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PURPOSE OF THE STUDY 

The primary purpose of this project is to improve upon the current methodology of classifying 
secondary accidents by using static thresholds. The improved dynamic threshold methodology 
will be demonstrated using a freeway accident database from St. Louis, Missouri.  
 
To illustrate the static methodology, Figure 1 shows the progression of an incident and the static 
queue length and time thresholds superimposed on this progression. Progression refers to the 
growth and decline of the queue length as the incident progresses through the various stages. In 
general, the stages of an incident include the onset, the arrival of response teams, the clearance to 
the shoulder, the completion of clearance, and the normalization of traffic. The progression is a 
function of both the demand (traffic) and the supply (road capacity). If a subsequent accident 
falls within the influence of the primary accident, then the subsequent accident is considered a 
secondary accident, i.e., it occurred because of the queue from the primary accident.  
 
With the demand changing constantly, it is clear that an assumption of static thresholds would 
not capture field conditions properly. Some would argue that, on average, the total number of 
secondary accidents can be estimated accurately with static thresholds. That is, the area formed 
by the static threshold (a rectangle) is the same as the area under the progression curve. For 
example, Figure 1 shows that the same number of accidents (three) is classified as secondary 
whether a static (fixed) threshold or an actual incident progression curve is used.  
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Figure 1. Static thresholds versus actual incident progression 

However, by definition, secondary accidents differ in cause from primary accidents. Therefore, 
even if the average number of accidents is captured accurately with static thresholds, the 
accidents themselves are still misclassified. Referring back to the example in Figure 1, the total 
number of secondary accidents is estimated correctly using static thresholds, even though 
accident B is a false positive and accident E is a false negative. The elimination of such type I 
and type II classification errors is an important motivation for developing dynamic thresholds. 
Also, it is clear that accidents occurring around the same time as the onset of the primary 
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accident but far from its location should not be classified as secondary. However, this 
misclassification can occur if a static threshold is used.  
 
Literature Review for Estimating Secondary Accidents 

Several studies have discussed secondary accidents, but many have not directly addressed the 
extraction process. For instance, several studies have addressed the magnitude and impact of 
incident delays, including Garib et al. (1997), Giuliano (1989), Skabardonis et al. (1996), 
Morales (1987), Sullivan (1997), Smith et al. (2003), Lindley (1987), and Lee et al. (2003).  
Moreover, Karlaftis et al. (1999) examined the primary crash characteristics that influence the 
likelihood of secondary crash occurrence. The authors suggested that clearance time, season, 
type of vehicle involved, and lateral location of the primary crash were the most significant 
factors. The economic benefit of reducing secondary crashes for the Hoosier Helper freeway 
service patrol program was also discussed.  
 
At least two studies exemplify the use of static (fixed) thresholds for classifying secondary 
accidents. For example, Raub (1997) discussed the extraction of secondary accidents. In this 
study, a methodology was presented for the temporal and spatial analysis of incidents on urban 
arterials in order to identify the secondary crashes. For his analysis, Raub (1997) assumed an 
accident effect duration of 15 minutes, plus clearance time. He also assumed a distance of effect 
of less than 1,600 meters (1 mile). In other words, if an accident occurred within these temporal 
and spatial boundaries, the accident was considered to be secondary. Raub (1997) found that 
more than 15% of the crashes reported by police may be secondary in nature. He also found that 
such crashes result from external distractions instead of internal distractions or driver perception 
error. 
 
More recently, Moore et al. (2004) examined secondary accident rates on Los Angeles freeways 
using accident records from the California Highway Patrol’s First Incident Response Service 
tracking system, as well as data from loop detectors on Los Angeles freeways. The authors 
defined secondary accidents as accidents occurring upstream of the initial incident, in either 
direction, within or at the boundary of the queue formed by the initial incident. A static threshold 
of 3,218 meters (2 miles) and 2 hours was used for forming this boundary. Several levels of 
filters served to eliminate erroneous data.  
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DATASET: MEDIA TRAFFIC REPORTS  

Traffic management centers and traffic news agencies can provide wide spatial coverage of 
incidents and can track the incidents over time. These agencies can use information from aircraft, 
elevated traffic cameras, Motorist Assist, emergency management (fire, police, ambulance, and 
HAZMAT), and motorist calls. The agencies can also monitor and update this information 
throughout the course of an incident. Such intranet traffic information can be independent from 
police information; therefore, such information can complement the police accident database.  
 
Combining the police accident database and intranet traffic reports helps incorporate much 
information about the incidents. By analyzing individual traffic reports in detail, the reporting 
times of the incident and the dynamic locations of the back of the queue can be found. The 
difference between the incident’s initial and final times gives an estimate of the total duration of 
the incident, and the distance from the location of the incident to the back of the queue gives an 
estimate of the length of the roadway affected by the incident.  
 
However, the intranet reports need to be processed significantly in order for them to be usable. 
The methodology for processing such reports is as follows. Pages of traffic reports are 
downloaded daily at regular intervals, e.g., three minutes. A Unix script has been written to 
perform this automatically. These reports are then consolidated and parsed so that pieces of 
information are extracted into specific fields, such as incident reporting time, incident type, and 
incident description. An important task is to extract the traffic information for a particular 
highway along a particular direction in the sequence reported on a particular day. A computer 
program then stores the information pertaining to a single incident through multiple reports in a 
single day.  
 
Since no unique identifier is associated with the information pertaining to a particular incident, 
the lines containing information related to a particular incident must be extracted through the use 
of keywords present in those lines and absent in other lines. This process can be difficult, since 
traffic reports are human-generated and can include syntax variability and errors. For example, 
consider the primary route under examination to be eastbound on Interstate 70. In the intranet 
traffic reports, eastbound can be expressed as “EB,” “E/B,” or “east,” and Interstate 70 can be 
“70,” “I70,” or “I-70.” Descriptions of the route can also be expressed in phrases such as 
“eastbound lanes of 70” or “east and westbound lanes of 70.”  
 
Figure 2 illustrates the result of this processing. The information pertaining to a single incident is 
tracked throughout the incident, giving the queue length as the incident progresses. Though the 
processing of intranet traffic reports is laborious, a valuable incident dataset is produced.  
 
Processing the Traffic Reports 

Each day’s traffic reports for the specified segment and direction are scanned for incidents. Work 
zones and other activities are also included in the traffic reports, and they are filtered out. Upon 
identifying an incident, the location and time are logged, as well as subsequent updates of the 
queue length, incident clearance, and incident normalization information. Table 1 demonstrates 
how the data is entered. Each column represents an incident. The first six rows give information 
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about the incident location and the time it was reported, and the subsequent rows record each 
new traffic update. For these particular incidents, the traffic updates varied in terms of number of 
updates and the time difference between updates.  
 

 
Figure 2. Example intranet traffic report 

Table 1. Sample data entry form  
Incident ID 70EB_01 70EB_02 70EB_03 
Date 9-May-03 9-Sep-03 6-Oct-03 
First report time 6:35 AM 5:04 PM 5:44 AM 
Clearance time 7:09 AM 5:36 PM 5:58 AM 
Start location 
(Location 00) 

West Florissant # 245.7 Riverview Dr # 243.48 Cypress # 235.69 

Time 00 6:20 AM 4:50 PM 5:15 AM 
Location 01 Kingshighway # 244.71 Bermuda # 241.06 Rte.180 # 234.25 
Time 01 6:39 AM 5:21 PM 6:20 AM 
Location 02 Goodfellow # 243.24 West Florissant # 245.7 Rte.180 # 234.25 
Time 02 6:55 AM 5:25 PM 6:36 AM 
Location 03 Jennings Station # 242.92 West Florissant # 245.7   
Time 03 7:11 AM 5:36 PM   
Location 04 Goodfellow # 243.24    
Time 04 7:22 AM     

 
The location of the incident report usually refers to the closest exit, cross road, or landmark (e.g., 
Blanchett Bridge). In case the location is reported as between two known reference points, the 
mile marker between the reference points is also recorded. For example, if an incident is reported 
as ”North/South of I-70,” then the mile marker of I-70 is noted as the incident location. Or, if the 
incident is reported as ”Between I-70 and Dorsett,” then the mile marker between I-70 and 
Dorsett is noted as the incident location. For a short backup, the length of the queue is 
considered to be 0.5 miles or mid-point between the exits, whichever is smaller.  
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In Table 1, every row with location information also contains an additional numerical value after 
the “#” symbol. This numerical value represents a continuous log point of the location. 
Continuous log points are part of the reference system employed by the Missouri Department of 
Transportation (MoDOT). In this system, the continuous log point reflects the actual distance of 
the road from its origin point. For example, the origin point of I-70 eastbound is the state line in 
St. Louis. For I-70 westbound, the origin point is in the western-most part of Missouri in Kansas 
City. For the present project, continuous log points were used to cross-reference the MoDOT 
accident database. A continuous log table was created for all the reference points (exits, cross 
roads, and landmarks) for each freeway in each direction.  
 
The distances between reference points were measured using the online mapping tool of the 
Center for Agricultural, Resource, and Environmental Systems (CARES) website 
(http://www.cares.missouri.edu). Figure 3 shows a screenshot from the website. This mapping 
tool can measure the distance between any two points in the state of Missouri. The functions of 
this website can be accessed through the menu buttons. The top menu buttons navigate through 
the map, while the bottom menu buttons, such as “feature info,” “geographic coordinate,” and 
“distance,” provide information about the selected point(s) or an area. In Figure 3, the “distance” 
button is selected, and a segment of I-270 between I-70 and Rte. D has been traced with 
successive mouse clicks. The calculated distance of this path is shown on the right-hand side of 
the map in both miles and feet. These distances are transformed into the continuous log format, 
and a lookup table is created. Thus, the locations named in the incident reports are translated into 
log points.  
 

 
Figure 3. Log point translation using the CARES website 
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METHODOLOGY 

Using the media traffic reports as described above, a total of 480 incident reports were extracted 
for I-70 and I-270 in Missouri. I-70 and I-270 are two major freeways in the St. Louis area, and 
I-70 is a major East-West corridor in the United States. The reports were collected between 
January 2003 and first week of February 2004. All of these reports contained some sort of traffic 
backup or queue information. For these incident reports, the amount of traffic information varied 
from complete coverage of the entire incident to the reporting of just the incident backup. The 
reports can be classified into three types based on the completeness of the information, as shown 
in Figure 4. The categories, labeled “a,” “b,” and “c,” are defined as follows: 

• a-type. These incident reports have complete information about the incident, thus 
producing incident progression curves (IPC), i.e., parabolic-shaped curves showing 
the variation of queue length throughout an incident.  

• b-type. These incident reports lack some information at the end of the report. The 
incompleteness can be due to the traffic helicopter finishing its drive-time operations, 
which are typically the morning and afternoon rush hours. Despite the missing 
information, the decreasing trend of the queue is present, and estimating the missing 
portion seems to be possible. The b-type curve in Figure 4 illustrates this category.  

• c-type. In this category, there is some uncertainty as to whether the incident queue 
will increase or decrease. This can be seen in the c-type curve of Figure 4. The shape 
of the IPC is difficult to predict using this category of reports.  
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Figure 4. Categories of incident information 

Filling in Incomplete Incident Report Data 

Since detailed incident data was difficult to obtain, it was desirable to use the incomplete traffic 
reports rather than discard them completely. Since category “b” reports contain the decreasing 
trend information of the queue, the time of traffic normalization can be estimated. However, for 
category “c” reports, neither the clearance time nor the rate of the queue reduction is known. 
Therefore, the reports from categories “a” and “b” were used in this project, and the reports from 
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category “c” were discarded. An additional check had to be performed because of the elimination 
of the category “c” data. This check involved comparing the type “a” and “b” reports to the type 
“c” reports. If the reports proved to be different in nature, then the elimination of type “c” data 
would bias the results. For example, if type “c” reports are incomplete because they are less 
severe than types “a” and “b,” then a systematic bias has been introduced into the IPCs, thus 
overestimating the effects of the incidents.  
 
The similarity among the reports in terms of the time of occurrence (time of day) was 
investigated by comparing temporal frequency distributions. A chi-squared test was employed to 
determine the goodness-of-fit of the distributions. Table 2 shows the temporal distributions of 
complete versus incomplete incident reports. Due to the paucity of data during the off-peak 
periods, larger bins were used for those times. The chi-squared test shows that the distributions 
are similar at a confidence level greater than 95%.  
 
Table 2. Distribution of incidents based on time of day  

Bin Hours  a-type and b-type 
combined  c-type 

1 06:00–07:00 13 32 
2 07:00–08:00 25 55 
3 08:00–09:00 18 41 
4 09:00–15:00 26 56 
5 15:00–16:00 12 35 
6 16:00–17:00 19 48 
7 17:00–18:00 27 45 
8 18:00–06:00 6 22 
 Totals 146 334 

 
 
Dataset for Ground Truth Testing 

Out of 480 incidents, 49 incident reports were category “a,” while 97 were category “b.” A 
methodology was devised for completing the category “b” reports. To test the methodology for 
completing category “b” reports, a test dataset was constructed by taking the complete incidents 
and then artificially eliminating information towards the end of the report. This dataset thus tried 
to replicate the incomplete data to provide the ground truth for testing the methodology. Since 
the queue may not decrease linearly with time, second-, third-, and fourth-order polynomials 
were tested for modeling the incomplete accidents.  
 
Estimated Values for Queue Dissipation 

Table 3 shows the estimated durations based on different polynomial models. The column 
“Duration at Chop Point” lists the time at which the data was artificially deleted in order to 
mimic the incomplete category “b” reports. The column “Actual Duration” indicates the time 
from the accident occurrence to the normalization of traffic. In the columns listed under 
“Predicted Duration Based on,” the total duration times estimated using second, third and fourth 
degree models are presented. Among these three estimation models, the second order proved to 
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be the most reliable because it was able to estimate all accidents, while the fourth order was the 
least reliable because 7 out of 22 cases produced negative values. The negative values and other 
errors are shown as “n/a” in Table 3.  
 
Table 3. Estimated durations based on different polynomial models 

    Predicted duration based on 

Id 
Number of 

reports 
used 

Duration at 
chop point 

(min.) 

Actual 
duration

(min.) 

Second order 
(min.) 

Third 
order 
(min.) 

Fourth 
order 
(min.) 

1 5 61 70 69.34 0.04 n/a 
2 5 96 108 113.15 98.22 95.20 
3 5 57 79 82.08 65.46 59.67 
4 5 69 77 82.96 74.88 77.23 
5 5 26 49 33.59 29.32 27.16 
6 5 94 127 128.26 104.59 29.12 
7 7 66 118 112.51 78.40 75.26 
8 6 110 187 146.21 n/a 124.61 
9 4 34 69 42.96 42.80 n/a 

10 6 108 135 126.79 138.86 100.51 
11 4 43 58 55.19 56.63 n/a 
12 6 45 48 49.91 46.25 46.68 
13 9 121 139 160.92 146.78 127.27 
14 4 40 60 62.82 41.99 41.72 
15 9 89 108 119.45 112.72 95.39 
16 8 195 213 254.94 259.51 204.42 
17 8 72 76 81.16 82.81 78.17 
18 7 133 172 173.25 174.35 159.58 
19 9 84 88 103.66 93.40 96.03 
20 5 53 59 68.30 56.24 55.43 
21 5 55 126 86.34 n/a 56.78 
22 5 59 74 65.06 68.04 n/a 

 
For the test dataset, the overall shape of the IPC was compared with the three polynomial 
models. Each incident was discretized into 100 points, and at each point the actual queue length 
was compared to the estimated queue length. Table 4 shows the sum of square errors (SSE) and 
adjusted R2 values for different models. The equations for SSE and R2 are as follows: 
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R-Squarej = 1- 
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jSSE1
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n        (3) 

 
where 

qir is actual queue length at duration point i 
qij is estimated queue length at duration point i and for a polynomial model j=2,3,4 
qmean is mean value of all the queue lengths  
n is number of data points 
p is number of parameters to estimate 

 
Table 4. Model SSE and R square values 
  Adjusted R square Sum of square errors 
ID 2nd Degree 3rd Degree 4th Degree SSE2 SSE3 SSE4 

1 0.723 0.564 0.371 27 33 64 
2 -0.945 0.768 -0.107 21 10 648 
3 0.875 0.751 0.269 8 36 101 
4 0.899 0.927 0.903 4 6 8 
5 0.556 0.546 0.303 73 91 120 
6 0.704 0.915 -0.158 102 64 25093 
7 0.54 0.679 0.693 138 167 163 
8 0.724 0.583 0.57 285 148 543 
9 0.179 0.17 -0.056 147 148 72884 

10 0.699 0.812 -0.129 67 31 5826 
11 0.962 0.96 -0.311 7 7 2319 
12 0.762 0.952 0.949 7 2 3 
13 0.482 0.667 0.741 40 30 38 
14 0.459 0.674 0.683 16 39 35 
15 0.671 0.784 0.788 86 63 97 
16 0.649 0.624 0.699 8 9 20 
17 0.921 0.916 0.953 1 1 1 
18 0.935 0.929 0.954 42 44 34 
19 0.688 0.892 0.915 14 6 5 
20 0.455 0.953 0.975 30 7 3 
21 0.053 -0.237 -0.144 323 5165 860 
22 0.946 0.969 0.917 12 6 13 

Mean 0.588 0.718 0.49 66 278 4949 
95% C.I 0.1741 0.1204 0.1888 88 1093 16100 

 
The results from the test dataset show that a third-order polynomial provided the best fit when 
compared to the second- and fourth-order polynomials. A criterion for evaluating the 
performance of the polynomial models is the adjusted R2 value, which measures the proportion 
of the data that can be explained by the model. Figure 5 shows the R2 values of several incidents 
modeled by a second-, third-, and fourth-order polynomial. Figure 5 shows that the third-order 
polynomial results in the best R2 over the entire test dataset. Table 4 shows that the average 
adjusted R2 of the third-degree model is better than the second- and fourth-degree models. In the 
category of sum of square errors, the overall average value for second-degree model is better 
than the others. However, if the outliers are removed, then the third-degree model is better. The 
third-order polynomial is able to reproduce the total delay estimates (or areas under the queue 
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length/time curves) to within ±10%, with an average difference of 1.4 % from the true value. In 
comparison, the average difference for the second order is 5.3% and for the fourth order is 6.5%.  
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Figure 5. Polynomial model fit 

Master Incident Progression Curve 

The master IPC is derived from the entire dataset of incident reports. In other words, the master 
IPC contains incidents of all severity types, traffic conditions (volume/capacity ratio), and 
numbers of vehicles involved. This master IPC is the basis upon which other more specific IPCs 
are derived.  
 
Two approaches were initially considered for developing master IPCs. The first approach was to 
perform regression on the entire database of incidents. In this case, every data point from each 
incident would be used for curve fitting. This approach was quickly eliminated because the 
resulting curve would be very complex and not look like a real incident. Another approach was 
to try to capture the central tendency of all the incidents.  
 
There are three common measures of central tendency: the mean, the median, and the mode. The 
mean is sensitive to extreme values so that major incidents would unduly influence the result. 
The mode can be problematic if the data is not uni-modal. Therefore, the median value was used. 
Each individual incident produced an incident progression curve similar to the one shown in 
Figure 6. In order to join multiple curves to form one curve, the curves were divided into equal 
increments. For each increment, the median values of incident duration and queue length were 
calculated. For example, if three incidents with durations of 40, 60, and 80 minutes are 
considered, then the corresponding increment size would be 4, 6, and 8 minutes. The median 
value of the duration and queue lengths is then computed. The result of this method produced a 
single progression curve that looks like an actual curve from a single incident.  
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Figure 6. Master IPC 

A static or dynamic threshold can be used to separate secondary accidents from primary 
accidents. An accident falling within the bounds of the threshold means that the accident 
occurred within the queue of the primary accident and within the duration of the primary 
accident. Two types of thresholds were compared in this research: static and dynamic. Each type 
of threshold is a function of both time and distance. For the master IPC, the static thresholds 
were 3.62 miles of maximum queue length and 43 minutes. The dynamic threshold is described 
by the following third-order polynomial equation: 
 

01
2

2
3

3 atatataQ +++=         (4) 
 
where  

Q is the queue length of the primary accident in miles  
t is the time after the occurrence of the primary accident in minutes  

 
The coefficients are shown in Table 5. The total duration is 94 minutes.  
 
Table 5. IPC polynomial coefficients for the master IPC 

a0 a1 a2 a3

0.013873 0.12652 -
0.000943
63 

-
0.0000078
26 

 
 
Multiple Incident Progression Curves 

In contrast to traffic data, an accident database does not contain information about the maximum 
queue of an accident or the accident duration. However, accident database fields such as severity 
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and number of vehicles can be used to develop different IPCs. If the volume (actual or historical) 
and the characteristics of the freeway segments are available, then additional IPCs can be 
developed using the volume/capacity (v/c) ratio. To estimate the v/c ratio, we need to estimate 
the capacity and convert the traffic volume into passenger car equivalent traffic volume. The 
procedure for estimating the v/c ratio is explained in the following. 
 
To estimate capacity, the Highway Capacity Manual (2000) recommends determining the free 
flow speed (FFS) and then calculating the capacity based on the FFS. For example, if the FFS is 
62 mph, then, using Table 6 (taken from the Highway Capacity Manual), the capacity is 
estimated as 2,320 passenger cars/hour/lane. Estimating the FFS for every freeway segment is 
very time consuming, so the FFS is estimated by adjusting the base free flow speed (BFFS). The 
BFFS for urban freeways is assumed as 70 mph. The formula for estimating the FFS is as 
follows: 
 

FFS= BFFS-fLW -fLC -fN -fID        (5) 
 
where  

fLW is adjustment for lane width in mph 
fLC is adjustment for lateral clearance in mph 
fN is adjustment for number of lanes in mph  
fID is adjustment for interchange density in mph  

 
It is assumed that the all the lanes are 12 feet wide with more than 6 feet of clearance on the right 
shoulder; thus the adjustments for lane width and lateral clearance (fLW and fLC) are zero. Further, 
it is assumed that there is an interchange per mile; therefore, the adjustment for interchange 
density (fID) was equal to 2.5 mph. Depending on the number of lanes in one direction, the fN 
varied from zero to 4.5 mph.  
 
Table 6. Relationship between FFS and freeway capacity 

Free flow speed 
(mph) 

Capacity (passenger car/ 
hour /lane) 

75 2,400 
70 2,400 
65 2,350 
60 2,300 
55 2,250 

 
The parameters that affect the traffic flow rate are the peak hour factor (PHF); number of lanes; 
type of driver population; proportion of trucks, buses and recreation vehicles; and type of terrain. 
These parameters are first estimated to compute the analysis flow rate, vp, which is the “v” in the 
v/c ratio. The equations for estimating the vp are as follows: 
 

vp= 
PHV ffNPHF

V
***

        (6) 
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       (7) 

 
 
 
where 

vp is analysis flow rate 
V is hourly volume (vehicles/hour) 
N is number of lanes 
fHV is heavy vehicle factor 
fp is driver population factor 
PT is proportion of trucks and buses in the traffic  
ET is passenger car equivalent for trucks or buses 
PR is proportion of recreation vehicles in the traffic  
ER is passenger car equivalent for recreation vehicles 

 
For this dataset, the PHF is considered 0.95 because both freeways are in an urban setting. The 
driver population factor (fp) is assumed to be one, since most of the traffic is assumed to be 
commuters or people familiar with the roadways they travel. The proportion of recreational 
drivers (PR) is assumed to be zero. Based on data collected during morning and evening peak 
periods, it was found that the proportion of trucks and buses combined was below 0.05, so PT 
was assumed to be 0.05. The grade is considered to be below 2%, and the passenger car 
equivalent for trucks, ET, is taken to be 1.5.  
 
Table 7 shows a sample of the parameters chosen for IPC development. The complete set is 
provided in the appendix. The first two columns show the time and mile marker of the accident. 
The time is represented in minutes; 0 stands for midnight and 360 stands for 6 a.m. The mile 
marker is based on the MoDOT continuous log point. The columns “Maximum queue” and 
“Duration” contain the observed values of maximum queue length and actual duration of the 
particular accident. When the accident queue information is incomplete, e.g., the last traffic 
report still reports a queue length, the total duration is estimated and those values are presented 
in the column “Estimated duration.”  
 
Table 7. Sample of data used to develop multiple IPC curves 

Time 
(min.) 

Mile 
marker 
(mi) 

Max. 
queue 
(mi) 

Duration 
(min.) 

Estimated 
duration 
(min.) 

Severity # of 
vehicles 

Segment 
ID 

v/c 
ratio 

495 20.07 2.38 57 58.30 2 5 21 0.355
525 24.68 3.55 154 171.42 2 2 12 0.358
751 20.07 3.53 57 60.17 2 4 21 0.359
546 6.94 6.54 127 127.00 2 3 12 0.362
810 19.64 4.9 120 135.07 1 4 21 0.363
800 20.07 3.53 55 74.60 2 2 21 0.363

 
The severity and number of vehicles involved in the incident are presented in the next two 
columns. The severity codes 1, 2, and 3 respectively represent property damage only (PDO), 
injury, and fatality. The last column contains the v/c value for each accident segment. Out of 123 
accidents chosen, two were apparent outliers for which the polynomial did not estimate the 
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duration correctly. These two outliers were in the first two rows of the dataset, and their v/c ratio 
values were deleted to make sure they would not be used in further processing. For example, one 
record had a duration of 10 hours.  
 
IPC According to v/c Ratio Only 

The effects of incidents differ according to the traffic conditions or the v/c ratio. If we review the 
effects of incidents from the entire database, a natural separation seems to occur at a v/c value of 
around 0.7. For values less than 0.7, there do not seem to be any discernable differences in the 
effects of incidents. Therefore, a two-category system was developed based on v/c conditions 
(see Tables 8 and 9 and Figure 7).  
 
Table 8. IPC parameters and static thresholds based on v/c ratio 
Descr iterion m 

queue (mi) 
x. 

in.) 
T rmal (miption Cr Maximu Time of ma

queue (m
ime to no in.) 

Light/medium v/c < 0.7 3 (3.16) 45 (45)  or 1 hr. 20 min. 80 (82)
Heavy v/c > 0.7 5 (4.71) 70 (67) 2) or 2 hr.  120 (12
 
Table 9. IPC polynomial coefficients based on v/c ratio 

n a0Criterio a1 a2 a3

v/c < 0.7 0.01420014 0.12950349 -
0.000965882 

-
8.01096E-06 3 8 

v/c > 0.7 0.02116540
2 

19302578
4 0.001439653 1.19404E-05 

0. - -
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Figure 7. IPC based on v/c 
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IPC According to Number of Vehi

n an incident is correlated to the severity of the 
incident, which is also correlated with the effects of the incident. Thus, the number of vehicles 

r 

escription Criterion Maximum Time of max. Time to normal (min.) 

cles Only 

In general, the number of vehicles involved i

recorded in the accident database can be used as a variable to determine the appropriate IPC o
threshold to be used in determining secondary accidents. See Tables 10 and 11 and Figure 8.  
 
Table 10. IPC parameters and static thresholds based on number of vehicles 
D

queue (mi) queue (min.) 
Single hicles = .36) ) 9) or 1 h Ve  1 3 (3 45 (43 90 (8 r. 30 min. 
Doubl hicles = (3.56 ) 1) or 
Multiple Vehicles > 2 4 (3.73) 52) 5 (95) or min. 

e Ve  2 3.5 ) 50 (50
50 (

90 (9
9

1 hr. 30 min. 
1 hr. 35 

 
Table 11. IPC polynomial coefficients based on number of vehicles 

on 1 2 3Criteri a0 a a a

Vehicles = 
1 

0.01509888
6

92
2  

0.137699 -
0.001027014 

-
8.51798E-06 

Vehicles = 
2 

0.01599762
9

634
6 

Vehicles > 0.01676156 0.15286330 -
08 

-
9.45597E-06 

 
0.14589 -

0.001088146 
-9.025E-

06 

2 1 7 0.0011401
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Figure 8. IPC based on number of vehicles involved in the incident 

According to Severity and v/c ratio 

The effects of incidents can be differentiated by severity and traffic conditions (measured using 
v/c ratio). Due to the small sample size of fatal accidents, only PDO and injury categories were 
used. For each level of severity, three different IPCs were developed based on the v/c ratio. The 
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injury accidents intuitively show larger effects than PDO accidents. See Tables 12 and 13 and 
Figures 9 and 10.  
 
Table 12. IPC parameters and static thresholds based on severity and v/c ratio 
Description Criteria Maximum 

queue (mi) 
Time of max. 
queue (min.) 

Time to normal (min.) 

Light PDO, v/c < 0.4 3 (3.02) 40 (42) 80 (78) or 1 hr. 20 min. 
Medium PDO, 0.4 < v/c < 0.7 3.5 (4.48) 50 (48) 90 (90) or 1 hr. 30 min.  
Heavy PDO, v/c > 0.7 4.5 (4.57) 65 (64) 120 (118) or 2 hr. 
Light INJ, v/c < 0.4 3 (3.157) 45 (44) 80 (82) or 1 hr. 20 min. 

in. 
 5 min.  

Medium INJ, 0.4 < v/c < 0.7 3.75 (3.68)* 50 (51) 95 (95) or 1 hr. 35 m
Heavy INJ, v/c > 0.7 5 (4.912) 70 (68) 125 (127) or 2 hr.
 
Table 13. IPC polynomial coefficients based on severity and v/c ratio 

Criteria a0 a1 a2 a3

PDO, v/c < 0.4 7102
2 

76600
2 0.0009230 65604E-

0.0135 0.123 -

9 

-
7.
06 

PDO, 0.4 < v/c < 
0.

01563813 0.14261777 -
10636

13968
61  

 0.4 66 .12938055
0.0009649 00335E-

INJ, 0.4 < v/c < 
0.7 

0.01652339
4 

0.15069125
4 

-
0.0011239 9.32161E-

06 

3 2 0.0015013
96

-
1.24525E-
05

7 
0.

2 7 0.00
93 

-
8.82219E-
06 

PDO, v/c > 0.7 0.02053628
2 

0.18728828
7 

-
0.00

-
1.15855E-
05

INJ, v/c < 0.014186
1 

0
2 

-

65 

-
8.
06 

-

08 

INJ, v/c > 0.7 0.02207313 0.20130417 -
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Figure 9. IPC based on PDO accidents and v/c 
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Figure 10. IPC based on injury accidents and v/c 

Using IPC to Derive the Number of Secondary Accidents 

The process for extracting secondary accidents from the accident database is as follows. First, 
the accident database must be suitably formatted. The database is separated by route and by year 
(e.g., I-70, 2003), and each of the fields that describe each accident record is parsed and stored. 
The time and date field dded and subtracted. 
The entire accident file is then converted into a doubly linked list so that the file can be collapsed 

cord per vehicle involved in an 
accident is consolidated into one record per accident.  

s are translated for computation so that they can be a

into one record per accident. In other words, a file with one re

 
When the accident database is in a suitable format, applying the results from this report is 
straightforward and involves three steps: 
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• Step 1. The user selects an appropriate variable for differentiating the effects of an 
incident. Some common variables are severity, v/c, and the number of vehicles 
involved in an incident.  

• Step 2. The user selects the IPCs corresponding to the selected variable. If none of the 
variables are available, then the user can select the master IPC, which includes all 

Cs to derive secondary accidents. In other words, the 

in time and within a certain distance upstream of the primary 

 
This procedure, shown in Figure 11, identifies the possible secondary accidents from an accident 
database.  
 

 

 

traffic conditions.  
• Step 3. The user applies the IP

IPCs are used to filter out accidents that were not within the queue created by the 
primary accident. The use of the IPC or polynomial models can involve some 
programming.  

• Step 3 (alternate). If a user is unable to use the dynamic IPCs, then simple static 
thresholds can still be used. This involves a query of the database of accidents that 
occur within a certa
accident. The tradeoff between the static threshold and dynamic IPC is the ease of 
implementation versus accuracy.  

Figure 11. IPC application flowchart 

1. S
vari

elect 
able 

2. Select 
IPCs 

3. Apply IPCs: Filter 
accid Secondary ents unaffected 
by primary accident accidents 
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SAMPLE APPLICATION IN ST. LOUIS, MISSOURI 

To illustrate the application of the dynamic threshold method, a year’s worth of accident data 
from I-70 and I-270 in Missouri was used. Year 2003 data was used and contained 5,514 
accidents. Out of these accidents, 397 were classified as secondary based on the dynamic 
threshold curve, and 390 were classified as secondary accidents based on the static threshold 
curve. The area under the static and dynamic threshold curves was 148.3 mile-minutes and 164.8 
mile-minutes, respectively.  
 
On the surface, these numbers imply that the use of static or dynamic thresholds produce similar 
results, since the area under the curves and the total number of secondary accidents classified 
were similar. In reality, however, the two thresholds yielded different results, which can be 
clearly seen in Figure 12 and Table 14. In Figure 12, the origin is the time and location at which 
the primary accident occurred, the y-axis represents the upstream displacement from the location 
of the primary accident, and the x-axis represents the time after the onset of the primary accident. 
The graph in Figure 12 shows a significant number of accidents that are not common to the 
application of both the static and dynamic thresholds. Table 14 shows that 125 accidents were 
classified as secondary by the dynamic threshold but not by the static. Conversely, 118 accidents 
were classified as secondary by the static threshold but not by the dynamic. The classification 
results thus actually differ by more than 30%.  
 
This difference can be significant, since accident costs can differ significantly based on the 
severity of the accident. For example, the consequence of a fatal accident is much greater than a 
property damage only (PDO) accident. Table 14 also shows that the results are similar for 
daytime only versus all day.  
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Figure 12. Secondary accidents based on static and dynamic thresholds 
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Table 14. Comparison of dynamic versus static thresholds 

  Number of secondary accidents 
Time Period Dynamic 

only 
Static 
only 

Both Total 
dynamic 

Total 
static 

Daytime  
(5:30 a.m.–6:30 p.m.) 106 98 215 321 313 

All day 125 118 272 397 390 
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CONCLUSIONS  

This research improves upon the existing method for deriving secondary accidents by 
eliminating the assumption that the queue length is constant (as it is in static thresholds). The 
analysis of 5,514 freeway accidents shows that the static and dynamic methods can differ by 
over 30%.  
 
To derive the dynamic threshold, 480 intranet incident reports were analyzed and 119 incident 
reports were used for calibrating the master incident progression curve. Some of these incident 
reports were incomplete; therefore they were modeled using a third-order polynomial. A chi-
squared test showed that the frequency distributions of the complete and incomplete incident 
reports were not different. Various incident progression curves were developed using various 
accident and traffic flow parameters.  
 
Agencies can utilize the existing curves to estimate the number of secondary accidents occurring 
in a given year. This information can help evaluate the safety performance of the agencies’ 
incident management system or other transportation systems.  
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APPENDIX 

Table A.1. Data used for developing multiple master curves  
Time 
(min.) 

Mile 
marker 
(mi) 

Max. 
queue (mi) 

Duration 
(mi) 

Estimated 
duration 
(min.) 

Severity # of 
vehicles 

Segment 
ID 

v/c ratio

840 39.66 10.94 138 633.61 1 2 12 --
608 17.99 8.57 103 -9.87 2 2 22 --
400 2.88 2.68 113 134.58 2 3 22 0.068
400 3.87 1.98 57 146.76 1 2 22 0.092

1392 31.14 2.42 46 58.22 2 2 12 0.141
322 14.17 1.75 48 48.00 2 1 21 0.273
444 29.49 1.53 93 93.00 2 3 12 0.273
435 23.31 2.18 77 77.00 1 3 12 0.319
619 23.62 1.96 213 213.00 3 3 21 0.322
495 20.07 2.38 57 58.30 2 5 21 0.355
525 24.68 3.55 154 171.42 2 2 12 0.358
751 20.07 3.53 57 60.17 2 4 21 0.359
546 6.94 6.54 127 127.00 2 3 12 0.362
810 19.64 4.9 120 135.07 1 4 21 0.363
800 20.07 3.53 55 74.60 2 2 21 0.363
330 235.16 3.66 74 113.64 2 1 11 0.367
780 234.45 1.75 68 87.58 2 2 11 0.408
480 14.86 4.44 59 81.29 2 1 22 0.410
984 20.82 0.75 55 55.00 2 1 21 0.432
790 223.69 1.59 49 58.13 1 4 11 0.436
680 13.59 3.67 38 38.00 2 1 21 0.453
585 11.17 4.23 292 348.63 2 2 12 0.453
815 11.67 1.75 53 53.00 2 2 21 0.459
900 24.01 6.02 143 163.49 2 1 22 0.462
855 32.07 2.24 43 44.89 2 1 22 0.466
759 17.69 1.15 41 46.11 2 5 21 0.468
768 17.69 1.15 54 61.38 2 2 21 0.468
725 17.69 1.15 69 78.14 2 3 21 0.468
564 17.69 0.5 31 31.00 2 2 21 0.468
437 26.26 3.77 107 169.53 2 3 21 0.476
915 241.83 3.03 122 154.83 2 4 11 0.479
830 16.54 0.5 45 45.00 2 4 21 0.481
785 17.69 4.1 139 139.00 2 6 21 0.483
932 25.26 2.77 145 183.77 2 3 21 0.483

1075 232.72 1.22 39 39.00 2 2 11 0.486
829 225.15 2.25 70 70.00 1 1 11 0.497
412 19.14 5.95 118 118.00 2 3 22 0.507
380 5.04 3.06 83 100.38 2 2 22 0.511
380 245.7 2.8 62 113.42 2 4 11 0.514

1039 13.59 1.92 59 65.17 1 2 21 0.517
863 8.41 4.11 84 87.33 2 2 12 0.518

1032 9.42 1.34 68 68.00 2 3 22 0.521
505 17.69 1.15 76 76.00 2 3 21 0.528

1011 241.06 5.46 100 101.38 1 2 11 0.534
978 12.42 5.39 72 99.17 2 4 21 0.534
956 31.14 3.18 49 49.00 1 2 12 0.544
990 234.45 2.95 79 82.29 1 2 11 0.548
413 4.3 0.85 49 49.00 2 2 12 0.548
998 29.49 4.81 73 85.56 2 2 12 0.554
985 29.49 2.99 72 93.56 2 3 12 0.554
446 17.69 5.27 67 93.19 2 3 21 0.554
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Time 
(min.) 

Mile 
marker 
(mi) 

Max. 
queue (mi) 

Duration 
(mi) 

Estimated 
duration 
(min.) 

Severity # of 
vehicles 

Segment 
ID 

v/c ratio

465 20.06 1.13 79 79.00 2 3 12 0.554
939 23.26 4.12 135 135.00 1 2 22 0.566
775 16.49 3.68 135 164.81 2 4 12 0.566

1005 233.06 0.36 46 58.60 1 1 11 0.567
1010 14.74 2.32 88 88.00 2 2 21 0.569
525 20.94 5.33 78 107.45 2 2 22 0.570
492 20.94 5.33 75 93.41 2 3 22 0.570
447 16.04 2.85 41 51.02 2 2 22 0.570
530 11.17 2.44 72 83.22 2 2 12 0.574
388 5.85 3.95 65 78.00 1 3 21 0.576
435 18.93 2.44 102 142.98 2 2 12 0.579
520 10.59 1.86 62 105.01 2 4 12 0.580

1015 6.07 1.03 71 91.22 1 2 22 0.580
504 243.24 2.84 58 66.46 1 3 11 0.583
490 230.52 2.22 20 22.77 1 4 11 0.586

1050 25.76 3.67 52 70.17 2 2 22 0.591
1047 25.76 4.82 37 42.73 1 3 22 0.591
1025 25.76 4.82 55 68.10 1 2 22 0.591
435 241.83 3.03 82 113.33 2 2 11 0.603
896 26.26 5.44 105 123.87 2 2 21 0.605
954 23.62 2.8 60 60.00 2 2 21 0.606
930 23.62 2.8 92 114.73 2 2 21 0.606
465 22.09 7.23 74 87.62 1 2 22 0.608

1000 33.78 3.95 82 85.04 1 2 22 0.608
1000 33.78 3.95 40 48.69 1 4 22 0.608
1040 18.59 5.78 93 93.08 1 3 12 0.631
506 12.42 0.75 5 5.84 1 4 21 0.637
958 25.76 3.67 63 79.17 1 4 22 0.640

1060 20.07 2.38 34 35.68 1 2 21 0.645
962 32.07 2.24 64 64.00 2 2 22 0.657
482 19.14 3.1 66 66.00 1 2 22 0.658

1032 32.07 8.81 53 80.25 1 4 22 0.666
507 17.99 2.38 44 44.00 1 3 22 0.667
414 12.06 6.67 106 119.57 2 1 22 0.681
430 234.45 1.75 61 84.60 2 2 11 0.692

1060 17.69 2.95 59 59.00 2 3 21 0.701
1048 22.09 4.1 58 58.00 1 2 22 0.706
1079 22.09 2.95 52 59.84 1 2 22 0.706
1042 22.09 6.48 96 118.63 2 5 22 0.706
936 23.31 8.46 52 97.97 2 2 12 0.708
480 12.42 5.39 54 58.58 2 4 21 0.715

1007 22.09 6.05 74 92.84 1 3 22 0.725
960 24.68 2.48 60 60.00 2 2 12 0.735
971 16.54 4.87 78 130.94 2 2 21 0.738

1020 11.17 2.76 75 85.52 1 3 12 0.751
412 233.06 1.56 108 108.00 2 3 11 0.762
908 27.21 8.07 187 187.00 1 2 22 0.774
446 17.99 2.38 69 69.00 1 2 22 0.775
456 17.99 4.8 65 75.66 1 2 22 0.775
466 17.99 3.13 58 70.24 1 3 22 0.775
450 230.52 6.92 101 133.19 1 3 11 0.791
455 230.52 5.42 57 69.71 1 2 11 0.791
446 7.03 7.03 108 108.00 2 3 21 0.793
479 7.35 3.74 74 74.00 1 2 21 0.793
430 228.34 3.24 42 51.91 1 2 11 0.812
398 7.35 7.35 172 172.00 1 4 21 0.822
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Time 
(min.) 

Mile 
marker 
(mi) 

Max. 
queue (mi) 

Duration 
(mi) 

Estimated 
duration 
(min.) 

Severity # of 
vehicles 

Segment 
ID 

v/c ratio

390 7.03 7.03 48 59.33 1 2 21 0.822
995 27.21 5.12 133 185.43 2 1 22 0.824
412 226.97 4.07 60 90.66 1 3 11 0.828

1000 26.26 5.44 126 126.00 2 3 21 0.830
982 26.26 3.77 101 109.73 2 3 21 0.830
395 9.32 3.35 117 117.00 1 2 22 0.831
420 9.42 5.55 81 98.43 1 2 22 0.831
387 9.42 7.44 109 138.28 2 2 22 0.831
390 9.42 4.03 109 138.46 1 2 22 0.831
437 9.42 4.36 106 123.09 2 5 22 0.844
964 28.1 7.28 115 144.33 1 5 21 0.854
428 8.08 4.21 61 102.72 1 2 22 0.858

1025 16.49 3.68 61 61.00 2 2 12 0.890
1070 27.96 4.65 46 66.41 2 3 12 0.932
1020 20.06 2.66 27 30.41 1 3 12 0.933
910 27.96 1.46 65 65.00 1 2 12 0.936
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