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ABSTRACT 

Drug delivery vehicles can improve the functional efficacy of existing antimicrobial therapies by 

improving biodistribution and targeting. A critical property of such nanomedicine formulations is 

their ability to control the release kinetics of their payloads. The combination of (and interactions 

between) polymer, drug, and nanoparticle properties gives rise to nonlinear behavioral 

relationships and a large data space. These factors complicate both first-principles modeling and 

screening of nanomedicine formulations. Predictive analytics may offer a more efficient 

approach toward rational design of nanomedicines by identifying key descriptors and correlating 

them to nanoparticle release behavior. In this work, antibiotic release kinetics data were 

generated from polyanhydride nanoparticle formulations with varying copolymer compositions, 

encapsulated drug type, and drug loading. Four antibiotics, doxycycline, rifampicin, 

chloramphenicol, and pyrazinamide, were used. Linear manifold learning methods were used to 

relate drug release properties with polymer, drug, and nanoparticle properties, and key 

descriptors were identified that are highly correlated with release properties. However, these 

linear methods could not predict release behavior. Non-linear multivariate modeling based on 

graph theory was then used to deconvolute the governing relationships between these properties, 

and predictive models were generated to rapidly screen lead nanomedicine formulations with 

desirable release properties with minimal nanoparticle characterization. Release kinetics 

predictions of two drugs containing atoms not included in the model showed good agreement 

with experimental results, validating the model and indicating its potential to virtually explore 

new polymer and drug pairs not included in training data set. The models were shown to be 

robust after inclusion of these new formulations in that the new inclusions did not significantly 

change model regression. This approach provides the first steps towards development of a 
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framework that can be used to rationally design nanomedicine formulations by selecting the 

appropriate carrier for a drug payload to program desirable release kinetics.

1. INTRODUCTION

Intracellular bacterial infections are challenging to treat using traditional antimicrobial 

therapies due to the difficulty in achieving high enough local drug concentration for 

antimicrobial activity without inducing host cell toxicity.1 Elimination of soluble drugs through 

host metabolism and excretion pathways act to reduce bioavailable amounts of antimicrobials 

requiring repeated dosing to maintain therapeutic concentrations to mitigate the development of 

antibiotic resistant in pathogens.2,3 Drug delivery vehicles can improve the efficacy and potency 

of antimicrobials by altering the drug biodistribution with improved intracellular localization and 

delivery of cargo to the pathogen’s intracellular niche within host cells.4,5 Biodegradable 

polyanhydride nanoparticles show passive targeting and payload stabilization properties that 

make them uniquely suited for antibiotic delivery for intracellular infections.4,6 These particles 

are internalized efficiently by phagocytic cells using multiple mechanisms, and have been used 

to deliver antibiotics to kill intracellular Brucella abortus.7 Additionally, polyanhydride 

nanoparticles mediated efficient killing of filarial parasites by co-delivering an antiparasitic with 

an antibiotic targeting an intracellular endosymbiotic bacterium that supports parasite health and 

reproduction.8 

A key feature of the effectiveness of these nanomedicine formulations is their ability to control 

payload release rate, however rationally designing nanomedicines with programmable release 

remains elusive. Release kinetics are influenced by drug distribution within a device and/or a 

particle, which is in turn influenced by polymer-drug thermodynamic interactions.9–11 These 

interactions give rise to nonlinear release behavior which is difficult to predict a priori. 
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Screening nanomedicine formulations is challenging as polymer and nanoparticle properties 

(e.g., polymer chemistry, nanoparticle size, polydispersity, release kinetics, and encapsulation 

efficiency) yield a large number of additional variables beyond drug-specific properties. This 

large dataspace, coupled with the multiple length scales at play, poses difficulties for 

generalizing conclusions to other nanoparticle systems and impedes first principles modeling of 

nanoparticle behavior.12,13 Hierarchical modeling may be a more efficient approach for such 

systems, wherein key descriptors are identified and correlated to performance parameters.

Informatics methods encompass several tools for such hierarchical modeling. Data mining 

techniques can deconvolute complex behavior, unraveling relationships that lie on non-Euclidian 

surfaces,14 which enables pattern recognition and prediction through the development of 

quantitative structure-property relationships (QSPRs).15 To this end, previous informatics 

analyses from our laboratories has enabled identification of polyanhydride chemistry and 

structural factors that influence protein release from films16 and enable pathogen-mimicking 

nanoparticle processing by immune cells.17–20 

The focus of this work was to develop an informatics-based framework that determines how 

polymer, drug, and nanoparticle characteristics influence drug encapsulation efficiency and 

release kinetics. We sought to generate predictive models that can virtually test potential new 

polymer and drug combinations for desirable release kinetics. Our long-term goal is to develop a 

predictive analytics framework to enable rational design of nanomedicine formulations for 

different types of therapeutic and prophylactic applications. 

2. MATERIALS AND METHODS

2.1. Materials. Sebacic acid (SA) was purchased from Sigma Aldrich (St. Louis, MO). 

Triethylene glycol, 4-p-hydroxybenzoic acid, 1- methyl-2-pyrrolidinone, and 1,6-dibromohexane 
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were purchased from Sigma Aldrich for 1,8-bis(p-carboxyphenoxy)-3,6-dioxaoctane (CPTEG) 

and 1,6-bis(p-carboxyphenoxy)hexane (CPH) monomer synthesis. Potassium carbonate, 

dimethyl formamide, toluene, acetonitrile, acetic acid, sulfuric acid, N,N-dimethylacetamide, and 

acetic anhydride were purchased from Fisher Scientific (Fairlawn, NJ) for monomer and polymer 

synthesis. 4-p-fluorobenzonitrile was purchased from Apollo Scientific (Cheshire, UK) for use in 

monomer synthesis. Methylene chloride, pentane, and hexanes were purchased from Fisher 

Scientific for polymer purification and nanoparticle synthesis. Doxycycline (DOX), rifampicin 

(RIF), and pyrazinamide (PZA) were purchased from Sigma Aldrich, and chloramphenicol 

(CAM) was purchased from Fisher Scientific. Meropenem (MEM) was purchased from Ark 

Pharm, Inc. (Arlington Heights, IL) and ceftazidime (CAZ) was purchased from Acros Organics 

(NJ). 1H NMR analysis used deuterated chloroform purchased from Cambridge Isotope 

Laboratories (Andover, MA). Drug quantification used UV-transparent microplates from Greiner 

Bio-One (Kremsmünster, Austria), HPLC grade acetonitrile, methanol, and tetrahydrofuran from 

Fisher Scientific, and phosphoric acid from Sigma Aldrich.

2.2. Polymer and nanoparticle synthesis. CPTEG and CPH diacid were synthesized as 

described previously.10,21,22 CPTEG:CPH and CPH:SA copolymers were synthesized as 

described previously.10,21 Briefly, monomers were weighed in appropriate molar ratios and added 

to a round bottom flask. The monomers were acetylated in excess acetic acid at 125°C for 30 

min, and rotary evaporation was used to remove excess solvent from the resulting prepolymer. 

CPTEG:CPH was reacted for six hours at 140°C at <0.1 Torr and CPH:SA was reacted for 30 

min at 180°C at <0.3 Torr. Polymers were purified by precipitation in chilled hexanes. 

Copolymer composition and number average molecular weight (Mn) was confirmed from 1H 
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NMR spectra acquired on a Varian MR-400 (Varian, Inc. Palo Alto, CA) and thermal properties 

of the copolymers was characterized by DSC (Q2000, TA Instruments, New Castle, DE). 

Antibiotic-loaded nanoparticles were synthesized as described previously.7,8 Polymer and drug 

were weighed in separate scintillation vials at appropriate %w/w ratios. Enough methylene 

chloride to dissolve the polymer at 20 mg/mL was added to the drug vial to dissolve/disperse the 

drug, then transferred to the polymer vial. The combined drug and polymer solution was poured 

into a pentane antisolvent bath at room temperature (CPH:SA) or -10°C (CPTEG:CPH) at a 

solvent:anti-solvent ratio of 1:250 and nanoparticles were recovered by vacuum filtration. 

CPTEG:CPH nanoprecipitation was carried out in a cold room at 4°C. A total of 68 

nanoformulations were tested, spanning drug loadings between 1% and 20% loading (% w/w). 

All drugs were tested in 20:80 CPH:SA and 20:80 CPTEG:CPH nanoparticles, and rifampicin 

was additionally tested in 10:90, 30:70, and 50:50 CPTEG:CPH. 1H NMR spectra of empty 

20:80 CPTEG:CPH and 20:80 CPH:SA nanoparticles indicated undetectable amounts of 

methylene chloride and trace amounts of pentane (data not shown). 

To validate the informatics analysis, nanoparticles encapsulating meropenem or ceftazidime 

were synthesized using a high-throughput method adapted from Goodman et al.23 Briefly, 

polymer and drugs were dissolved/dispersed in methylene chloride and dispensed via high-

throughput robot into 10 mL borosilicate tubes at a final polymer concentration of 20 mg/mL. 

The robot sonicated and dispensed the combined polymer and drug solution into 50 mL conical 

polypropylene tubes containing 45 mL pentane (1:18 solvent:anti-solvent ratio) at the 

temperatures listed above. Multiple particle batches were pooled and recovered by vacuum 

filtration. Scanning electron microscopy (SEM, FEI Quanta 250, Hillsboro, OR) was used to 

image all nanoparticles, and size distributions were calculated using Fiji image analysis 
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software24 and the ParticleSizer plugin script for Fiji. Nanoparticle zeta potential was measured 

using a Zetasizer Nano (Malvern Instruments Ltd., Worcester, UK). 

2.3. Drug release kinetics. Nanoparticles (9-11 mg) were dispersed in 0.5 mL PBS, pH 7.4 and 

suspended by sonication (VCX 130 PB, Sonics & Materials, Inc., Newtown, CT). At each time 

point, the nanoparticles were pelleted by centrifugation and supernatant was collected for drug 

quantification. Fresh PBS was added to maintain perfect sink conditions and the nanoparticles 

were dispersed by sonication. At the end of the release experiment, 40 mM sodium hydroxide 

was added to accelerate polymer degradation and extract the remaining encapsulated drug as 

described previously.25

The drug mass released at each time point was determined by spectrophotometry (SpectraMax 

M3, Molecular Devices, San Jose, CA) and UV-HPLC (1200 series, Agilent Technologies, Santa 

Clara, CA). Doxycycline, rifampicin, and chloramphenicol were quantified by absorbance in 

UV-transparent 96-well plates at 350, 333, and 293 nm, respectively. Pyrazinamide release and 

base extraction samples were separated using a Phenomenex Kinetex 2.6-micron C18 100Å 

100x4.6mm column and a 30:5:65 acetonitrile:methanol:water mobile phase adjusted to pH 5.2 

with phosphoric acid.26 The flow rate was 0.6 mL/min and pyrazinamide was quantified at 268 

nm. Meropenem and ceftazidime release and base extraction samples were separated using a 

Zorbax Eclipse XDB-C8 5-micron 4.6x150 mm column, monitoring at 299 nm and 246 nm, 

respectively. Meropenem release samples used a mobile phase gradient ramping from 0.1/99.9 

(%v/v) methanol/water to 50/50 over 15 min. Meropenem base extraction samples used a 

gradient ramping from 0.1/99.9 acetonitrile 0.1% trifluoroacetic acid/ water 0.1% trifluoroacetic 

acid to 50/50 over 15 min. Ceftazidime release samples used a mobile phase protocol with an 

isocratic step at 0.1/99.9 methanol/water for 5 minutes followed by a gradient ramping to 50/50 
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over 10 min. Ceftazidime base extraction samples used an isocratic step at 15/85 from 0.1/99.9 

acetonitrile 0.1% trifluoroacetic acid/ water 0.1% trifluoroacetic acid for 1 min followed by a 

gradient ramping to 40/60 over 5 min. All meropenem and ceftazidime HPLC protocols used a 

flow rate of 1 mL/min.

The small mass of drug and large volume of antisolvent used in nanoparticle synthesis render the 

non-encapsulated drug concentration below the limit of detection of the analytical methods used 

in this study. Therefore encapsulation efficiency (EE) was calculated from the cumulative sum of 

detected drug mass released in PBS and base extraction samples using Eq. 1.25 In a minority of 

formulations >100% EE was observed, which could arise from the presence of drug 

nanocrystals27 (which was not detected on nanoparticle surfaces by SEM), gravimetric 

inaccuracies due to static charge of the nanoparticles, or residual error in the drug concentration 

quantification assays. Drug release kinetics are presented as fraction released, where the 

cumulative drug mass release is normalized by the total encapsulated drug mass. Prism 7 

(Graphpad Software, La Jolla, CA) was used to generate release kinetics figures.

Eq. 1)

𝐸𝐸
100% =

𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑑𝑟𝑢𝑔 𝑚𝑎𝑠𝑠 𝑓𝑟𝑜𝑚 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 & 𝑏𝑎𝑠𝑒 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛

𝑛𝑎𝑛𝑜𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑚𝑎𝑠𝑠 ∗ 𝑑𝑟𝑢𝑔 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑤𝑡
𝑤𝑡)

2.4. Informatics analysis. Release behavior parameters, along with polymer, drug, and 

nanoparticle properties, were normalized and mean-centered. Three different informatics 

approaches were integrated and applied to analyze the data in this work. Linear manifold 

learning approaches, such as principal component analysis (PCA),28–30 permit us to identify the 

right projection of data from which meaningful features associated with the input data can be 

identified. PCA performs an eigenvector decomposition and defines a new set of linear 
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combinations of descriptors which maximize the amount of unique information in a minimal set 

of orthogonal axes, termed principal components (PCs). The original data is decomposed into 

two matrices of interest for this work: the scores and loadings. The scores describe the different 

conditions (i.e., nanoparticle and drug chemistry), while the loadings describe the different 

descriptors and properties. The interpretation of these matrices is provided here with the relevant 

results, and an additional term called the variable importance projection (VIP) is calculated from 

the loadings matrix using Eq. 2. 

Eq. 2)

𝑉𝐼𝑃 =
𝑃𝐶𝑇

𝑥 ∗ 𝑃𝐶𝑖
𝑥

∑𝑃𝐶𝑇
𝑥 ∗ 𝑃𝐶𝑖

𝑥

In this case, x = 5 because 5 PCs captured >90% of the variance in the data. The analysis was 

performed for T = encapsulation efficiency, drug released @2 h, and fraction released/day 

(Figure 6). Partial Least Squares (PLS) is a multi-linear regression approach which accounts for 

co-linearity in the data, and therefore limits bias and develops more robust quantitative 

relationships.31–34 PLS performs separate PC analyses on the predictor variables (i.e., descriptors) 

and the predicted variables (i.e., properties). These therefore represent linear manifold learning 

approaches which provide qualitative and quantitative design relationships. 

In order to model the drug release properties accurately and robustly, we found that non-linearity 

needed to be accounted for in the modeling. Therefore, we first developed non-linear 

parameterization of the data through non-linear manifold learning, based on graph theory, using 

the Isomap algorithm.14,35 This approach generates a graph connecting data points on a high 

dimensional space to their nearest neighbors, mapped out in the high dimensional space, and then 
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fit to a low dimensional manifold. The assumption here is that the graph Euclidean distance 

between the points in high dimensions closely approximates the curvilinear distances along the 

low dimensional manifold. Through dimensionality reduction the manifold unravels into two or 

three dimensions allowing it to be visualized. The result of such dimensionality reduction is a 

weighted graph of the original data points where the edges are weighted according to the 

geodesic distances. Like in PCA, we develop a set of parameters for each set of conditions, 

although in this case the parameters are based on a non-linear combination of descriptors.

3. RESULTS

3.1. Building descriptor library. To generate the data set, we focused on nanoparticles 

composed of CPTEG, CPH, and SA copolymers (Figure 1 a,b). Nanoparticles synthesized from 

these polyanhydride copolymers have been shown to kill intracellular bacteria because of their 

high internalization rates by phagocytic cells,7,36 localization in intracellular compartments that 

harbor these bacteria,17,36 and improved antimicrobial activity of encapsulated drugs.6–8 In 

addition to the structural descriptors defined by Li et al.,16 we included molecular weight and 

compositional data from 1H NMR and thermal characterization from DSC analysis. The release 

kinetics of four antibiotics, doxycycline (Figure 1c), rifampicin (Figure 1d), chloramphenicol 

(Figure 1e), and pyrazinamide (Figure 1f), were studied. The choice of the drug library was 

motivated by multiple factors. These drugs were selected due to their diversity of molecular 

weight, chemical structure, and hydrophobicity, among other physicochemical differences. All 

are FDA-approved drugs and belong to separate antibiotic classes, target distinct bacterial 

structures, and have well-characterized pharmacokinetics/pharmacodynamics. Experimental and 

predicted physicochemical properties for each of these drugs were gathered from the Drugbank 
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database.37 Predicted drug properties from this database were calculated by ALGOPS and 

ChemAxon methodologies.

These drugs were encapsulated in polyanhydride nanoparticles by flash nanoprecipitation, and 

zeta potential, size distributions, and polydispersity index were obtained. Release profiles and 

encapsulation efficiencies were obtained from in vitro experiments in PBS, pH 7.4 (Figure 2). 

Figure 2 shows representative release kinetics data for multiple drugs, selected from a total of 68 

nanoformulations that were tested. The formulations depicted in Figure 2 were selected to show 

the diversity of release behavior in the data set. CPH:SA-doxycycline nanoformulations tended 

to show a higher burst than CPTEG:CPH nanoformulations, and the lower loading in the 

CPH:SA nanoformulations tended to have a greater sustained release slope (Figure 2a). The 

chemistry trend was reversed in the rifampicin nanoformulations, where the CPTEG:CPH 

chemistries tended to show a higher burst release than the CPH:SA chemistries, and increasing 

the loading increased the burst (Figure 2b). For chloramphenicol, both 20:80 CPH:SA and 

CPTEG:CPH nanoformulations tended to generate a large burst release followed by a slow rate 

of drug release (Figure 2c). Pyrazinamide formulations generated a large burst from the 20:80 

CPH:SA nanoparticles followed by a steady rate of drug release (Figure 2d). In contrast, the 

20:80 CPTEG:CPH nanoparticles encapsulating pyrazinamide showed a small burst and slow 

rate of drug release and did not release more than 20% of the payload in one week. These results 

add to the body of literature9–11,38 that indicates that copolymer chemistry, drug type, and drug 

loading influence drug release kinetics from biodegradable particles and other devices.
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Figure 1. Polymer and antibiotic chemical structures. (a,b) Structures of CPH:SA (a) and 

CPTEG:CPH (b) copolymers, where m and n are the number of repeats for each unit. (c-f) 
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Structure of doxycycline (DOX, a), rifampicin (RIF, b), chloramphenicol (CAM, c), and 

pyrazinamide (PZA, d).
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Figure 2. Representative antibiotic release kinetics from nanoparticles encapsulating 

doxycycline (DOX, a), rifampicin (RIF, b), chloramphenicol (CAM, c), and pyrazinamide (PZA, 

d). The depicted nanoformulations represent a subset of the 68 formulations tested and were 

selected to display the diversity of release behavior in the data set. Data are presented as mean  

SD. Error bars are not depicted in cases where the error bar height is smaller than the symbol. 

Release profiles were parameterized into two-hour burst, one day burst, and 2-7 day sustained 

release slope. 

Table 1. Representative antibiotic release properties. FR (2h) fraction released in two-hour 

burst, FR (24h) fraction released in 24-hour burst. Data are presented as mean ± SD.

 

3.2. Identifying Factors that Influence Drug Release. The drug release profiles were 

parameterized using three attributes: (i) fraction released at two hours (FR (2h)); (ii) fraction 

released in one day (FR (24h)), both of which characterized the burst effect; and (iii) the slope of 

the release profile between 2 and 7 days to characterize the sustained release (Table 1). The 

normalized and mean-centered data are represented in the form of a heat map to provide an 

overview and to ensure that no outliers are biasing the results (Figure 3, Table S1-2). In this step, 
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no data specific to particle chemistry was included so as to not bias the analysis. A clustering 

analysis, based on Euclidian distance, was used to visualize broad trends in the data set between 

descriptors and nanoformulations, and is represented in Figure 3 by dendrograms which define 

the correlative indices. The clustering along the y-axis of Figure 3 can be visualized as plotting 

each nanoformulation in multidimensional space, where each dimension is a different descriptor. 

Encompassing n-dimensional “spheres” are defined at the locations of the nanoformulations, and 

as the radii of the spheres increase additional nanoformulations are encompassed. The relative 

sphere size needed to encompass multiple descriptors is comparable to the height of the branch 

in the dendrogram. Nanoformulations or descriptors grouped lower in the dendrograms are likely 

to show relatively strong, positive correlations. Branches higher in the dendrograms are more 

likely to show weak, positive correlations or inverse correlations.

From Figure 3, we find that the primary difference is between CPH:SA and CPTEG:CPH, given 

that the two chemistries branch off at the lowest correlation node. Therefore, particle chemistry 

is the key discriminator for nanoformulation behavior. Within each node, the compounds then 

group based on drug type, and then finally branch off based on theoretical drug loading and 

molar monomer ratios within the copolymer. This defines the order of importance on release 

properties with CPH:SA versus CPTEG:CPH as the most important and the theoretical drug 

loading having less importance. For CPH:SA nanoparticles, rifampicin and pyrazinamide 

grouped together strongly, whereas doxycycline and chloramphenicol grouped together within 

the CPTEG:CPH chemistries. The CPTEG:CPH-chloramphenicol and -pyrazinamide 

nanoformulations clustered together, and diverged from the CPTEG:CPH-rifampicin and -

doxycycline nanoformulations. Considering correlations to the release properties, the fraction 

released at two hours and 24 hours are strongly correlated with the polymer melting point (Tm) 
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and zeta potential. The fraction released/day clustered with nanoparticle diameter and PDI 

polymer DOP and Mn. The relatively low branching of these properties in the dendrogram 

indicates moderate to strong correlation. Encapsulation efficiency (EE) was most strongly 

correlated with water solubility, followed by fraction released/day. This (weak) correlation to 

water solubility is expected, as incompatibility between polymer and drug 

hydrophobicity/hydrophilicity can result in drug partitioning more strongly in the antisolvent 

than the polymer matrix. The drug release properties (burst release, slope of release, and 

encapsulation efficiency) appeared relatively isolated from each other within the dendrogram, 

suggesting potential for independent control of these properties in designing nanoformulations.
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Figure 3. Representation of correlations in data using Euclidian distance-based clustering, with 

the dendrograms defining the degree of correlation (i.e., branches at the bottom of the 

dendrogram have high correlation and correlation decreases as moving along the branches). 

From the dendrograms, the key discriminators among nanoformulations (vertical axis) in the 

order of importance are carrier chemistry (CPTEG:CPH versus CPH:SA), drug type, and 
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theoretical drug loading. Concerning correlations between drug release properties and descriptors 

(horizontal axis), nanoparticle burst release (FR (2hr) and FR (24 hr)) was most strongly 

correlated with zeta potential and drug melting point. The release slope was most strongly 

correlated with the nanoparticle and polymer size properties. Encapsulation efficiency was most 

strongly correlated with the water solubility of the drug. That these data fall within comparable 

ranges demonstrates the robustness of the method and data set, enabling interrogation of 

nanoformulation behavior. Drug abbreviations: doxycycline (DOX), rifampicin (RIF), 

chloramphenicol (CAM), and pyrazinamide (PZA). Raw and processed input data are included in 

Tables S1-2.

A dimensionality reduction analysis, specifically principal component analysis (PCA), was then 

applied to the data of Figure 3, with descriptors specific to the particle and drug chemistry added 

to the data set (Table S3). Plots of formulation mapping and descriptor mapping within the 

dimensionally-reduced space are shown in Figures 4 and 5, respectively. In these figures, the 

principal components (PC) are ordered in terms of decreasing variability captured. PC1, the most 

important PC, captured particle chemistry properties (41.3%); therefore, differences in particle 

chemistry descriptors explain more variance in release behavior than other descriptor sets. The 

next most important PC, PC2, captured differences in drug-specific descriptors (27.9%). The 

scores plot (Figure 4), which maps individual nanoparticle formulations onto these PC’s (which, 

between them, allow us to reliably capture correlations in those two dimensions), shows a clear 

separation between CPTEG:CPH and CPH:SA particle chemistries. Within each polymer,  

doxycycline, chloramphenicol, and pyrazinamide clustered together, whereas rifampicin 

formulations formed a cluster isolated from the other drugs, indicating potentially different types 

of interactions with the particle carriers.
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The loadings plot (Figure 5), which maps the descriptor variables onto the PC’s shows that the 

role of the particle and the drug bank descriptors have been isolated (i.e., particle data lies along 

the PC1 axis and drug bank data is along the PC2 axis). Given that PC1 is the most important 

axis, we are capturing that the particle chemistry is the critical characteristic for predicting 

particle release behavior. The drug release properties do not adhere exclusively to either PC1 or 

PC2 axes, indicating that they are influenced by both polymer and drug characteristics. The 

ability to isolate the different controls allows us to assess, model, and design by the material 

characteristics.

 

Figure 4. PCA scores plot. PC1 captures differences due to particle chemistry (10:90 

CPTEG:CPH in blue, 20:80 CPTEG:CPH in black, and >30:<70 CPTEG:CPH in green) and PC2 

captures the differences due to drug. There is a clear separation of formulations due to different 
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chemistries, with a demonstrated capability to isolate the effects of particle chemistry from drug 

properties. PC1 and PC2 captured 43.1% and 27.9% of variability, respectively. Drug 

abbreviations: doxycycline (DOX), rifampicin (RIF), chloramphenicol (CAM), and 

pyrazinamide (PZA). Raw input data are provided in Table S3.

Figure 5. PCA loadings plot. Particle descriptors lie along the PC1 axis and drug descriptors lie 

along the PC2 axis. Drug release properties lie along both axes, indicating some dependence on 

both particle and drug descriptors. PC1 and PC2 captured 43.1% and 27.9% of variability, 

respectively. Raw input data are provided in Table S3.

To further quantify the correlation between descriptors and release properties, we calculated the 

VIP. In all, a total of 36 descriptors were used in the VIP analysis (as shown in Table 2), 

describing nanoparticle (1-3), polymer (4-13), and drug properties (14-36). The encapsulation 
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efficiency was most strongly correlated with zeta potential (-), % Cl (drug) (+), % O (drug) (+), 

Tm,drug (-), predicted water solubility (-), pKa (strongest base) (-), and drug rotatable bond count 

(+). As seen in Figure 3, the two-hour burst and slope of release were highly correlated with each 

other, and showed similar correlations with the descriptors. Both the two-hour burst and slope of 

release were most strongly correlated with % Cl (drug) (+), % O (drug) (+), water solubility (-), 

% N (drug) (-), pKa (strongest acid) (-), and rotatable bond count (+). The identification of 

several highly correlated descriptors allows for reduction of the descriptor space to a minimum 

number and defines the number of descriptors necessary for performing high throughput 

calculations. This minimization is an important objective in computational modeling to improve 

model robustness. The purpose of VIP analysis is to assess the descriptors that contribute 

significant information as well as to identify correlated descriptors. While we identify the drug-

related descriptors as having the highest individual impact, the particle-related descriptors 

collectively contribute the largest amount of information as seen in Figure 4.
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Figure 6. Variable importance projection of descriptors with respect to drug release properties. 

Descriptors are listed in Table 2. Positive VIP values correspond to positive correlation, and 

negative values to inverse correlation. 

Table 2. List of descriptors used in VIP analysis.
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3.3. Modeling release behavior. Beyond only observing the correlation of data, we wanted to 

identify similarities and design pathways between the various nanoformulations. This 

connectivity defines samples which have the most similar behavior and can provide information 

on potential replacements and design. In order to accomplish this, we performed a graph theory 

analysis (Figure 7). For the CPH:SA particle chemistries, there is a high connectivity (illustrated 

by black lines) and tight clustering within individual drugs. For the CPTEG:CPH particle 

chemistries, chloramphenicol,  doxycycline, and pyrazinamide showed a high internal 

connectivity, but rifampicin branched out significantly. Each drug showed some degree of 

connectivity between the CPH:SA and CPTEG:CPH particle chemistries and doxycycline 

appeared to be the most interconnected across particle chemistries. 

The degree of similarity can be defined by the number of connections required to connect two 

points. The distance along the two-dimensional projection also indicates the similarity of 

formulations. Pyrazinamide and chloramphenicol generated the least similarity in release 

behavior, as they required 4-6 connections, and lie far from each other along the projection. 
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Within each particle chemistry, doxycycline showed the most similarity to rifampicin and 

pyrazinamide, and rifampicin showed the most similarity to doxycycline and chloramphenicol. 

The branched region of the CPTEG:CPH-rifampicin nanoformulations indicates some 

dissimilarity from the other rifampicin nanoformulations and some unique behavior that will 

need to be explored more systematically using experiments. Of note, the rifampicin formulations 

with altered molar composition of CPTEG:CPH (from the 20:80 that makes up most of the data 

set) showed high similarity to the 20:80 CPTEG:CPH nanoformulations within the cluster. This 

would suggest that nano-carrier copolymer compositions can be interchanged within these 

rifampicin-loaded formulations without major impact. 

This graph theory mapping in Figure 7 yielded notably different drug clustering within each 

nano-carrier chemistry compared to PCA (Figure 4). Rifampicin and chloramphenicol 

formulations are closely related in this map, while they were distant from each other in the PCA 

scores plot. Strikingly, chloramphenicol and pyrazinamide are most distant in the graph theory 

map, while they were clustered closely in the PCA scores plot. These clustering differences are 

likely due to PCA’s limited ability to capture non-linear relationships. Non-linear modeling 

techniques like graph theory are better equipped to capture the non-linear release behavior 

arising from interactions between polymer and drug properties. In summary, the graph theory 

mapping defined similarity and connectivity between different nanoparticle formulations, while 

capturing non-linearity in relationships that can be lost in linear analysis.
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Figure 7. Graph theory map of formulation connectivity of release properties. Similarity 

between points is defined as the number of connections (solid lines) required to connect points. 

CPH:SA chemistries are represented by orange squares, while CPTEG:CPH chemistries are 

represented by circles (10:90 CPTEG:CPH in blue, 20:80 CPTEG:CPH in black, and >30:<70 

CPTEG:CPH in green) This represents an approach for building a set of non-linearly derived 

parameters for performing high-throughput predictions. This approach was applied to a reduced 

descriptor set in order to develop a parameterization of the data, which ensures robustness by 

minimizing the number of input parameters, while incorporating non-linear relationships and 

maximizing variance in the data. Drug abbreviations: doxycycline (DOX), rifampicin (RIF), 

chloramphenicol (CAM), and pyrazinamide (PZA).
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As PCA projects data onto a linear manifold, it has difficulty explaining non-linear relationships. 

To this end, PCA demonstrated insufficient capability to accurately predict release properties in 

this data set. By contrast, graph theory can be used to project the data onto a non-linear manifold. 

This provides high-throughput modeling that accounts for non-linearity without requiring so 

many terms as to reduce the robustness of analysis. Therefore, the input into the predictions 

defines the graph theory values of Figure 7, which reflects a non-linear combination of 

descriptors, and a multi-linear regression between these values and the drug release properties 

was developed. It should be noted that the drug release properties were not included in the non-

linear parameterization used for the prediction input, because that would result in predicting a 

property as a function of itself. The result of the high throughput modeling is shown in Figure 8. 

This represents a model with non-linear parameters that are a function of nanoparticle chemistry 

and theoretical drug loading and is defined generally so as to be applied to a wide range of 

chemistries. These models are fairly accurate, with R2 values ranging between 70.0% and 75.5%. 

Cross validation was applied to ensure an even trade-off between robustness and accuracy. Since 

these methods are based on descriptors that can be generated for potential new nanoparticle 

formulations, the models provide a method to virtually explore a large search space. This method 

can guide experimentation by predicting target properties for a desired release profile, suggesting 

chemistries that match the targeted properties for testing.
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Figure 8. Graph theory high-throughput modeling of drug release properties. The horizontal axis 

is the experimental measurements. The vertical axis is the predicted encapsulation efficiency (a), 

2-hour burst release (b), 24-hour burst release (c), and the d2-d7 release profile slope values from 

our model based on the reduced descriptor set. These calculations are based on a new hybrid 

informatics approach where non-linear manifold projections serve as the input, thereby 

accounting for greater complexity in descriptor-property relationships while also increasing the 

robustness of the models. The models are reasonably accurate for all tested release properties.

3.4. Model validation. To evaluate the robustness and accuracy of the multilinear models, 

nanoparticles encapsulating two new antibiotic drugs (not included in the training data set), 

meropenem and ceftazidime, were synthesized and characterized. Importantly, these drugs 

contain sulfur atoms (Figure S4) which are not present in the four drugs used in the original 

model training. The models in Figure 8 were used to predict the release properties for these new 

formulations (Table 3). Based on these predictions, it is expected that all eight formulations 

would show a high (>80%) burst release at 2h and 24h and minimal sustained release over d2-d7. 

With the exception of the 20:80 CPH:SA–meropenem formulation, all other nanoformulations 

are expected to show near-100% encapsulation efficiency. 

Strikingly, these predictions match experimental results closely. These new nano-formulations 

displayed similar release profiles characterized by a >90% burst release within two hours, 

followed by small amounts of drug released over the following two weeks (Figure S5, Table 3). 

For this data set, the models tended to under-predict the burst release and over-predict the 

sustained release behavior of the nano-formulations. The EE model was relatively accurate for 

20:80 CPH:SA formulations, within 5%-20% of the measured EE’s. The EE model showed more 

Page 29 of 45

ACS Paragon Plus Environment

Molecular Pharmaceutics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



30

deviation from measured values for 20:80 CPTEG:CPH formulations, at circa 15-35% 

differences from the experimental values. 

Table 3. Parameterized release properties of nanoparticles encapsulating two drugs (meropenem 

and ceftazidime) not included in training data set. FR (2h) fraction released in two-hour burst, 

FR (24h) fraction released in 24-hour burst. 

To test the robustness of the models when adding new, untrained chemistries, eight nano-

formulations were included in the models (compositional percentages were calculated including 

sulfur atoms, but without a separate descriptor for sulfur) and new regressions were calculated. 

We found R2 values for EE, FR (2h), FR (24h) and d2-d7 slope after these inclusions to be 

74.3%, 75.5%, 69.9%, and 74.6%, respectively. The small changes in regression from the 

original model data in Figure 8 indicates that the analytics methodology was able to incorporate 

new drug chemistries with minor impacts on the models. This confirms the robustness of the 

model and its capability to screen drug and polymer chemistries not included in the model 

development.

4. DISCUSSION

Due to the wide diversity of microbial infections, nanomedicines need to be customizable. 

Infections that are responsive to antibiotics may benefit from sustained release-skewing 
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formulations by leveraging the dose sparing properties, limiting the risk of off-target effects, 

reducing the number of administrations, and enhancing patient compliance.4,8,39 Polyanhydride 

nanoparticles represent an attractive and adaptable nanomedicine platform by virtue of their 

tunable degradation and payload release rates,25,40 high biocompatibility,41,42 and efficient 

internalization by phagocytic cells.7

Predictive analytics approaches have the potential to accelerate nanomedicine clinical 

translation, but the application of such informatics and data mining techniques to nanomedicine 

design has been slow to develop.13 To date, the majority of such efforts has focused on either 

linear dimensionality reduction through PCA and regression through PLS,27 which provides 

insight into relationships between formulations and variables but has limited capacity to capture 

nonlinear behavior, or else artificial neural network “black box” models,43–45 which can capture 

nonlinear behavior but obscure interpretation of the structure of the model and dataspace. As the 

long-term goal of this research is to facilitate rational design of nanomedicine formulations, 

interpretation of the relationships between formulations is important. Accordingly, the 

dimensionality reduction approach was selected for this research, and paired with graph theory 

mapping to overcome the linearity limitations of PCA. 

A hybrid data mining approach was employed to deconvolute the complex polymer and drug 

relationships and develop QSPRs that describe release kinetics and encapsulation efficiency. We 

correlated antibiotic release properties from varying polyanhydride chemistries, encapsulated 

drug types, and drug loading within the nanoparticles. Through PCA analysis, we showed that 

release properties are dependent on both copolymer chemistry properties and drug properties, 

with polymer properties being more important. VIP analysis identified key polymer and drug 
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descriptors that predicted drug release and encapsulation properties, but PCA was insufficient to 

predict release behavior from these formulations. 

Graph theory was used to characterize the multilinear connectedness and similarity of 

formulations, which can guide selection of replacement formulations with similar release 

behavior. For example, it is expected that 20:80 CPH:SA rifampicin-loaded nanoparticles 

(Figure 2b) would demonstrate similar release behavior (including burst release, slope of release 

between days 2-7, and encapsulation efficiency) as 20:80 CPH:SA doxycycline-loaded 

nanoparticles (Figure 2a) based on their close connections and proximal distance on the map 

(Figure 7). Similarly, 20:80 CPTEG:CPH pyrazinamide-loaded nanoparticles (Figure 2d) would 

be expected to show large differences in release behavior from 20:80 CPH:SA chloramphenicol-

loaded nanoparticles (Figure 2c) due to the large number of lines needed to connect them and far 

distance on the map (Figure 7). The descriptors identified by VIP analysis were paired with the 

multilinear mapping from graph theory to generate predictive models for a priori screening of 

nanoparticle formulations with desired release kinetics and high encapsulation efficiency. 

The physicochemical properties of compounds influence their distribution, either in blood 

plasma or a polymer matrix. To this effect, VIP analysis (Figure 6) indicated that the descriptors 

most strongly correlated with release properties were both polymer and drug properties. This is 

expected, as favorable mixing thermodynamics allows distribution of the drugs inside the 

polymer device.10,46 In polyanhydride nanoparticles, such a distribution allows an erosion-

controlled release profile, which tends toward sustained release.9,11 In contrast, poor mixing 

between the polymer and drug induces thermodynamic partitioning of the drug into polymer 

microdomains and/or localization at the particle surface, which skews the release profile toward 
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a high-burst, diffusion-dominated regime.11 Many of these same drug properties were correlated 

with encapsulation efficiency, supporting the notion that polymer-drug mixing influences the 

carrying capacity of delivery devices. As empty polyanhydride nanoparticles have a moderately 

negative zeta potential,23 the strong negative correlation between zeta potential and encapsulation 

efficiency could reflect a strong surface localization of positively charged drugs. If this were the 

case, however, we would expect a strong positive correlation between zeta potential and the two-

hour burst release, which was not observed. Regardless, the predictive power of this descriptor 

could support the use of zeta potential as a quality control metric to ensure consistent 

encapsulation efficiencies of lead formulations. While it is not surprising that these drug 

properties affect encapsulation and release kinetics, this informatics analysis provides a sense of 

their relative impact. Reducing the data space in this way can help guide rational selection of 

antibiotic and polymer carrier pairs for nanomedicine formulations. These observations underline 

the complexity of these relationships and provide support for the use of data analytics approaches 

to enable rational design of nanomedicines.

It should be noted that we can only confidently make quantitative predictions in chemical spaces 

represented in our training data. While the additional testing of drugs containing sulfur, which 

was not represented in our training data, resulted in approximately no change in accuracy, 

materials that have unique behavior but with chemistries outside our training data may not be 

quantitatively described by this approach. However, even in these cases, our approach has 

significant impact. While the objective for the systems described by our training data is to predict 

properties with high accuracy, the objective for systems containing groups and elements not in 

our training data is to identify polymer and drug combinations which have the most promising 
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characteristics and identify where additional experiments are needed. This leads to an iterative 

approach where necessary experiments are identified, thus feeding back to the analysis.

From all of these results, we propose a framework for rational design and rapid testing of 

nanomedicine formulations (Scheme 1). In the first step, selected antibiotic drug candidates are 

encapsulated within nanoparticles of various polymer chemistries (potentially using high 

throughput techniques,23 as demonstrated in section 3.4), and characterization of size distribution 

by SEM and zeta potential is obtained. These nanoparticle characteristics, along with polymer 

properties and drug properties, can then be fed into the multilinear graph theory model to predict 

encapsulation efficiencies and release kinetics. Nanomedicine candidates that demonstrate 

insufficient encapsulation and/or undesirable drug release profiles can be discarded. The in vitro 

performance of the lead nanomedicine candidates that emerge from this step can then be 

validated using drug release kinetics assays. A feedback reformulation loop allows gradual 

optimization of nanomedicine formulations and iterative updates to the models when release 

behavior deviates from predictions. In theory, this framework could be expanded to include other 

performance metrics, including internalization by appropriate cells and biological efficacy. As 

this methodology uses standard polymer and nanoparticle characterization techniques used in 

nano-carrier drug delivery research and publicly available drug information, this approach could 

be expanded to include other types of polymeric materials and other classes of small molecule 

drugs. This data analytics framework constitutes the first steps toward the rational design of 

nanomedicine formulations for antimicrobial therapies.

Scheme 1. Data analytics framework for rapid nanomedicine design and screening.
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5. CONCLUSIONS

A multivariate data analytics approach was used to correlate drug release profiles from 

nanomedicine formulations based on different polyanhydride chemistries, encapsulated antibiotic 

drug type, and varying drug loading. We showed that both drug and polymer properties influence 

the drug encapsulation efficiency within the nanoparticles, the prevalence of burst in the drug 

release profile, and the slope of post-burst release. Polymer and drug properties that significantly 

impacted drug encapsulation efficiency and release kinetics were identified and defined a 

minimum descriptor set. The informatics analysis captured and preserved non-linear behavior 

governing relationships between drug type, polymer chemistry, and nanoparticle release 

properties, enabling interrogation of nanomedicine design pathways. We developed predictive 
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models for drug release kinetics of untested drugs, using data from the Drugbank database and 

nano-carrier characterization as inputs. Release kinetics predictions of two drugs containing 

atoms not included in the model showed good agreement with experimental results, validating 

the model and indicating its potential to virtually explore new polymer and drug pairs not 

included in training data set. The models were shown to be robust after inclusion of these new 

formulations in that there were no significant changes in the model regressions. This multilinear 

modeling approach provides the first steps towards development of a framework that can be used 

to rationally design nanomedicine formulations by selecting the appropriate carrier for a drug 

payload to program desirable release kinetics profiles. 

6. SUPPORTING INFORMATION

Dendrogram raw and processed input data; Principal component analysis raw input data; 

Chemical structures of drugs in validation data set; Release kinetics of drugs in validation data 

set.
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