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High-throughput plant phenotyping—the use of imaging and remote sensing to record plant growth 
dynamics—is becoming more widely used. The first step in this process is typically plant segmentation, 
which requires a well-labeled training dataset to enable accurate segmentation of overlapping plants. 
However, preparing such training data is both time and labor intensive. To solve this problem, we propose 
a plant image processing pipeline using a self-supervised sequential convolutional neural network method 
for in-field phenotyping systems. This first step uses plant pixels from greenhouse images to segment 
nonoverlapping in-field plants in an early growth stage and then applies the segmentation results from 
those early-stage images as training data for the separation of plants at later growth stages. The proposed 
pipeline is efficient and self-supervising in the sense that no human-labeled data are needed. We then 
combine this approach with functional principal components analysis to reveal the relationship between 
the growth dynamics of plants and genotypes. We show that the proposed pipeline can accurately separate 
the pixels of foreground plants and estimate their heights when foreground and background plants overlap 
and can thus be used to efficiently assess the impact of treatments and genotypes on plant growth in a 
field environment by computer vision techniques. This approach should be useful for answering important 
scientific questions in the area of high-throughput phenotyping.

Introduction

High-throughput phenotyping enables large-scale collection of 
plant images and sensor data in greenhouses and fields [1–7]. 
For example, side-view images can be taken of hundreds to thou-
sands of crops in fields simultaneously and continuously through-
out their growth period by placing cameras in front of each row 
of plants [8]. To utilize these rich data for statistical analyses of 
plant phenotypes, subsequent image processing for trait extrac-
tion is required.

Plant object segmentation is a fundamental step in plant trait 
extraction [9,10]. There are many existing plant image processing 
tools, such as Scanalyzer [11], CropSight [12], and Leaf-GP [13]. 
These tools typically apply a simple thresholding method [14,15] 
for plant segmentation, which works well for greenhouse images 
with homogeneous backgrounds [16,17]. However, it fails to 
produce satisfactory plant segmentation results for images with 
complex backgrounds, especially in-field plant images. Neural 
network methods, such as U-net [18] and SoySegNet [19], can 
more accurately segment plant images with noisy backgrounds. 
However, these methods are based on supervised learning with 
human-labeled data or semisupervised learning with a mixture 
of human-labeled data and unsupervised data. Preparing a suf-
ficiently large training dataset is both time consuming and labor 
intensive. Guo et al. [8] and Adams et al. [20] proposed 2-step 

self-supervised methods of image segmentation, in which train-
ing data (labels of plant pixels) are first produced by K-means 
clustering of greenhouse images with a clean background, and 
then neural network models are trained, based on these auto-
matically generated training data, to perform segmentation of 
both greenhouse and field-grown plants. They demonstrated that 
their methods are more accurate and robust than the traditional 
thresholding methods.

Plant segmentation is especially challenging for field images 
because the background is composed of a mixture of dirt, equip-
ment, plant shadows, etc. Figure 1A to D shows a sequence of 
plant photos taken by a single camera over time in one row of 
the field phenotyping system at Iowa State University. Not only 
is there a complex background, but also, as plants grow, the target 
plants in the foreground row overlap with the background plants, 
so it is difficult to separate the rows of plants even with the human 
eye. The K-means assisted training for image analysis (KAT4IA) 
procedure proposed by Guo et al. [8] can produce well-segmented 
images, removing most background noise (see the segmented 
results in Fig. 1E to H). Based on the segmented images, KAT4IA 
can provide valid height measurements for plants in early growth 
stages, when the plants in the foreground row do not overlap 
with those in the background, as in Fig. 1E and F. However, 
KAT4IA cannot separate the target plants after they overlap with 
the background plants (see Fig. 1H as an example). Therefore, 
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although the existing methods can accurately estimate in-field 
plant heights during early growth stages, they fail when plants 
overlap and cannot provide complete growth curve estimates. 
Because of space limitations in experimental fields, the distance 
between plant rows often needs to be small; thus, in many exper-
iments, plants quickly begin to overlap as they grow. It is there-
fore important to find an automated machine learning method 
to separate overlapping plants that does not require human-
labeled training data.

To solve this problem, we propose a self-supervised sequential 
convolutional neural network (SS-CNN) to separate foreground-
plant pixels from background-plant pixels. We construct a com-
putational pipeline to extract plant height data and estimate the 
entire growth curve of each separated plant. The key idea is to use 
the segmentation results from the images before plants overlap as 
the training data for the images in which plants overlap, in a 
sequential way over the course of plant growth. Our strategy relies 
on the assumption that the pixel intensities of the foreground 
plants before the foreground and background plants overlap are 
sufficiently similar to those of foreground plants after the overlap 
but before the physiological maturity stage of maize when the 
plants begin to turn yellow.

Specifically, we first use greenhouse images to train a plant 
segmentation method for field-grown plants as proposed by 
Guo et al. [8]; the method aims to segment all plant pixels and 
remove nonplant background noise. Then, using the proportion 
of plant pixels in each early-season image row, we identify the 
foreground-plant and background-plant pixels from images 
with nonoverlapping plants. In this way, self-supervised train-
ing data about plant pixels can be automatically and efficiently 
constructed and used for the separation of overlapping plants 
in the late growth stage. This self-supervised method avoids the 
expensive manual labeling process of preparing training data.

Distinguishing between foreground-plant and background-
plant pixels is more challenging than distinguishing between 
plant and background pixels. Therefore, neighborhood infor-
mation for each pixel is needed to obtain a good classification 

result. We construct a convolutional neural network (CNN) 
model based on the pixel intensities from a rectangular neigh-
borhood, which uses the geometric structure of plants to better 
separate the foreground-plant and background-plant pixels. 
Plant heights can then be measured based on the segmented 
foreground-plant images. By combining the late-growth-stage 
height measurements from the proposed method and the 
early-growth-stage height measurements computed by the 
KAT4IA procedure, the complete growth curves of plants 
throughout their growth periods can be obtained. The extracted 
growth curves can be used for subsequent biological analysis. 
In Results, we present the results from functional principal 
components analysis (FPCA) [21,22] to study and compare 
the growth dynamics of different genotypes based on extracted 
heights, revealing the impact of genotypes on plant growth 
patterns.

Methods
Our primary goal is to develop a pipeline to automatically sep-
arate foreground-plant pixels from background-plant pixels, as 
shown in Fig. 1, and extract the heights of all foreground plants 
from a photo sequence to estimate plant growth curves. The 
main steps are as follows. Detailed procedures for each step are 
explained in the subsequent subsections.

1. Segmentation from background: The KAT4IA algorithm [8] 
was performed starting with the sequence of field images taken 
by a camera over time to obtain segmented images of plants. 
The background from images was removed by replacing the RGB 
intensities of all the classified nonplant pixels with a 0. This will 
keep the original RGB intensities for the plant pixels and color all 
background pixels black; the resulting images are known as “back-
ground-removed images.” The time point was identified when 
foreground plants started to overlap background plants.

2. Automatic construction of training data for plant sepa-
ration: The foreground and background plants were separated 
in the background-removed images before the plants overlap. 

Fig. 1. Segmentation of images taken over the plant growth period. (A to D) Sequence of plant photos taken by one camera over time in one row of a field phenotyping system 
at Iowa State University. (E to H) Corresponding images segmented using the KAT4IA procedure from [8].
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The training data were created by labeling all foreground- and 
background-plant pixels with 1 and 0, respectively. For each 
labeled pixel, the pixel intensities were included in its neigh-
borhood with size (2r + 1) × (2c + 1) as the associated features 
for this pixel, where r and c are the half width and half height 
of the neighborhood rectangle centered on the labeled pixel.

3. CNN learning: A CNN was trained using the training 
data obtained from the second step to separate the foreground 
and background plants in later-stage images, where foreground 
plants and background plants overlap.

4. Postprocessing of classification results by superpixels: The 
classification results of the foreground- and background-plant 
pixels were refined from the third step using simple linear iter-
ative clustering (SLIC) superpixels proposed by Achanta et al. 
[23]. A common label was assigned to all pixels within each 
superpixel.

5. Height measurements: The plant height was calculated 
for each foreground plant from a sequence of images over the 
growing season. The plant growth curve was estimated using 
nonparametric regression with a nondecreasing mean [24,25].

All steps are implemented by R language and the API Keras 
in R. The training model was built on a single personal com-
puter, and the segmentation of the field images based on the 
trained model was performed in high-performance computing 
clusters with parallel computing.

Image data and plant segmentation  
from background
For this project, we use field images taken in a rainfed (i.e., 
nonirrigated) field near Grant, Nebraska at GPS coordinates 
(40.94, −101.77) in 2017 by researchers from the Plant Science 
Institute of Iowa State University. The field contains 2 replicate 
plantings, with 103 and 101 genotypes of maize, respectively. 
Each row in each replication includes up to 6 plants of a single 
genotype, and one camera is installed in front of each row of 
plants. The row length, between-row space, and within-row 
plant space were 182.9, 304.8, and 36.6 cm, respectively. We 
used NIKON COOLPIX S3700 cameras in front of each row 
of plants with a focal length of 4.5 mm and a sensor size of 
6.17 mm × 4.55 mm. The camera to row distance was at 213.4 cm, 
and the height of the camera was roughly about 120 to 150 cm 
mounted on top of each pole. The average number of photos 
taken per camera is 1,719 and 1,650 for the 2 replications, 
respectively, with photos taken every 15 min during daylight 
hours. We use photos taken from mid June to early August. 
The field photos are RGB images with intensity values of red, 
green, and blue channels between 0 and 255 for each pixel. 
Pixel intensities are normalized by dividing them by 255, pro-
ducing floating point numbers between 0 and 1. We rescale 
the image resolution from 5,152 × 3,864 to 1,000 × 750 to 
increase computation efficiency.

In our training pipeline, we first apply the KAT4IA procedure 
proposed by Guo et al. [8] to obtain segmented images of plants 
for in-field images (Fig. 1). KAT4IA uses greenhouse plant images 
to train the in-field segmentation model (see [8] for more details). 
Using the segmentation results, we then remove the background 
from the images by replacing the RGB intensities of all nonplant 
pixels with zero values (Fig. 3B). This resulted in “background-
removed images.” For each row of plants, we use the following 
method to automatically detect the time point when the fore-
ground and background plants overlap. First, the proportion of 
plant pixels in each image row is calculated. Then, the first peaks 

(from the bottom to the top of an image) in the row proportions 
are identified by choosing the upper and lower boundaries of each 
peak as the first pixel rows smaller than a small percentage (e.g., 
5%) of the peak maximum above and below the center of the peak. 
The boundaries of the first peak of the row proportions identify 
the image rows with the foreground plants. The row-cut algorithm 
mentioned above helps locate foreground plants (see Fig. 2B). A 
change-point detection method is then applied to the width of 
the identified first peak from the sequence of images over time to 
estimate the time that foreground and background plants overlap 
for each row in the field (Fig. 2A).

With this approach, the width of the first peak will increase 
sharply to a larger value when the plants begin to overlap. The 
row-cut algorithm can accurately identify the image rows of the 
foreground plants in the early growth stage, when the foreground 
and background plants are well separated. However, once fore-
ground plants begin to overlap with background plants, the row-
cut algorithm tends to segment the image rows containing both 
foreground and background plants, which results in a jump in 
the width of the segmented rows (see example in Fig. 2C). This 
jump corresponds to the date when the foreground plants begin 
to overlap with the plants in the background. Figure 1C provides 
an example.

Automatic construction of training data
To separate overlapping foreground and background plants, 
a large set of training data is needed to build machine learning 
algorithms. However, obtaining such training data usually 
requires manual annotation and labeling on each plant pixel 
in a large set of images for every experiment. This labeling 
process is both time consuming and labor intensive due to the 
high resolution of the images and the irregular shape of plants. 
We address this challenge by using the plant pixels from the 
nonoverlapping plants in the early growth stage to construct 
self-supervisory training data for separating overlapping fore-
ground and background plants in the late growth stage. 
Specifically, for early-growth-stage in-field images, foreground 
and background plants can be simply separated using the row-
cut algorithm in the previous step, as there is a sharp valley in 
the curve of the row proportions of the segmented image if 
the foreground and background plants do not overlap. Thus, 
we can have the algorithm simply define all plant pixels above 
a cutoff line as background-plant pixels (0) and all plant pixels 
below the cutoff line as foreground-plant pixels (1) (see exam-
ple in Fig. 3C).

Moreover, to construct more representative training data of 
plants in late growth stages, we use the images from right before 
the overlap begins. For example, Fig. 1C is better suited for con-
structing training data than Fig. 1A and B because the plant struc-
ture in Fig. 1C shares more similar characteristics to plants in the 
late growth stage. As the neighborhood pixels contain geometric 
information about the plants, they can help to distinguish the 
target plants. For each labeled pixel of foreground and back-
ground plants, the cropped mini-image centered at that pixel with 
neighborhood (2r + 1) × (2c + 1) is used as the input features, 
where r and c are the half width and half height of the neighbor-
hood rectangle centered on the labeled pixel. The intuitive pre-
sumption is that cropped mini-images within the same category 
are more likely to share similar characteristics. This is similar to 
classical CNN approaches in which convolution of neighborhood 
information is used to predict the response category. The 
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workflow for constructing a training dataset is summarized in 
Fig. 3. Examples of background and foreground-plant features 
are shown in Fig. 3D and E, respectively.

Separation of foreground- and background-plant 
pixels by CNN
Next, we use the training data generated from the images before 
plants overlapped to train a CNN to separate overlapping fore-
ground and background plants, using the API Keras in R. For 
each labeled pixel in the training data, the RGB (red, green, and 
blue) intensities of the pixels in its (2r + 1) × (2c + 1) neigh-
borhood are used as the input features, where r = c = 16. This 
results in a feature space with dimensions 33 × 33 × 3 for each 
training pixel, where 3 is the number of channels for red, green, 
and blue intensities, and 33 × 33 is the resolution for each chan-
nel. We also tried the CNN models with r = c = 8, r = c = 12, 
and r = c = 20. From the training results, we found that the 
validation accuracy increased with the increase of r and c, and 
became stable after r and c reached 16. Therefore, we chose the 
neighborhood size as r = c = 16, since a smaller neighborhood 
size leads to less training time.

Specifically, in the CNN model, there are 4 convolution lay-
ers with the following sizes: (33,33,32), (33,33,32), (16,16,64), 

and (16,16,64). The first of these is the input layer, where 3 is 
the number of channels, and 33 × 33 is the resolution for each 
channel. A 3 × 3 filter kernel with the Same Padding and the 
ReLU activation function is used to calculate the convolution 
layers. A 2 × 2 max pooling with no padding is applied between 
the second and third convolution layers. Another 2 × 2 max 
pooling is applied after the last convolution layer, which results 
in a max pooling layer with size (8, 8, 64). Finally, a multilayer 
perceptron (MLP) with one hidden layer is used to compute 
the predicted probability of a particular pixel belonging to the 
foreground-plant class. Flattening the max pooling layer gives 
the input layer of the MLP, which has 4,096 nodes. The hidden 
layer has 128 neurons. The dropout rates between the input 
layer and the hidden layer of MLP, and between the hidden layer 
and the output layer, are set at 0.3. The ReLU activation function 
is used between the input layer and the hidden layer of the MLP. 
The sigmoid activation function is used to predict the fore-
ground probability of each pixel based on the hidden layer of 
the MLP. The binary cross-entropy loss function with the Adam 
optimization algorithm and a learning rate of 0.001 is used to 
evaluate the network model. Finally, 100 epochs with a batch 
size of 1,000 are used for the training, and 5% of the training 
data are retained as the validation set. The average training 

Fig. 2. Example of how the row-cut algorithm separates foreground plants. (A) Scatterplot of the width of the identified first peak from the sequence of images over time. The 
red line is the time point when the foreground and background plants start to overlap (“change point”). (B) Result of the row-cut algorithm for an early-growth-stage field 
image; the pink dot in (A) indicates the estimated width of the first peak in (B). The row proportion curve of the segmented image is shown on the left-hand side of the field 
image. The 2 dashed lines are the upper and lower boundaries of the first peak from the bottom. (C) Result of the row-cut algorithm for a late-growth-stage field image; the 
blue dot in (A) indicates the estimated width of the first peak in (C).
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and validation accuracy of the last 50 epochs are 97.7% and 
94.3%, respectively, indicating a good fitting result for the plant 
CNN. Figure 4 is the diagram that shows the structure of the 
proposed CNN.

The CNN is trained to classify the foreground- and background- 
plant pixels for the images with overlapping plants in the late 
growth stage, and the probability of each plant pixel belonging 
to the foreground-plant class is computed. Figure 5E shows the 
predicted probabilities from an example image.

Postprocessing of CNN results using superpixels
The proposed self-supervised method classifies each plant pixel 
in the background-removed image based on the probabilities 
generated from the CNN model using a given cutoff value. 
Figure 5E shows that our trained CNN separates foreground 
plants from background plants reasonably well. However, there 
are still some classification errors: The image in Fig. 5E includes 
several red points (identified foreground pixels) among the 
blue points (identified background pixels) and several blue 
points surrounded by red points. Note that the CNN predicts 
the class label for each pixel separately. This may lead to a 

nonsmooth segmentation result for the target plants. Therefore, 
we considered that it should be possible to refine the classification 
results from the CNN by utilizing the image geometry informa-
tion, for example, the surrounding pixel colors and the spatial 
proximity of pixels.

To this end, we incorporated into the pipeline a process in 
which SLIC superpixels [23] are formed on the background-
removed images to group pixels into perceptually meaningful 
atomic regions based on pixel coordinates and RGB intensities 
(e.g., Fig. 5F). The superpixels can be interpreted as geometric 
miniclusters of each image that share similar information. To 
borrow information from neighboring pixels, the average prob-
ability of the foreground class within each superpixel is calcu-
lated. A cutoff threshold of 0.5 is then used to classify the 
foreground and background plants at the superpixel level. All 
the pixels within a superpixel are predicted to be of either fore-
ground or background class if the average probability is larger 
or smaller than 0.5, respectively. In this way, all pixels in the 
same superpixel are classified into a common class. To acceler-
ate the computation, the average probability of the foreground 
class in the ith superpixel is estimated based on a random 

Fig. 3. Workflow for constructing a training dataset. (A) Example early-growth-stage field image. Applying the KAT4IA algorithm to (A) gives the “background-removed image” 
(B). Separating foreground and background plants using the row-cut algorithm gives the “labeled segmented image” (C). (D and E) Cropped mini-images from 3 example 
background-plant pixels marked in (B) using blue rectangles and 3 example foreground-plant pixels marked in (B) using pink rectangles.

Fig. 4. The structure of the CNN for classifying foreground- and background-plant pixels for the images with overlapping plants in the late growth stage.
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sample of N�
i

 pixels from this superpixel, where Ni is the total 
number of pixels in the ith superpixel. Figure 5 summarizes the 
workflow for plant pixel separation using the self-supervised 
CNN and postprocessing using superpixels, which identifies 
foreground plants with high accuracy.

Plant height measurement and growth curve fitting
For early-growth-stage images, before plants overlap, fore-
ground plants can be easily separated using the row-cut algo-
rithm (Fig. 2). Individual foreground plants are then separated 
using a column-cut algorithm similar to the row-cut algorithm. 
Then, the height of each plant is measured based on the top 
and bottom plant pixels in the segmented image. This process 
for early-stage plants is illustrated in detail in the KAT4IA pipe-
line [8].

For late-growth-stage images, once the foreground plants are 
identified and separated, a similar height measurement algo-
rithm can be used. First, a binary image is created in which 
foreground-plant pixels are labeled 1 and all other pixels are 
labeled 0. Row means are then calculated, giving the percentage 
of foreground-plant pixels in each row of the image. Second, the 
row mean curve is smoothed using a local smoother using the 
loess function in R. The maximum of the row means is calcu-
lated, and the upper and lower boundaries of the peak in the 
row mean curve are identified as the first rows with means 
smaller than 7.5% and 2.5% of the peak maximum, respectively. 
This identifies the rows in the image corresponding to the 

foreground plants. Third, the same column-cut and height-
measurement algorithm used in the KAT4IA pipeline is applied 
to separate individual foreground plants and measure their 
heights. Figure 6A, C, and E shows examples of foreground-plant 
separation, and Fig. 6B, D, and F visualizes the height measure-
ments for each of the target plants in those images. The proposed 
self-supervised CNN algorithm is able to recover most parts of 
the foreground plants with a low false-positive rate, and the 
height measurement algorithm provides reasonable estimates 
for the height of each target plant based on the foreground sep-
aration results.

Using the extracted plant heights from all the plant images 
over the growth season, a growth curve for each plant in each 
row of the field can be fitted using nonparametric regression 
with a nondecreasing trend [24,25]. The fitted growth curves 
for the foreground plants shown in Fig. 6 are reported in Fig. 7. 
The pink dots and cyan-blue dots are the height measurements 
of the early- and late-growth-stage images, corresponding to 
the nonoverlapping plants and overlapping plants, respec-
tively. The measured heights are also shown in Fig. 7 with 
different colors.

Results
In this section, we detail the results from applying our SS-CNN 
pipeline to the first replication of the 2017 dry field data. 
Specifically, we computed the median plant heights over the 

Fig. 5. Plant pixel separation and postprocessing workflow. (A) Target late-growth-stage field image. The goal is to extract the foreground plants from the image. Applying 
the KAT4IA algorithm to (A) gives the “background-removed image” (B). The superpixels of (B) are shown in (F). Cropped early-growth-stage mini-images associated with 2 
plant classes are collected as training data (C) to train the CNN (D). For each plant pixel in (B), the neighborhood mini-image is cropped, and then applying (D) to each mini-
image gives the probability of each pixel belonging to the foreground-plant class. The probabilities are visualized in (E), where red indicates that a 1 was assigned and blue 
indicates that a 0 was assigned. The final image (G) is obtained by first averaging the predicted probability within each superpixel and then classifying the foreground-plant 
and background-plant superpixels using a cutoff threshold value.
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plant growing season for each of the 103 genotypes in the first 
replication and provided a growth curve estimation for each 
genotype. The growth curve estimates are shown in Fig. 8A, 
where the red curve represents the mean of the growth curve 
estimates. It is worth noting that most of the plants in the dry 

field were damaged by a storm in the beginning of August in 
2017. Therefore, we decided to use the field images before 
August to fit growth curves. To investigate the effect of genotype 
on the plant-growth patterns, we applied an FPCA [21] to the 
103 growth curve estimates. According to the Karhunen–Loève 

Fig. 6. Foreground plants are identified, and their heights are determined. (A, C, and E) Foreground- and background-plant identification results for 3 example images from 
one camera. (B, D, and F) Corresponding height measurement results.
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theorem, the growth curve for the ith genotype (Yi(t), i = 1, …, 
103) can be well approximated by:

where μ(t) is the mean function, ψk(t) is the kth eigenfunction, 
and ξik is the kth functional principal component (FPC) score 
for the ith genotype. The first 2 FPCs explain more than 95% 
of the total variance of the growth curve estimates. Note that 
we only measured plant heights before August, and most plants 
were still growing at that time. Therefore, the growth curves 
had not become flat. To fit a complete growth curve that flattens 
at the end, we can increase the model complexity by including 
more than 2 FPCs.

The first 2 eigenfunctions are plotted in Fig. 8B. The first 
eigenfunction controls the overall growth rate; a positive FPC 
score corresponding to the first eigenfunction results in a rel-
atively higher growth rate than average. Meanwhile, the second 
eigenfunction controls the changes in growth rate over time; a 
positive FPC score corresponding to the second eigenfunction 
means that the growth rate increases over the plant growing 
season.

Figure 9 provides a clearer explanation. Figure 9A shows a 
scatterplot of the second FPC score versus the first FPC score for 
each genotype. Genotypes PHB47 × PHW30 and B73 × PHN82 

had similar second FPC scores; however, PHB47 × PHW30 had 
a positive first FPC score, whereas B73 × PHN82 had a negative 
first FPC score. Therefore, PHB47 × PHW30 had a higher overall 
growth rate than B73 × PHN82 (Fig. 9B). Genotypes PHB47 × 
LH123HT and LH198 × PHN82 both had first FPC scores close 
to 0; however, the second FPC score of PHB47 × LH123HT was 
>0, while the second FPC score of LH198 × PHN82 was <0. 
Therefore, the overall growth rates for both genotypes were close 
to the mean growth rate, but PHB47 × LH123HT had a lower 
growth rate in the early growth stage and a higher growth rate 
in the late growth stage, whereas the growth rate of LH198 × 
PHN82 decreased over time.

Discussion
Processing the image data and extracting plant features is one 
of the main problems in current phenotyping research and 
applications. Although human annotation for separating the 
target plants from background in some images is possible, this 
labeling process is usually tedious and time consuming. The 
proposed self-supervision approach uses computers to prepare 
the training data automatically. This allows a machine to effi-
ciently measure plant traits from the images taken in fields that 
is adaptive to the lighting condition and environment change. 
Our results show that the proposed procedure can produce 
accurate and reliable measurements for plant height, and the 
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Fig. 7. Growth curves are fitted to the height measurements for each plant in a set of images from one camera. The pink points are plant heights extracted from early-growth-
stage images using the KAT4IA pipeline. The cyan-blue points are plant heights extracted from late-growth-stage images using our proposed method. Nondecreasing fitted 
growth curves are shown in black lines. The measured heights from the 3 images in Fig. 6 are highlighted with different colors. The orange dots indicate the heights from 
Fig. 6B, the red dots indicate the heights from Fig. 6D, and the green dots indicate the heights from Fig. 6F.
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following functional data analysis is able to reveal genotype 
effects on the plant growth curve. In the future, we will deploy 
the proposed analysis pipeline on an in-field imaging robot 
such that the robot can automatically extract plant traits and 
conduct statistical analysis in real time while working in the 
field.

In the proposed pipeline, we use sequential images to pre-
pare the training data for the overlapped plants. The segmen-
tation results rely on the similarity between the early-stage 
plants before overlapping and the late-stage plants after over-
lapping. If the color of the plant pixels from those 2 stages of 
images are quite different, the segmentation results would not 
be good. Fortunately, this is not the case in our image data 
analysis example. An alternative way to automatically create 

training data is to use the segmented plants from greenhouse 
images with a clean background and to overlay them on the 
images with the field background. This can create synthetic 
in-field plant images with known locations for the pixels of the 
foreground plants. Then, a CNN similar to the one used in the 
proposed pipeline or a U-net model [18] can be constructed 
for plant segmentation.

The validation of the extracted heights from images is an 
important question. However, we do not have manually meas-
ured plant heights from this experiment. So, we can not com-
pare the extracted heights with the ground truth. Nevertheless, 
the extracted heights from the images should be accurate if the 
plant segmentation is accurate. The validity of the proposed 
segmentation procedure can be visually checked by comparing 
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the segmented and original images, as shown in Fig. 6. In future 
experiments, we will collect manually measured plant heights 
over time as a validation dataset for the proposed procedure.
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