data field Description 

Vehicle ID The unique ID of the vehicle   

Travel day The date when the trip was recorded 

Trip number  Trips taken by an individual on a travel day are numbered sequentially 

by a trip number 

Start time The start time of the trip 

End time The end time of the trip 

Start location GPS coordinates of the starting point of the trip  

End location GPS coordinates of the end point of the trip  

Travel distance Vehicle miles traveled on the trip 

Dwell time Time spent at the destination while the vehicle is parked 

4. Methodology 

To assess the impact of deploying charging infrastructure on promoting consumer 

acceptance of BEVs, an evaluation framework is presented in Figure 2, includes charging 

infrastructure planning, travel and charging activity simulation, and measures of performance. 

Charging infrastructure planning determines the placement of electric vehicle chargers at home, 

work and other convenient locations. In this study, we assume that all BEV drivers have access 

to level 1 chargers at home. Based on the recorded vehicle activities, specifically, travel 

distances and dwell times, public charger placement problem is formulated and solved using 

genetic algorithm (GA). The placement of charging stations, together with travel patterns, 

determines battery’s state of charge (SOC) and charger availability at travelers’ activity 

destinations. BEV drivers’ driving and charging behavior can then be simulated to evaluate 

whether a traveler can complete all the planned travel activities, provided a charging 
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infrastructure plan. Some collective effects can also be evaluated. In particular, the following 

performance measures are defined to quantify the benefits of deploying charging infrastructure. 

Missed trips: when the trip distance is longer than the remaining battery range, the trip is 

considered as a missed trip. The subsequent trips will also be missed, until the vehicle is 

recharged, presumably at home. The precedent trips, however, are assumed to be unaffected in 

the present study. 

Missed miles: the vehicle miles traveled (VMT) associated with the missed trips. 

 

Figure 2 Methodology framework. 

4.1. Problem formulation 

Consider a set of candidate sites             for installing charging stations, and a set 

of BEV drivers            .  The public charger placement problem is to determine the 

locations and the types of the chargers to be installed in the planning network so as to minimize 

the number of missed trips, subject to a budget constraint. 

Drivers’ travel activities, including trip distances and the dwell time between two 

consecutive trips, and BEV characteristics, including the electric range and electricity 

consumption rate, are known. These input variables are defined as follows.  

       Travel distance of driver j’s k-th trip on day d  [mile] 

       Dwell time after driver j’s k-th trip on day d [hour] 

       Destination of driver j’s k-th trip on day d [ - ] 

   Electric range of driver j’s BEV [mile] 

   Electricity consumption rate of driver j’s BEV [kW h/mile] 

Public charger 

placement with 

budget constraint 

Location and type of 

public chargers  

 

Charging activity 
- Battery’s SOC 

- Charger availability 
- User preference 

Travel pattern 
- Travel distance 
- Dwell time Performance measures 

- Missed trips or miles 

- Public charging 

infrastructure cost 

Charging infrastructure BEV driver behavior Output 

Location and type of 

home chargers 

location 
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In the case study, the entire fleet is assumed to be BEVs with a 100 mile range (i.e.    

      ). And the electricity consumption rate is 300 W h per mile (i.e.          ).  

Whether to install an electric vehicle charger at a candidate site or not is denoted as the 

decision variable. 

   Charger placement at candidate site     (= 0, if no charger installed; = 1, 2, or 3, if 

level 1, 2 or 3 charge is installed) 

 

Accordingly, the charging power and cost of each candidate site can be determined based 

on Table 1. These derived variables are defined as follows. 

   Charging power at candidate site     is a function of   .  

   Charger cost at candidate site     is a function of   . 

If a BEV driver’s activity destination is in the candidate sites, that is,         , the available 

charging power is        
. If the destination does not belong to the candidate charging station site, 

or no charger is installed at the candidate site,        
  . 

When the BEV range is sufficient to finish the driver’s all-day travel activities, that is, 

∑          , We assume that the driver will not use public chargers and only charge the battery 

when returning home. This assumption is made to simplify the calculation and represents the 

majority of current BEV adopters’ behavior. It can be relaxed and will not affect the solution. 

When daily VMT exceeds the BEV range, drivers can take advantage of public chargers and 

charge the battery at some trip destinations. The energy increase in the battery, measured in 

miles, can be determined based on the battery’s state of charge, charging power and dwell time at 

the destination. 

 
           {              

       
       

  
} 

(1) 

       Energy increase of the battery from the recharge at the destination of 

driver j’s k-th trip on day d 

[mile] 

           Battery’s pre-charging SOC at the destination of driver j’s k-th trip on 

day d, which is measured after finishing trip k and before a possible 

recharging at the destination. 

[mile] 

The pre-charging SOC of the BEV at the destination of the k-th trip (          ) can be calculated 

on the basis of battery level at the previous stop, possible recharge, and trip distance. 

                                         (2) 
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A negative pre-charging SOC (          ) indicates that the range of the BEV is insufficient to 

complete the daily travel. Thus, the k-th trip and all the subsequent trips on the travel day are 

considered as missed trips. Let     denote the number of missed trips for driver j on day d. Thus, 

the objective function can be written as minimizing the total number of the missed trips of all the 

BEV drivers on all the travel days. 

          ∑∑   

  

 
 

 

(3) 

The total cost of building the charging infrastructure needs to be within the maximum 

allowable budget. The budget constraint is written as follows. 

  ∑  

 

   
 

 

(4) 

  The total budget for installing chargers in the entire study area [$] 

4.2. Activity-based assessment 

An activity-based assessment approach is proposed to describe BEV drivers’ driving and 

charging behavior and quantify range anxiety phenomenon associated with limited-range 

vehicles. One day travel activities of a sample vehicle and different charging scenarios are 

illustrated in Figure 3. In this particular example, a BEV with 100-mile range and a level 1 home 

charger cannot finish all the trips before returning home. However, since the vehicle is parked at 

work and another public place for a relative long time during the day, the battery could be 

recharged, if chargers exist. Two alternative strategies are considered: providing a level 1 

charger at work, or installing a level 3 charger at the public location. Both scenarios will avoid 

the battery being stranded before returning home.  
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Figure 3 Travel and charging behavior. 

The objective function Eq. (3) can be evaluated based on real world driving activities (i.e. 

the input variables) and the energy consumption calculated using Eq. (1) and Eq. (2). The 

activity-based assessment method provides the basis for implementing the genetic algorithm that 

seeks optimal locations for installing charging stations in the study area. 

4.3. Genetic algorithm-based optimization 

Location and type of public chargers are found using a genetic algorithm (GA)-based 

optimization model that minimizes missed trips subject to the budget constraint. Genetic 

algorithm (Holland, 1975) is considered as a mature artificial intelligence technology that has 

been applied to solve many real world problems, including some recent applications in solving 

electric vehicle charger location problems (Ge et al. 2011, Li et al. 2011). The Evolver module of 

the @risk software, an advanced commercial GA-based optimizer developed by Palisade 

Corporation, is used to solve the proposed charger location optimization problem. Simulating 

charging behavior and evaluating the objective (or fitness) function require the use of lookup 

tables and databases, which makes the optimization problem non-smooth and difficult for hill-

climbing routines to find optimal solutions. Evolver is chosen for it can find good solutions for 

problems involving large, interrelated tables, and does not require continuity in the functions that 

it evaluates.  

The grid cells in the network are ranked by number of trips that end in the grid. Top 500 

popular destinations, are selected as potential locations for public chargers. Since the charging 

station capacity constraint is not considered in the proposed optimization model, the potential 

charging congestion, that is, a vehicle arrives at a charging station when all chargers are 
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occupied, is ignored. At an early market with a small number of BEVs on the road, charging 

congestion may be rare. Based on the driving activities of 445 vehicles in the greater Seattle 

metropolitan area, only 3.7% of the trips end at a location (i.e. one of the top 500 popular 

destinations) where another vehicle has already parked. If two chargers are provided at these 

destinations, the charging conflict percentage drops to 0.5%. With more BEVs on the road, it is 

likely that smart grid technologies will be used to coordinate queuing and charging for multiple 

vehicles. Consideration of queuing and charger capacity will significantly increase the 

complexity of the optimization problem and is an important issue to be addressed in the future 

research. 

An integer representation of the genetic solutions is used in the evolutionary computation 

method:      represents no charger at node i, and            , if level 1, 2 or 3 charger is 

installed at the node, respectively. The optimization model that minimizes the total number of 

missed trips is solved using Evolver at various budget levels. 

5. Results  

5.1. Travel patterns 

To illustrate real world driving patterns and the implication on range anxiety 

phenomenon associated with limited-range vehicles, Figure 4 plots cumulative distributions of 

trip lengths and daily VMTs of two fleets. The trip length distribution curves, derived from the 

Austin (229 vehicles on one travel day) and Seattle (445 vehicles on multiple travel days) travel 

survey data, show that very few trips exceed the typical BEV range, that is, 80 to120 miles. The 

cumulative distribution curves of daily VMTs, on the other hand, show a higher percentage of 

unfinished trips beyond the BEV range. Since we assume that driver will not change their 

original travel plans in this study, providing additional charging opportunities at work and other 

convenient locations will only eliminate some of the unfinished short trips. To use a BEV on a 

trip longer than the vehicle’s range, drivers need to make changes to their trip plans and charge at 

a public charger along the travel route, preferably a fast one.  
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Figure 4 Trip length and daily VMT distribution. 

5.2. Home charging 

Each vehicle’s home location is available in the Seattle travel survey database (See 

Figure 1). The base case scenario assumes that level 1 charger is available at home and that BEV 

is charged when the vehicle is parked at home for more than 1 hour, that is to say, the chargeable 

range is more than 4.8 miles. No public chargers are considered in this scenario. 

 

Figure 5 Travel adaptation.  

The sample (445 participants) is segmented according to how much travel adjustment 

they would have to do if they were driving BEVs. An adjustment, either using a substitute 
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gasoline vehicle or changing travel plans, is needed if a participant’s accumulative daily travel 

distance exceeds the 100 mile BEV range. As shown in Figure 5, provided with home chargers, 

10% (i.e. 46 vehicles out of 445) of the drivers can accomplish all the planned travel activities 

using a BEV with 100 mile range (i.e. no adjustment needed). This observation is similar to the 

study by Pearre et al. (2011), which reported, based on data collected in the Atlanta metropolitan 

area that 9% of the vehicles in the sample never exceeded 100 miles in one day. It is worth 

noting that there is no significant difference in terms of vehicle ownership per household and 

vehicle model and year in the “no adaption” subset compared to the entire sample set. For 41% 

of the sampled population, adjustment is needed for less than 5% of the travel days (i.e. small 

adjustment); 21% of the fleet need adjustment on 5%-10% of the travel days (i.e. moderate 

adjustment); and the rest 28% of the fleet cannot complete their planned daily driving activities 

for more than 10% of the travel days (i.e. large adjustment). 

5.3. Public charging 

In addition to having level 1 charger at home, BEV drivers may have access to public 

chargers. The charging location optimization model is run using different budget constraints. In 

particular, the per vehicle infrastructure cost is assumed to vary from $500 to $5,000, which is 

consistent with the alternative fuel vehicle infrastructure cost estimates suggested by Ogden 

(2005) and NRC (2013).  Figure 6 summarizes the optimal number of level 1, 2 and 3 chargers at 

each given budget. When the budget increases beyond $1,000 per vehicle, the total number of 

chargers is close to the maximum number, namely 500, but more level 2 and 3 chargers are 

deployed with a larger budget. No level 3 charger is planned when the budget is below $3,000 

per vehicle. A few level 3 chargers are planned at higher budget levels. The solutions suggest 

that with limited budget, it is preferred to install more low-cost and low power chargers than 

fewer expensive and high power chargers. 

 

Figure 6 Number of chargers at varying budget levels. 
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As an example, Figure 7 shows charger locations at the $2,000 per vehicle budget level. 

The solution suggests installing chargers in the major cities, including Seattle and Bellevue, and 

along highway corridors, such as Interstate 5 and Interstate 90.  

 

Figure 7 Charger locations (budget $2,000 per vehicle) 

Figure 8 shows the percentage of the total budget allocated for each type of charger. The 

majority of the budget is allocated to level 1 charges when the budget level is low and to level 2 

chargers when the budget is high. At budget levels between $1,500 and $3,000 per vehicle, the 

majority of chargers are level 1 but the majority of the fund is allocated to level 2 chargers.  



Dong et al.    16  

 

Figure 8 Percentage of the total budget used for each type of charger. 

Impacts of different budget levels on missed trips and miles are demonstrated by Figure 9.  

If no public charger is built, corresponding to the home charging scenario discussed in Section 

5.2, about 10% of all trips and 20% of VMT will be missed. As shown in Figure 5, the majority 

of the observed drivers (i.e. 72% of the fleet) would not need to adapt in more than 90% of travel 

days. Yet, the 28% of the fleet that needs large adjustment account for more than 31% of the 

total number of trips traveled and 38% of total VMT. Some of these vehicles need adaption on 

half of their travel days, which significantly contribute to the total number of missed trips. Both 

missed trips and VMTs reduce nonlinearly relative to the increase of budget. Public chargers 

funded up to $2,000 per vehicle are able to reduce missed trips to 2.58%. The marginal benefits 

decreases with additional investment. The curve is relatively flat beyond $2,000, suggesting that 

the $5,000 per vehicle budget is a sufficient upper bound for the present study. 
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Figure 9 Missed trips and VMT under different budget level. 

As the total number of chargers to be deployed in a region, together with the available 

budget, is usually determined at the strategic planning stage, a set of 500 candidate charger 

locations are predefined before solving the tactical optimization problem. Nevertheless, the 

number of candidate locations would influence the solution and constraint the reduction of the 

missed trips. For example, at the $5,000 per vehicle budget level, increasing the number of 

candidate sites from 500 to 1,000 can reduce the number of missed trips by an additional 0.3% 

(i.e. from 2.1% to 1.8%). Figure 10 shows the solutions considering different number of 

candidate sites. Similar to the observation from Figure 6, more low power chargers are planned 

when more candidate sites are considered. 
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Figure 10 Solutions considering varying number of candidate sites 

6. Conclusions and discussions 

This paper examines the impact of different deployment levels of public charging 

infrastructure on reducing BEV range anxiety using an optimization model that places chargers 

at candidate locations, considering charging behavior and the budget constraint. GPS tracking 

data shows that very few trips exceed the typical BEV range; while daily VMT has a higher 

likelihood of exceeding the range. More public chargers, when optimally located, could 

effectively reduce range-constrained days and trips for BEV drivers. The optimized public 

charger planning strategies suggest that, with a small budget, level 1 chargers are preferred, as 

they can provide the necessary network coverage at a low cost. Due to its high cost, level 3 

charging is less attractive. However, installing fast chargers along the interstate corridors is 

essential in order to facilitate BEV drivers to conduct intercity travel.  

One of the caveats of this study is the assumption that current activity patterns with 

gasoline powered vehicles will not change when switching to electric vehicles. Nevertheless, 

travelers might have access to another vehicle, use alternative travel modes, change their 

itineraries, or make short detours to public chargers, thus reducing the number of unfinished trips. 

Although changes in their travel behavior are expected, at the present stage, it is not well 

understood how drivers will react to range limitation. Our assumption has been made to facilitate 

model calculation, which provides a useful reference point for market assessment and policy 

discussion.  Further observations and understanding of BEV drivers’ behavior are recommended 

in the future research. Moreover,  the deployment of smart meters that can measure electricity 

consumption during certain time periods and enable the billing of time-of-use tariffs will 

influence the charging behavior of PEV fleet—allowing for potential energy cost savings 

through information and communication technologies-controlled PEV charging (Goebel, 2012). 

Subsidized work charging and free charging opportunities provided to customers by various 

businesses might also encourage public charging even though there is sufficient power left in the 

battery to return home. Furthermore, based on the spatial and temporal distribution of BEV 

charging activities, the electric demand profile can be estimated as a means to assess the impact 

on the quality and stability of the power system (Mullan et al. 2011). 
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