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ADAPTIVE SAMPLING IN DIGITAL CONTROL 

Kenneth Allen McCollom and R. M. Stewart, Jr. 

ABSTRACT 

This study provides a set of design curves from which effective 
digital control for an experiment can be obtained and at the same time 
efficient use of a digital computer shared with other experiments can be 
realized. The state variable technique is used as both a design method 
for obtaining the design curves for adaptive sampling and for predicting 
the states for control of the process. The adaptive sampling technique 
is defined to be that choice of constant prediction period that will satisfy 
control specifications over a specified range of system conditions. The 
complete range of system operation is divided into a number of classes for 
which criteria can be devised for determining when the system is in each 
class. In each class the prediction period is no smaller than that required 
over the range of the operation of the class. The objective of the adaptive 
sampling is to use the digital computer for control as little as possible 
yet maintain the system control specifications. 

The method developed here is general enough to allow use by a con­
trol engineer who has, or can develop, an adequate mathematical model 
for the process. The model is reduced to a set of first order differential 
equations and then converted to Laplace Transform block diagrams. The 
knowledge of the behavior of a single first order differential equation, or 
similarly a single first order Laplace Transfer block, for a reasonable 
number of deterministic inputs allows the control engineer to analyze the 
control behavior of his complete block diagram one block at a time as sum­
ing piecewise constant inputs to the block. 

Using the method developed here, an interesting and useful charac­
teristic is demonstrated for process systems which have particles or 
components that originate at the input of the process, are carried through 
the process in space and time and finally are expelled from the process 
never to return. These processes are commonly described by a set of 
nonlinear differential equations with time-varying coefficients. Solving 
this set of equations simultaneously is both a long and difficult task. For 
processes with the characteristics described above, this set of nonlinear 
differential equations can be uncoupled and the resulting sets solved in 
sequence. The experiment on which the adaptive sampling is demonstrated, 
the set of uncoupled equations prove to be individual first order differential 
equations that are linear. 
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I. INTROD~CTION 

Conventional automatic control has made significant 

accomplishments in industrial and military applications. This 

type control is the design of control systems to determine the 

compensation necessary to fulfill a certain set of require­

ments. The most common requirements are values of gain margin, 

phase margin, M-peak, rise time, settling time, peak overshoot, 

integral square error, and mean square error. 

Pollowing many years of active development, conventional 

automatic control system design appears to be approaching a 

saturation point which, in turn, is encouraging the develop­

ment of new theories of control. Perhaps the greatest impetus 

for this change has been the computational aid supplied by 

modern digital computers. Some of the new mathematical 

techniques in the developing theories, such as dynamic pro­

gramming, are impractical without the speed and capacity for 

calculations nov available. 

The new techniques in control system design usually use 

the differential equations that describe the process mathemat­

ically as a means for predicting what will happen in the 

future. Then the predicted values are used to determine 

present control inputs or sequence of inputs. This mathemati­

cal technique is commonly referred to as the "state variable 

technique" by control engineers. The value or a state is 
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usually the value of the variable in a first order differen­

tial equation describing a p~rtion of the process. If the 

process is described by an nth order differential equation, 

then it has n states which are normally determined in the 

control problem. 

The digital computer is not only aiding in the develop­

ment of such new theories but also is practically and, just 

as important, economically implementing the theory by acting 

as an element in the feedback loop of the control systems. 

The economic advantage has resulted from two sources: first, 

the cost of the computer hardware has declined to reasonable 

values for use as control elements, and, second, the hardware 

and software for computers has developed so that a single 

computer can be shared by a number of different, otherwise 

unrelated, experiments. 

The purpose of this dissertation is to determine when 

attention is necessary for the control of an experiment from 

the computer which is shared with other experiments. To allow 

investigation of the dynamic behavior of a process a unit 

block which represents a first order differential equation has 

been selected. Using deterministic inputs as driving func­

tions the characteristics of the unit block are determined for 

a variety of inputs. A process system 1s investigated by 

building up the complete system from the unit blocks. The 

state variable technique predicts the output of a unit block 



3 

exactly with a piecewise constant input and approximately with 

a time-varying input. 

The error and deviation design curves for a number of 

different deterministic inputs to the unit block are used in 

the design of a multivariable control system for a nuclear 

physics experiment. A sample is irradiated in a nuclear 

reactorJ and the decay characteristics of the radioactive 

atoms produced are examined. The sample is solidJ but through 

controlled heating its vapor is continuously removed from the 

reactor and inserted into the ion source of a mass isotope 

separator. The mass isotope separator separates the radio­

active atoms from the parent atoms so that the decay charac­

teristics can be investigated. The control requirement is to 

replace in a continuous stream from the reactor all atoms which 

decay at the isotope separator target. The system is described 

by a set of nonlinear differential equations with time-varying 

coefficients and transport lags. The set of differential equa­

tions representing the system can be uncoupled to allow sequential 

solution of subsets that are linear. 
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II. REVIEW 0!' LITERATURE 

Prior to 1950, little was published in the area of 

analysis and design of sampled-data systems. Digital comput­

ers were first used in control systems and later used in 

complex automatic tracking systems for satellites in space. 

The new emphasis on sampled-data systems has resulted in books 

devoted solely to the subject (12, 16, 18, 19) instead of 

chapters in the back of books otherwise devoted to continuous 

control systems. 

The design and synthesis of sampled-data control systems 

can be divided into several categories. To aid in developing 

the ideas for this dissertation, the categories here are 

designated instantaneous feedback control systems and predic­

tive control systems. The instantaneous feedback control 

system compares the present condition of the output to the 

desired output and makes a correction to the system. The pre­

dictive control system, using the immediate system condition 

and the expected inputs, predicts what the output will be at 

some future time and makes a correction as soon as possible 

following the calculations. 

The instantaneous feedback control system was developed 

first as sampled-data systems came into common use. The most 

popular technique used to analyze these systems is the Z­

transfor.m method (3, p. 272). The use of the Z-transformation 
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for sampled-data systems is entirely analogous to the applica­

tion of the Laplace transformation to continuous-data systems. 

Most of the techniques used for solving linear continuous-data 

systems, such as the Nyquist criterion, root locus diagram or 

Bode diagram, can be modified and extended to the studies of 

linear sampled-data systems (12). 

The predictive control systems predict the state of the 

system at some future time using difference and state variable 

equations derived from the differential equations describing 

the physical system. In some sampled-data system design books 

(16) no distinction is made between the state of a difference 

equation that is an approximation to the solution of the dif­

ferential equation and the state variable equation that is an 

exact solution to the differential equation. A careful docu­

mentation of the history of the state variable method as 

developed by both mathematicians and engineers has been made 

by Fuller (5). 

Kalman and Bertram (1~ have presented a general synthesis 

procedure for using the state variable technique in the design 

of a control system. However, the final control system uses 

present values of the states for control of the system. Use 

of the state variable technique in the design allows the opti­

mum choice of linear combination of all of the states to be 

fed back to the input. Once these feedback terms are deter­

mined the system works as an ordinary multiloop feedback 
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controller. The authors do suggest that transport lags may be 

handled in the system using prediction. The digital computer 

is used for solving the prediction equations after each sample. 

Dynamic programming theory applied to the optimum design 

of digital control systems (1, 2, 19) uses prediction by the 

state variable method in a multistage decision process to 

maximize the total return for a system. A systematic solution 

procedure may be derived by making use of Bellman's (1) 

Principle of Optimality which states that "an optimal policy 

has the property that whatever the initial state and the 

initial decisions are, the remaining decisions must constitute 

an optimal policy with regard to the state resulting from the 

first decision." This approach implies that to solve a speci­

fic optimization problem the original problem is imbedded 

within a family of similar problems. The original multistage 

optimization problem is replaced by a sequence of single-stage 

decision processes which are easier to handle. The disadvan­

tage is in checking all possible sequences of inputs to obtain 

the optimum one from each succeeding state. The number of 

possible paths increases with each succeeding stage. Consid­

erable computer storage is required to check every path and to 

allow a choice of the one which fits most satisfactorily the 

particular system. 

A predictive control system utilizing dynamic programming 

has been designed by Chestnut, Sollicito and Troutman (4) 
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using a two-level "bang-bang" type servo. The number of 

possible branches of input sequences are reduced consider­

ably \'/hen only four inputs are available for choice. The 

input variable operating-the controlled system is actuated 

by an estimate of the error which will exist at some future 

time. Repeated estimations of the future error are obtained 

by predicting ahead 1 on a fast time base, both the reference 

and the controlled variable as well as some of their lower 

order derivatives. The input signal is switched at the time 

when the predicting computations determine that future syn-

chronization of reference and output w6uld occur if polarity 

of the input signal were switched at that time. 

The state of a linear system can theoretically be changed 

to any other desired state by putting an impulse into the 

state. Sufficient energy must be given by the impulse to the 

system in zero time to change the state. Optimum control is 

no longer a multistep requirement but can be obtained in a 

single step at any time. Gupta and Hasdorff (6) have made the 

technique practical by assuming that the input is a combina­

tion of a Gaussian (normal) shaped function and its deriva­

tives. The normal function in the limit as the standard 

deviation goes to zero is the impulse function. With the 

normal function the energy does not have to be delivered in 

zero time. A basic difficulty is generating these normal 

functions, but it is at least possible. The time required to 
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change the state is a function of the standard deviation which 

is made as small as possible. 

In many sampled-data control systems signals are sampled 

periodically, although this type of sampling may not always be 

possible and in some situations may not be desirable. The 

introduction of aperiodic sampling may even improve the system 

stability (12, p. 370). Recently a great increase of interest 

has occurred in systems in which the sampling operations may 

not be performed synchronously. Attempts have been made to 

modify and use some of the methods for handling nonlinear 

control systems such as describing functions or modifying the 

Z-transform (9). These methods lead to complex analysis for 

even simple systems. 

Kalman and Bertram (11) have made a major contribution 

in sampled-data analysis and control by showing how the state 

variable technique can handle sampling systems of a general 

type in a clear and uniform way. They claim that the method 

yields simplifications even in the analysis and synthesis of 

conventional periodic sampling systems. The method auto­

matically eliminates one of the chief difficulties of the 

transform method, namely that it is difficult or cumbersome 

to obtain information about the behavior of the system at any 

time other than the sampling instants. 

In their general theory, Kalman and Bertram give a very 

broad intuitive definition of the state of a dynamic element 



9 

as •a set ot numbers (called state variables) which contain as 

much information regarding the past history of the element as 

is required tor the calculation of the entire future behavior 

of the element." The evolution of a dfnamic system through 

time mar be visualized as a succession or state transitions. 

Since each transition is independent of everrthing except the 

present state and the input during the present transition, 

then the non-uniform sample period is handled as easily as the 

un1rora sample period. An important characteristic or the 

state variable technique is that design effort is on the analy­

tical aspects of system problems with the drudger,y of numeri­

cal computations necessarily left to be performed by a digital 

computer. The computations performed by the digital computer 

after a sampling instant are usually quite short compared to 

the time between two samples. Since this time is usually also 

short compared to the time constants in the system dynamics, 

the delay caused by the computations may be disregarded alto­

gather. 

For simplicity, Kalman and Bertram use sample and hold 

elements and assume that the input to the system is piecewise 

constant. Any input that is var,ying can be integrated, if 

known beforehand, through the convolution integral with the 

transition matrix. The exact value of the input as a function 

of time in the future must be known for this to be an exact 

solution. 



10 

III. MEtHOD OJ INVESTIGATION 

The extent to Which system design can proceed in a logi­

cal, systematic, and intelligent manner is to a degree meas­

ured by the knowledge of the process dynamics. Thus, the 

first goal in control system design must be the determination 

· of the dynamic characteristics of the process to be controlled. 

The dynamic characterization of a process is commonly de­

scribed by a set of first order differential equations which 

are functions explicitly of time and functions of the plant 

states, x(t); driving control functions, u(t); and disturbance 

functions, n(t). 

In vector form, 

~Ct) = 1[ x(t), u(t), n(t), t J (1) 

In addition to this general equation the process usually has 

limits on the permissible driving functions because of practi­

cal considerations such as saturation or power limitation. 

The mathematical model of a system may be made up of 

differential equations with order greater than one. Fortu­

nately, equations of higher order can always be treated 

numerically by reducing them to a larger system of first order 

equations of the form of Equation 1. Henrici (7) has shown 

that such reduction does not increase discretization error in 

digital solutions. Since the state variable method requires 
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system equations to be first order, the model must first be 

reduced to a first order set of differential equations. 

A. State Variable Technique 

The class of control systems which have received con­

siderable attention in the literature are those described by 

the following vector form of the differential equations. 

ict> = A(t)x(t) + u(t) + n(t) (2) 

where A(t) is referred to as the coefficient matrix of the · 

process. This process is said to be linear and non-stationary. 

However, the process is linear and stationary if A(t) is not a 

function of ti.me. Por the latter case, consider the solution 

to the homogeneous vector equation where there are no driving 

functions or disturbances to the system. Thus 

i(t) = A i(t) (3) 

rhe plant starts to move at time, t 0 , from an initial state, 

X • 
0 

The solution of this homogeneous vector differential 

equation is similar to the solution of a single first order 

differential equation 

x(t) = m x(t) (4) 

Equation 4 has the solution 
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m(t-t 0 ) 
x(t) = e x0 (5) 

where m is a constant. In the vector differential Equation 3 

the term, A, is a matrix. Before a solution of the vector 

differential equation can be obtained by analogy to the first 

order differential equation a definition of exponentiation of 

a matrix must be made. Since 

(X) 

emt L mktk = ~ (6) 

k=O 

then let 
(X) 

eAt L Aktk = kT"" (7) 
k=O 

for which there are defined matrix operations. This suggests 

that the solution for the vector differential equation is 

i(t) (8) 

The equation 

(9) 

is commonly defined as the transition matrix of the system 

since 

(10) 
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shows that if i 0 are the states at some initial time, t 0 , the 

movement or transition of the states to new positions at t is 

only a function of the initial state and the transition matrix. 

The solution of the general differential equation with 

driving forces and disturbances can be shown to be of the form 

(11) 

Differentiating with respect to t gives 

-• • 
x(t) =A x(t) + •<t - t 0 )01(t) (12) 

Setting this equal to the general form of the differential 

equation in Equation 2 with A not being a function of time 

makes the following equality necessarr tor Equation 11 to be 

a solution. 

-• 
A i(t) + u(t) + n(t) =A i(t) + •<t - t 0 )o1(t) (13) 

Cancelling terms and solving for W1(t) gives 

Substituting this into lquation ll givea the aolut1on aa 

i'(t) 

The transition matrix before the integral can be taken inside 
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the intecral sign since it is not a tunction of the integrat­

iDC Yariable. The definition of the transition matrix as an 

exponential function allows consolidation ot the two transi­

tion matrices now under the integral sign. In addition, at 

t = t 0 the transition matrix, •<t - t 0 ), becomes the identity 

matrix. Therefore the constant 02 is just the value of x(t0 ). 

fhe final result is 

where 

and the vector form of the equation tor which this is the 

solution is 

.... 

(17) 

x ( t ) = A % ( t) + u ( t ) + i ( t ) ( 18 ) 

the linear, tima-stationar.y form of lquation 2. This powerful 

equation expresses the instantaneous motion of the process in 

terms of the driving control signals, aD7 disturbances and the 

initial states. !hese equations describe the exact motion of 

the process if the original equations are an exact mathemati­

cal model of the process and if the control signal, the other 

driving functions and the disturbances are exactl7 known. 

These latter qualifications place rather stringent conditions 
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on the results. The exactness of this solution is emphasized 

since the approximate numerical solution of a differential 

equation is often obtained by solving a related difference 

equation which results in -a state-transition equation similar 

to Equation 16. 

1. Recursion formula 

The state variable solution developed in the last section 

and shov.n 1n Equation 16 is more useful tor handling in the 

computer if the equation is placed in a recursive form. This 

can be accomplished if the prediction period is constant. 

Disturbances also a~e assumed to be zero and all inputs are 

assumed to be deterministic in nature. 

Letting the present time be tk and eliminating the 

disturbance term as an input to the system, Equation 16 be-

comes 

This general form, valid for t > tlt, is usefUl for calculating 

exact output states where more than one stage is in sequence. 

However, the recursion equation is obtained b7 alwa7s predict­

ing a fixed period, T, ahead ot the present tiae. !hua, if t 

is replaced by tk+l"then the recursion equation becomes 
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(20) 

The following substitution will be useful throughout: 

(21) 

Equation 20 is the equation with which the majority of the 

future development is involved. 

The recursion formula can be used · for two different 

situations that appear in control systems. When the differ­

ential equations describing the dynamics of the system are 

reduced to a set of first order differential equations and 

states assigned, all of the states will probably not be 

measurable. If ~~e state cannot be measured, the value of 

the state at the present is known only through having calcu­

lated it in the prediction Equation 20, starting from a known 

initial condition of the state. Thus, any error in predicting 

the state T seconds later tends to accumulate as any transient 

condition persists. A state that cannot be measured is re­

ferred to as an inaccessible state, and the state that is 

measurable is an accessible state. Usually, through careful 

choice of states, most of the state variables in a system can 

be measured. Accessibility and inaccessibility are fundamental 

to the application of the state variable method, since the 

method requires that the present state be known. Any error in 

calculating the inaccessible state tends to accumulate during 
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a transient input condition and disappear during a stable 

input condition to the state. 

Referring again to the recursion Equation 20, the dif­

ference in using this equation for calculation of the acces­

sible and the inaccessible states is the value used for 

x(tk). If the state is accessible, the value of the measure­

ment at tk for the state variable is used. If the state is 

inaccessible the previously predicted value for the state is 

used. The predicted values for the states x(tk+l) just T 

seconds later are exact values only if both the present states 

x(tk) are known and the driving functions u(t) are known for 

the period. 

2. Piecewise constant inputs 

The state variable technique offers the control engineer 

a set of tools which allows him to predict the complete state 

of his process at any future time. The prediction is exact 

only if he knows the input driving functions to the process 

from the present to the time of the prediction. If the driv­

ing function is under his control, he has no problem. However, 

there are driving functions that are not under his control and 

can change at any time. To allow prediction to still be 

accomplished some type of approximation for the input over the 

sample period must be made. 

The simplest procedure is to assume that the input 
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driving function remains constant during T in Equation 20. A 

more sophisticated procedure is to linearly extrapolate the 

driving function from its value at the preceding time through 

the value at the initial time and on to a value at the predic­

tion time. An even more intricate procedure is to curve fit 

the last three input function values and represent the driving 

function as a polynomial. The last two procedures require 

considerable computer processing which for a real-time, shared 

computer could be impractical. 

The mathematical form is most simple when the driving 

functions for a given differential equation in the matrix are 

measured and are assumed to remain constant at that value over 

the period of prediction. The amount of error is dependent on 

how far the driving function changes during the period. By 

investigating the system it is usually possible to determine 

how rapidly a driving function can change. For example, if 

the input to a given differential equation is the output from 

another state of the system, the time constant for that state, 

together w1 th its permissible inp·ut, will limit the rate of 

magnitude change possible. Chemical reactions can only pro­

gress at certain rates which can be measured and defined. In 

the system to be considered later, the neutron flux in the 

reactor will normally change no faster th.an a certain pre­

scribed rate. 

The error involved by assuming that a driving function 



19 

remains constant can be investigated. The results can deter­

mine the time available for prediction and error correction 

without exceeding the control specifications of the system. 

One fortunate conditicn exists for the general prediction 

equation. If the driving function remains constant for several 

periods, any past errors gradually are reduced to zero. This 

condition fits nicely the intuitive idea that the most recent 

measurements should be the ones that more readily indicate the 

value of the present state and that the measurements made in 

the more distant past have less and less weight on the value 

ot the present state. Then, if there are no calculation 

errors for a period. of time, the total error diminishes. 

Choosing the simple approximation of a piecewise constant 

driVing function to all differential equations in the system 

simplifies the control computations required from the digital 

computer to a minimum number of simple manipulations. 

B. Adaptive Sampling Technique 

An adaptive sampling technique is here defined to be that 

choice of constant prediction period that will satistJ S,Jstem 

control specifications over a specified range of systea condi­

tions. The complete range of system operation is divided into 

a number of classes for which criteria can be devised for 

determining when the system is in each class • . In each class 
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the prediction period is to be no smaller than that required 

over the range of the operation of the class. The objective 

for the adaptive sampling is to use the digital computer for 

control as little as possible yet maintain the system control 

specifications. 

A method is developed here that is general enough to 

allow use by a control engineer .who has, or can develop, an 

adequate mathematical model for the process. The model is 

reduced to a set of first order differential equations and 

then converted to Laplace Transform block diagrams. The 

knowledge of the behavior of a single first order differential 

equation, or similarly a single first order Laplace Transform 

block, for a reasonable number of deterministic inputs allows 

the control engineer to analyze the control behavior of his 

complete block diagram one block at a time. 

The first order differential equation to be used as the 

basic building block is given by 

(22) 

and the corresponding Laplace Transform unit block is shown in 

Figure l. A set of deterministic inputs are also shown in 

Figure l. The equations representing these inputs are 

Ramp: (23) 



Positive exponential: 

Unit step w1 th 
negative exponential: 
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(25} 

(26} 

Since the differential equation is a linear equation, the 

principle of .superposition applies. The total response of the 

output for the sum of several inputs at the same time is found 

by considering each input separately and swaming their indi­

vidual outputs. This allows even more variety in simulating 

different inputs. 

1. Prediction equations ~ ~ block 

Two sets of prediction equations are required to allow 

development of design parameters for decisions for the adap­

tive sampling. One of the sets of equations is an exact 

solution for the output of the unit block for a given input. 

The other set of equations is that which uses piecewise con­

stant approximations for the input and thus obtains an approx­

imate solution for the output of the unit block. fhis set of 

equations will later be used as the control equations in the 

real time digital control. In this section, the approximate 

solutions are compared to the exact solutions for a given 

input to generate design parameter curves. 

The recursion equation developed earlier and given in 

vector form in Equation 20 is the equation from which both the 

exact and the approximate solutions for the output of the unit 
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u1(t)--

ligure 1, The first order unit block and -the input 
waveforms investigated 
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block are obtained. For the first order differential equation 

given in Equation 22, the transition matrix is readily deter­

mined from the homogeneous solution to be 

(27) 

Substituting this into the recursion equation gives 

..... _ 

This equation generates both the exact and the ~pproximate 

solution for the output when u1(t) and u1(tk)' respectively, 

are used for u1 ( T) ·under the integral sign. In the approxi­

mate case, u1(tk) is no longer a function of the integrating 

variable, so it can be brought out in front of the integral 

sign. In the exact case u1 is a function ot the integrating 

variable so cannot be brought outside of the integral. 

The simulation of the unit block is made ld.th IC and all 

inputs set to unity. This allova universal curves to be 

generated with gain factors inserted b7 the deSign engineer 

for each s7stem investigated. The percent error used for the 

exponential curves is defined b7 

(29) 

The error is evaluated at each step. fhis definition of error 



24 

automatically normalizes the result since all gain factors 

cancel. The inputs other than the exponential ones use the 

deviation between the exact and the approximate outputs to 

allow the generation of useful design curves. 

Initiating each of the inputs at the instant of a sample 

tends to maximize the error presented in the resulting curves. 

Anytime there has been a choice of doing part of the measure­

ment or calculation two ways, the one causing the most error 

has been chosen. The resulting curves tend to be pessimistic 

in their estimate of the error. In the case · of the unit step, 

there is only error in predicting the output between the time 

the step occurs and the next sample instant, since after that 

the input is constant. A constant input makes the output 

prediction for both the approximate and the exact solutions 

identical. 

The prediction equations are obtained by substituting 

u1(t) and u1 (tk), respectively, for each input investigated. 

Integrating over the recursive limits gives the following set 

of recursive prediction equa tiona. for the unit block transfer 

function shown in ligure 1: 

Case a: u1 (t) = t, u1 (t0 ) = 0, x1(t0 ) = 0 

Exact solution 
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Approximate solution 

Exact solution, 

-(l-n)T/-r1 
:x1 (t1 ) = l - e 

t/Tp 
Case c: u1(t) = e , u1 (t0 ) = 1, x1 (t0 ) = 1 

Exact solution, 

Approximate solution, 

(31) 

(32) 

-T/Tl 
e ) 

(33) 

-T/Tl kT/Tp -T/Tl 
xl(tk+l) = e x1(tk) + e (1 - e ) (34) 

Case d: . -t/T + u1 (t) = e P, u1(t~) = 0, u1(t0 ) = 1, x1 (t0 ) = 0 

Exact solution, 

-T/Tl 
e ) 

(35) 

Approximate solution, 
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2. Design parameters 

The recursion equations describing the exact solution and 

the approximate solution of the output state for the four 

input cases are placed in forms that minimize the number of 

variables. Wherever possible, the sample period and the time 

constants, T, were put in ratio form, T/T. This is a non­

dimensional ratio which is easy to use in the general applica­

tion of these curves. · The abscissa of each of the curves 

generated has been made the ratio of the sample period to the 

time constant of the unit block, T/T1 . The ordinate is either 

some form of the percent error or the deviation of the approx­

imate value from the exact value of the output state. Finally, 

the family of curves is generated by the remaining variables 

in each of the cases. For instance, in all of the exponential 

inputs, the families of curves are for different values of the 

ratio of the unit block time constant to the exponential time 

constant, T1/Tp· 

The approximate solution may have either ~ accessible or 

an inaccessible output. If the output is accessible, then the 

present state, x1 (tk), of the system is obtained from the 

exact solution when prediction was made from the previous 

state. The exact solution gives the same result as a measure­

ment does for the present state. If the output is inaccessi­

ble, then the present state, x1 (tk), is obtained from having 

predicted x1(tk+l) approximately from the preVious state. 



27 

The ramp input to the unit block 

eventually results in a fixed amplitude deviation between the 

approximate output and the exact output for a given sample 

period. The time in Which the deviation ceases to increase 

is dependent upon the time constant of the unit block, T1• 

Since the abscissa of the curves is !/T1 a family of curves 

shows the gradual increase in amplitude at each tk following 

the initiation of' the ramp. ?igures 2 and 3 show two differ­

ent scales for the abscissa and d1splaJ the deviation of' the 

approximate output from the exact output. The curves desig­

nated as tk show the deViation at the end of the kth period 

just kT seconds after ~n1t1at1on ot the ramp. Por the acces­

sible case, the deViation is reduced to zero again at the end 

of each period by a measurement. The result is that the 

deViation at the next sample is again the same value as shown 

at t 1 for a given value of T/T1• !hus, onlr one curve, that 

designated t 1,is used for the aooeslible output state, while 

all of the curves are used for the inaccessible output state, 

and the deviation at lt! seconds ia indicated b7 the curve 

designated as ~· A daShed line in both of the figures indi­

cates the asymptotic value of the deYiation at t 00 • Since the 

simulation in the digital ooaputer was carried onlr to ·lt = 20, 

further specific curves are not included. 

b. u1(t) = u(t - nT) The unit step input to the unit 

block results in a deviation ot the output state at the next 

sample instant. The deviation is dependent on the time 
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constant ot the unit block. As the sample period is made 

longer, the output has time to grow larger. The deviation, as 

a function of T/T1 and the time after a sample that the step 

starts, is shown for twn ranges of T/T1 in Figures 4 and 5. 

The parameter, n, varies between 0 and 1 where the step occurs 

at t~ for n = 0 and at ti for n = 1. As previously indicated, 

there is no .further deviation between the approximate solution 

and exact solution for the output after the first sample 

following the unit step. 

c. ul(t) = et/Tp The positive exponential input to 

the unit block eventually results in a constant error between 

the approximate output and the exact output for given T/T1 and 

T1/Tp· The exponential input reaches this asymptotic error in 

a time dependent on the time constant of the unit block. 

Since the abscissa is in terms of T/T1, the small values of 

the abscissa take more sample periods to reach the asymptotic 

error. For T/T1 greater than 0.5 the asymptotic error is 

reached in three or four sample periods. The comparisons for 

the asymptotic errors, resulting for the inaccessible and 

accessible output states, are shown for two ranges of T/T1 in 

Figures 6 and 7. These two figures are included for compara­

tive purposes only. The inaccessible state for two ranges of 

T/T1 and a more complete selection of ratios, T1/Tp' are given 

in Figures 8 and 9. Similarly, the accessible output state is 

covered in Figures 10 and 11. It was not easy to display in a 
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general way the error at early sample periods prior to reach-

ing the asymptotic error. However, the comparison of the 

accessible and inaccessible output states may prove useful, 

and it is true that the error l s alwc1ys smaller than the 

asymptotic value in the earlier sample periods. 
-tl-r 

d. u1 (t) = e 1 P The unit step followed by an 

exponentialiy decreasing decay has characteristics quite 

similar to that of the positive exponential. Two character­

istics are different. First, the error ls negative. The 

decay makes the approximate solution for the . output state have 

an input that is always equal to the exact input at the sample 

instant, but at al~ other times the input is greater. From 

the error definition of Equation 29, the error is negative. 

Second, an interesting result from this input is that the 

error is constant from the very first sample for the inacces­

sible state. The error, then, does not have to be called an 

asymptotic error since it is constant as a function of time. 

The curves for two ranges of T/-r1 for the inaccessible case 

are shown in Figures 12 and 15. The results for the accessi- · 

ble case did not reduce to conditions that could be meaning-

fully displayed on a graph. At the first sample, the error 

was the same as that for the 1nacoessi ble case.. After · that, 

the error decreased continually for the twenty samples simu­

lated on the computer. For this type of input, then, the 

inaccessible state is the only one included here for use. 
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C. Nonlinear, Time-varying Systems 

The previous discussion has been limited to linear, time 

invariant processes. Unfortunately for the control engineer 

these characteristics seldom exist. If a linear approximation 

is used to describe a process that is not linear or time 

stationary, the major question is the validity of the approxi­

mation. 

Considering Equation 2 again, the transition matrix is 

now a function of time and the initial time, t 0 • The general 

form would be ~(t, t 0 ) instead of that obtained in the linear 

case ~{t - t 0 ). Even though ~{t, t 0 ) can also be expressed 

as an exponential as in the time-invariant system, the result 

is not nearly as satisfactory. There results no formula for 

+(t, t 0 ), although Tou (19) indicates that the transition 

matrix can be expressed as an infinite series of successive 

integrals. This is not a convenient form with which to work, 

and general procedures to derive the transition matrix 

apparently have not yet been obtained. 

A non-linearity found in many processes shows up as a 

product of two of the state variables in the set of first 

order differential equations describing the plant. Solutions 

for values of some of the states are needed before all equa­

tions can be solved. A simultaneous matrix solution can only 

be obtained if some iterative technique is used that converges 
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to the correct values ·for the states. There are obvious 

computing time disadvantages of an iterative procedure for a 

real-time shared digital computer for system control. 

There is a type of plant that can be described by a set 

of first order differential equations which, in matrix form, 

can be reduced in order and thus simplified. In general, this 

system is one that has parts of the system separated in space 

from other parts. In a continuous chemical plant the solution 

may pass through one tank with a catalyst which will cause a 

certain reaction to take place. When the solution leaves that 

tank and proceeds to the next step the reaction will stop be­

cause of absence of the catalyst. Mathematically this part of 

the system can be described by an independent sub-set of the 

set of equations describing the complete plant. The sub-set 

can be solved first and the results inserted into the rest of 

the equations. An example considered in Section IV uses a 

nuclear reactor as a source of neutrons to activate a radio­

isotope. No more radioactive isotopes are produced ~en the 

sample is removed from the reactor enviroDaent. S1m1larly, a 

mass isotope separator is used to separate t .he sample stream. 

The behavior of the separator and its controls has no effect 

on the production of the radioactive nuclides in the reactor. 

These, then, are independent sets of equations and should be 

able to be solved independently of the complete set. 

The advantage of uncoupling or reducing the order of the 
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set of equations is that one of the states involved in a 

product of state variables may be in an independent sub-set of 

the equations. As a consequence, the state can be determined 

and act as a constant, and the non-linearity is removed. The 

tool is convenient for use on such non-linear equations. 

The independent sub-sets of the complete set are easily 

recognized when the equations are put in matrix form. If a 

q x q block of elements is found in the coefficient matrix 

with all other elements in the q rows being zero, then these 

q equations are independent of the other equations in the 

matrix. One caution is that the driving functions must be 

checked to see that no states or controls from outside the q 

rows are encountered. Since the set of first order differ­

ential equations describing the system can be placed in any 

sequence to make up the matrix, the best combination of zero 

elements in the reduction of the order of the matrix can be 

obtained. 
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IV. EXPERIMENTAL IMPLEMENTATION 

The adaptive sampling technique using state variable 

prediction for control has been used in the design of a con-

trol system for an experiment in a nuclear reactor. The 

purpose of the experiment is to investigate the decay schemes 

of radioisotopes continuously produced and removed from the 

reactor at a rate approximately equal to the half life of the 

particular radioisotope. The effect is to produce a radio­

isotope with an infinite lifetime. The purpose of the control 

system is to maintain the rate of arrival of the radioactive 

atoms equal to the rate of decay from the isotope target. 

A. Description of Process System 

A schematic representation of the system is shown in 

Figure 14. The nuclear reactor core provides a source of 

neutrons when the reactor is operating. These neutrons are 

in close association with a sample in a nearby experimental 

facility and thus turn a certain portion of the atoms into 
' radioactive atoms by neutron capture. The solid sample is 

contained in a chamber that is at a high vacuum and is 

vaporized at a controlled rate by a heater. The vapor flows 

out of the chamber in the reactor through a tube approximately 

one inch in diameter and twelve feet long. An ionization 
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source for a mass isotope separator is located at the end of 

this transfer line. The ion source ionizes the sample vapor 

and accelerates the resulting ions through a constant poten­

tial into the magnetic field of the separator. The separator 

allows isotopes with different masses to be collected at dif­

ferent physical locations in the plane of the target at the 

receiving end. At this point the physicist may examine the 

radioisotopes that have been produced with the appropriate 

physical tools. 

The sample is usually non-radioactive when inserted into 

the reactor. The buildup of radioactivity depends on the time 

history of the neutron flux in the reactor, the neutron 

capture cross section of the atoms and the half life or decay 

constant of the radioactive nuclides. The vapor from the 

heated sample will gradually build a pressure that will cause 

other vaporized atoms to be transported down the line and into 

the lower pressure area of the ion source and mass isotope 

separator. The vapor enters a plasma in the ion source that 
.. 

is sustained there by a filamentary heating elaent, a magnetic 

field and appropriate element potentials. fhe vapor · beoames 

ionized When encountering the high temperature of the plaaaa. 

A small opening at the end of the ion source, beyond whiCh are 

located appropriate extracting, accelerating and focusing lens 

potentials, allows continuous extraction and acceleration of a 

portion of the ionized radioactive sample. The ions are 
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accelerated into the magnetic field of the mass isotope 

separator, and the curvature of the beam along its flight path 

in the field depends on the mass of the ions. The parent atom 

normally captures one neutron to form the radioactive daughter 

atom just one mass unit heavier. The parent and daughter 

atoms can be separated sufficiently in space to allow separate 

manipulation by the experimentalist. This action is similar 

to that in a mass spectrometer used to identify different 

atomic masses in analytical measurements, except that the mass 

isotope separator provides a sufficient quantity of atoms to 

allow physical or chemical experiments. A simplified word 

block diagram shown in Figure 15 gives a reasonable flow dia­

gram of the interactions that take place in the process. 

B. Derivation of Mathematical Model 

The process system naturally divides into three parts 

for studying its mathematical character: the first is forming 

of radioactive atoms in the sample; the second is producing 

vapor from the solid sample and transporting the vapor to the 

inlet of the ion source of the mass isotope separator; the 

third is converting the non-ionized sample to an ionized form 

in the ion source and accelerating it through the separator 

magnetic field to a target. The first objective will be to 

provide a set of first order differential equations that 
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adequately describe the complete process system and the 

interactions between the variables. 

1. pynamics 2f sample radioactivity 

The differential equations that describe the behavior of 

a sample in neutron flux are well worked out in the literature 

(8). The two equations that describe the process for this 

system are 

dN(t) __ N(t) M( )d(t) N(t) w(t) (37) 
dt - A + ~ t P - N(t) + M(t) 

dM(t) __ ~ M(t)¢(t) _ Mtt) w(t) 
~ - N( ) + M(t) 

where N(t) = number of radioactive atoms at any time, 

M(t) = number of parent atoms at any time, 

¢(t) = neutron flux, neutrons/cm2-sec, 

(38) 

~ = neutron capture cross section of the sample, 
cm2 

' 
A = decay constant of the sample, sec-1 , 

t = time, sees, and 

w(t) = flow of vaporized atoms, atoms/sec. 

In Equation 37 the first term on the right is the rate of 

disappearance of radioactive atoms by decay, the second term 

is the rate of appearance of new radioactive atoms from cap­

ture of neutrons, and the third term is the rate of disap­

pearance of radioactive atoms due to vaporizing and transport-
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ing away the solid sample. In Equation 38 the first term is 

the rate of disappearance of the parent atoms due to the form­

ing of radioactive atoms, ~d the second term is the rate of 

disappearance due to transporting away the vaporized sample. 

Several approximations for these equations are appropri­

ate when the conditions of the irradiations and the particular 

samples used in this system are considered. It is expected 

that a sample will seldom be smaller than 100 grams which is 

approximately 1025 atoms of the parent. The maximum vaporiza­

tion rate that can be tolerated as an input to the mass iso­

tope separator is approximately lo15 atoms/second. Of this 

total vaporization . rate the number that will be radioactive 

is no greater than 109 atoms/second for the half lives, 

neutron flux and sample cross sections involved. Thus, the 

ratio N/M is no greater than lo-6 • In Equation 38 both terms 

are negligible compared to the other time constants in the 

system. Thus M(t) is no longer a function of time but rather 

a constant equal to the total sample. In the case of a sample 

that is very small or a combination of a very mull sample and 

a long irradiation time, this approximation is no longer true, 

and the second differential equation must be considered to 

give a complete description of the system. 

In Equation 37 the rate of change of the number of radio­

active atoms in the sample due to vaporization of the radio­

active portion compared to the total radioactive atoms present 



52 

in the entire sample can similarly be shown to be negligible. 

The resulting differential equation that describes the 

dynamic character of the radioactivity in a reasonable sized 

solid sample in the reactor is 

dN(t} = - A N(t) + aM ¢(t) (39) 
dt 

where M = the total number of atoms in the solid sample. The 

useful number that can be derived from the solution of this 

equation is the ratio N/M since it is the portion of the total 

vapor that is radioactive as it is vaporized from the solid 

sample. 

The variation of the ratio N/M by the time the vapor 

enters the ion source is the truly useful quantity, and this 

ratio can be modified by the transport characteristics of the 

vapor down the transport line and the decay of radioactive 

atoms occurring after the sample atoms have left the neutron 

flux. Prom the transport characteristics developed in the 

next section a modification of the ratio is given by another 

differential equation in R, where R is the ratio of radioac­

tive to parent atoms at the time the vaporized sample enters 

the ion source. This differential equation is 

{40) 



\Jhere T 12 the re :c; p on~:>e time of pre :.o0u:r•e at t,le i on source 
to a cha nge i n pre:::>._:ure a t r ad iaticm volume , sec 

Td = tran ~ port lag from the radiation volume to the 
ion source, sec , and 

R = ratio of number of radioactive to parent atoms 
at the i on source. 

-ATd The term, e , is the exponential decay of tne radioactive 

portion after leaving the reactor. Tni s transport lag is a 

function of the molecular weight of the sample and the rate 

at which the sample is being vaporized. The molecular weight, 

of course, is constant for a given sample except for the 

radioactive atoms which are one mas s unit heavier than the 

parent atoms. The rate of flow varies no more than 2 to 1, 

since the ion source for the isotope separator will not 

operate over a greater range of flow variation. The result is 

that this term is nearly a constant for a given sample. 

2. Dynamics of sample transport 

The irradiation of a solid sample, depending upon its 

vapor pressure to transport it to the ion source, requires 

that the rest of the transport line through which the vapor 

is passed be above the temperature that would allow plating 

out at the sample vapor pressure. The loop from the irradia­

tion chamber to the inlet of the ion source will be kept 

at a constant temperature above that necessary for the con­

trol range in vaporizing the sample. Typical operating 
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temperatures range from 300°0 to 675°0 to allow the proper 

vaporization rate for some of the rare earth chlorides and 

metals expected to be used. The control range of the tempera­

ture is .from 20°0 to 30°0 -to provide the proper range of .flow 

rates to the ion source .for a given sample. This range of 

operation vaporizes from 7 x 1014 to 1.5 x lol5 atoms/sec 

typically for the size samples expected. Table 1 lists infor­

mation for some specific compounds to be used. The sensi­

tivity of vaporization to temperature, the minimum operating 

temperature and the range of operation necessary to provide 

the desired atoms per second at the ion source are listed. 

The variation of the vaporization rata of a sample with 

temperature is exponential. However, over the small tempera­

ture range of operation, the approximation that it is incre­

mentally linear is very good as can be seen in Figure 16, 

showing the calculated vaporization rate versus temperature 

for Gd013• The range of operation required in the ion source 

of the mass isotope separator is indicated in the figure. 

The sample transport dynamics divide naturally into two 

parts, the vaporization of the sample from the solid and the 

transport of the vapor to the ion source. The rate of vapori­

zation of the sample is controlled by the rate at which power 

is put into a heater surrounding the sample being irradiated 

in the reactor. There is a lag between t he application power of 

the heater and the transfer o.f the heat into the sample whioh 
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Table 1. Vaporization characteristics of sample compounds 

Compound 

YC13 

NdC13 

Sm012 

EuCl3 

GdC13 

DyC13 

Er013 

Y6c13 

LuCl3 

Eu (metal) 

Tsm, 
Minimum 

operating 
temperature 

(oC) 

501 

672 

431 

487 

612 

613 

. 563 

666 

660 

317 

K8, 
Incremental 
vaporization 
sensitivity 

(atoms/0 0) 

2.45 X 1013 

2. 4o X 10l3 

1.80 X 1013 

2. 55 x 1o13 

2.55 x lo13 

2. 90 X l0l3 

2.20 X 10l3 

2.50 X 1013 

3.00 X l0l3 

2. 50 x lo13 

6Tsm, 
Operating 

temperature 
range 
(oC) 

12 

13 

30 

21 

21 

18 

25 

22 

18 

22 

raises its temperature. An ideal example was solved for heat 

transfer in the case of an infinitely long cyl~nder of 

Europium metal, that is, assuming no heat flow along the 

cylinder. An initial equilibrium temperature was established 

at the cylinder wall and all temperatures w1 thin the cylinder 

were assumed to come to this same temperature~ The surface 

of the cylinder was then given a step in temperature. The 

plot in Figure 17 shows the change of temperature within the 

cylinder as a function of cylinder radius and time for any 
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material w1 th the diffusi vi ty of Europium metal. L1 ttle exact 

information is available on the diffusivity of the rare earth 

chlorides. However, in general their d1ffusivities are 

reduced about a factor of · 20 from that of the metals. Thus, 

they would have a similar shape, but a factor of 20 times each 

of the time values shown. It would be desirable to build a 

sample heater arrangement to investigate these properties for 

proposed samples. This has been done for the flow system as 

Will be explained. 

If it is assumed that the vaporization will occur from 

the top millimeter or so of surface, i.e., that the vaporiza­

tion is mainly a surface phenomenon, then it appears that a 

first order time lag will describe the vaporization as a 

function of sample heater power. In differential equation 

form this becomes 

dATs(t) 
----- = (41) 

dt 

where ATs = incremental variation of sample temperature at 
operating temperature levels, 0 0, 

APH = incremental variation of sample heater power at 
operating power levels, watts, 

T6 = time constant of the temperature change from a 
change in heater power, sec, and 

1:6 = effect of sample heater power on sample tempera-
ture, 0 0/watt. 

In order to relate APH to the measurable parameter AIR, the 
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incremental heater current change, the heater resistance in 

the operating range is assumed to remain constant at RH. Then 

where IHm = minimum operating heater current, amps, and 

RH = operating resistance of heater, ohms. 

The transport of the sample from the point at which it 

is a vapor into the transport line and to the ion source inlet 

is complicated. The pressures and the rates of flow involved 

cover a region that is partially laminar flow and partially 

flow by molecular diffusion. Thus, it is difficult to calcu­

late and provide an accurate mathematical model of this part 

of the system. To provide a reasonable mathematical model, an 

experimental arrangement was set up using gas flow instead of 

vapor to study the dynamics. The results indicate the trans­

port lag is in the range from approximately 0.3 seconds to 1.5 

seconds, and the first order time constant which fairly well 

represents the system behavior ranges from approximately 0.5 

seconds to 1.5 seconds, both .numbers var.ying with the molecular 

weight of the gas. This results in a differential equation 

describing the dynamics of the flow as 

(43) 
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= incremental pressure at the ion source inlet, 
microns, 

incremental temperature variation of sample at 
operating levels, 0 0, 

= the time constant of response of the pressure 
at the ion source for a change of temperature 
of the sample, sec, 

= effect of sample temperature on pressure at the 
ion source, micron/ 0 0, and 

Td = transport lag, sec. 

3. Dynamics of !!!! isotope separator 

The ion source of the isotope separator has five varia­

bles that effect the total isotope current received at the 

target of the separator. These variables are ion source fila-

ment current, ion source magnet current, focus voltage, 

extraction voltage, and the rate at which sample is being 

inserted in vapor or gas form into the source. One of these 

variables, the sample flow rate, is already varying according 

to the sample vapor created back in the reactor experiment 

location. The speed with which the flow rate changes is quite 

slow compared to the speed of the other variable responses in 

the isotope separator. Of these variables, experiments show 

that the ion source filament current varies the total isotope 

separator current over a wider range than any of the other 

variables without affecting other system conditions. 

A family of curves plotting total isotope separator 

current versus ion source filament current for various con-
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stant values of sample flow into the ion source (in terms of 

pressure) allows evaluation of the constants K1 and K2 which 

relate filament current and pressure inlet to isotope total 

current flow in the separator. This family of curves shown 

in Figure 18 can be used with the same analytical techniques 

commonly used with curves of triode vacuum tubes. The desira­

bility of incremental variables up to this point then becomes 

apparent. The incremental inputs ~Ps and ~If can be used in 

direct computation for an incremental change in total isotope 

separator current ~It. Thus, 

where 

~It(t) = K1~If(t) 
~It 

K1 = (---) - constant, 
~If Ps -

( ~It) t t = cons an , 
~Ps If 

(44) 

~If = incremental ion source filament current, amps, 
and 

~It = incremental isotope separator total current, amps, 

and the constants K1 and K2 are determined from the family of 

curves in Figure 18. For the range of operation acceptable to 

the ion source, the approximation that K1 and 12 are constant 

instead of variable is a good one. It should be noted that 

there is a response time of about one-half second for the 

effect on isotope separator current of a change in ion source 

filament current. This is considered negligible compared to 

other time constants in the system and is thus disregarded. 
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-

FILAMENT CURRENT- AMPS 

Figure 18. Experimental curves from a mass isotope 
separator showing relation among variables. 
Dotted line indicates expected normal curve 



i\ t this point i n the developmeut of t[le :-;y ::; t em equations _, 

a departure from i r:crer,·,e r; tal varia ble del;criptiorJ ;:;; i ..; des i ra -

ble ;:; ince ti1e final equation uill dete rmi ne ;'1ov.J nany a toms of 

the total isotope sepa r ator beam are radioactive and the num-

ber of the s e decaying eaci1 seco1-:,d . T;ms _, t he total beam cur-

rent i s 

where It = total isotope separator current_, amps 

Itm = minimum desired operating isotope separator 
current, amps. 

In terms of the two ·variables already described, then 

(45 ) 

(46) 

which completes the dynamics for the mass isotope separator. 

4. Combined dynamics at the target 

The total number of atoms of the sample arriving per 

second at the target of the mass isotope separator has been 

determined, and the ratio of radioactive to total atoms in 

this beam as a function of time has also been described. The 

pertinent information is the product of these two since - it is 

desired to control the number of radioactive atoms per second 

arriving at the target. Thus 

(47) 
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where IR = radioactive atoms/sec arriving at target. 

If the number of radioactive atoms on the target at any one 

time is NT, then the differential equation describing the rate 

of change of NT with time is just the rate at which they are 

arriving on the target less the rate at which they are decay-

ing. Thus, 

(48) 

where K10 = 6.3 x 1018 atoms/amp. 

Finally, the desired output of the system is an average decay 

rate which is just the number of radioactive atoms on the 

target at any time times the decay constant. Thus, 

= decay rate of the radioactive atoms from the 
target, disintegrations/second. 

Making the substitutions of D into the differential equations a 

for NT results in the following differential equation for the 

decay rate as a function of the other variables. 

dDa(t) 
-a-t-= 

This completes the set of differential equations which wi~l be 

used to mathematically approximate the system. The equations 



are listed here again for easy reference. 

d~ttl = - A N(t) + aMT¢(t) 

dR(t) = 
dt 

d6Ts(t) 
-~-= dt 

K 
= - _!_ 6p (t) + _!g 6T (t - Td) 

T 12 S T 12 S 

(39) 

(40) 

(41) 

(43) 

= - A Da (t) + AK10R(t) [ Itm + K16If(t) + K~Ps(t)] 
(50) 

where the following interrelations are noted: 

6It(t) = K16If(t) + K2Aps(t) 

6PH(t) = R~I~(t) + 2IHmRHAig(t) 

(46) 

(44) 

(42) 

These differential equations can also be represented in 

block diagram form using Laplace transforms. This is shown in 

Figure 19. Due to the nonlineari ties present-, particularly 

the product, R(t)It(t), of two time varying functions, it is 

difficult to design a control system directly using this form 

of the block diagram. Nevertheless, the process described in 
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this form is useful for certain control concepts. 

C. Solution for System Equations 

The set of differential equations derived to describe 

the process has both nonlinear relations and transport lags 

between some of the variables. Some of the individual equa­

tions, however, are either linear or incrementally linear over 

the range of operation. These equations are those that occur 

first in the space separation of this type of process and thus 

are unperturbed by variables occurring further along in the 

process. The process of generating the mathematical model of 

this . system has shown that some of the equations can be solved 

independently of the others. Nevertheless, in the interest of 

generality, the equations will be investigated as a set of 

equations to show how the sequential solutions evolve. 

The set of differential equations developed in Section B 

can be placed in matrix form which tends to make certain 

mathematical manipulations easier as well as making it easier 

to see such things as nonlinearities and time-varying coeffi­

cients. The form of the matrix necessary to represent this 

system 1s 

x<t> = A(x, t>x<t> + B(x, t)x(t - Td) + u(t) (51) 

where xi(t) is the typical state variable at time t, A and B 
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are time-varying nonlinear coefficient matrices, and u(t) 

contains the time-varying driving functions. Using the varia­

ble designations already adopted, the form of the fifth order 

system describing the plant in matrix form is 

+ 

N(t) 

~Ts(t) 

~Ps (t) 

R(t) . 
Da(t) 

-).. 0 

0 -.l.. 
"'6 

0 0 

0 0 

= 

0 

0 

l --
"'12 
0 

0 0 [ )..KlOK12R ( t) J 

0 0 0 0 0 

0 0 0 0 0 
K12 

0 
"'12 

0 0 0 
-)..'T'd e 0 0 0 0 

M"'12 
0 0 0 0 0 

(52) 

0 0 N(t) 

0 0 ~T8 (t) 

0 0 ~Ps (t) 

-..L 0 R(t) 
"'12 

[)..KlO (Itm+Kl~If(t) J -).. Da(t) 

N(t - "'d) aM ¢(t) 

~Ts(t - "'d) ~ ~PH(t) 
"'6 

~Ps(t - 'T'd) + .. 0 

R(t - 'T' d) 0 

Da(t - "'d) 0 

The element a 53 shows nonlinearity with two of the state 

variables multiplied together. The element a 54 indicates a 

time-varying coefficient since one of the inputs is multiplied 

by one of the state variables. The element b32 indicates that 
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a transport lag is involved with the determination of one of 

the state variables. The element b41 indicates both transport 

lag and the time variation of Td in determining one of the 

state variables. 

The first two equations in the matrix are not functions 

of the last three state variables, since there are 2 x 3 

blocks of zeros in the upper right hand corner of both the 

coefficient matrices, A and B. Thus, these two equations can 

be separated from the other three resulting in the formation 

of two matrices, a process referred to as uncoupling. 

matrices then are 

• N(t) aM ~(t) N(t) -A 0 . = 1 
+ ~ ATs(t) 0 -- ATs(t) T APH(t) 

T6 6 

and 

1 -- 0 

- ....L = 
T12 

The two 

(53) 

0 APs(t 

0 R(t) 
• 
Da(t} [l.X10K1~(t)] ( AK~0 (Itm+K1Aif.(t) ] -l. Da(t) 

K 
...l,g AT (t - Td) 
Tl2 S 

-ATd 
+ M N(t - Td) 

T12 

0 

(54) 

It is necessary to solve the 2 ~ 2 matrix in Equation 53 first 
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and then substitute values for 6Ts(t - Td) and N(t - Td) into 

the matrix in Equation 54 as driving functions. This is 

reasonable since they are now known values not unknown varia-

bles. 

Further examination, of course, shows that these two 

resulting matrices can again be broken apart or uncoupled 

again requiring the solution of one equation and substituting 

the result into the next before it can be solved. This results 

in a step by step solution of one equation at a time for this 

fifth order system of differential equations.. The complicat­

ing problem is that the solutions of each of the equations 

becomes more and more complex as the time-varying driving 

functions accumulate from one equation to the next. 

The sequence is as follows: 

1. Solve the first two equations for N(t) and 6T9 (t) by 

substituting in the driving functions ¢(t) and 6PH(t) respec­

tively. These are ordinary differential equations which can 

be solved by any of the usual techniques for these types of 

equations once the driving function is known . 

. 
N(t) = -A N(t) + ~M ¢(t) (55) 

K 
6Ts(t) = - JL 6Ts(t) + _£ 6PH(t) 

T6 T6 
(56) 

2. Using the solution of 6Ts(t), determine 6T8 (t- Td) and 

substitute as a driving function into the third differential 

equation, 
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K 
= - _l_ ~p (t) + _lg ~T (t - Td) 

Tl2 S Tl2 S 
(57) 

3. Using the solution of N(t), determine N(t- Td) and 

substitute as a driving function into the fourth differential 

equation, 

. 
R(t) = 

-ATd 
_l_ R(t) + ~ N(t - Td) 
T 12 Tl2 

(58) 

4. Using the solution of aps(t) and R(t) from parts 2 and 3 

above, substitute into the last differential equation as 

driving functions 

The solution of the last equation then gives the variation in 

the decay rate of the radioactive isotope from the target of 

the mass isotope separator. This decay rate varies with the 

three inputs ¢(t), IH(t), and If(t) of which the latter two 

are available for control variation by the control system. 

This process is an example of the type discussed in 

Section III-C. The process is described by a set of nonlinear 

differential equations with time-varying coefficients. The 

nature of the process, where an entity starts at one end of 

the system, passes completely through the system, and then 

disappears, is such that the nonlinear system can be uncoupled 

into pieces that in smaller sections behave as a linear system. 
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D. System Control 

The design of the system for this experiment is an 

optimum control problem similar to that described by Tou {19). 

The control policy or law for the optimum control system is 

the sequence of inputs, {m{i)}, i = 0, 1, 2, ···, N- 1, which 

minimizes the expected value of a performance index subject to 

Equation 18 for any arbitrary initial state x(t0 ). The per­

formance index for this experiment is given as 

{60) 

where IN is the performance index that is to be minimized in N 

steps of the driving function inputs. The driving functions 

in this system can bring the performance index to a minimum 

within each step of the control system so N = 1. 

The development of the adaptive sampling design method in 

Section III gave no consideration to the problem of stability. 

According to Kalman and Bertram (10), stability ln a linear 

system depends only on the transition matrix (Equation 8) of 

the system. Stability cannot be brought about or destroyed by 

a particular choice of the initial state or the system input 

signal. A stationary linear system is stable if and only if 

every element of the transition matrix tends to zero as N 

tends to infinity where N is the number of t1me·s that the 

transition matrix is multiplied times itself. For a constant 
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transition matrix, a stationary linear system is stable if all 

roots of the characteristic equation of the transition matrix 

are less than unity. This condition is identical with the 

result that the poles of the z-transform of the input-output 

relations of the system must lie within the unit circle. The 

stationary transition matrix is obta i ned onl y where the 

pattern of the sampling operations repeats in a periodic 

fashion. 

The fifth order set of differential equations that 

describes t hi s sys tem i s a nonlinear set which cannot be 

analyzed with the elementary stability criterion described 

above. However, when the system is uncoupled and each equa­

tion is solved in sequence there are five linear first order 

transition matrices. Each of these are of the form, e-u, with 

the value of u being greater than zero in every case. This 

means that the scalar transition matrices all have values less 

than one and, since they are a stationary transition matrix 

within each mode of operation, the control system is claimed 

to be stable for any values of cross · section and half life of 

samples in the experiment. With these few comments the 

stability of the system will be given no further consideration 

as a part of this development. 

1. Multilevel control equations 

Two control driving functions are shown for the system in 

Figure 19. One of the inputs can be used as a course adjust-
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ment, making the fine adjustment by the second input a much 

simpler task. Other objectives also may be realized. The 

necessity of solving nonlinear differential equations may be 

eliminated. The error as.sociated w1 th the approximation of 

the prediction of the output states may be reduced. The 

matrix form of the fifth order system describing the plant is 

given in Equation 19. One of the nonlinearities here is 

indicated by element a 53 where two state variable R(t) and 

Aps(t) are multiplied together. This product is the ratio of 

radioactive to non-radioactive atoms times the pressure of the 

vapor at the inlet to the ion source. Since the pressure at 

the outlet of the ion source in the isotope separator is 

negligible compared to the ion source inlet pressure, the 

inlet pressure, Aps, is incrementally proportional to flow. 

The product is incrementally proportional to the number of 

radioactive atoms flowing into the ion source per second. 

Since the purpose of the control system is to maintain con­

stant the number of radioactive atoms arriving at the target 
" 

of the isotope separator, the possibility of making constant 

the number of radioactive atoms per second flowing into the 

ion source is quite attractive. 

The block diagram of the experimental system dynamics 

shown in Figure 19 shows an interesting relationship between 

the· product of the two state variables R and Aps and the 

product of the two state variables N/M and AT8 • Since N/M and 



aTs are both modified by the transport lag and time constant 

of the transportation of the vapor from the sample chamber t;; 

the ion source, their products would be proportional to 

of R and aps if the decay of the radioactivity indicated by 

the term, e-A~d, is either constant or negligible. Since the 

transport lag has been measured experimentally and found to be 

no greater than 1.5 seconds in the worst case, the minimum 

half life of 15 seconds makes the decay between the reactor 

and the ion source negligible. In addition, the transport lag 

is likely to vary no more than a factor of three for the range 

of molecular weights in samples to be run in the experiment. 

The product aTsN/M is incrementally proportional to the 

number of radioactive atoms per second being vaporized from 

the sample, just as R6ps is incrementallY. proportional to the 

rate of arrival of radioactive atoms in the ion source. Since 

the control driving function, 6PH, varies the number of atoms 

per second being vaporized from the sample, the first control 

loop can now be defined. From the measured value of the 

sample temperature and the calculated value of the number of 

radioactive atoms in the sample a prediction can be made using 

the approximation equations developed earlier. The product of 

the two predicted values can be held nearly constant by chang­

ing the value of the sample heater current. In addition to 

the approximation error for the state variable N/M there is a 

small but finite time required for the calculations after the 
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measurement of the state, 6Ts. This delay can be as small as 

10 milliseconds and as large as 500 milliseconds depending on 

the program and the availability of the computer. Since 

sample times for control will range from about 5 seconds apart 

to more than 30 seconds apart, the computational delays will 

produce small errors. 

Since the transport lag from the sample to the ion source 

is so short compared to the half life of any sample to be used, 

a good approximation is that 

R(t) ~ ~ (61) 

With this approximation the block diagram for the control loop 

defined in the last paragraph is shown in Figure 20. 

The fine control can be defined by examining Equation 59. 

Using the approximation of Equation 61 and noting that the 

product of the two state variables is now a constant, the 

equation .becomes 

where 

(63) 

Equation 62 can be shown in an equivalent block diagram form 

in Figure 21. The control of the ion source filament current, 

6If, is carried out identically to that of 6PH of the first 
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control loop. 

These two control loops fix the control system. The 

control equations require the prediction of approximate solu­

tions for the output states of N/M and Da and of exact solu­

tion of the output state, 6Ts, in terms of the input current 

to the sample heater, 6IH. These results are shown in the 

following equations. 

~(tk+l) = e -).T ~(tk) + ~(1 - e-AT)¢(tk) (64) 

Da(tk+l) 
-AT [ . N = e Da(tk) + Klo ~Ps(tk)M(tk) 

(65) 

+ ~(tk) (K16If(tk) + Itm>] (1 - e-AT) 

6Ts(tk+l) 
-T/T6 

+ K6L\PH( tk)( 1 -
-T/T6 

= e 6Ts(tk) e ) 
(66) 

Using these equations together with the block diagram required 

values can be obtained for 6PH(tk) and Aif(tk) in terms of the 

set points, Rd and Dd, the measured and calculated values of 

the present states, the predicted value of the state of N/M, 

and known constants. These results are obtained by straight­

forward algebra. The required values of 6Pa(tk) and 6If(tk) 

to keep constant both the number of radioactive atoms per 

second vaporized in the sample and the number of radioactive 

atoms per second decaying at the target are obtained as 

follows: 
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(67) 

Since 

(68) 

the control equation for the first loop is obtained by combin­

ing Equation 66, 67, and 68 and solving for APH(tk)req. 

Rd 
APH(tk)req. = ------~T_,/_r6_N __ _ 

K6K8 ( 1 - e )M( tk+l) 

-T/r6 
e ATs(tk) 

(69) 

-T/-r6 
K6 (1-e ) 

First, ~(tk+l) must be predicted and the Equation 69 must be 

calculated. 

For the second loop, the control block diagram indicates 

(70) 

which together with Equation 65, gives 

(71) 

Solving for the required Air(tk) to make Equation 71 valid 

gives the control equation 
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(72) 

2. Application £! adaptive sampling 

According to the adaptive sampling procedure the opera­

tion of the experiment is divided into classes according to 

sampling requirements. The first step is to determine the 

types of waveforms that can be expected as inputs to each unit 

block. The second step is to select the design curves from 

Section III-B-2 according to the expected input and to the 

measurability (accessibility or inaccessibility) of the output 

state. The graphs are used to estimate the error caused by 

the approximation of the predicted output state by piecewise 

constant inputs if the input is time varying during the sample 

interval. Since controlled inputs are held constant during a 

sample interval, they can be predicted exactly for an accurate 

mathematical model. Errors due to the approximated mathemati­

cal model in the system and to unrepresented disturbances that 

might occur in the system can also influence the choice of 

sample rate. 

The physics experiment control system has been divided 

into five modes of operation. The considerations and require­

ments for entering and leaving each mode, the calculations and 

measurements required for each mode and the error investiga­

tion to establish the sample period for measurement and 
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control are discussed in the following sections. 

a. Preliminary Operating Mode Conditions required 

for operating in this mode are that (1) the maximum number of 

radioactive atoms per second being vaporized from the sample 

at maximum permissible sample temperature is less than the 

desired Tate for taking data in the experiment and (2) the 

measured neutron flux is less than 0.1 per cent of that 

obtained at the sample for full power reactor operation. The 

first condition indicates that no dynamic control is necessary 

in this mode. The second condition assures that no calcula-

tions are necessary since the buildup of radioactivity in the 

sample is negligible compared to that at full power operation. 

The only measurement necessary in this mode is that of the 

neutron flux. 

The sample period for this mode is chosen to fulfill the 

requirement that the neutron flux not be allowed to go signif­

icantly higher than 1 per cent of full power without being 

able to switch to the next mode. The reactor normally will go 

up in power on a positive exponential during a normal startup 

at no faster than a 50 second "period," i.e., 'f'p = 30 seconds. 

The power can go up a factor of 10 between samples and still 

meet the required specification. The sample period need be no 

shorter than 90 seconds to satisfy this requirement. Since 

this is a trivial computation time for the computer, making 

the sample period some smaller number, such as 30 seconds, 



might be desirable. The mode is shifted to the Startup Mode 

when the neutron flux is found to be greater than 0.1 per cent 

of that of full reactor power for a given sample. 
\ 

b. Startup ~ Conditions required for operating in 

this mode are that (l) the maximum number of radioactive atoms 

per second being vaporized from the sample at maximum permis-

sible sample temperature is less than the desired rate for 

taking data in the experiment and (2) the measured neutron 

flux is greater than 0.1 per cent of that obtained at the 

sample for full power reactor operation. The first condition 

indicates that no dynamic control is necessary in this mode. 

The second condition indicates that calculations are necessary 

to allow keeping track of the number of radioactive atoms 

generated in the sample by the neutron flux. The only measure-

ment necessary in this mode is the neutron flux. 

The ratio of radioactive to non-radioactive atoms in the 

sample is calculated by using Equation 64. A constant has 

been previously calculated in the computer for the number of 

atoms per second vaporized when the sample is at the maximum 

permissible temperature. When this constant is multiplied by 

the results of the first calculation and then is compared to 

the desired number of radioactive atoms per second for the 

given experiment, a decision can be made whether or not to 

take data. 

The sample rate in this mode depends on the error that is 
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acceptable in the calculation of the ratio of radioactive 

atoms to non-radioactive atoms in the sample. This output 

state is inaccessible, and the input is time varying between 

sample periods. The maximum positive exponential period 

expected is still 50 seconds as indicated in the Preliminary 

Operating Mode. For an example, a sample with a radioactive 

half life of 15 seconds has Tl = 15 seconds, TP = 30 seconds 

and T1/TP = 0.5 with an acceptable error being 10 per cent. 

The design graph for this group of parameters is found in 

Figure 10. From the graph the ratio T/T 1 is found to be 0.64 

fo·r this case. Solving for T, the sample period is found to 

be 19.4 seconds. For a second example, a sample with a radio­

active half life of 1000 seconds has Tl = 1000 seconds, Tp = 
30 seconds and T1/TP = 33 with an acceptable error still being 

10 per cent. The design graph for this group of parameters is 

found in Figure 11. Prom the graph the ratio T/T1 is found to 

be 0.02 for this case. Solving for T, the sample period is 

determined to be 20 seaonds. The similarity of the sample 

periods for the same inputs does not always hold true, since 

the shapes of the curves vary. The error of 10 per cent is a 

maximum value and holds as long as the reactor is on the 30 

second period. As the reactor period becomes longer the error 

is reduced until at level reactor power the error will disap-

pear. 

The mode is shifted to the Transient Two Level Control 



l\Tode i f or ':Then t1·1e radioactive D.ton:.:.> per ::3es or.::l beinc; 

vaporized are ;:; ufficient in number t o take d.-::ta . T,1 e mode i s 

:::;hifted back to the Prelimina ry Opera tins f'i;)de if the numcer 

of radioactive atoms being vaporized i 3 inGufficient and if 

the reactor power drops below 0 .1 per cent of full power. 

c. Transient Tr:JO Level Control filode Conditions 

required for operating in t hi s mode are that (1) the number of 

radioactive atoms per s econd being vaporized from t he sample 

is sufficient to allow data to be taken for a sample tempera­

ture within normal operating limits and ( 2) the calculated 

value for N/M is more than 3 per cent higher or lower than t he 

saturated activity at the measured neutron flux. This mode of 

operation requires control for the mo s t dynamic condition of 

the experiment. The neutron flux may be varying and the 

radioactivity in the sample has not built up to saturation 

level. The measurements required for use in the calculations 

are the neutron flux, the incremental sample temperature, the 

incremental sample heater current, the incremental pressure at 

the ion source inlet, the incremental ion source filament 

current, and the decay rate of the radioactive atoms at the 

separator target. 

The control block diagrams used in this mode are those 

shown in Figures 20 and 21. The calculations are those shown 

in Equations 64, 69, and 72 and any conversions necessary to 

transmit the correction to the experiment in a proper form. 
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Two specific inputs of the neutron flux variation with 

time will be considered, the same positive exponential input 

used in the first two modes and the effect of moving control 

rods into the reactor for ·fifty seconds creating a ramp in the 

neutron flux with a slope of 1 per cent/second. The exponen­

tial increase results in the same error as found in the 

previous modes assuming the error of 10 per cent is still 

satisfactory. For the half life of Tl = 15 seconds the sample 

period was found to be 10.4 seconds. The design graph for use 

with the ramp input ls found in Figure 2. T:tlis graph is used 

by picking a value of sample period and finding the deviation 

resulting. For convenience the period is chosen as 19.4 

seconds to see if the deviation gives a greater error than the 

exponential signal did. The ramp will last . for 50 seconds 

which is less than three sample periods. The amplitude devia­

tion/T for t = 3 and T/T 1 = 0.64 is found to be 0.45. The per 

cent error compared to the initial amplitude of unity is given 

by 

Per cent error = ain x 100 

Using the parameters above gives 

Per cent error= 0.45 x 19.4 x 0.01 x 100 = B.?% 
1 

This is no greater than the error caused by the positive 

exponential so is consistent for the original requirement for 
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an error of less than 10 per cent. 

The mode is shifted to the Transient One Level Control 

Mode if or when the calculated value of N/M deviates less than 

3 per cent from the saturated value at the measured neutron 

flux. The mode is shifted back to the Startup Mode if there 

are insufficient radioactive atoms with which to take data. 

d. Transient~ Level Control~ Conditions 

required for operating in this mode are that (l) the neutron 

flux must not change more than 5 per cent from that when the 

mode was entered and (2) the ion source fil~ent current must 

be in a proper operating range for control. The latter 

requirement is implicit in all modes of operation using con­

trol but is emphasized here since any variation in N/M due to 

change in neutron flux now must be corrected by the ion source 

filament current, instead of through changing the sample 

heater current. This mode has less dynamic range of operation 

than the previous one since the time history of the neutron 

flux and the buildup of radioactivity in the sample has become 

reasonably stable. The measurements required for use in the 

calculations are the neutron flux, the incremental pressure 

at the ion source inlet, the incremental ion source filament 

current, and the decay rate of the radioactive atoms at the 

separator target. 

The control block diagram used in this mode is that shown 

in Figure 21. The value of C can now be time varying over a 
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small range of operation since control is no longer being 

maintained in the control loop shown in Figure 20. The 

calculations are those shown in Equations 64 and 72 and any 

conversions necessary to transmit the correction in an 

appropriate form to the experiment. 

The neutron flux does not vary significantly in this mode 

of operation so approximation errors are small. There can be 

small, step inputs of neutron flux for slight repositioning of 

control rods for shimming purposes. Any change of neutron 

flux greater than 5 per cent will shift operation out of the 

mode. The control provides the last trimming of operation as 

the experiment and reactor are coming into a stable, steady 

state operation. The mode is shifted to the Transient Two 

Level Control Mode if the neutron flux varies more than 5 per 

cent from that flux with which the mode was entered or if the 

ion source filament current reaches the limit of its operating 

range. 

e. Monitor Mode The reactor and the experiment may 

reach a very stable mode of operation requiring little or no 

correction in the experiment control to maintain satisfactory 

experimental conditions. If this condition occurs the com­

puter should not be called upon to make calculations that are 

no longer required. If the graphs were used to calculate 

errors from expected deviations, the sample period would turn 

out to be very long. Disturbances or changes 
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samples become a distinct possibility. The occurrence of such 

changes early in the sample period could cause considerable 

deviation before the next sample measurement. 

The Monitor Mode is operated by a function of the 

computer referred to as a Clock Interrupt. The Clock Inter­

rupt is an automatic callback for quick interrogation of 

experiment conditions requiring very little calculation time 

at regular periods of time. These clock periods start at 12.8 

milliseconds and are available at other longer periods. This 

shorter sample period would perform no control but would check 

the values of the three most critical variables, the neutron 

flux, the total isotope separator current and the decay rate 

of the radioactive nuclides at the isotope separator target. 

Any significant drift from their values when the Monitor Mode 

was entered will cause the operation to shift back either to 

the Transient One Level Control Mode or the Transient Two 

Level Control Mode, depending on which mode is required. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

The design curves from this study provide a means for 

design of effective control for an experiment and at the same 

time assist in making efficient use of a digital computer 

shared by other experiments. The state variable technique is 

used as both a design method for obtaining the design curves 

for adaptive sampling and for predicting the state for the 

control of the system. The ease with which the state variable 

technique accommodates changing sample intervals shows why the 

technique is able to unify examination of non-uniform, aperi­

odic, and constant interval sampling methods. The method of 

adaptive sampling developed here is shown to be easily applied 

whether the states of the process are measurable (accessible 

states) or not measurable (inaccessible states). 

An interesting and useful characteristic is demonstrated 

for process systems which have particles or components that 

originate at the input of the process, are carried through the 

process in space and time and finally are expelled from the 

process never to return. These processes are commonly 

described by a set of nonlinear differential equations with 

time-varying coefficients. Solving this set of equations 

simultaneously is both a long and difficult task. For pro­

cesse s with thecharacteristics described above 1 this set of 

nonlinear differential equations can be uncoupled and the 
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resulting sets solved in sequence. In the experiment on which 

the adaptive sampling is demonstrated the set of uncoupled 

equations proves to be a set of i ndivi dual fir s t order differ ­

ential equations tha t are lir:ear . 

System control can be changed in the digital computer by 

merely replacing the program stored in the computer, demon­

strating one of the major advantages the digital computer has 

over an analog system designed to provide the same control. 

If the required control program is already stored in the com­

puter, the control system can be changed in a time that is 

short compared to the time constants of the process. The 

stored programs can be changed to new programs with a minimum 

of time and effort when the experiment is changed. The pre­

stored program potentially provides a wide dynamic range for 

a given process that seems highly unlikely to be accomplished 

even by an adaptive analog control system. 

Further development of the adaptive sampling technique is 

desirable. A more sophisticated method can be developed for 

making the decision to change from one mode to another. The 

method here uses the magnitudes of the .state variables and the 

inputs to the process for mode switching decisions. The 

derivatives of each state are available with little additional 

calculations. The rate of change of the state variables would 

give an added anticipation of a need for greater attention 

from the computer. The development of the combination of 
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clock interrupts for monitoring and experimental interrupts 

for control appears to be one of the most fruitful areas for 

further development. A good balance between these two func­

tions could reduce even · further the demands on the digital 

computer by a process with given control specifications. The 

investigation of stability was mentioned only briefly. 

Stability and optimum control studies open wide the avenues 

of research using the techniques discussed here. 
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