
A Systematic Way to Extend the Debye-Hückel

Theory Beyond Dilute Electrolyte Solutions

Tiejun Xiao† and Xueyu Song∗,‡

†Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou

Synergetic Innovation Center of Scientific Big Data for Advanced Manufacturing

Technology, Guizhou Education University, Guiyang 550018 People’s Republic of China

‡Department of Chemistry and Ames Laboratory, Iowa State University, Ames, IA 50011

E-mail: xsong@iastate.edu

1



Abstract

An extended Debye-Hückel theory with fourth order gradient term is developed for

electrolyte solutions, namely the electric potential ϕ(r) of the bulk electrolyte solution

can be described by ∇2ϕ(r) = κ2ϕ(r) + L2
Q∇4ϕ(r), where the parameters κ and LQ

are chosen to reproduce the first two roots of the dielectric response function of the

bulk solution. Three boundary conditions for solving the electric potential problem are

proposed based upon the continuity conditions of involving functions at the dielectric

boundary, with which a boundary element method for the electric potential of a solute

with a general geometrical shape and charge distribution is derived. Solutions for

the electric potential of a spherical ion and a diatomic molecule are found and used to

calculate their electrostatic solvation energies. The validity of the theory is successfully

demonstrated when applied to binary as well as multi-component primitive models of

electrolyte solutions.

1 Introduction

Mean field theories for electrolyte solutions or ionic fluids in general have been widely used in

solvation and crystallization processes,1–4 surface tension calculations5–8 and electron trans-

fer processes.9–12 A major challenge in the theory of electrolyte solutions is to answer how

an electrolyte solution is polarized by a charged solute. Nowadays it is well known that an

ion is perfectly screened by the electrolyte solution as indicated by the Debye-Hückel (DH)

theory.13 The DH response equation for the electric potential ϕ(r), which is also known as

linearized Poisson-Boltzmann equation, reads ∇2ϕ(r) = κ2
Dϕ(r), where κD is the inverse

Debye length and ∇2 the Laplacian. According to the DH theory, the electric potential of a

point charge satisfies the Yukawa form as ϕ(r) = q
εs
e−κDr

r
. One important feature of the DH

theory is the existence of a boundary element method for a solute with general geometry

and charge distribution, which can reduce the original three dimensional electric potential

problem to a two dimensional electric potential problem on the molecular surface.14–16 Such

2



a property renders the DH theory especially useful for studying the electrostatic interaction

between complex biomolecules in an electrolyte solution.17–20 On the other hand, the lin-

earization of the Poisson-Boltzmann equation relies on the weak coupling assumption, hence

the application of DH theory is limited to dilute electrolyte solutions.20,21

There are various efforts to understand the screening effect of electrolyte solutions and

why the DH theory fails for concentrated electrolyte solutions. According to the rigorous

analysis from statistical mechanics, the electric potential of an ion undergoes a transition

from simple exponential decay to oscillatory decay as the electrostatic coupling of the solution

varies from weak to strong.22–25 Such an effect is known to originate from the competition

between the local packing effect and the long ranged Coulomb interaction.26–28 Kjellander

and coworkers developed a dressed ion theory based on a rigorous charge renormalization

process of the Poisson-Boltzmann equation, where the electric potential can be casted into

a DH-like form ∇2ϕ(r) =
∫
B(|r − r′|)ϕ(r′)dr′ + 4π

ε0
ρ0(r), where B(r) is a local response

function of the bulk solution and ρ0(r) is an effective charge density of the solute.29–31 Such

a result can also be obtained from the dispersion relations of Maxwell equations32,33 with a

microscopic model of electrolyte solutions. In the dilute limit, the dressed ion theory reduces

to the DH theory as ρ0(r) = qδ(r) and B(r) = κ2δ(r). According to the asymptotic analysis,

the dressed ion theory leads to multi-Yukawa electric potentials for concentrated electrolyte

solutions, namely, ϕ(r) ∼
∑

l

q∗l e
−klr

εlr
, where q∗l is a renormalized charge, εl is an effective

dielectric constant. The decay parameters {kl} are determined by the roots of the bulk

dielectric function and become complex numbers in the strong coupling regime, hence the

oscillatory decaying potentials are naturally recovered. In practical applications, the decay

parameters of the electric potential in electrolyte solutions can be derived from the theory

of electrolyte solutions29,34–37 or measured from experiments,38,39 and hence can be used to

evaluate thermodynamic properties.

As a single Yukawa potential is the solution of the DH response equation, a multi-Yukawa

potential from rigorous analysis motivates us to build a multi-DH response theory for concen-
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trated electrolyte solutions. In our previous work,33 the molecular DH theory is developed for

various models of electrolyte solutions, where the electric potential ϕ(r) of an ion splits into

a linear combination of individual modes, i.e., ϕ(r) =
∑

lBlϕl(r) and ∇2ϕl(r) = k2
l ϕl(r) in

bulk electrolyte solutions. The linear coefficients {Bl} can be determined in a self-consistent

way to reproduce the dielectric response function of the pure solvent. Such a prescription has

been applied successfully to various ionic fluids.40–44 As the molecular DH theory is mainly

developed for spherical ions and it remains an open question to deal with solutes beyond

spherical geometry.

In this paper, we developed an extended Debye-Hückel(EDH) theory which not only leads

to multi-Yukawa potential for spherical ions but can also be easily applied to solutes with

arbitrary geometry and charge distribution using boundary element method. Specifically,

a fourth order gradient term L2
Q∇4ϕ(r) is introduced to the dielectric response equation,

which will have two Debye screening lengths as a first step to a general solution with more

Debye screening lengths in a straight-forward manner. In order to uniquely determine the

electric potential, three boundary conditions are required and the corresponding boundary

element method is developed. Our theory leads to analytical electric potentials as well

as electrostatic solvation energies for a spherical ion and a diatomic molecule solute, and is

tested successfully against the mean spherical approximation (MSA) theory, the hyper-netted

chain (HNC) theory and molecular dynamics(MD) simulations of electrolyte solutions.

It should be emphasized that the goal of this work is not to develop a self-consistent theory

of electrolyte solutions, a worthwhile endeavor itself, but rather to extend the applicability

of the widely used boundary element method of electrostatics in biophysics to moderately

coupled electrolyte solutions.

This paper is organized as following: in section 2 the EDH theory of electrolyte solutions is

formulated. The excess thermodynamic properties for electrolyte solutions are also discussed.

In section 3 the EDH theory is applied to electrolyte solutions where direct comparisons with

MSA theory, HNC theory and MD simulations demonstrate the accuracy of our theory. Some
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concluding remarks are given in section 4.

2 Theory

2.1 Model description of the primitive model of electrolyte solu-

tions

The restricted primitive model of an electrolyte solution is taken as a mixture of ions with

additive hard spheres where a point charge at the center immersed in a dielectric continuum.

Cations and anions of the solvent have the same diameter σs and the same absolute charge

qs. In the field of physical chemistry, the concept of solvent is widely used to represent

the polar species of the solutions. As the polar species are not considered explicitly in the

restricted primitive model, hereafter the electrolyte solution itself is taken as the solvent and

a tagged molecule is taken as a solute. Denote kB as the Boltzmann constant, T as the

temperature, ns as the total particle number density and εs as the dielectric constant of the

dielectric continuum, the reduced inverse temperature is β = 1
kBT

, the Debye parameter is

κD =
√

4πβnsq2s
εs

.

A molecular solute with N sites is described by an interaction site model, where a site j

is a sphere with diameter σj and carries a point charge qj at point rj. Ω1 is the volume of

the solute, Ω2 is the volume outside the solute, and Σ is the molecular surface.

2.2 An extended Debye-Hückel(EDH) dielectric response model

and boundary conditions

In general, the dielectric function of a solvent can have many Debye screening lengths,29,33

but as a first step to develop a full theory of their dielectric response, we concentrate on the

two Debye screening lengths case, which is equivalent to a mixture of ions with quadrupole

response.45 Let φ(r) be the electric potential in a solute, where r ∈ Ω1; ψ(r) be the electric
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potential outside the solute, where r ∈ Ω2, then we have

∇2φ(r) = −4π

εs
ρb(r), r ∈ Ω1 (1)

∇2ψ(r) = κ2ψ(r) + L2
Q∇4ψ(r), r ∈ Ω2 (2)

where ρb(r) =
∑N

j=1 qjδ
(3)(r − rj) is the bare charge density of the solute. κ is an effective

Debye parameter and LQ is a length scale related to the quadruple effect. In the limit

LQ = 0, the dielectric response equation reduces to the conventional DH equation.

In order to determine the electric potential problem with fourth order gradient term, three

boundary conditions are needed. However, as there is no unique choice for these boundary

conditions different researchers used different recipes45–49 with various physical arguments.

On the other hand, these boundary conditions can be stated mathematically using the con-

tinuity of functions across the boundary as pointed out in Stakgold’s book,50 which reflects

physical conservation laws. In general, there are four possible boundary conditions, which

are related to the continuity of ψ(r) , ∂ψ(r)
∂n

, ∇2ψ(r), and ∂∇2ψ(r)
∂n

, where n is the outward unit

normal to Σ at r. However, only three boundary conditions are necessary to determine the

electric potential problem due to the lack of fourth order gradient term inside the solute. In

our formulation, the continuity of ψ(r) , ∂ψ(r)
∂n

and ∂∇2ψ(r)
∂n

are used as boundary conditions.

Let r0 be a point on the molecular surface Σ, then the boundary conditions read

lim
r→r0

ψ(r) = lim
r→r0

φ(r), (3)

lim
r→r0

∂ψ(r)

∂n
= lim

r→r0

∂φ(r)

∂n
, (4)

lim
r→r0

∂∇2ψ(r)

∂n
= lim

r→r0

∂∇2φ(r)

∂n
. (5)

The first two boundary conditions are the same as the ones widely used in the DH theory.

It is noted that Eq.(4) is valid for the interaction site model where no surface charge density

is present. If there is a surface charge σ(r0) on the molecular surface, then the Eq.(4) should
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be modified as limr→r0
∂ψ(r)
∂n

= limr→r0
∂φ(r)
∂n
− 4πσ(r0)

εs
. One may note that it is also possible

to replace Eq.(5) by the continuity of ∇2ϕ(r) as the third boundary conditions. Note that

∇2ψ(r) is linearly related to the induced charge density which is known to be discontinuous

on the molecular surface due to the hard sphere interactions. Our numerical results also

show that the electrostatic energies for spherical ions from this route is not accurate. To

this end, the continuity of ∇2ϕ(r) is not suggested as a good choice for the third boundary

condition.

2.3 Integral equations for the boundary element method

In this part we use Juffer et al’s prescription14 to formulate a boundary element method

for systems described by Eqs.(1) and (2). The main idea of boundary element method is to

reduce the original three-dimensional electric potential problem to a two-dimensional electric

potential problem on the molecular surface. In the following we only show the main results

and the details are presented in the Appendices.

Define F (r; s) = 1
εs|r−s| and P (r; s) =

∑
l=1,2Cl

e−kl|r−s|

εs|r−s| , k1,2 =

√
(1∓
√

1−4κ2L2
Q)/2

LQ
and

C1,2 = ±k21+k22
k22−k21

, where k1, k2 are from the first two roots of the bulk solvent dielectric

function. The main working equations read

ψ(r0)

2
=

∮
Σ

[
F (r; r0)

∂ψ(r)

∂n
− ψ(r)

∂F (r; r0)

∂n

]
dS +

N∑
j=1

qjF (rj; r0), (6)

ψ(r0)

2
=

∮
Σ

[
−P (r; r0)

∂ψ(r)

∂n
+ ψ(r)

∂P (r; r0)

∂n

]
dS

+

∮
Σ

L2
Q

[
∇2P (r; r0)

∂ψ(r)

∂n
− ψ(r)

∂∇2P (r; r0)

∂n
− ψ(r)

∂P (r; r0)

∂n

]
dS,

(7)

∇2ψ(r0)

2
=

∮
Σ

[
κ2

(
ψ(r)

∂P (r; r0)

∂n
− P (r; r0)

∂ψ(r)

∂n

)
− L2

Q∇2ψ(r)
∂∇2P (r; r0)

∂n

]
dS. (8)
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Eqs.(6), (7) and (8) are linear integral equations for three variables ψ(r0), ∂ψ(r0)
∂n

and

∇2ψ(r0). When the third boundary condition Eq.(5) is replaced by other ones such as the

continuity of ∂
3ψ(r)
∂n3 as in Ref.47 or the continuity of component Qnn of the quadrupolarization

tensor Q as in Ref.45, it would be hard to find a set of closed linear equations for the three

functions ψ(r0), ∂ψ(r0)
∂n

and ∇2ψ(r0) due to the fact that it is nontrivial to expand ∂3ψ(r)
n3

or Qnn as a linear combination of ψ(r0), ∂ψ(r0)
∂n

and ∇2ψ(r0). To this end, the boundary

conditions used in this study may be the simplest one that supports the boundary element

method.

In general, the three functions ψ(r0), ∂ψ(r0)
∂n

and ∇2ψ(r0) can be solved numerically for

a solute with general geometry and charge distribution using similar methodology as the

conventional boundary element method.14,20 When ψ(r0), ∂ψ(r0)
∂n

and∇2ψ(r0) are determined,

one can use Eq.(27) and Eq.(29) of section 5 to evaluate the inside electric potential φ(r−)

and the outside electric potential ψ(r+). φ(r−) can be rewritten as

φ(r−) =

∮
Σ

[
F (r; r−)

∂ψ(r)

∂n
− ψ(r)

∂F (r; r−)

∂n

]
dS +

N∑
i=1

qiF (ri; r−). (9)

The induced potential φindj at the site j of the solute reads

φindj ≡ lim
r−−→rj

[
φ(r−)−

N∑
i=1

qiF (ri; r−)

]
=

∮
Σ

[
F (r; rj)

∂ψ(r)

∂n
− ψ(r)

∂F (r; rj)

∂n

]
dS. (10)

The excess electrostatic energy βue then can be evaluated as

βue =
N∑
j=1

βqjφ
ind
j . (11)

Note that the induced potential depends linearly on the solute charge, hence the electrostatic

part of the excess chemical potential βµe equals to the excess electrostatic energy βue,
33 i.e.,

βµe = βue. (12)
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2.4 A prescription to determine the parameters of the EDH di-

electric response model

As our current theory needs the input parameters κ and LQ from a pure solvent’s dielec-

tric function, it is assumed that this information is known from other sources such as

experiments or other theoretical calculations. For example, let εl(k) be the longitudinal

dielectric function of the pure solvent, the dielectric response function χ(k) ≡ 1 − ε0
εl(k)

can be evaluated using radial distribution functions gij(r) of the pure solvent, χ(k) =

4πβns
k2

[
∑

i=1,2 q
2
i xi + ns

∑
i,j=1,2 qiqjxixjgij(k)], where gij(k) =

∫
e−ik·rgij(r)dr is the three

dimensional Fourier transform of gij(r), q1,2 = ±qs and x1,2 = 1
2

for a restricted primitive

model of electrolyte solutions.33 When χ(k) of the pure solvent is used as input, one can fit

it to an empirical function χ(k) = a0k2

k4+(a1k2−a2) cos(kb)+a3 sin(kb)+a2
, and then the poles k = ikn

can be determined by solving k4 + (a1k
2 − a2) cos(kb) + a3 sin(kb) + a2 = 0 numerically.40 κ

and LQ are chosen as

κ =

√
k2

1k
2
2

k2
1 + k2

2

, LQ =

√
1

k2
1 + k2

2

, (13)

so that the bulk system can be approximately described by a response function using k1,2

from Eq.(26). It is well known that k1,2 are two real numbers for weak electrostatic coupling

and become complex conjugate when the electrostatic coupling is strong. It is easy to check

that κ and LQ defined via Eq.(13) are always real numbers. As will be shown in the next

subsection, such a choice could reproduce the same asymptotic electric potential as our

molecular DH theory with two Debye modes.33

For a solute with a general geometrical shape and charge distribution, one can use Eqs.(6),

(7) and (8) to find the electric potential on the surface and use Eq.(10) to find the induced

electric potential at each site and then the electrostatic energy is evaluated with Eq.(11).

Naturally, the electric potential problem can also be solved numerically by finite difference

using the corresponding differential equations, Eqs.(1) and (2), but our focus of this work is

on the development of the boundary element method using integral equations, which may
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provide certain advantages for some problems.

When the electrostatic coupling is very strong, a large number of Debye lengths is neces-

sary to capture the dielectric response of an electrolyte solution,29,33 the nonlinear response

may also play an important role,51 but our general strategy is to use multiple linear modes

and suitable linear coefficients to mimic the nonlinear effect. Although each mode is based on

linear response, the linear coefficients could carry information beyond linear response. Such

a strategy has been applied in our previous study on the property of electrolyte solutions.33

As long as the coefficient of each mode is properly determined, our theory can lead to a good

description of both the electrostatic energy and the induced charge density of the solvent

ions. To this end, a theory with multiple linear modes and refined linear coefficients could

at least partly capture the nonlinear effect. As our current EDH theory is a linear theory

which only use two Debye lengths, one can expect that our theory would fail for electrolyte

solutions with strong electrostatic coupling. One may also note other shortcomings of our

theory due to the simplicity of our dielectric response model, for example, the application

of our theory to various systems lead to results for B1,2 that violate the Stillinger-Lovett

second moment condition or the electrostatic energy of the bulk system is less accurate than

some other theories of electrolyte solution.33,37,52

On the other hand, higher order gradient terms can be included in our model in a straight-

forward manner. For example, when terms such as ∇6ψ(r) and ∇8ψ(r) are added to the

dielectric response model, the electric potential will be a combination of four Yukawa poten-

tials. As long as the extended Green’s theorems are used for the three dimensional integrals

such as
∫

Ω2
dr[f(r)∇6g(r)− g(r)∇6f(r)] and

∫
Ω2
dr[f(r)∇8g(r)− g(r)∇8f(r)], it would also

be possible to derive the corresponding integral equations for the boundary element method.

To this end, our study paves the way to extend the DH theory in a systematic way by adding

high order gradient terms to represent the existence of various length scales in the dielectric

response.
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2.5 Electrostatic potential for a spherical ion: an example of

applications

As a demonstration of our current approach, let’s consider the electric potential problem

of a spherical ion, where analytical solution of the potential can be found. Assume that

the radius of the excluded sphere is a, and a point charge q is located at the center of the

sphere. Due to the spherical symmetry, functions f(r) = φ(r), ψ(r),∇2ψ(r) depend only on

the radius variable r = |r|, and the value of f(r0) on the spherical surface is a constant.

After some straightforward but lengthy calculations, one can find the solution of Eqs.

(37), Eq.(38) and Eq.(39) . The final results read

φ(r) =
q

εsr
− q

εsa

[
1− k2

2

(k2
2 − k2

1)(1 + k1a)
− k2

1

(k2
1 − k2

2)(1 + k2a)

]
, (14)

ψ(r) =
q

εs

[
k2

2

(k2
2 − k2

1)

e−k1(r−a)

(1 + k1a)r
+

k2
1

(k2
1 − k2

2)

e−k2(r−a)

(1 + k2a)r

]
. (15)

The interested readers could find more details in section 5.

It is also possible to solve the electric potential using the corresponding differential equa-

tions, Eqs.(1) and (2) if the following test solution is used 45

φ(r) =
q

εsr
+ A, r < a (16)

ψ(r) =
q

εs

∑
l=1,2

Ble
−kl(r−a)

(1 + kla)r
, r > a. (17)

One may note that the functional form of the above test solutions depends on the property of

the Eq.(1) and Eq.(2) rather than the boundary conditions; but different boundary conditions

will lead to different set of A and B1,2,45–47 thus different solutions.
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When the boundary conditions Eqs.(3), (4)and (5) are used, one can find that

A = − q
εs

∑
l=1,2

Blkl
1 + kla

, (18)

B1 =
k2

2

k2
2 − k2

1

, (19)

B2 = 1−B1 =
k2

1

k2
1 − k2

2

. (20)

It is easy to check that Eqs.(14) and (15) are the same as Eqs.(16) and (17) if Eqs.(18),

(19) and (20) are used. It should be noted that this solution has the same functional

form as our molecular Debye-Hückel theory with two Debye modes,33 hence one may view

the EDH theory as a possible extension of our molecular DH theory with a different way

of determining the linear combination coefficients of various Debye modes. Due to the

simplicity of our dielectric response model, the coefficients of tagged solvent ions may not

satisfy some universal constraints such as the Stillinger-Lovett second condition. Specifically,

the Stilliger-Lovett condition leads to a constraint B1f(k1) + B2f(k2) = 1 with f(ki) =

κ2D
k2i

1+kiσs+k
2
i σ

2
s/2+k3i σ

3
s/6

1+kiσs
,33 from which a different B1,2 can be found. It will be interesting to

study possible boundary conditions which could lead to a self-consistent theory of the solvent

without violating such universal constraints.

Using Eq.(11), the electrostatic energy βue of the ion reads

βue = βqA = −βq
2

2εs

∑
l=1,2

Blkl
1 + kla

= −βq
2

2εs

k1k2

(k1 + k2)

1 + (k1 + k2)a

(1 + k1a)(1 + k2a)
. (21)

3 Results and Discussion

To demonstrate the validity of our EDH theory, we apply the theory to electrolyte solu-

tions with moderate electrostatic coupling. Specifically we test our theory against the mean

spherical approximation(MSA),53 hyper-netted chain(HNC)approximation of electrolyte so-

lutions, and a diatomic solute in an electrolyte solution where the excess internal energy βue
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and the electrostatic part of the excess chemical potential βµe are known. As we focus on the

electrostatic effect, we will only compare the electrostatic energy. It is shown that our EDH

model are capable of predicting the electrostatic energy accurately even if the electrostatic

coupling is moderate.

3.1 Tests against the mean spherical approximation of electrolyte

solutions

As the first test case, we consider the mean spherical approximation(MSA)53 for primitive

models, which leads to analytical results for the dielectric function, excess energy and other

excess thermodynamic properties. MSA theory is used as input to evaluate the response

function χ(k) and from which one can find k1,2. As the electrostatic part of the excess

chemical potential βµe equals to the electrostatic energy βue according to the MSA theory,

we will only show the results for the electrostatic energy.

Firstly, we consider the electrostatic energy of a pure solvent, namely a two-component

electrolyte solution with parameters qs = 1, εs = 1, σs = 1 and β = 4. The Debye parameter

is evaluated as κD =
√

4πβnsq2s
εs

, where ns is the total particle number density. Within the

MSA theory, all the electrostatic contribution to the thermodynamic properties of the system

depends on the dimensionless reduced Debye parameter KD ≡ κDσs. For 0.0002 < ns < 1.0,

we found 0.100 < KD < 7.09. The electrostatic energies βue of the solvent species as a

function of the Debye parameter KD are shown in Fig.1. As one can see, EDH theory is in

very good agreement with the MSA theory as long as the electrostatic coupling is not too

strong, namely in the tested range of 0.1 ≤ KD ≤ 7.0, the relative energy difference between

the EDH theory and MSA theory is less than 7 percent. As a comparison, the results from

conventional DH theory are also shown. DH is not reliable for electrolyte solutions with

strong electrostatic coupling, where the difference between the DH theory and MSA can be

as large as 26 percent for the system at KD = 7.0.

Secondly, we tested the electrostatic energy βue for solutes with various sizes when the
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electrostatic coupling is moderate. The solvent is a binary electrolyte with q1,2 = ±1, εs = 1,

σ1,2 = 1 and β = 4. The solute charge q is fixed at q = 1 and the solute-solvent size ratio

γ = σo
σs

is used as a control parameter. The radius of the excluded sphere of the solute ion

reads a = σs+σo
2

. For the test case with KD = 2.0, it is found that k1,2 = 1.8870 ± 1.8876i.

The electrostatic energies for 0.2 ≤ γ ≤ 10 are shown in Fig.2(a). In this case, the energy

difference between the EDH theory and MSA theory is about 1 to 4 percent, while the energy

difference between the DH theory and MSA theory is about 3 to 17 percent. For the test

case with KD = 5.0, it is found that k1,2 = 1.1570 ± 3.1426i. The electrostatic energies for

0.2 ≤ γ ≤ 10 are shown in Fig.2(b). The energy difference between the EDH theory and

MSA theory is about 2 to 4 percent, while the energy difference between the DH theory and

MSA theory is about 5 to 34 percent. Thus one can see that our EDH theory works much

better than the DH theory when compared with the MSA theory. For other conditions where

the Debye parameter is not too large, similar results are found and are not shown here.

0 1 2 3 4 5 6 7
-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

u e

D

 MSA
 EDH
 DH

Figure 1: Electrostatic energy βue for pure solvents with various KD. The results from MSA
are denoted by filled circles, while our EDH theory and the DH theory are denoted by hollow
diamonds and hollow stars. The lines are guides to the eye.

3.2 Test against HNC theory of electrolyte solutions

In this part we present the test of our theory against the HNC approximation, which is

known to yield very accurate thermodynamic properties of primitive models.53 The HNC
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(a) The reduced Debye parameter of the solvent is
KD = 2.0.
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(b) The reduced Debye parameter of the solvent is
KD = 5.0.

Figure 2: Electrostatic energy βue as a function of the solute-solvent size ratio γ = σo
σs

under
two solvent conditions. The results from MSA are denoted by filled circles, while our EDH
theory and DH theory are denoted by hollow diamonds and hollow stars. The lines are
guides to the eye.
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theory is used as input to evaluate the response function χ(k) and from which one can find

k1,2. According to our previous study on the HNC theory,33 the electrostatic part of the

excess chemical potential βµe are in good agreement with the electrostatic energy βue, where

the typical energy difference is about 1 percent as long as the electrostatic coupling is not

too strong. So in the following we will not show the results for chemical potentials.

Firstly, we consider the electrostatic energy of a pure solvent. The parameters used for

a binary electrolyte solvent are qs = 1, εs = 1, σs = 1, β = 2. We take the Debye parameter

as the control parameter. For 0.005 ≤ ns ≤ 0.8, it is found that 0.354 ≤ KD ≡ kDσs ≤

4.484. The electrostatic energies βue for the solvent species are shown in Fig.3. Again, good

agreement between our EDH theory and the HNC theory is found. The EDH theory differs

from the HNC theory by 6 percent and 9 percent at reduced Debye parameter KD = 3.171

and KD = 4.484, while the DH theory overestimates the electrostatic energy by about 21

percent and 28 percent at KD = 3.171 and KD = 4.484.

Secondly, we consider the electrostatic energy of a solute with tunable sizes. The solvent

parameters are fixed at q1,2 = ±1, εs = 1, β = 2, σ1,2 = σs = 1. The solute charge is fixed

at q = 1 and the solute-solvent size ratio γ = σo
σs

is used as a control parameter. For the

test case with ns = 0.2 where KD = 2.242, it is found that k1,2 = 1.9679 ± 2.1439i. The

electrostatic energies for 0.2 ≤ γ ≤ 8 are shown in Fig.4(a). The energy difference between

the EDH theory and HNC theory is about 1 to 7 percent, while the energy difference between

the DH theory and HNC theory is about 5 to 21 percent. For the test case with ns = 0.7

where KD = 4.194, it is found that k1,2 = 1.6040 ± 3.3280i. The electrostatic energy for

0.2 ≤ γ ≤ 7 are shown in Fig.4(b). The energy difference between the EDH theory and HNC

theory is about 2 to 10 percent, while the energy difference between DH theory and HNC

theory is about 9 to 31 percent. Again, our EDH theory shows a significant improvement

over the DH theory. Our EDH theory is also tested for other conditions. As long as the

reduced Debye parameter KD and the solvent-solute size ratio are not too large, the EDH

theory leads to satisfactory results compared with the HNC theory and is not shown. It is
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worth to point out that KD = 4.0 is equivalent to a 8.4M NaCl aqueous solution at room

temperature, where the solvent parameters used are σs = 4.2Å, εr = 78.5, T = 300K.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

u e

D
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 EDH
 DH

Figure 3: Excess electrostatic energies βue for pure solvent with various KD = κDσs. The
results from HNC are denoted by filled circles, while our EDH theory and DH theory are
denoted by hollow diamonds and hollow stars. The lines are guides to the eye.

3.3 Test against molecular dynamics simulations of electrolyte so-

lutions

In order to show that our theory is applicable to solutes beyond spherical geometry, we

consider the electrostatic energy of a diatomic solute in a binary electrolyte solution. Denote

i = 1, 2 as the cation and anion species of the binary electrolyte solvent. The charges of

cations and anions are q1,2 = ±e0 with e0 being the element charge, the temperature of the

system is T = 300K, the permittivity of vacuum is ε0, the relative dielectric constant of the

back ground is εr = 78, the total particle number density is ns = 0.007226Å−3. Such a system

is used to mimic a NaCl aqueous solution with salt concentration c0 = 6.00 mol/L. The Debye

parameter of the solution is about κD = 0.805Å−1. The non-electrostatic interaction between

the solvent ions is a Lennard-Jones(LJ) potential us(r) = 4εs[(
σs
r

)12 − (σs
r

)6]. The solute is

a tagged diatomic molecule with two interaction sites denoted as j=3 and 4, where the

charges of two sites are chosen to be q3 and q4. The non-electrostatic interaction between

the solute site and solvent ions reads uso(r) = 4εso[(
σso
r

)12− (σso
r

)6]. The LJ parameters used
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(a) The reduced Debye parameter of the solvent is
KD = 2.242.
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(b) The reduced Debye parameter of the solvent is
KD = 4.194.

Figure 4: Electrostatic energies βue as a function of the solute-solvent size ratio γ = σo
σs

under two solvent conditions. The results from HNC are denoted by filled circles, while our
EDH theory and DH theory are denoted by hollow diamonds and hollow stars. The lines are
guides to the eye.
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are σs = 3.5Å , εs = 1 kJ/mol, σso = 3.5Å and εso=1 kJ/mol.

Molecular dynamics (MD) simulations are performed using the DL− POLY program54

with an NVT ensemble consisting of 216 ions in a cubic box with length d = 31.0344Å. The

time step used in the simulation is ∆t = 1.5fs. The electrostatic energies ue are calculated

using the Ewald summation from equilibrium configurations, where the typical numerical un-

certainty is below 0.04 kJ/mol for a total of 105 configuration. Using the radial distributions

from the simulations, the dielectric response function χ(k) is calculated and then the first

two Debye parameters are found to be k1,2 = 0.5846 ± 0.7673i. The WCA prescription55,56

is used to find the effective radius a of an ion or site, where u12(r) = us(r) + q1q2
ε0εrr

is used to

compute the effective radius of the ions. The effective ion radius is found to be a = 3.367Å

and is also used as the effective radius for each site of the diatomic molecule. Using our EDH

theory, it is found that B1,2 = 0.5± 0.1377i for the ions and then the electrostatic energy for

the solvent reads ue = −2.26 kJ/mol which differs from the MD result ue = −2.41 kJ/mol

by 6 percent, while the DH theory leads to ue = −1.93 kJ/mol which differs from the MD

results by 20 percent.

In order to find the electrostatic energy of the diatomic solute, a total of 212 ions and two

diatomic molecules are used for MD simulations. Two solutes have the same LJ potential

but with opposite charge numbers so that the simulation box is neutral. The site separation

distance R between site 3 and 4 in the diatomic solute is used as a control parameter. Each

site of the diatomic molecule is mapped to a charged hard sphere with radius a and then

the molecule is mapped to a union of charged hard spheres. In the case of large separations

with R > a, a diatomic molecule is mapped to a system consisting of two individual spheres

and then the electric potential could be solved with a two-center test solution.40,57 In the

case of small separations with R < a, hard spheres of the molecule sites are fused and

then the diatomic molecules is dumbbell-shaped. As the diatomic solute have azimuthal

symmetry, the electric potential depends on the radial variable r and an angle variable θ.

When the site 3 is set at the origin, and the site 4 is set at r = R and θ = 0, one can
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use the one-center test solution φ(r, θ) = q3
ε0εrr

+ q4
ε0εr
√
r2+R2−2Rr cos θ

+
∑N

n=0 AnPn(cos θ) and

ψ(r, θ) =
∑N

n=0[B1nkn(k1r)Pn(cos θ)+B2nkn(k2r)Pn(cos θ)] to compute the electric potential,

where Pn(x) is the Legendre Polynomial and kn(r) is the modified spherical Bessel function

of the third kind.40 When the three boundary conditions are used, a set of linear equation

for variables {An} , {B1n} and {B2n} can be derived and can be solved numerically. The test

solution method is also used to find the electric potential solution of the DH theory. In this

study we focus on the case of small separations with R ≤ 3Å, where numerical calculation

shows that N = 9 leads to converged results. For the charge distribution q3,4 = e0, 0, the

results for ue in the range of 0.5Å ≤ R ≤ 3Å are shown in Fig.5(a). As one can see, the

electrostatic energy of the solute only has a weak dependence on the site separation distance

R. The energy difference between our EDH theory and the MD results is about 9 percent,

while the energy difference between the DH theory and the MD results is about 22 percent.

For the charge distribution q3,4 = e0,−e0, the results for ue in the range of 0.5Å ≤ R ≤ 3Å

are shown in Fig.5(b). In this case the electrostatic energy of the solute has a much stronger

dependence on the site separation distance R. The energy difference between our EDH

theory and the MD results is about 20 percent, while the energy difference between the DH

theory and the MD results is more than 40 percent. In both cases one can see that our EDH

theory works much better than the DH theory when applied to the diatomic solutes.

4 Conclusions

In summary, an extended Debye-Hückel theory with fourth order gradient term is developed

for electrolyte solutions, where appropriate three boundary conditions are introduced based

upon the continuity requirements of the involving functions at the boundary. The integral

equations for the boundary element method are also derived, so that our theory is applicable

to a solute with general geometrical shapes and charge distributions, but the numerical

implementation will be left for future work. The electric potential as well as the electrostatic
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Figure 5: Excess electrostatic energies ue for a diatomic molecule with various site separation
distance R. The results from MD are denoted by filled circles, while our EDH theory and
DH theory are denoted by hollow diamonds and hollow stars. The lines are guides to the
eye.
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energy are obtained for spherical ions and diatomic solutes where the validity of our theory

is successfully demonstrated for binary as well as multi-component models of electrolyte

solutions.
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5 Appendices

5.1 Derivation of the Integral equations for the boundary element

method

In this part we use Juffer et al’s prescription14 to formulate a boundary element method for

systems described by Eqs.(1) and (2). For the Poisson equation

∇2F (r; s) = −4π

εs
δ(3)(r− s), (22)

where δ(3)(r) is the Dirac delta function, one can find the Green function

F (r; s) =
1

εs|r− s|
. (23)

For a dielectric response equation with quadruple effect,

∇2P (r; s) = κ2P (r; s) + L2
Q∇4P (r; s)− 4π

εs
δ(3)(r− s), (24)
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the Green function reads

P (r; s) =
∑
l=1,2

Cl
e−kl|r−s|

εs|r− s|
, (25)

where the Debye parameters k1,2 and C1,2 read

k1,2 =

√
(1∓

√
1− 4κ2L2

Q)/2

LQ
, C1,2 = ±k

2
1 + k2

2

k2
2 − k2

1

. (26)

Using these two Green functions F (r; s) and P (r; s), the integral equations for the boundary

element method can be derived.

Denote r− as a point inside the solute, r+ as a point outside the solute, r0 as a point on the

molecular surface. Multiplying φ(r−) with Eq.(22) and subtracting F (r; r−) times Eq.(1),

and using Green’s second theorem for scalar functions
∫

Ω1
dr[f(r)∇2g(r) − g(r)∇2f(r)] =∮

Σ
[f(r)∂g(r)

∂n
− g(r)∂f(r)

∂n
]dS on the volume inside Σ, one can find the following expression for

φ(r−)14

φ(r−) =

∮
Σ

[
F (r; r−)

∂φ(r)

∂n
− φ(r)

∂F (r; r−)

∂n

]
dS +

N∑
j=1

qjF (rj; r−). (27)

In order to find the integral equation for ψ(r), we use an extended Green theorem for

scalar functions f(r) and g(r) ,

∫
Ω2

dr[f(r)∇4g(r)− g(r)∇4f(r)] = −
∮

Σ

[
f(r)

∂∇2g(r)

∂n
− g(r)

∂∇2f(r)

∂n

]
dS

−
∮

Σ

[
∇2f(r)

∂g(r)

∂n
−∇2g(r)

∂f(r)

∂n

]
dS,

(28)

which can be viewed as generalized integration by parts.58 Multiplying ψ(r+) with Eq.(24)

and subtracting P (r; r+) times Eq.(2) and use the extended Green theorem Eq.(28) on the
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volume outside Σ, one can find that

ψ(r+) =

∮
Σ

[
−P (r; r+)

∂ψ(r)

∂n
+ ψ(r)

∂P (r; r+)

∂n

]
dS

+

∮
Σ

L2
Q

[
P (r; r+)

∂∇2ψ(r)

∂n
−∇2ψ(r)

∂P (r; r+)

∂n

]
dS

+

∮
Σ

L2
Q

[
∇2P (r; r+)

∂ψ(r)

∂n
− ψ(r)

∂∇2P (r; r+)

∂n

]
dS.

(29)

The integral equation for ∇2ψ(r) can also be found in a similar way. Multiplying ∇2ψ(r)

with Eq.(24) and subtracting ∇2P (r; r+) times Eq.(2) and use the Green theorem and the

extended Green theorem Eq.(28) on the volume outside Σ, one can find that

∇2ψ(r+) =

∮
Σ

κ2

[
ψ(r)

∂P (r; r+)

∂n
− P (r; r+)

∂ψ(r)

∂n

]
dS

+

∮
Σ

L2
Q

[
∇2P (r; r+)

∂∇2ψ(r)

∂n
−∇2ψ(r)

∂∇2P (r; r+)

∂n

]
dS.

(30)

In order to find a solution of the electric potential problem, we need to find the electric

potential on the molecular surface. Using the properties of single layer and double layer

integral,59 it is found that

φ(r0) ≡ lim
r−→r0

φ(r−) =

∮
Σ

[
F (r; r0)

∂φ(r)

∂n
− φ(r)

∂F (r; r0)

∂n

]
dS +

N∑
j=1

qjF (rj; r0) +
φ(r0)

2
,

(31)

ψ(r0) ≡ lim
r+→r0

ψ(r+) =

∮
Σ

[
−P (r; r0)

∂ψ(r)

∂n
+ ψ(r)

∂P (r; r0)

∂n

]
dS

+

∮
Σ

L2
Q

[
P (r; r0)

∂∇2ψ(r)

∂n
−∇2ψ(r)

∂P (r; r0)

∂n

]
dS

+

∮
Σ

L2
Q

[
∇2P (r; r0)

∂ψ(r)

∂n
− ψ(r)

∂∇2P (r; r0)

∂n

]
dS +

ψ(r0)

2
,

(32)

∇2ψ(r0) ≡ lim
r+→r0

∇2ψ(r+) =

∮
Σ

κ2

[
Ψ(r)

∂P (r; r0)

∂n
− P (r; r0)

∂ψ(r)

∂n

]
dS

+L2
Q

[
∇2P (r; r0)

∂∇2ψ(r)

∂n
−∇2ψ(r)

∂∇2P (r; r0)

∂n

]
dS +

∇2ψ(r0)

2
.

(33)
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As the boundary conditions Eqs.(3),(4) and (5)reduce to

ψ(r0) = φ(r0), (34)

∂ψ(r0)

∂n
=
∂φ(r0)

∂n
, (35)

∂∇2ψ(r0)

∂n
=
∂∇2φ(r0)

∂n
≡ 0; (36)

Eqs.(31), (32) and (33) reduce to

ψ(r0)

2
=

∮
Σ

[
F (r; r0)

∂ψ(r)

∂n
− ψ(r)

∂F (r; r0)

∂n

]
dS +

N∑
j=1

qjF (rj; r0), (37)

ψ(r0)

2
=

∮
Σ

[
−P (r; r0)

∂ψ(r)

∂n
+ ψ(r)

∂P (r; r0)

∂n

]
dS

−
∮

Σ

L2
Q

[
∇2P (r; r0)

∂ψ(r)

∂n
− ψ(r)

∂∇2P (r; r0)

∂n
−∇2ψ(r)

∂P (r; r0)

∂n

]
dS,

(38)

∇2ψ(r0)

2
=

∮
Σ

[
κ2

(
ψ(r)

∂P (r; r0)

∂n
− P (r; r0)

∂ψ(r)

∂n

)
− L2

Q∇2ψ(r)
∂∇2P (r; r0)

∂n

]
dS. (39)

The above three equations are the main working equations for the boundary element

method. Once ψ(r0), ∂ψ(r0)
∂n

and ∇2ψ(r0) are determined with Eq.(37), Eq.(38) and Eq.(39),

one can use Eq.(27) and Eq.(29) to evaluate the inside electric potential φ(r−) and the

outside electric potential ψ(r+).

5.2 Derivation of the electric potential of a spherical ion

We show how to find the solution of Eq.(37), Eq.(38) and Eq.(39) given the solute is a spheri-

cal ion. Due to the spherical symmetry, we introduce ψ(r0) ≡ ψs,
∂ψ(r0)
∂n
≡ hs, ∇2ψ(r0) ≡ us,
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then Eqs.(37) , (38) and (39) reduce to

ψs
2

=

∮ [
F (r; r0)hs − ψs

∂F (r; r0)

∂n

]
dS +

q

εsa
, (40)

ψs
2

=

∮ [
−P (r; r0)hs + ψs

∂P (r; r0)

∂n
+ L2

Q

(
∇2P (r; r0)hs − ψs

∂∇2P (r; r0)

∂n
− us

∂P (r; r0)

∂n

)]
dS,

(41)

us
2

=

∮ [
κ2

(
ψs
∂P (r; r0)

∂n
− P (r; r0)hs

)
− L2

Q∇2ψs
∂∇2P (r; r0)

∂n

]
dS. (42)

Using I1 ≡
∮
F (r; r0)dS = a, I2 ≡

∮ ∂F (r;r0)
∂n

dS = −1
2
, I3 ≡

∮
P (r; r0)dS =

∑
l=1,2

Cl(1−e−2kla)
2kl

,

I4 ≡
∮ ∂P (r;r0)

∂n
dS =

∑
l=1,2

Cl[1−(1+kla)e−2kla]
−2kla

, I5 ≡
∮
∇2P (r; r0)dS =

∑
l=1,2

Clkl(1−e−2kla)
2

,

I6 ≡
∮ ∂∇2P (r;r0)

∂n
dS =

∑
l=1,2

Clkl[1−(1+kla)e−2kla]
−2a

, one can find that

ψs =
q

εsa

k1 + k2 + (k2
1 + k2

2 + k1k2)a

(k1 + k2)(1 + k1a)(1 + k2a)
, (43)

hs = − q

εsa2
, (44)

us =
q

εs

k2
1k

2
2

(k1 + k2)(1 + k1a)(1 + k2a)
. (45)

Using Eqs.(43), (44) and (45), one can use Eqs.(27) and (29) to evaluate the electric

potential φ(r) = φ(r) and ψ(r) = ψ(r). After some straightforward but tedious calculations,

the final results read

φ(r) =
q

εsr
− q

εsa

[
1− k2

2

(k2
2 − k2

1)(1 + k1a)
− k2

1

(k2
1 − k2

2)(1 + k2a)

]
, (46)

ψ(r) =
q

εs

[
k2

2

(k2
2 − k2

1)

e−k1(r−a)

(1 + k1a)r
+

k2
1

(k2
1 − k2

2)

e−k2(r−a)

(1 + k2a)r

]
. (47)
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