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ABSTRACT: Many input variables of chemical processes have a continuous-time stochastic (CTS) behavior. The nature of these
variables is a persistent, time-correlated variation that manifests as process variation as the variables deviate in time from their
nominal levels. This work introduces methodologies in process identification for improving the modeling of process outputs by
exploiting CTS input modeling under cases where the input is measured and unmeasured. In the measured input case, the output
variable is measured offline, infrequently, and at a varying sampling rate. A method is proposed for estimating CTS parameters from
the measured input by exploiting statistical properties of its CTS model. The proposed approach is evaluated based on both output
accuracy and predictive ability several steps ahead of the current input measurement. Two parameter estimation techniques are
proposed when the input is unmeasured. The first is a derivative-free approach that uses sample moments and analytical expressions
for population moments to estimate the CTS model parameters. The second exploits the CTS input model and uses the analytical
solution of the dynamic model to estimate these parameters. The predictive ability of the latter approach is evaluated in the same
way as the measured input case. All of the data in this work were artificially generated under the probabilistic CTS model.

1. INTRODUCTION
The modeling of process variability is an important aspect of
process identification.1−5 Process variables often exhibit a nature
that can be classified as continuous-time stochastic (CTS) behavior.
Such behavior can be described as time-dependent correlated
variation that can persist either above or below its nominal level,
mean value, or set point for a period of time, although it has a
stochastic or probabilistic nature. An example of this variation
could be the flow rate from a control valve with a fixed opening.
Although the opening is fixed, the flow rate changes because of
CTS pressure changes upstream of the valve. A graphical illus-
tration of CTS variation is shown in Figure 1 for the first-order

dynamic response to a deterministic step change of a CTS input
variable. If this input had only a deterministic nature, it would

remain fixed after this step change, and the output would follow
the deterministic response shown in Figure 1. The response of
this system is shown for a CTS input for two values of variance
(“sigma” in the plot). As shown, the greater the variance of the
stochastic input, the greater the average deviation from the deter-
ministic response. The CTS behavior for these two responses is
evident in the random, but time-correlated, variation.
To further put this input behavior into a chemical process

context, two examples are given: one with a measured input
variable and one with an unmeasured input variable. A real data
example of a measured process variable with CTS variability is
shown in Figure 2. These data come from a pilot-scale distilla-
tion column for the separation of methanol and water. The
variable is the accumulator level, and its set point and measured
values over time are plotted in Figure 2. The variable level is
time-continuous, and the CTS nature of this variable is evident
in the continuous time-correlated pattern around the set point.
This behavior is observed in values that are sequentially above
the mean and below the mean (i.e., serially or time-correlated).
Our unmeasured process input example is an industrial

starch dryer, for which the objective is to remove moisture from
corn starch to a particular level. The starch is freely placed on
the belt feeding the dryer. Variations in the inlet moisture
content to the dryer depend on the belt speed; the amount of
grain; the inlet moisture level of the grain; and the humidity of
the room air, which is not controlled. The inlet moisture rate is
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Figure 1. Dynamic response of a first-order system to a deterministic
input change and CTS input changes at two different sigma values (0.1
and 0.2) or variance levels.
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not measured, and the variation of these variables causes varia-
tions in the inlet moisture rate that can be described as process
noise or variability. This particular process was an actual indus-
trial process that one of us (D.K.R.) experienced while work-
ing in industry. These variables changed gradually in a time-
correlated manner that induced the unmeasured inlet moisture
rate with CTS behavior. This was evident from CTS behavior
of the outlet moisture content, which was inferred from the
exhaust temperature of the dryer air. Therefore, the purpose of
this article is to present a CTS modeling approach that can sig-
nificantly improve output modeling by exploiting the modeling
of CTS input behavior.
The scope of this article is single-input−single−output (SISO)

processes and includes both measured and unmeasured CTS
input cases. Recent work in treating stochastic behavior in
chemical processes includes the significant contribution of Lima
and Rawlings.6 However, their scope and context were quite
different from the scope and context of this work. Basically,
their context was along the lines of filtering, and this treatment
involves parameter estimation or system identification. Hence,
in their context, the model structure and its parameters were
known. The stochastic nature that they addressed was in the
state variables. This work focuses on CTS time-varying input
behavior under a certain probabilistic model. In their work,
the input was deterministic. They considered multiple state
variables, whereas this initial treatment considers single-
input−single-output processes. Additionally, we treat the case
of unmeasured input, which is not within their scope. Finally,
from the estimated model of input behavior, we use predicted
input values from the fitted model to predict output responses.
Other recent related works include those of Giri and Bai,7

Garnier and Wang,8 and Vanbeylen.9 However, none of those
treatments address our scope, that is, continuous-time stochas-
tic input variation.
In the measured input case, the output is taken to be mea-

sured offline, infrequently (a 1% rate of the input was used),
and at a varying rate (a uniform distribution was used). After
implementing the proposed method and estimating the model
parameters on training data, testing results are presented for the
model as a virtual (i.e., soft) sensor and in k-steps-ahead predic-
tion (kSAP) with k = 1, 10, 20, and 50. These results are com-
pared to the deterministic input results where the CTS behavior
is not considered, the common practice. In the unmeasured input
case, the dynamic process is required to be invertible, and the
output is taken to be measured online and at a high frequency

and constant rate. Although this is not a restrictive condition
because the modeling context is continuous, it is made for con-
venience to illustrate the proposed method more easily. As in
the other case, testing results are presented for kSAP with k = 1,
10, 20, and 50 and compared to deterministic input modeling
results.
All of the data in this article were artificially generated based

on the stochastic, dynamic, and static models given. The next
section presents the process network used in this study, which
is a SISO Wiener system. Section 3 presents the CTS model
for the input and shows how it translates into CTS output
behavior. Section 4 follows with details of the model iden-
tification methods. In section 5, we evaluate the proposed
modeling approaches. The final section presents concluding
remarks and discusses applications and future work.

2. PROCESS NETWORK
Continuous-time stochastic (CTS) modeling in this context
addresses the development of CTS input models to obtain
better predictive models for CTS output variables that depend
on CTS inputs. From our review of the process identification
literature, it appears that little to no work has been done on the
CTS modeling of process inputs (i.e., CTS process identifica-
tion). In model predictive control, the predictive model is used
to determine future settings for the manipulated variable, which
is an input, but the predictions are based on deterministic con-
siderations.10 In the virtual11 (i.e., inferential or soft) sensor
context when the inputs are not measured directly, the com-
mon practice is to use process settings for input variables (such
as set points) or some other deterministic inference for input
values over time. However, these approximations can
significantly limit the accuracy of output predictions.
This work applies CTS input modeling under the Wiener

block-oriented network. Although the Wiener system is quite
simple, its ability to treat nonlinear static behavior and non-
linear dynamic behavior has allowed it to approximate real pro-
cesses well, including pH neutralization, distillation, and reac-
tions in continuous-stirred tank reactors (CSTRs).12−17 Most
applications of Wiener modeling in the literature have been
discrete-time (DT) models,18,19 but exceptions include the
works of Greblicki15,16 and Bhandari and Rollins.14 Greblicki15,16

introduced a nonparametric continuous-time (CT) approach
with the dynamic block identified by impulse response methods.
Bhandari and Rollins14 proposed the continuous-time Wiener
modeling method called the Wiener block-oriented exact
solution technique (W-BEST). The method proposed in this
article extends W-BEST to the treatment of an unmeasured
input with CT stochastic input noise.
As illustrated herein, this application of the Wiener network

provides very powerful and unique advantages in nonlinear
dynamic modeling that offers an excellent basis to estimate
CTS model parameters. The Wiener network is shown in
Figure 3 for a single-input−single-output (SISO) process. In

this figure, x(t) is the CTS true input variable, μx(t) is the
known and deterministic mean of x(t), εx(t) is the CTS process

Figure 2. Accumulator level from a real distillation process showing
CTS behavior.

Figure 3. SISO description of a continuous-time stochastic process for
x in a Wiener block-oriented network.
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noise or deviation of x(t) from μx(t), v(t) is the unobservable
output from the linear dynamic block G(x), η(t) is the un-
observable CTS output from the nonlinear static block f(v),
εy(t) is the stochastic output measurement error, and y(t) is the
measured CTS output.
As shown in the figure, when x is not measured, εx is needed

to obtain x. With an invertible static block f(v), this network
can provide values for v by passing y through the inverse of this
block, that is, from v = f −1(y). With the CTS model of εx, μx(t),
and G(x), one can obtain estimates for v and use these esti-
mates, along with the values of v from f −1(y), under an esti-
mation criterion such as least-squares to estimate the model
parameters.
In the case where x is measured, εx values can be obtained

directly from εx = x − μx. Using the moment equations for εx,
we derive an expression for an estimator of εx that depends on
the CTS model parameters of εx, which we define as the vector
θsto. The least-squares criterion is applied to the residuals to
estimate θsto. This approach is called the CTS input method
(CTSIM) because the inputs are used to obtain the values of εx
and, thus, the estimation of θsto.
This work proposes two methods for CTS modeling of εx

when x is not measured. Both methods need values for v and,
thus, require f(v) to be invertible. One is a derivative-free approach
that relates the sample moments of v, using values obtained
from v = f −1(y), to analytically derived expressions for v that
depend on the CTS parameters of εx. This approach is called
the CTS moment method (CTSMM). The least-squares crite-
rion is applied to v moment residuals to estimate θsto. The other
is a derivative-based approach and obtains estimates of εx using
a finite-difference approximation scheme for the derivatives in
G(x). These estimates are used to estimate v, which leads to
estimates of y using f(v). The least-squares criterion is applied
to the output (i.e., y) residuals to estimate θsto. This approach is
called the CTS output method (CTSOM). These methods are
presented in detail and evaluated in section 4, after the CTS
models are presented in the next section. Using the fitted
model, we also propose section 4 a scheme to predict the values
of x and y continuously over the prediction horizon described
as the time from the most recent measurement (input or output)
to k sampling times in the future.

3. MODELS
The mathematical model for the scope of this work can be
subdivided into the models for x, εx, v, and y. The purpose of
this section is to describe the mathematical and probabilistic
behavior and the assumptions for these variables. Because of
their detailed CTS descriptions, subsections are dedicated to
the models of εx and v.
3.1. Input and Output Measurement Models. With

μx(t) as a deterministic function of time, eq 1 shows,
mathematically, how the CTS nature of x(t) comes from the
CTS nature of εx(t)

= μ + εx t t t( ) ( ) ( )x x (1)

For convenience, the measurement error in x(t) [and, thus, also
εx(t)] is assumed to be zero. Similarly, the measurement model
for the output is given as

= η + εy t t t( ) ( ) ( )y (2)

where εy(t) is assumed to be independently distributed over
time with a mean of zero and a variance of σy

2. The mean of

x(t), μx(t), is taken to be known. In practice, it could be
the set point for some process variable in a control loop or
the setting for some process equipment (e.g., the belt speed
of a dryer or the amount a valve is open). Therefore, from
measurements of x(t), values for εx(t) can be determined
from

ε = − μt x t t( ) ( ) ( )x x (3)

For the CTSIM, eq 3 is used to generate the values for εx(t).
Its CTS model is now given in detail.

3.2. CTS Model for εx(t). A CTS process in this context is a
time-continuous random function of a process variable. Thus,
εx(t) is a continuous random function of time.20 The mean
value function of εx(t), E[εx(t)], is the expected value of εx(t) at
time t. The covariance function of εx(t) is defined as

ε ε = ε ε − ε εt t E t t E t E tCov[ ( ), ( )] [ ( ), ( )] [ ( )] [ ( )]x i x j x i x j x i x j

(4)

Note that both the expectation and covariance of the stochastic
process are also continuous functions of time. At different time
points, the mean value can be quite different and so can the
covariance function. If the mean value function, E[εx(t)], is
constant and independent of t and its covariance function,
Cov[εx(t),εx(t + δ)], depends only on δ, the distance between
the two time points, the stochastic process is said to be weakly
stationary. A stochastic process εx(t) is said to be a Gaussian
process if, for any given k ≥ 1 and t1, ..., tk, the random vector
[εx(t1), ..., εx(tk)] is jointly normally distributed, a common and
reasonable assumption for many stochastic chemical processes.
The CTS model for εx(t) in this work is a weakly stationary
Gaussian process such that

ε = ∀E t t[ ( )] 0,x (5)

ε ε = σ −α| − |t tCov[ ( ), ( )] ex i x k
t t2 k i (6)

for all i, k, where tk > ti, α > 0, and σ2 is the variance of εx(t).
This kind of covariance structure is common for chemical
process variables, where the covariance between the two time
points decreases as the interval increases. Therefore, εx(t) has
the property that it is nearly uncorrelated at different time
points ti and tk that have a large δ and more correlated for a
smaller δ. The speed of the correlation change depends on the
parameter α. When α is large, the covariance decreases rapidly
as the time interval increases. Note that

ε ε = σ ∀t t iCov[ ( ), ( )] ,x i x i
2

(7)

and

ε ε = ε ε − ε ε

= ε ε = γ

t t E t t E t E t

E t t

Cov[ ( ), ( )] [ ( ) ( )] [ ( )] [ ( )]

[ ( ) ( )]
x x x x x x

x x t t

1 2 1 2 1 2

1 2 1 2 (8)

through the use of eq 5. Later, we use eq 8 to propose an
estimator for εx(t).

3.3. CTS Model for v(t). For simplicity, we present this
work under a simple first-order linear dynamic system as given
by eq 9 with reference to Figure 1

τ + = = μ + εv t
t

v t x t t t
d ( )

d
( ) ( ) ( ) ( )x x (9)

Equation 9 is a stochastic differential equation (SDE). Under
the assumption of steady state at t = 0; the use of deviation
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variables from the initial state; and with one input step change,
namely

μ =
≤

μ >⎪

⎧⎨⎩t
t

t
( )

0, 0

, 0x
x (10)

for simplicity, its analytical solution can be written as21

∫= τ ε + μ −− − τ τ − τv t s s( ) e e ( )d (1 e )t
t

s
x x

t1 /

0

/ /
(11)

The first two moments of the stochastic process v(t) are

= μ − − τE v t[ ( )] (1 e )x
t/

(12)

γ =

= τ σ
τ − α

− ατ + + ατ

− −

−

−
−α|δ| −α|δ| − + τ

− τ −α −α − τ

v t v tCov[ ( ), ( )]

[e e (1 )e

e e ]

v t t

t t

t t t t

, 1 2

2 2

2 2
( )/

( / ) ( / )

1 2

1 2

1 2 1 2 (13)

such that

= = σ

= τ σ
τ − α

− ατ + + ατ

−

−

−
− τ

− τ +α

v t v t v tCov[ ( ), ( )] Var[ ( )]

[1 (1 )e

2e ]

v t

t

t

,
2

2 2

2 2
2 /

[(1/ ) ] (14)

where δ = t2 − t1. Note that all of these moments depend on
time t (or t1 and t2) and that the output v(t) is not weakly
stationary. Thus, the correlation of the outputs at two different
time points can be large even when the time difference is large
for a certain set of parameters. From these analytical expres-
sions for the moments of v(t), we develop the CTSMM as
mentioned above.

4. PARAMETER ESTIMATION AND PREDICTIVE
MODELING METHODS

In this context of dynamic modeling, there are three sets of
parameters: stochastic (θsto), including α, for example; dynamic
(θdyn), including τ, for example; and static (θsta), including the
parameters in f(v). For a given modeling structure, the model-
ing objective is to obtain estimates of these three sets that pro-
vide the best fit to the response, namely, the smallest standard
error in the predicted output. This section first presents the
CTSIM, then the CTSOM, and finally the CTSMM.
4.1. CTSIM. The physically continuous input is taken to be

measured discretely under a constant sampling rate. The devel-
opment of this approach is based on this type of sampling for
the input. More specifically, the proposed continuous-time
stochastic input method (CTSIM) approximates the measured
continuous input x(t) as a piecewise input sequence as follows

≈ =

<

≤ < Δ

Δ ≤ < Δ
⋮

− Δ ≤ < Δ

⎧

⎨

⎪⎪⎪

⎩

⎪⎪⎪

x t x t

x t

x t t

x t t t

x m t t m t

( ) ( )

, 0

, 0

, 2

, ( 1)

s

m

0

1

2

(15)

where m is an integer representing the last sampling point in
the measurement sequence. This sequence is the input to the
Wiener network to produce a continuous-time solution for y(t).

For example, for the first-order dynamic system given by eq 9,
the following solution is obtained

τ + = = + − − Δ

+ − − Δ +

+ − − − Δ−

v t
t

v t x t x S t x x S t t

x x S t t

x x S t m t

d ( )
d

( ) ( ) ( ) ( ) ( )

( ) ( 2 ) ...

( ) [ ( 1) ]m m

S
S S 1 2 1

3 2

1 (16)

where, with n as a positive integer, one can write

− Δ =
< Δ
≥ Δ

⎧⎨⎩S t n t
t n t

t n t
( )

0,

1, (17)

and vS(0) = f −1[y(0)]. The solution to eq 16 is

= + −

+ − − − Δ

+ − − − Δ +

+ − −

− − Δ

− τ − τ

− −Δ τ

− − Δ τ

−
− − − Δ τ

v t v S t x S t

x x S t t

x x S t t

x x S

t m t

( ) (0)e ( ) (1 e ) ( )

( )(1 e ) ( )

( )(1 e ) ( 2 ) ...

( )(1 e )

[ ( 1) ]

t t

t t

t t

m m
t m t

S S
/ /

1

2 1
( )/

3 2
( 2 )/

1
[ ( 1) ]/

(18)

This equation gives an estimator of y(t) as

̂ =y t f v t( ) [ ( )]S (19)

Thus, to estimate θdyn and θsta, we propose

∑θ̂ θ̂ Δ − ̂ Δ
τ̂> =

y i t y i tSSE( , ): min [ ( ) ( )]
i

n

dyn sta
0

1

2
tr

(20)

where ntr is the number of sample points in the training data
set.
To estimate θsto, an estimator must be formulated that

depends on α. The first step is to obtain values for εx(t) using
eq 3. Assuming t2 > t1 and equating eq 6 to eq 8, we obtain

γ = ε ε = σ −α −E t t[ ( ) ( )] et t x x
t t

1 2
2 ( )

1 2

2 1
(21)

With εx(t1) known

ε ε = σE t t[ ( ) ( )]x x1 1
2

(22)

Now let

γ̂ = ε ε̂ = σ̂ −α̂ −t t( ) ( ) et t x x
t t

1 2
2 ( )

1 2

2 1
(23)

Solving eq 23 for εx̂(t2) gives

ε̂ = σ̂
ε

=
ε

ε
= ε

−α̂ − −α̂ −
−α̂ −t

t
t

t
t( )

e
( )

[ ( )] e
( )

( )ex

t t

x

x
t t

x
x

t t
2

2 ( )

1

1
2 ( )

1
1

( )
2 1 2 1

2 1

(24)

with σ̂2 = [εx(t1)]
2 by application of eq 22. Using eq 24, the

objective function for estimating α is given as

∑

∑

θ

ε ε

ε ε

̂

Δ − ̂ Δ =

Δ − − Δ

α̂ α̂

α

> = >

=

− ̂Δ

i t i t

i t i t

SSE( ):

min [ ( ) ( )] min

{ ( ) [( 1) ]e }

i

n

x x

i

n

x x
t

sto

0 1

2

0

1

2

tr

tr

(25)
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when measurement error is negligible. However, with sig-
nificant measurement error, one can obtain multiple estimates
at the same t and use

∑ ∑

θ

ε ε

̂

Δ − − Δ
α̂

α
> = =

− ̂ Δj t j i t

SSE( ):

min { ( ) [( ) ]e }
j

n

i

n j
i t

sto

0 1 1

min( , )
2

tr p

(26)

where npΔt is the farthest distance between two values of εx for
any term in eq 26. Together with eq 20, these equations pro-
vide the parameter estimates for the vector θ = (θsto, θdyn, and
θsta) under the CTSIM.
4.2. CTSOM. The proposed continuous-time stochastic out-

put method (CTSOM) estimates θdyn and θsta using the deter-
ministic component of the input, namely, μx(t), given by the
equation

μ =

μ < =

μ ≤ <

μ ≤ <

⋮
μ ≤

⎧

⎨

⎪⎪⎪

⎩

⎪⎪⎪

t

t t

t t t

t t t

t t

( )

, 0

,

,

,

x

m m

0 1

1 1 2

2 2 3

(27)

where ti is the time of the ith input change and m is the total
number of input changes. Using only the deterministic part of
eq 9 with this input sequence gives

τ
′

+ ′ = μ −μ − + μ −μ −

+ μ −μ − +

+ μ −μ −−

v t
t

v t t t t t

t t

t t

S S

S

S

d ( )
d

( ) ( ) ( ) ( ) ( )

( ) ( ) ...

( ) ( )m m m

D
D 1 0 1 2 1 2

3 2 3

1 (28)

where vD′ (t) = vD(t) − vD(0) = vD(t) − f−1[y(0)]. Note that,
with the process in a pseudosteady state due to the CTS nature
of the input, averages of several measurements can be used to
approximate initial values.
The solution to eq 28 is

= + μ −μ − −

+ μ −μ − −

+ μ −μ − − +

+ μ −μ − −

− − τ

− − τ

− − τ

−
− − τ

v t v t t

t t

t t

t t

S

S

S

S

( ) (0) ( )(1 e ) ( )

( )(1 e ) ( )

( )(1 e ) ( ) ...

( )(1 e ) ( )

t t

t t

t t

m m
t t

m

D D 1 0
( )/

1

2 1
( )/

2

3 2
( )/

3

1
( )/m

1

2

3

(29)

This equation gives a deterministic estimator, yD(t), as

̂ =y t f v t( ) [ ( )]D D (30)

Thus, to estimate θdyn and θsta, we propose

∑θ θ̂ ̂ Δ − ̂ Δ
τ̂> =

y i t y i tSSE( , ): min [ ( ) ( )]
i

n

dyn sta
0

1
D

2
tr

(31)

The first step in obtaining an estimate for α, is to obtain
values for εx(t) based on measurements that are denoted as
ε̃x(t) These values are obtained by solving eq 9 for εx(t) to give

ε̃ = τ + − μt
v t

t
v t t( )

d ( )
d

( ) ( )x x (32)

where v(t) is obtained from f−1[y(t)]. Using a backward dif-
ference approximation for the derivative, eq 32 becomes

ε̃ = τ − − Δ
Δ

+ − μt
v t v t t

t
v t t( )

( ) ( )
( ) ( )x x (33)

With significant measurement error, one should use an effective
averaging or smoothing method to obtain v(̅t) and replace v(t)
with v(̅t) in eq 33. By substitution of eq 33 into eq 24, the
following estimator is proposed

ε ε ε ε̂ = ̃ = ̂ = ̃α α− ̂ − − ̂ −t t t( ) ( )e ( ) ex x
t t

x t
t t

1
( ) ( )1

1
1

(34)

for t > t1. Substituting eq 34 into eq 9 gives

τ μ ε̂ ̂ + ̂ = + ̃ α− ̂ −v t
t

v t t
d ( )

d
( ) ( ) ex t

t t( )
1

1

(35)

Solving eq 35 gives a continuous-time estimator for v(t) with
t > t1 as

̂ = +
ε̃

τ̂α̂ −
− −

+ −

− − τ̂ −α̂ −

− − τ̂

v t v t S t t

v S t t

( ) ( )
1

[e e ] ( )

e ( )

t t t t t

t
t t

DD
( )/ ( )

1

( )/
1

1 1 1

1
1

(36)

where v(t1) = vt1 and

= μ − − + μ − μ

− − +

− − τ

− − τ

v t t S t t t t

S t t
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Using eq 36, the objective function for estimating α is given as

∑θ̂ ̅ Δ − ̂ Δ
α̂> =

v i t v i tSSE( ): min [ ( ) ( )]
i

n

sto
0

1

2
tr

(38)

Therefore, eqs 31 and 38 provide the parameter estimates for
the full vector θ under the CTSOM.

4.3. CTSMM. The final method to be proposed is the
continuous-time stochastic moment method (CTSMM). The
steps for estimating θ under this method are as follows:

(1) Obtain estimates of θdyn and θsta under the procedure for
the CTSOM. Recall that the CTSMM also requires f(y)
to be invertible.

(2) Derive the theoretical moment equations for v(t).
(3) Derive the equations for the sample moments.
(4) Equate the sample moments to the theoretical moment

equations in least-squares optimization to estimate θsto.

Step 1 is given in section 4.2, and for the first-order process
given by eq 9, step 2 is given in section 3.3. Thus, this section
provides the details for steps 3 and 4 for applying the CTSMM
in both Monte Carlo simulation (MCS) studies and process
identification (PI) studies.
The general equation for the sample covariance of two sam-

pled variables z1 and z2, with ordered measurements z11, z12, ...,
z1n, and z21, z22, ..., z2n, respectively, is

21

∑= − ̅ − ̅
=

s z z z z( )( )z z
i

n

i i
1

1 1 2 21 2
(39)

where

∑̅ = =−

=

z n z j, 1, 2j
i

n

ji
1

1 (40)
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Note that szizi = szi
2, the sample variance calculated from the

measurement of variable zi.
Even after obtaining the “sampled” values for v(t), calculating

the sample variances is not as straightforward for a CTS process
as revealed in the complexity of the true covariance expression
given by eq 13, which shows the dependence on both times of
the two variables. Thus, to obtain a sample covariance, multiple
measurements for a variable must be obtained at a fixed time t
at several time points. In actuality, this is impossible because
only one measurement can be taken at a fixed time. We address
this requirement by running multiple step tests of the same
type, that is, same initial steady-state conditions and same input
change, and assume that time points at the same distance from
the steady state are equivalent. In an MCS study, one can
actually go back to the same conditions and repeat the test as
many times as desired. However, in a PI study, this is not
possible because input changes follow sequentially in time. In a
PI study, for every input change that is made, it takes at least
one more change to return the process to the original steady
state. Thus, PI studies have to have at least two different types
of changes to obtain the replicated data needed to calculate a
sample covariance at a fixed time from the initial steady state
relative to another fixed time.
Before presenting the equations for the covariances in this

context, several terms need to be defined. A run is defined as
the time from an input change to the next one. Runs have the
same run type if they have the same initial steady-state
conditions and experience the same input change. Runs with
the same run type are grouped together to gather the replicated
data needed to calculate the sample moments. In addition, let n
be the number of samples per run; mk be the number of
changes for run type k, k = 1, ..., nk; nk be the number of run
types; ti be the time of the ith sample after the first change,
i = 1, ..., nSmk, where

∑=
=

S mmk
k

n

k
1

k

(41)

v(ti) be the value of v(t) at ti from inverting y(ti); ti* be the time
of the ith sample from the most recent input change; and the
true covariance for v(t1*) and v(t2*) for the kth run type be given
as

γ = * *
* * v t v tCov[ ( ), ( )]k t t k k, 1 21 2 (42)

With these definitions, the sample covariance representing eq
23 is determined as

∑= − ̅ − ̅
=

* *s v t v t v t v t[ ( ) ( )][ ( ) ( )]k t t
j
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jk jk jk jk,
1

1 1 2 2
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1 2
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where v(tijk) is the value of v(t) at time tijk from inverting y(tijk),
tijk is the time of the ith sample on the jth run for the kth run
type, and

∑̅ = −

=

v t m v t( ) ( )ijk k
j

m

ijk
1

1

k

(44)

For a distance d > 0, estimators for the two true moments for
the kth run type are

γ̂ = τ̂ σ̂
τ̂ − α̂
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σ̂ = τ̂ σ̂
τ̂ − α̂
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2 / [(1/ ) ]i i
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Note that the ratio of γk̂,ti+dti to σ̂k,ti*
2 is independent of σ̂2. We

use this result to obtain α̂ by

∑ ∑α̂ −
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when nk = 1, where p is the maximum number of lags con-
sidered. After obtaining α̂, we obtain σ̂2 by

∑σ̂ σ − σ̂
σ̂> =

*( )SSE( ): min
i
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t t
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0
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2
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2 2

i i
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When nk > 1, to obtain these estimates, the CTSMM uses
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to obtain α̂ and

∑ ∑σ̂ σ − σ̂
σ̂> =

* *( )SSE( ): min
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k t k t
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2 2k
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to obtain σ̂2. Hence, eq 31 and the set of eqs 47−50 provide
the parameter estimates for the full vector θ under the
CTSMM.

4.4. Evaluation. When the input is measured and the out-
put is not measured online or is measured infrequently, the
CTSIM can be used to develop a virtual (i.e., “soft”) sensor
by implementation of eq 19 after obtaining θ̂. For predicting
k-steps-ahead (kSA) of the most recent input measurement
for CTSIM or kSA of the most recent output measurement
for CTSOM and CTSMM after obtaining θ̂, all three methods
use the same prediction equation. This equation is a modified
version of eq 36. More specifically, For t = t1 + kΔt, eq 36
becomes

̂ = + Δ +
ε

τ̂α̂ −
−

+

− Δ τ̂ −α̂ Δ

− Δ τ̂

v t v t k t
t

v

( ) ( )
( )

1
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e

x k t k t

t
k t

DD 1
1 /

/
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where t1 is the current time; vDD(t) is given by eq 37; and in
the cases of CTSOM and CTSMM, εx(t1) = ε ̃t1.
One measure that we use to evaluate testing performance is

the sum of squared prediction errors (SSPE), defined as

∑= − ̂
=

y ySSPE ( )
i

M

i i
1

2
ts

(52)

where Mts is the total number of time points in the test data set,
y is the measured output, and y ̂ is the estimated or predicted
output. SSPE results are obtained using the deterministic input
[μx(t)] for comparative purposes. The proposed methods are
compared on the basis of the deterministic input performance.
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Thus, a relative SSPE (RSSPE) based on the following equation
will also be used as a performance measure

= D
k

RSSPE
SSPE( )
SSPE( ) (53)

where SSPE(D) is the SSPE result for the deterministic input
sequence and SSPE(k) is the kSAP result for a proposed
method. An RSSPE result significantly greater than 1 supports
the usefulness of the proposed method over using just the de-
terministic input alone.

5. STUDIES
This section evaluates the three methods described in the
previous section in four studies. In all studies, the data were ar-
tificially generated using a stationary Gaussian process gener-
ation algorithm described by Ripley22 from parameters with
values τ = 5, α = 0.6, and σ = 0.5, under the SISO first-order
dynamic process given above. The first one (study 1) is a
Monte Carlo Simulation (MCS) study in which a large number
of data sets are generated under the same conditions to obtain
accurate estimation measures of performance and the standard
estimation error. The CTSMM was selected for this study

Table 1. Base Case for the CTSMM in the Simulation Studya

dynamic
parameter τ

covariance
parameter α

variance
parameter σ

true value 5.00 0.600 0.500
mean of the estimates 5.35 0.635 0.495
standard error of the
estimates

1.54 0.141 0.0293

an = 1000, m1 = 10, p = 35, and Δt = 0.1.

Table 2. Estimation Results for the Stochastic Model
Parameters for the CTSMM for Different Values of mk, the
Number of Runsa

m1

10 15 20

mean of α̂ 0.635 0.610 0.617
standard error of α̂ 0.141 0.102 0.091
mean of σ̂ 0.495 0.491 0.493
standard error of σ̂ 0.029 0.022 0.019

aα = 0.6 and σ = 0.5.

Figure 4. (Left) Sequence of set-point changes in the input for training and (right) output response for the training sequence for study 2.

Figure 5. Study 2 test sequence results for (a) deterministic input, (b) 1SAP, (c) 20SAP, and (d) 50SAP.
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because it is the only one that does not use a piecewise approx-
imation to the input changes and has an exact theoretical
solution. More specifically, the objective of this study was to
obtain biases and standard errors for τ,̂ α̂, and σ̂ under the
CSTMM. Output measurement error was not included in this
study, as it would have had the effect of increasing the standard
errors in proportion to the size of the standard error of the
measured outputs and, thus, making it more difficult to isolate
and evaluate the contribution due to the proposed estimation
technique. Studies 2−4 are process identification (PI) studies
that evaluate the proposed methods under sequential step tests.
Study 2 is an evaluation of CTSMM without output mea-
surement error [i.e., εy(t) = 0] and with v(t) = y(t), for all t.
Because the CTSMM is being evaluated, output measurement
error is excluded for the same reason that it was excluded from
study 1. Studies 3 and 4 apply the CTSIM and CTSOM, respec-
tively, under more strenuous conditions in that the static model
is nonlinear in the variables, the measurement noise is added, and
the model parameters are estimated from about half the number
of input changes as used in study 2.
5.1. Study 1. In study 1, we generated mathematically

simulated values for εx(t) and then integrated eq 9 numerically
using the first-order implicit Euler method. The goal was to
obtain an accurate solution to the true process. Using a suf-
ficiently small step size, we were able to obtain an accurate
solution using the Euler method. Hence, it was not necessary to
use a continuous solution to obtain high accuracy. In this study,
there was one run type (nk = 1and k = 1) with a sampling time,
Δt, equal to 0.1 time unit. One run consisted of n = 1000
samples for a total run time of 100 time units. In addition, the
number of runs, mk, was 10, with all input changes occurring at
t = 0 and p = 35 (see eq 27). We repeated this simulation study
500 times so as to obtain highly accurate estimates of the average
and standard errors of the estimated parameters, namely, τ,̂ α̂,
and σ̂. Table 1 contains the results of this study. As shown, for
this set of conditions, the means of the estimators were close to
the true values with the standard errors as shown.
Table 2 illustrates the effect of mk on the accuracies of α̂ and

σ̂. As expected, as mk increased, the accuracies increased, as indi-
cated by the reduction in the standard errors of the estimates.
The results in Tables 1 and 2 support the CTSMM as a sta-
tistically sound approach in terms of estimator bias, standard

error, and statistical consistency. More specifically, they show
that these properties behave in a statistically sound manner for
changes in sample size. However, the sample size should be
chosen with care because data-collection costs increase as mk
increases.
Study 1 demonstrated that the use of sample moments to

estimate the model parameters can be accurate and have sound
statistical properties. Other parameter estimation methods were
applied in this study, and the details can be found in Zhai.23

These include the methods of Bellach24 and Chen and Kozin25

for estimating τ and the method of Sorensen,26 Pedersen's27

maximum likelihood estimation (MLE), and Pedersen's27

quasi-MLE for estimating α.
The objective of the next study was to demonstrate the

application of the CTSMM in process identification where data
collection is sequential over time. This study also evaluated the
ability of CTSMM to obtain accurate estimates under a more
limited amount of data in the form of sequential step tests and
provided results for comparison with the other methods.

5.2. Study 2. Study 2 provides an illustration and evaluation
of the CTSMM in model building (i.e., process identification)
and testing in kSAP. This study used a series of 10 sequential
step tests to obtain parameter estimates with nk = 2, m1 =
m2 = 5, n = 50, and Δt = 0.1 time unit. This deterministic
training input sequence, in the form of set-point changes
[i.e., μx(t) = xSP(t)], is shown in Figure 4. Application of eq 31
to estimate θdyn gave τ ̂ = 0.4945, and with p = 15, application of
eqs 48 and 49 produced α̂ = 0.514 and σ̂ = 0.436, respectively.
The values are well within one standard error of the true values
for τ and α as determined in Table 1. The CTS output response,
with y(t) = v(t), is also shown in Figure 4, along with the fitted
response.
For study 2, graphical results for k = 1, 20, and 50 in kSAP

(i.e., application of eq 51) and for the deterministic case (vDD in
eq 51) are shown in Figure 5 for the testing data. As shown, the
kSAP responses follow the measured response much better
than the deterministic response. This figure also shows how the
CTSMM accuracy drops off as k increases. Quantitative results
for SSPE and RSSPE are provided in Table 3. As shown in this
table, the RSSPE results range from 32 for k = 10 to 1.7 for k =
50 and, thus, strongly support the usefulness of the CTSMM
to provide a significant improvement in results over the deter-
ministic results.

5.3. Study 3. The purpose of study 3 was to illustrate and
evaluate the application of CTSOM in a process identifica-
tion study. This study was more complex than study 2 in at
least three ways. First, the static gain linear regression function
was quadratic. Second, measurement noise (i.e., σy = 0.375) was

Table 3. Test Sequence Performance Results for the
CTSMM in Study 2

type D k = 10 k = 20 k = 50

SSPE 400.1 12.5 56.7 229.7
RSSPE 1.0 32.0 7.1 1.7

Figure 6. (Left) Deterministic training input sequence and (right) output responses for study 3.
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added because it can have an additional adverse effect on accu-
racy because of the use of finite-difference approximations for
derivatives (see eq 33). Third, the training sequence in this
study used fewer input changes as well as a lower magnitude of
changes to evaluate it against the CTSMM with much less
information.
The training deterministic input sequence had six sequential

step tests as shown in Figure 6. As shown, there were three run
types (nk = 3). The first run type was a step change of +3 units,
the second run type was a step change of −2 units, and the
third run type was a step change of +1.5 units. The first run
type occurred once (m1 = 1) at time t = 0, whereas the second
run type occurred three times (m2 = 3) at times t = 50, 150, and
250 units. The third run type occurred twice (m3 = 2) at times
t = 100 and 200 units. An input sequence of this type was
chosen so as to have steady-state output (y) behavior at dif-
ferent input (x) levels, as needed to model nonlinear response
behavior as shown in Figure 6 for the training data. The true
static function is

= +y t a v t a v t( ) ( ) [ ( )]1 2
2

(54)

with a1 = 0.5 and a2 = 0.1.
The output responses to the training input sequence are

also presented in Figure 6. The fitted model was obtained by
following the procedure for the CTSOM given in section 4.2.
Because there is output measurement error in this case, after

v(t) had been obtained by inverting y(t), v(̅t) was calculated by
averaging the 10 most recent values and used in eq 31 to
estimate ε(t). The θ and θ ̂ values are reported in Table 4. As
shown, these estimates are all close to their true values. Note
that τ and α are well within one standard error of their true
values for the standard errors given in Table 1. In Figure 6, the
fitted response follows the CTS behavior of the measured
output response quite well, as supported by an rfit value
(correlation of the measured and fitted output values) of 0.999.
Graphical results for the test sequence for study 3 are pre-

sented in Figure 7, and the SSPE and RSSPE results are listed
in Table 5 for the deterministic case and for kSAP for k = 1, 10,
20, and 50. As shown, the kSAP responses follow the measured
response quite well as compared to the deterministic response,
which does not follow the CTS behavior. This figure also illus-
trates how the accuracy decreases as k increases. As shown in
Table 5, the RSSPE ranged from 20.8 for k = 1 to 1.2 for k = 50

Figure 7. Graphical results for the test sequence in study 3: (a) deterministic input sequence, (b) 1SAP, (c) 10SAP, and (d) 50SAP.

Table 5. Test Sequence Performance Results for CTSOM in
Study 3

type D k = 1 k = 10 k = 20 k = 50

SSPE 152.0 7.3 25.5 57.3 124.5
RSSPE 1.0 20.8 6.0 2.7 1.2

Table 6. Estimated and True Model Parameters for Study 4

Steady-State Parameters
a1 0.5 â1 0.51
a2 0.1 â2 0.10

Dynamic Parameter
τ 5 τ ̂ 4.85

Stochastic Parameter
α 0.6 α̂ 0.69

Table 4. Estimated and True Model Parameters for Study 3

Steady-State Parameters

a1 0.5 â1 0.50
a2 0.1 â2 0.10

Dynamic Parameter
τ 5 τ ̂ 4.85

Stochastic Parameter
α 0.6 α̂ 0.70
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and, thus, with all of the values greater than 1, strongly supports
the usefulness of CTSOM as compared to a deterministic
approach.
5.4. Study 4. The purpose of study 4 was to illustrate and

evaluate the application of CTSIM in a process identification
study. This process and conditions for this study were exactly
the same as for study 3 with a few changes. First, the input was
measured at each time instant, and the output measuring rate
was 1% of the input measuring rate. Furthermore, the outputs
were measured at a nonconstant random rate that followed a
uniform distribution. This output sampling rate was used to
evaluate the ability of the proposed method to provide a good
model when outputs are measured infrequently and at a
nonconstant rate. The outputs were assumed to be measured
offline.
The output responses to the training input sequence of

Figure 6 are not shown for space considerations. The fitted
model was obtained by following the procedure for the CTSIM
given in section 4.1. The values θ and θ̂ are reported in Table 6.
As shown, these estimates are all close to their true values.
Note that τ and α are well within one standard error of their
true values for the standard errors given in Table 1. The fitted
response followed the CTS behavior of the measured output
response quite well, with an rfit value of 0.999.
Graphical results for the test sequence for study 4 are pre-

sented in Figure 8, and the SSPE and RSSPE results are listed
in Table 7 for the deterministic case and for kSAP for k = 1, 10,
20, and 50. As shown, the kSAP responses follow the measured
response quite well as compared to the deterministic response,
which does not follow the CTS behavior. As in the previous
studies, the prediction accuracy decreased as k increased.
As shown in Table 7, the RSSPE ranged from 13.2 for k = 1 to
1.3 for k = 50 and, thus, with all of the values greater than 1,
strongly supports the usefulness of CTSOM as compared to
a deterministic approach. The RSSPE values in study 4 were

slightly lower than those in study 3, likely because of the much
lower number of outputs used in model building. In this study,
we also evaluated eq 19, which would be used to develop a
virtual sensor. These results were the same as the kSAP re-
sults in Table 7, thus strongly supporting the potential of this

method in virtual sensor applications when online and frequent
outputs are not available.

6. CONCLUDING REMARKS
This article addressed the modeling of inputs to improve
process modeling under continuous-time stochastic behavior.
The basic idea is to exploit the probabilistic behavior of inputs
that are time-correlated. This exploitation led here to the devel-
opment of three methods. The first, the continuous-time sto-
chastic input method (CTSIM), was developed for cases in
which the inputs are measured with applications in the devel-
opment of virtual sensors and predictive modeling. The other
two approaches were developed for applications in which the
inputs are not measured. The Wiener network with an in-
vertible static nonlinear function provides the ability to obtain
necessary intermediate values to estimate continuous-time
stochastic model parameters. One approach, the continuous-
time stochastic moment method (CTSMM), uses derived moment
equations for the intermediate variable and equates them to sample
moments to obtain parameter estimates. The other, the
continuous-time stochastic output method (CTSOM), does
not require sample moments but uses dynamic structures

Figure 8. Graphical results for the test sequence in study 4: (a) 1SAP, (b) 10SAP, (c) 20SAP, and (d) 50SAP.

Table 7. Test Sequence Performance Results for CTSIM in
Study 4

type D k = 1 k = 10 k = 20 k = 50

SSPE 0.79 0.06 0.17 0.37 0.61
RSSPE 1.0 13.2 4.6 2.1 1.3

Industrial & Engineering Chemistry Research Article

dx.doi.org/10.1021/ie201998b | Ind. Eng. Chem. Res. 2012, 51, 5469−54795478



and, thus, relies on approximation methods to obtain accurate
derivatives. This work showed that smoothing process variables
using a filtering or averaging method can prove effective. In this
article, a Monte Carlo simulation (MCS) study on the CTSMM
provided standard errors that assisted in evaluating the other two
parameter estimation methods, which were found to obtain accu-
rate estimates under this evaluation.
The limitation of the CTSMM is that it is not easily suited

for process identification studies, whereas the other two methods
were developed to overcome this limitation. A key result of this
work to overcome this limitation was the development of an
estimator for the CTS input that depends on the CTS model
parameters (i.e., eq 24). Future work in the evaluation, devel-
opment, and application of these methods will include studies
on real processes and extensions to multiple-input−multiple-
output processes with measured and unmeasured inputs. Be-
cause most real processes exhibit continuous-time stochastic
behavior, the development of methods that address this behavior
can have a significant impact on improving inferential modeling
(virtual sensors), predictive modeling, and predictive control.
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