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Abstract

Salmonella is one of the leading causes of human foodborne illness and is associated with swine production.
Bacteriophages are naturally occurring viruses that prey on bacteria and have been suggested as a potential
intervention strategy to reduce Salmonella levels in food animals on the farm and in the lairage period. If phages
are to be used to improve food safety, then we must understand the incidence and natural ecology of both
phages and their hosts in the intestinal environment. This study investigates the incidence of phages that are
active against Salmonella spp. in the feces of commercial finishing swine. Fecal samples (n¼ 60) were collected
from each of 10 commercial swine finishing operations. Samples were collected from 10 randomly selected pens
throughout each operation; a total of 600 fecal samples were collected. Salmonella spp. were found in 7.3%
(44=600) of the fecal samples. Bacteriophages were isolated from fecal samples through two parallel methods: (1)
initial enrichment in Salmonella Typhimurium; (2) initial enrichment in Escherichia coli B (an indicator strain),
followed by direct spot testing against Salmonella Typhimurium. Bacteriophages active against Salmonella Ty-
phimurium were isolated from 1% (6=600) of the individual fecal samples when initially enriched in Salmonella
Typhimurium, but E. coli B-killing phages were isolated from 48.3% (290=600) of the fecal samples and only two
of these phages infected Salmonella Typhimurium on secondary plating. Collectively, our results indicate that
bacteriophages are widespread in commercial swine, but those capable of killing Salmonella Typhimurium may
be present at relatively low population levels. These results indicate that phages (predator) populations may
vary along with Salmonella (prey) populations; and that phages could potentially be used as a food safety
pathogen reduction strategy in swine.

Introduction

Foodborne Salmonella infections have been estimated
to cost the U.S. economy $2.4 billion annually (USDA-

ERS, 2001). More than 1.3 million illnesses and over 500
deaths are attributed to this pathogenic organism yearly
(Mead et al., 1999; USDA-ERS, 2001), and approximately
6%–9% of the U.S. human illnesses are associated with con-
sumption of pork products (Frenzen et al., 1999). Salmonella is
relatively common on swine farms and has been isolated from
all stages of the pork production process (Fedorka-Cray et al.,
1997; Davies et al., 1999; Rostagno et al., 2003). Salmonella is a
threat to the pork industry not only from the perspective of
food safety, but also as a broader public health concern.

Further, some of the most common swine-associated Salmo-
nella serotypes can also cause clinical illnesses in swine, neg-
atively impacting production efficiency and profitability
(Schwartz, 1991).

Owing to increasing concerns regarding the perceived
link between antibiotic resistance in human pathogens and
antibiotic use in animal agriculture (Sunde et al., 1998;
Wondwossen et al., 2000; Salyers and Shoemaker, 2006),
considerable research has been focused on finding alterna-
tives to the use of antibiotics to reduce Salmonella and other
pathogens in swine (Callaway et al., 2007). Bacteriophages are
naturally occurring viruses that specifically infect bacteria and
reproduce within them, killing the host bacterium through
cellular lysis caused by the release of daughter phages
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(Barrow and Soothill, 1997; Summers, 2001). Phages have
been widely used in human medicine in Eastern Europe in-
stead of antibiotics for over 80 years and have been called the
‘‘infectious cure for infectious disease’’ (Barrow, 2001). The
high degree of selectivity phages exhibit for their bacterial
hosts offers the potential for a targeted treatment in which
specific pathogens (such as Salmonella and Campylobacter) are
removed from the gastrointestinal microflora (Higgins et al.,
2005; Loc Carrillo et al., 2005; Jamalludeen et al., 2009).

Bacteriophages have long been known to be key members
of the intestinal microbial consortium (Adams et al., 1966;
Dhillon et al., 1976), including that of swine. The role that
phages play in the gastrointestinal tract microecology is un-
clear, as is the incidence of these bacterial predators in the real
world. Most research involving phages in the intestinal tract
of animals has been exclusively qualitative in nature; inci-
dence rates were determined using less than 20 animals of
various species (Dhillon et al., 1976; Kai et al., 1985; Klieve and
Bauchop, 1988). Therefore, this study was conducted to de-
termine the incidence of naturally occurring bacteriophages in
commercial swine by examining two separate issues: (1) What
is the incidence of bacteriophages in commercial swine? (2)
What is the incidence of phages that kills the foodborne
pathogen Salmonella Typhimurium?

Materials and Methods

Sample collection

Fresh fecal samples (approximately 100 g from a single
source; n¼ 6 samples per pen) were collected from each of 10
finishing pens per commercial swine farm (n¼ 10 pens=farm;
n¼ 60 fecal samples=farm) from a total of 10 farms for
3 months. Total number of fecal samples collected in this
study was 600 samples representing 600 different swine. All
samples were collected within the same 45-min period each
morning. Immediately upon collection, samples were indi-
vidually bagged in sealed whirl-pak bags and kept on ice for
24 h during transport to our laboratory.

Qualitative Salmonella enrichment and identification

To qualitatively enrich for Salmonella populations, 3 g of
feces from each sample was added to tubes containing 27 mL
of tetrathionate broth (Difco Laboratories, Sparks, MD) and
incubated at 378C for 24 h. After this incubation, 200 mL of
the tetrathionate enrichment was added to 5 mL Rapport-
Vassilidis R10 broth and incubated for an additional 24 h at
428C before being individually streak-plated onto brilliant
green agar (BGA; Oxoid, Basingstoke, United Kingdom) sup-
plemented with novobiocin (25mg=mL). The BGANov plates
were incubated for 24 h at 378C; colonies that exhibited typical
Salmonella morphology were individually picked for further
physiological characterization and were inoculated onto tri-
ple sugar iron agar slants and lysine iron agar slants (Difco).
Each slant was incubated at 358C for 24 h. Salmonella-positive
samples were confirmed by slide agglutination using SM-O
antiserum poly A-I and V-I, and group C1 factors. Putative
Salmonella isolates were stored in glycerol and tryptic soy
broth (TSB) at� 808C until confirmatory serotyping was
performed by the U.S. Department of Agriculture (USDA)–
National Veterinary Services Laboratory in Ames, IA.

Bacteriophage enrichment and isolation

Fecal samples were screened for the presence of Salmonella
Typhimurium bacteriophages using two parallel screening
enrichments. Feces (1 g) were mixed in sterile conical tubes
containing 9 mL of phosphate buffered saline (pH 6.8).
Chloroform (0.5 mL) was added to each tube and tubes were
thoroughly mixed before being allowed to stand at 248C for
2 h. The top layer from this tube was removed and placed in a
new sterile tube containing 0.5 mL chloroform. Portions
(0.3 mL) of the chloroform-free top layer were mixed in parallel
with 1.2 mL volumes of early-log-phase (<0.2 optical density)
Salmonella Typhimurium or Escherichia coli B (each bacteria at
108 CFU=mL, grown at 398C) and were incubated in anoxic
TSB broth in sealed anoxic Hungate tubes overnight at 398C.
E. coli B was used as a parallel enrichment method as a general
indicator for phages because of its broad sensitivity to several
types of phages, and the use of a very sensitive strain can
detect lower bacteriophage concentrations in the environment.
Samples (1.5 mL) were collected and added to tubes containing
0.2 mL of chloroform for 30 min. These samples were subse-
quently centrifuged at 19,000 g in a microcentrifuge for 10 min.
The top layer of the supernatant was removed, and stored in a
fresh sterile tube after sterilization by filtration through a
0.2mm filter. Fluid samples containing phage were subjected to
a spot test assay (Sambrook and Russell, 2001) by spotting
10mL onto bacterial lawns of Salmonella Typhimurium or E. coli
strain B and incubated anaerobically overnight at 398C.

Spectrum of bacteriophage activity

All bacteriophage plaques purified from the Salmonella
Typhimurium and E. coli B plates (three plaques=sample)
were assessed for their ability to form plaques on a range of
intestinal bacteria. E. coli F18, K88, and K12 were obtained
from the Food and Feed Safety Research Unit (FFSRU) culture
collection. Other bacteria used in screening assays for bacte-
riophage activity included Salmonella Derby, Salmonella
Typhimurium, Salmonella Dublin, Salmonella Enteriditis, Sal-
monella Cholerasuis, Salmonella Montevideo, Salmonella Mban-
daka, Enterococcus faecalis, Enterococcus faecium, and E. coli
O157:H7 from the FFSRU culture collection. Each bacterial
strain was grown on TSB plates incubated anaerobically and
was exposed to an approximately equal amount of plaque
forming units of each bacteriophage isolate.

Data analysis

Point prevalence of Salmonella and bacteriophage shedding
was calculated individually by dividing the number of path-
ogen culture-positive fecal samples by the total of samples
collected per farm (n¼ 60 per farm, 600 total samples). Cor-
relations of prevalence were calculated using Epi Info 6.0
(Center for Disease Control, Decatur, GA), but due to the
relatively low numbers of pens and incidences in this study,
no correlations were found. Time spent in pen or farm was not
included in the models because the record-keeping was not
complete or available.

Results

Salmonella enterica serotypes were found in 7.3% of the fecal
samples (44=600). Salmonella spp. were isolated from 6 of the
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10 farms surveyed, and the serotypes represented were
Anatum, Derby, Copenhagen, Heidelberg, Johannesburg,
Ohio, Schwarzengrund, and Typhimurium (Table 1). Bacterio-
phages were isolated from each fecal sample using two
parallel methods: (1) initial enrichment in Salmonella Typhi-
murium; (2) initial enrichment in E. coli B (a strain very sen-
sitive to phages), which was followed by direct spot testing
against Salmonella Typhimurium. Bacteriophages active ini-
tially against Salmonella Typhimurium were isolated from
1.3% (6=600) of the total individual fecal samples that were
from three farms (Table 1). Phages that could lyse E. coli B
were isolated from 48.3% (290=600) of the fecal samples from
90% of the farms. However, only two of the indicator strain
E. coli B–isolated phages were capable of killing Salmonella.

All of the Salmonella-killing phages created clearing zones
(<5 mm) when plated onto Salmonella Typhimurium and
were characterized by a narrow spectrum of Salmonella-killing
activity, with only one of the phages killing another Salmonella
serotype than Typhimurium (Derby and Mbandaka). Of all
other bacterial species tested, only E. coli F18 was killed by

more than 3% of the isolates; more than 19% of phages iso-
lated from E. coli B lysed E. coli F18 (Table 2).

Discussion

Salmonella spp. are some of the most common agents of
foodborne human infection in the United States (Mead et al.,
1999). Salmonella can live in the gastrointestinal tract of swine
(Davies et al., 1997; Funk et al., 2001), and can be freely passed
via nose-to-nose contact between pigs (Proux et al., 2001), as
well as through environmental contamination on farm and in
lairage (Fedorka-Cray et al., 1997; Rostagno et al., 2003; Ro-
driguez et al., 2006). This distribution and transmissibility al-
lows Salmonella to be widely disseminated on a farm or when
swine enter a slaughter plant. A wide variety of Salmonella
serotypes have been isolated from swine around the world
(Letellier et al., 1999), some of which cause illness in pigs
(Schwartz, 1991), but other serotypes can be transmitted to
human consumers and cause foodborne illness (CDC, 2006).
Recent studies, however, have found that virulence between
Salmonella Typhimurium isolates from humans and those of
animal origin is often distinct (Heithoff et al., 2008).

The present study indicates that Salmonella are present in
commercial finishing operations in the United States at a rel-
atively low incidence, comparable to other published surveys
(up to 19% incidence) (Davies et al., 1999; Morrow et al., 1999).
However, the fact that Salmonella are isolated from apparently
healthy finishing swine has serious implications for pork
safety. Of the serotypes isolated in this study, only Anatum
and Typhimurium are found in the most common human
isolates of the CDC (2006). It is important to note in the present
study that less than 8% of the fecal samples and 50% of the
farms were positive for Salmonella spp.

Phages are normal members of the microbial ecosystem of
the gastrointestinal tract of animals and humans and are
commonly isolated from community wastewater streams and
animal feces (Tanji et al., 2003; Dumke et al., 2006; Oot et al.,
2007). In spite of the acceptance that phages are widespread in
nature, little research has been performed to estimate the in-
cidence of phages in food animals until recently (Dhillon et al.,

Table 1. Salmonella enterica Serotype and Bacteriophages Active Against Salmonella Typhimurium

or Escherichia coli Strain B Isolated from Commercial Finishing Swine in the Central United States

Farm Serotype (number; percentage) Serogroup
Phageþ on Salmonella

Typhimurium
Phageþ on E. coli B
(number; percentage)

A Anatum (1; 2%) Derby (1; 2%) E1 B 0 0
B None 3 18; 30%
C None 0 13; 21.6%
D None 1 7; 11.7%
E Ohio (3; 5%) Heidelberg (1; 2%) C1 B 0 60 (2 were active against

Salmonella Typhimurium
after initial enrichment); 100%

F Schwarzengrund (14; 23.3%) Anatum (4; 6.7%) B E1 0 60; 100%
G Copenhagen (1; 0.2%) B 2 60; 100%
H Johannesburg (13; 21.7%) B 0 14; 23.3%
I Typhimurium (2; 3%) Copenhagen (4; 5%) B B 0 43; 71.6%
J None 0 15; 25%

Total 44=600 (7.3%) 6 (8a)=600 290=600 (48.3%)

aRepresents total after scanning of all phage-positive samples grown on E. coli B.

Table 2. Bacterial Species Lysed by Phage Isolates

from Enrichments Performed in Indicator

Escherichia coli B Strain (n¼ 290)

Species examined
Phage isolates active
against other species

Salmonella Cholerasuis 0
Salmonella Derby 1
Salmonella Dublin 0
Salmonella Enteritidis 0
Salmonella Montevideo 0
Salmonella Mbandaka 1
Salmonella Typhimurium 2
Enterococcus faecalis 0
Enterococcus faecium 1
E. coli O157:H7 0
E. coli F18 46
E. coli K88 1
E. coli K12 2
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1976; Atterbury et al., 2003), and never before in commercial
swine feces. Phages have been isolated from various types of
swine manure lagoons, indicating their ubiquity in the swine
environment (McLaughlin et al., 2006; McLaughlin and King,
2008). Because of their predatory nature, phages have been
suggested as a mechanism to reduce Salmonella spp. con-
tamination in food animals, as an animal health adjunct and
as a potential preharvest intervention strategy (Greer, 2005;
McLaughlin, 2006; Johnson et al., 2008).

Bacteriophages have been used primarily in animals to
control diseases such as E. coli diarrhea in calves, pigs, and
lambs (Smith and Huggins, 1983, 1987; Barrow et al., 1998).
Phage treatment decreased enteropathogenic E. coli by 5 log10,
and reduced mortality in treated calves compared with non-
phage-treated controls (Smith and Huggins, 1983, 1987).
Bacteriophage therapy has reduced E. coli diarrhea in rabbits
(Reynaud et al., 1992), E. coli septicemia and meningitis in
chickens and calves (Barrow et al., 1998), and E. coli air sacu-
litis in broiler chickens (Huff et al., 2002). Foodborne patho-
genic bacteria such as Salmonella and Campylobacter have been
successfully reduced in experimental studies (Connerton
et al., 2004; Higgins et al., 2005; Loc Carrillo et al., 2005).
The U.S. Food and Drug Administration has approved the
use of phage treatment as an anti-Listerial on meat and
poultry products, and has approved the use of phages as a
hide-spray against E. coli O157:H7 on cattle (FDA, 2006;
Omnilytics, 2007). To date, there has been limited use of
phage therapy to reduce foodborne pathogenic bacteria in live
animals.

The widespread nature of phages active against E. coli B in
our swine feces was surprising, but the incidence varied
widely between farms—ranging from being ubiquitous on
two farms to completely absent on one farm. Our research
group has previously examined the incidence of phages from
feces of range sheep and feedlot cattle. Sheep transported
from open rangeland were found to naturally harbor E. coli
O157:H7–killing bacteriophages (Callaway et al., 2003, 2006;
Raya et al., 2006). In feedlot cattle, 15% of the individual fecal
samples were positive for E. coli O157:H7–infecting bacterio-
phages and over half of the pens (55%) were positive (Call-
away et al., 2006). This result compares favorably with the
present study in which generic lytic phages were present in
48% of swine fecal samples.

Bacteriophages specifically recognize their host bacteria,
and can target below the species level, sometimes infecting
only a few strains within a species. This degree of specificity
has led to bacteriophages being used to treat many kinds of
human infections, especially in Eastern Europe. In our study,
phages that killed Salmonella Typhimurium were not as
widespread on farms; only 8 out of the 600 samples tested
positive for phage active against Salmonella Typhimurium,
likely because Salmonella Typhimurium is not widespread on
the present farms for a Salmonella Typhimurium phage to prey
upon. Phages active against Salmonella Typhimurium had a
very narrow activity spectrum and did not affect a variety of
other Salmonella serotypes, including other group B serotypes.
These data suggest that to utilize phages to reduce Salmonella
in swine, a specific phage (or phages) be isolated for each
specific serotype or group of related serotypes that are tar-
geted.

Bacteriophages and their targeted bacteria exist in a
predator–prey relationship. Therefore, it is crucial to under-

stand what role bacteriophages play in the natural microbial
ecology of the animal before we use bacteriophages to elimi-
nate foodborne pathogens in food animals prior to slaughter.
Although no statistical relationship was found between the
presence of Salmonella and Salmonella Typhimurium–infecting
bacteriophages in feces in this study, it should be noted
that only four pigs shed both Salmonella and Salmonella
Typhimurium–infecting bacteriophages simultaneously, and
none of these phages were on the farm positive for Salmonella
Typhimurium (Table 1). This could indicate that a cycle of
pathogen colonization, bacteriophage infection, pathogen
clearance, and re-colonization occurs on farm. Without un-
derstanding what relationship exists in nature between the
bacteriophages, their pathogenic prey, the microbial ecosys-
tem, and the host animal, we cannot hope to utilize this bio-
logical pathogen control system to its fullest to improve food
safety.

It appears that the use of bacteriophages as a preharvest
pathogen reduction strategy against Salmonella may be more
complicated than previously considered. This difficulty may
be due in large part to the observed relatively narrow spectra
of phages isolated against the diversity of Salmonella sero-
types. To reduce Salmonella in the U.S. swine population,
Salmonella-killing phages that infect the serotypes most com-
monly involved in human illnesses and swine health issues
must be obtained from multiple swine sources to reduce the
likelihood of phage resistance and to increase the probability
of treatment success.

Conclusions

Our results indicate that lytic bacteriophages are fairly
widespread across commercial swine production facilities, but
they may be present at relatively low populations. Phages
capable of killing Salmonella Typhimurium are found in com-
mercial swine, but not at a high prevalence. This is potentially
due to a predator–prey cycle between the phages (predator)
and Salmonella (prey) populations. These results suggest that
because this cycle naturally exists in the commercial environ-
ment, phages could potentially be used as a food safety
pathogen reduction strategy. However, further research is
needed to understand the spectrum of activity of each phage
type, and to specifically isolate phages active against the
Salmonella spp. that most directly affect swine production
efficiency, animal morbidity=mortality, and foodborne illness.
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