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ABSTRACT

This thesis consists of three projects motivated by biological problems: (i) detecting differ-

entially abundant taxa in multiple metagenomic samples (chapter 2), (ii) developing a two-stage

causal mediation model for identifying taxa mediating the effect of environmental conditions on an

outcome in the analysis of microbiome data (chapter 3), and (iii) analyzing temporal changes of

the antimicrobial susceptibility (chapter 4).

Although the emerging field of metagenomics has revolutionized our understanding of the micro-

bial world, the analysis of metagenomic data raises some statistical challenges, including modeling

high-dimensional overdispersed count data with excessive zeros. In the first project (chapter 2), we

propose a hypothesis testing framework based on a Poisson Hurdle hierarchical model to address

the considerable zeros issue in the metagenomic data, and a full Bayesian inference is performed

to identify the differentially abundant taxa among multiple treatment groups. Simulation studies

demonstrate our model outperforms the existing approaches in terms of false discovery rate con-

trol at desired level of significance and statistical power as well. In the second project (chapter

3), we develop a causal mediation model to investigate the effect of a treatment on an outcome

transmitted through microbes. Considering the sparsity and high-dimensional overdispersed count

natures of the metagenomic data, we propose a novel screening procedure to reduce the dimension

to a moderate size. Then a Bayesian variable selection strategy with a shrink and diffuse prior is

used to select the key taxa with mediation effects. The performance of the proposed method is

illustrated via simulation studies.

In the third project (chapter 4), we present a hierarchical Bayesian latent class mixture model

to detect the temporal changes in antibiotic resistance using minimum inhibitory concentration

(MIC) values. By taking the censorship into account, our proposed approach would achieve less

bias in the estimation of mean MIC. We also apply this proposed method to the data from CDC



xi

NARMS program and show that evidence of temporal changes in mean MIC exist in spite of no

changes or changes of adverse direction in the proportion of resistance.
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CHAPTER 1. GENERAL INTRODUCTION

In this chapter we are going to briefly introduce the background knowledge in metagenomics,

antimicrobial resistance data, and several existing statistical methods discussed in this thesis.

1.1 Metagenomics

Microbes, including bacteria, fungi, protists and so on, are small microorganisms that can only

be observed through a microscope. They play an essential role in all life on earth (Council et al.,

2007). The collection of microbes or microorganisms forming a “mini-ecosystem” environment is

referred to as a microbiome community (Sun and Dudeja, 2018). Historically, the traditional pure

laboratory cultivation approaches were used to study the functions of microbes. However, these

methods have some limitations. First, only about 1% of microbes can be cultured in the labo-

ratory (Riesenfeld et al., 2004). The majority of microbes cannot be cultured and thus cannot

be sequenced. Second, these traditional approaches are not efficient to study the whole microbial

community since they are only able to study a few microbes each time. Instead of studying a

single microbe, Handelsman et al. (1998) first proposed culturing the entire microbial community

analogous to a single genome, known as metagenomics. Metagenomics is the genomic analysis,

consisting of the whole collective genome of microorganisms directly extracted from their natural

living environmental samples. Previous research has studied soil root microbiome of plants (re-

view paper (Fierer, 2017)), host-associated environmental microbiome samples (such as the human

gut microbiome (Turnbaugh et al., 2007)), and so on. Unlike conventional genomics approaches,

metagenomics does not require a culture and a clone of each individual microbe species (Wooley and

Ye, 2010). The recent rapid development of next generation sequencing (NGS) technology provides

researchers the ability to determine the genomes of organisms more efficiently and economically. It
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can parallel sequence millions of DNA sequences and study the whole microbiome communities in

a sample at the same time.

A review article by Thomas et al. (2012) provides a detail about the metagenomics sequencing

technology. Here we just briefly introduce the basic steps of metagenomics. Usually, the first

step of metagenomics is to extract microbial DNA from environmental samples of interest. To

determine the component of the microbiome community, two sequencing approaches are widely

used. One is called whole metagenomic approach by sequencing DNA fragments from all microbial

genomics in the sample (Tyson et al., 2004). In contrast, the other sequencing method targets

a specific marker gene from the sample, such as 16S ribosomal RNA (rRNA) gene (Tringe and

Rubin, 2005). Usually 16S rRNA is chosen as it appears almost in every microbial species and its

genomes contain hyper variable regions that can be used to distinguish between different species.

In short, specific PCR primers corresponding to the conserved region of the 16S rRNA gene are

created to amplify the genomic region of this gene. Then those amplicons are sequenced with

high-throughput sequencing technology, such as Illumina MiSeq and 454 pyrosequencing, resulting

in massive of DNA fragments, known as reads, which are then counted. After certain standard

pre-processing procedures, including removal redundant and low-quality sequences, then similar

sequences are grouped together based on a given sequence similarity threshold (usually 97% or

sometimes more stringent cutoff 99% used). Those sequences within one cluster are assumed to

be identical and each cluster is referred to as an Operational Taxonomic Unit (OTU) (also called

as taxon/feature). The reason of clustering sequences based on similarity into OTUs rather than

species is that it is impossible to ensure sequences to be chopped at the same location all the

time. Then each OTU is represented by a consensus sequence and this sequence is aligned against

a reference 16S rRNA bacteria database. In other words, OTU is a group of related microbes

clustered based on their DNA sequence similarity of a specific taxonomic marker gene. The result

is represented in a count matrix format, known as a OTU table, with rows corresponding to different

types of OTUs and columns to different biological samples collected. These OTUs counts could be



3

further summarized into higher phylogeny level, e.g., species, genus, family, etc. Figure 1.1 shows

a summary of the pipeline for 16S rRNA sequence data processing.

Metagenomics provides new insights into the diversity of microbial communities in an ecosystem

and enables researchers to reveal the functional features of those microbes not only over genetic and

environmental areas, but also over corresponding phenotypes, such as plant yield. In agriculture,

microbes are associated with almost every plant tissue: leaves, stems, root, and so on. The most

studied is the microorganisms in the plant root. For example, it has been reported that rhizobia and

mycorrhizal fungi have great impact on stimulating plant growth in the production of phytohor-

mones and providing nutrients including carbohydrates and amino acids (Moe, 2013). Additionally,

the plant microbiome also influences the plant secondary metabolites (Berg et al., 2015; Weston

and Mathesius, 2013). Several studies have also shown that the plant microbiome is also involved in

plant survival in different condition such as drought condition and nutrient-poor soils (Yang et al.,

2009; Rolli et al., 2015). For example, Pseudomonas is the most frequent microbe under humid

conditions (Mendes et al., 2013) and Bacillus is abundant under arid conditions (Köberl et al.,

2011). In turn, the plant root also recruit certain microorganisms to assemble around root so that

these microorganisms would provide better support to the growth of plant. For instance, Lundberg

et al. (2012) reported that only a specific set of bacterial in the soil is colonized around the plant

roots of Arabidopsis thaliana. Therefore, in order to unravel the influence of the microbes on the

plant science, great effects have been made to develop new technologies to study the microbial

communities.

Samples                                          
(e.g. water, soil, human gut)

Barcoded PCR      
usually 16S rRNA primer

Extract DNA Pooling of samples

Pyrosequence   
using 454 NGS 

Quality control 
Cluster sequences to 

OTUs, align to reference 
alignment database 

Taxonomic classification      
summarize OTU into higher level 

(e.g. genus) 

Figure 1.1: Illustration of the pipeline for 16S rRNA microbiome data.
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From the statistical analysis prospective, there are three central themes following in the metage-

nomic analysis. First, describe the relative taxonomic component in the given samples, from species,

genus, family to class (Clemente et al., 2011; Jiang et al., 2012). Second, identify the taxa that are

over or under abundant under different certain environmental conditions (Parks and Beiko, 2010;

Paulson et al., 2013). This is often referred to as differential abundance analysis. Third, assess the

association (even causality if possible) between microbiome abundance and biological (or clinical)

outcomes. The goal is to allow researchers have a better understanding of the microbiome com-

munity in order to potentially shape the component of the community to benefit desired biological

phenotype or better clinical outcomes (Dini-Andreote and Raaijmakers, 2018; Huttenhower et al.,

2012).

1.1.1 Statistical challenges for microbiome data analysis

In this thesis, we will focus on developing statistical methods specifically for 16S metagenomic

data at taxonomic level (i.e. OTUs). However, there are several unique challenges for such metage-

nomic data.

First, metagenomic data are usually high-dimensional data, i.e. consisting of hundreds or even

thousands of OTUs but with only a few biological samples as it is still expensive to conduct

biological experiments. Therefore classical statistical models cannot be directly applied to such

kinds of data because number of parameters needed to be estimated is much larger than the sample

size. Furthermore, it is often difficult to derive the asymptotic distribution for the statistics used

for inference and usually small sample size would violate the asymptotic property as well.

In addition, it has been widely reported that most OTU tables contain excessive zero counts

compared to other genomics data (such as RNA sequence data), say as high as 90% (Paulson et al.,

2013). This could be due to two reasons: one is that some zero values arise by random chance

due to the random sampling or because of true absence of microbes in the real environment. The

second reason might be due to sequencing detection errors or the amount of sequences are too small

to de detected (McMurdie and Holmes, 2014; Hamady and Knight, 2009).
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Third, the OTUs counts are overdispersed, i.e. the observed variance of the counts is much

larger than what would be expected from a Poisson distribution, which is a common distribution

used for count data. Therefore, methods should allow for overdispersion to model the OTU count

data.

To illustrate those issues, Figure 1.2 exhibits a OTU count table from a study of comparison

of root microbes of Sorghum under low and full nitrogen conditions from our collaborators. There

are 5581 OTUs (at the 97% similarity cutoff) and 80 samples. As we can see from the OTU table

that the dimension of OTU counts are extremely larger than the sample size, and contains 70.5%

zeros. Figure 1.3 shows that only a few OTUs are present across samples, and the majority of

OTUs are only seen in a few samples. Therefore, the distribution of OTUs are skewed. This might

be one potential explanation for the excessive zeros observed in OTU table (Figure 1.2). Figure 1.4

displays the scatter plot of variances of the OTU abundances vs means of OTU abundances (both

on log scale) and demonstrates that the overdispersion issue in this microbiome dataset as R=0.95.

Consequently, it is critical to adequately model the excessive zero counts and overdispersed for the

high-dimensional microbiome data.

1.1.2 Zero-inflated regression methods

There are two common used methodologies for analyzing count data with far more zeros than

expected under different distributions: the zero-inflated regression model and the hurdle regression

model. There are two reasons that result in excessive zeros: one is the corresponding event is

impossible or irrelevant for some case, which is referred to as structure zero (Ridout et al., 1998).

For example, in metagenomic data, it is possible that some taxa are not supposed to occur under

certain condition. The other reason is due to randomness that a zero event is observed by chance,

which is often referred to as sampling zero. For instance, it is possible that the corresponding

sequence reads are too low to be detected due to machine limitation for some taxa (McMurdie and

Holmes, 2014).
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Figure 1.2: The heatmap shows the OTU counts on log scale. It takes value zero if OTU count is

zero. Each row represents sample and each column denotes OTU count on log scale. There are 80

samples and 5581 OTUs.
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Figure 1.3: The histogram of probability of OTU occurrence across 80 samples.
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Figure 1.4: Scatter plot between variances of abundances on log scale against the means of abun-

dances of abundances on log scale using 5581 OTUs from 80 samples. The simple linear model

results the R2 = 0.95.
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The zero-inflated model models the “extra zeros” using a binomial process and the remaining

realizations are modeled using an appropriate discrete distribution. The zero-inflated model allows

that the observed high occurrence of zeros comes from in both the binomial process and the discrete

distribution as well. On the other hand, the hurdle model utilizes a binomial process to model all the

zero counts and a truncated-at-zero type discrete distribution is used for the positive realizations.

Both the zero-inflated model and the hurdle model use the two-stage modeling processes to account

for “excess zeros”. In practice, the main differences in these two approaches are in the computational

complexity. Besides, it is possible in reality that fewer zero counts than expected would be observed

in some circumstance. When zero-deflation exists, zero-inflated type models would fail but hurdle

model could still work.

In this thesis, we consider Poisson distribution to model excess zeros, but similar methodology

could be extended to other discrete distributions, such as Negative binomial distribution if there is

evidence in the data for over-dispersion.

1.1.2.1 Poisson Hurdle (PH) regression model

Hurdle model, also known as two-part model, models zero count and nonzero counts separately.

It was proposed by Heilbron (1989). Let Y be the response variable, and yi, i = 1, 2, · · · , n be the

n independent realizations of Y . Under the assumption that the non-zero count is modeled as a

Poisson distribution, the marginal probability mass function (pmf) for Y can be written as:

Pr(Y = yi) =


1− pi, if yi = 0,

pi
µ
yi
i

[exp(µi)−1]yi! , if yi = 1, 2, 3, · · ·
(1.1)

where pi denotes the proportion of non-zero counts and µi represents the mean of Poisson distri-

bution with scaling. Under the generalized linear regression framework, it is common to relate the

parameter pi to covariates of interests using logit link function and µi with log link, i.e.,

logit(pi) = log

(
pi

1− pi

)
= xTi β1, log(µi) = zTi β2, (1.2)
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where covariates xi and zi can be the same, different, or overlapping with each other. Then the

log-likelihood can be written as:

lnLPH =

n∑
i=1

[
xTi β1 − 2 log

(
1 + exp(xTi β1)

)]
+

n∑
i=1

I(yi > 0)
[
log
(
exp(exp(zTi β2))− 1

)
− yizTi β2 − log(yi!)

]
,

(1.3)

where I(·) is the indicator function defined as:

I(y > 0) =


1, if y > 0

0, if y = 0

. (1.4)

Notice that in Equation (1.3), the log-likelihood function can be decomposed into two independent

parts. The first part is for estimating parameters β1 related to proportion and the second part is

only related parameters β2 in the zero-truncated Poisson mean.

1.1.2.2 Zero-Inflated Poisson (ZIP) regression model

The Zero-Inflated model models the zeros via a mixture of point mass at zero and an appropriate

distribution for count event. A zero-inflated Poisson model was first proposed by Lambert (1992)

with an application to detect defects in manufacturing. The marginal distribution of the ZIP model

can be written as:

Pr(Y = yi) =


1− πi + πi exp(−µi), if yi = 0,

πi
µ
yi
i exp(−µi)

yi!
, if yi = 1, 2, 3 · · · ,

(1.5)

Similar to the Hurdle model, under the same generalized linear regression framework, the log-

likelihood can be written as:

lnLZIP =

n∑
i=1

I(yi = 0) {log ((1− pi) + pi exp(−µi))}

+

n∑
i=1

I(yi > 0) {log(pi) + yi log(µi)− µi − log(yi!)} ,
(1.6)

where pi = exp(xTi β1)/(1 + exp(xTi β1)) and µi = exp(zTi β2). All the parameters β1 and β2 are not

separable in the log-likelihood function for Zero-Inflated Poisson in Equation (1.6), which increases
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the computational complexity compared to the separable property in the log-likelihood function in

Equation (1.3).

1.1.3 Bayesian false discovery rate

In order to determine whether an observed outcome occurs by random chance alone, a single

hypothesis or multiple hypotheses are usually conducted for statistical inference. A discovery is

obtained by reject the null hypothesis and thus it is in favor of the alternative. Usually there are

two error criteria used as guidelines in hypothesis testing. One is the Type I error when the null

hypothesis is true but was falsely rejected based on the decision. The second is the Type II error

occurring if a false null hypothesis is accepted. In practice, it is common that several hypotheses

are tested simultaneously. For instance in genomic data analysis, usually researchers conduct a

hypothesis testing for each gene at the same time. Each of the individual test would potentially

have Type I and Type II errors. Therefore it is necessary to find a threshold such that the associated

testing procedure is able to identify as many true discoveries as possible (i.e. maximum power),

while maintaining a relatively lower number of false discoveries (i.e. a reasonable error rate bound).

This is the basic rationale of False Discovery Rate (FDR), which refers to as the proportion of false

discoveries relative to the total number of discoveries. False discovery rate has been widely used in

high-dimensional genomics data analysis.

The concept of FDR was first introduced by Benjamini and Hochberg and they provided a

procedure to calculate the adjusted p values. This procedure is often called BH procedure (Ben-

jamini and Hochberg, 1995). Keeping the same notation of Benjamini and Hochberg (1995) in this

section, we consider testing m independent null hypotheses simultaneously, of which m0 are true.

The testing result is summarized in Table 1.1. R is the observed total number of hypotheses being

rejected, which is a random variable. T is the number of Type II errors, where hypotheses actually

are from alternative but are classified as not significant. V is the number of Type I errors, where

hypotheses are classified as significant when they are actually from the null hypotheses. All V , U ,

S and T are unobservable random variables.
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Table 1.1: Result of m null hypotheses tests

Declared non-significant Declared significant Total

True null hypotheses U V m0

Non-true null hypotheses T S m−m0

Total m−R R m

The FDR is defined as the expectation of the false rejection rate expressed in Equation (1.7)

FDR = E

(
V

R

∣∣R > 0

)
Pr(R > 0). (1.7)

The BH procedure works as follows:

1. Compute the p values p1, p2, · · · , pm for each hypothesis test.

2. Order the p values increasingly p(1) ≤ p(2) ≤ · · · ≤ p(m).

3. Find value k such that k = max
{
k : p(k) ≤ α k

m

}
.

4. If k exists, then reject all null hypotheses H0i, i = 1, 2, · · · , k; otherwise no hypotheses are

rejected.

Benjamini and Hochberg (1995) proved the above BH procedure would control the FDR at a more

stringent level m0α/m for independent tests.

Newton et al. (2004) also proposed a Bayesian FDR approach (BFDR), which utilizes the

posterior sampling distributions of the null hypothesis and the alternative hypothesis statistics. It

has been widely used in the Bayesian inference to assess corresponding statistical significance. The

BFDR is evaluated at α level through

B̂FDR(α) =

∑m
i=1(1− vi)δi∑m

i=1 δi
, (1.8)

where vi denotes the posterior probability of the ith alternative hypothesis test. Then 1 − vi

represents the posterior probability of the ith null hypothesis test. δi = I(vi > c) is the decision

rule, i.e., δi = 1 means the ith hypothesis is rejected and it takes value zero for the ith null hypothesis

fail to be rejected at cutoff c. Thus D =
∑m

i=1 δi is the total number of rejections. Therefore, the
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BFDR could be interpreted as the posterior proportion of false positives among the list that are

classified into alternative groups. Thus it is straightforward to assess the error rate based on the

posterior distribution of statistics for the null hypothesis (or for the alternative hypothesis) in the

Bayesian framework. This brings the popularity for the BFDR, especially Bayesian methods are

getting more and more attractive to deal with the complex data structure nowadays.

1.1.4 Causal mediation analysis

Establishing a causal relationship is one of the central aims in scientific research. In metage-

nomics analysis, a causal inference is desired for identifying mediating factors (i.e. the microbes)

accounting for treatment effects on outcome (Waldron, 2018; Li, 2015; Xia and Sun, 2017). Causal

mediation analysis has been widely used to assess the effect of the treatment on the outcome

mediated through some possible intermediate pathway. The identification of mediators is impor-

tant because this will, to some extent, contribute to improve the treatment effect by focusing on

relatively important mediators. Therefore, mediation analysis in the metagenomics studies is an

ongoing area and will continue to grow.

Most research focuses on establishing or testing how variable T , representing treatment variable,

impact outcome variable Y . For simplicity, we only consider outcome variable is an univariate case

in this thesis. A mediator, also known as a intervening variable or an intermediary variable, is

conceptualized as the mechanism on the pathway between the treatment T and the outcome Y

(i.e. the pathway T → M → Y in Figure 1.5). In other words, the treatment T influences the

mediator M , which in turn causes the variation in the outcome Y . However, this does not indicate

that the entire pathway of treatment effect T on outcome Y has to go through mediator M , as

part of the effect could be direct from treatment T to outcome variable Y , such as the pathway

T → Y in Figure 1.5. Typically, researchers are interested in how much the treatment effect on

outcome through the mediator M . Other than just one single mediator, there might be multiple

mediators between the treatment and the outcome, or a sequence of mediators (VanderWeele and

Vansteelandt, 2014).
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Treatment, T

Mediator , M

Outcome, YDirect Effect

Indir ect (Mediation)  Effect

Figure 1.5: A simple illustration of the three variables path diagram of the standard causal media-

tion model framework. The independent variable T presumably affects the dependent variable Y ,

by having a direct effect (T → Y ) and an indirect effect mediated by mediator M (T →M → Y ).

All three variables, T , Y , and M are scalars.

Mediation analysis was first proposed by Baron and Kenny (1986). Under the regression frame-

work, the basic schematic used for a mediation model can be written as:

Y = cT + ε1, (1.9)

M = aT + ε2, (1.10)

Y = bM + c
′
T + ε3, (1.11)

where E(ε1) = E(ε2) = E(ε3) = 0. The parameter c in Equation (1.9) denotes the total effect on

treatment T on Y . The parameter a denotes the association of T on M in Equation (1.10). Under

this case, it is easy to show that:

ab+ c′ = c, (1.12)

holds, meaning the total effect can be decomposed into direct effect and indirect effect. Thus, under

the assumption that the above mediation model is correctly specified, then the parameters can be

estimated by Ordinary Least Squares (OLS). Baron and Kenny (1986) and Judd and Kenny (1981)

proposed three steps using the multiple regression framework to establish causal mediation effect:
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1. Show that the treatment is significantly related to the outcome, i.e., estimate and test pa-

rameter c in Equation (1.9). This would suggest that there is an effect might be mediated.

2. Show that the treatment is significantly associated with the mediator, i.e., estimate and test

parameter a in Equation (1.10).

3. The mediator is significantly related to the outcome, controlling for treatment, i.e., estimate

and test parameter b in Equation (1.11). This is different from just testing correlation between

mediator M and outcome Y . This is because that the mediator M and outcome Y might be

correlated due to the fact that they are both related to treatment T .

Then the mediation effect could be assessed by testing whether the product ab (i.e. indirect effect)

is zero.

Later on, there are a lot of methodological developments about the mediation analysis due to its

ubiquitous nature of causal mechanisms interpretation (Krull and MacKinnon, 1999; MacKinnon

et al., 2007b,a; VanderWeele and Vansteelandt, 2014; Judd and Kenny, 1981). One of the most

important developments is based on the potential outcomes framework (Imai et al., 2010a; Robins

and Greenland, 1992).

1.1.5 Bayesian variable selection

With the increasing availability of massive and high-dimensional datasets, extracting valuable

knowledge from such challenging data has become a fundamental research concern. This leads to

the intensive focus on variable selection methodology, selecting a parsimony subset of observed

covariates (also known as features) which provides insights on the contributes to the observed

phenomenon. The linear regression model is perhaps the most well-known statistical tool used

to evaluate the relationship between the independent variables X and the continuous outcome of

interest Y . A typical multiple linear regression model for the ith sample unit has the form as

following:

yi = xTi β + εi, i = 1, 2, · · · , n, (1.13)
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where yi is the ith observed response, xi is the covariates vector associated of the ith sample

with size p, β = (β1, · · · , βp)T is the unknown (and fixed) regression coefficient vector, and ε =

(ε1, · · · , εn)T is a random error with the assumption that uncorrelated error terms (i.e. Cov(εj , εk) =

0 ∀j 6= k) with E(εi) = 0 and Var(εi) = σ2 > 0 for all observations. Often, the error terms are

also assumed to be normal distributed in order to make statistical inference. When n > p, i.e., the

total number of observations is larger than the total number of parameters needed to be estimated,

ordinary least squares (OLS) is a common approach of estimating β by minimizing the residual sums

of squares (RSS) (i.e.
∑n

i=1(yi−xTi β)2). However, when p is larger than the number of observations

n, or some of the covariates are highly correlated, the OLS estimates are unsatisfactory with high

variance and inflated standard errors. However, it is very common to have the p > n case in

genomics analysis. Thus variable selection is necessary to identify those important covariates that

should be included in the final model and then estimate the corresponding effects efficiently as well.

To address this concern, a lot of methods have been proposed, including least absolute shrinkage and

selection operator (LASSO) regression (Tibshirani, 1996), the elastic net (Zou and Hastie, 2005),

smoothly clipped absolute deviation (SCAD) (Fan and Li, 2001), adaptive LASSO (Zou, 2006),

the group Lasso (Yuan and Lin, 2006), etc. To assess the uncertainty of the regression coefficients

and to obtain the corresponding confidence interval or the p-value for the hypothesis testing, such

as bootstrap (Efron, 1982), valid post-selection inference (Berk et al., 2013), or covariance test

statistics (Lockhart et al., 2014).

Unlike frequentist methods aforementioned looking for a single optimal model, a Bayesian ap-

proach is capable of not only obtaining the point estimations of coefficients, but the entire joint

posterior probability of all parameters under consideration. This makes the Bayesian inference sim-

ple and nature. For the variable selection, one common used Bayesian prior is known as the spike

and slab priors. The basic underlying idea of these priors is to specific two mixing components such

that the first component shrinks the coefficient towards zero with certain probability and the other

component allows for nonzero values. Thus the sparsity of the model would be determined by this

prior. The original spike and slab prior formulation was proposed by Lempers Lempers (1971), but
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the term was proposed by Mitchell and Beauchamp (1988). These priors include a point-mass mix-

ture prior, i.e. a point mass at zero and a continuous prior elsewhere for each regression coefficient

βj in Equation 1.13, written as:

βj ∼ (1− Zj)δ0 + Zjfj , j = 1, 2, · · · , p, (1.14)

where Zj is a binary random variable implying whether βj is zero or not, δ0 is a Dirac delta

measure with mass on zero (i.e. the “spike” part), and fj is a continuous density (i.e. the “slab”

part). Although the intuitive idea of point mass prior on the spike component is clear, it causes

computational difficulties to get the MCMC chains converge. Recently, Narisetty et al. (2014)

adapted the spike and slab Gaussian priors with prior variances depend on sample size, and proved

the strong selection consistency of their proposed priors under certain regularity conditions. More

specifically, the so-called shrinking and diffusing priors can be expressed as follows:

βj |σ2, Zj = 0 ∼ N(0, σ2τ20,n),

βj |σ2, Zj = 1 ∼ N(0, σ2τ21,n),

P (Zj = 1) = 1− P (Zj = 0) = qn,

σ2 ∼ IG(a, b),

(1.15)

where a, b are constants, and τ20,n, τ
2
1,n, qn are constants depend on sample size n. IG(a, b) represents

the inverse-gamma distribution with shape parameter a and rate parameter b.

1.2 Antimicrobial Resistance

In the past few decades, it has been reported that the number of antimicrobials that are effective

in treating infections are decreasing (Spellberg et al., 2008). Therefore, the emerging crisis of

antibiotic resistance is a serious threat for public health. In the United States, it is estimated that

more than $20 billion is spent on antimicrobial resistance (AMR) each year (Marston et al., 2016).

Salmonella causes about 1.2 million illnesses, 23,000 hospitalizations, and 450 deaths in the United

States every year (Scallan et al., 2011). Food of animal origin, such as beef and poultry, is the

main source for Salmonella infections (Medalla et al., 2017).
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1.2.1 Antimicrobial resistance data

Typically, a dilution test is a common approach used to collect AMR data (Caprioli et al.,

2000), such as Salmonella spp. . This test results in a Minimum Inhibitory Concentration (MIC)

value (milligram per milliliter (mg/ml)). The minimum inhibitory concentration is defined as the

lowest concentration of an antimicrobial that prevent the visible growth of a microorganism. A MIC

value depends on both the microorganism and the antibiotic of interest. The minimum inhibitory

concentration of a particular antibiotic is reported between the concentration of the last well where

no bacteria grew and the next lower concentration where bacterial was still observed. For example,

the same amount of bacteria doses are cultured in the arrays of wells consisting of concentrations of

the antimicrobial agent. Each well increases the percent concentration of antimicrobial by 2 (i.e. 2

mg/ml, 4 mg/ml, 8 mg/ml, 16 mg/ml, and 32 mg/ml), such that the smallest concentration in this

experiment is 2 mg/ml and the largest one is 32 mg/ml. If no visual bacteria growth is in the first

well (2 mg/ml), then the reported MIC value would be ≤ 2 mg/ml, which will be considered as a

left-censored event in our analysis. If some bacteria are observed at the concentrations of 2 and 4

mg/ml, but are inhibited of growth at 8 mg/ml. Then the reported MIC value in this case would

equal 8 mg/ml. We will denote this case as an interval-censored event since the underlying true

inhibition of growth actually occurs at the concentration between 4 mg/ml and 8 mg/ml. Similarly,

if bacteria is still observed at 32 mg/ml, then the true MIC value will treated as right-censored in

our analysis, and the MIC is reported as > 32 mg/ml.

1.2.2 Censored data

Statistically, such serial dilution experiment can generate censored data (i.e. left, right or

interval censored). That is, the left censored data means the event of interest has already occurred

before recording. For the right censored data, we only know that the event of interest occurs after

the censoring time. For the interval-censored, the event occurs between two time points.

Censored data leads to information loss since we do not know the exact value of the event

occurring. Take the right-censored MIC value aforementioned as an example. We only know the
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MIC value should be larger than 32 mg/ml for that particular bacteria and antimicrobial agent, but

we do not know the exact value. Therefore, one of the easiest approaches would be to impute the

censored data, such as delete the reported censored observation and substituted with a reasonable

value, assuming the observations are independent with each other. Then further statistical analysis

can be adopted using this “imputed dataset”. However, this deletion and substitution method

leads to the biased parameters estimation and therefore are not recommended (Gilbert, 1987).

Alternatively, a model based approach using likelihood function is often used to analyze censored

data, although it requires an assumption of the distribution for the response. In this approach,

it is assumed that the censoring mechanism is independent with the underlying data generating

mechanism. Let yi denotes the observation with probability distribution function (or probability

mass function) f(yi; θ) for i = 1, 2, · · · , n, and the corresponding cumulative distribution function

is F (·). Following the common notations in the censoring, for each subject i, a pair of (yi, δi)

is observed, where yi is the observed value and δi is used to indicate whether the observation is

censored or not. Then the likelihoods for different type of censoring can be expressed as follows:

1. Left censoring at value c: L(θ; y) =
∏n
i=1 f(y; θ)δiF (c)1−δi , where δi takes value 1 if yi is

observed otherwise it takes value 0.

2. Right censoring at c: L(θ; y) =
∏n
i=1 f(y; θ)δi(1 − F (c))1−δi , where δi takes value 1 if yi is

observed otherwise it takes value 0.

3. Interval censoring between c1 and c2 L(θ; y) =
∏n
i=1 f(y; θ)δi(F (c2) − F (c1))

1−δi , where δi

takes value 1 if yi is observed otherwise it takes value 0.

1.3 Dissertation Organization

The rest of the dissertation is organized as follows. Chapter 2 presents a statistical model to

detect the differentially abundant taxa among different metagenomic samples. Chapter 3 develops

a two-stage causal mediation model for identifying taxa mediating the treatment effect on the
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outcome. Chapter 4 provides a mixture model to monitor the trend of antimicrobial susceptibility

using MIC values.
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CHAPTER 2. A BAYESIAN HIERARCHICAL POISSON HURDLE

MODEL FOR DIFFERENTIAL ABUNDANCE ANALYSIS OF

MICROBIOME DATA

A microbiome refers to the collection of all microorganisms in an environment, and the recent

advent of high-throughput sequencing technologies have dramatically advanced our ability to study

microbiomes with unprecedented resolution. One commonly used technology is called amplicon

sequencing, which results in sequencing fragments that are clustered into Operational Taxonomic

Units (OTUs). A fundamental step in the analysis of OTU count data is differential abundance

analysis, i.e., to detect the OTUs whose abundances change across treatments and conditions.

There are several challenges in differential abundance analysis of microbiome data. First, there

are often considerable number of zeros in each sample and in most OTUs. Second, microbiome

data is one of those “small n, large p” cases, where the dimension of variables is high while the

number of replicates is small. Besides, the distribution of OTU counts can be highly skewed due to

a few extremely abundant OTUs in some samples. In this manuscript, we propose use of Poisson

Hurdle model to deal with excessive zeros and we do so in a hierarchical model framework to

borrow information across OTUs. We develop a fully Bayesian approach for differential abundance

analysis while controlling false discovery rate. Comprehensive simulation studies demonstrate that

our proposed method outperforms other existing methods in terms of statistical power and false

discovery rate control. We also apply our method to two plant root microbiome studies.

2.1 Introduction

Microbes, which are small microorganisms that can only be observed through a microscope,

play an essential role in all life on earth. The collection of microbes or microorganisms forming a

“mini-ecosystem” environment is referred to as a microbiome (or microbial community) (Sun and
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Dudeja, 2018). The advance of sequencing technologies has greatly facilitated studies of micro-

biomes in the past decade. Nowadays, different microbes from a given sample can be measured

simultaneously using next-generation sequencing technologies by either whole-metagenome shotgun

(WMS) sequencing or amplicon sequencing. With WMS sequencing, millions of random DNA frag-

ments from the whole microbial community are sequenced in parallel while the amplicon sequencing

technology targets specific microbial amplicons, predominantly the bacterial 16S ribosomal RNA

(16S rRNA) gene because it appears almost in every bacterial species and there are hyper variable

regions that can be used to differentiate different species (Wooley and Ye, 2010; Morgan and Hut-

tenhower, 2012; Li, 2015). With both WMS sequencing and amplicon sequencing, we can obtain

taxonomic profiling of the microbiota under study. Taking amplicon sequencing as an example,

the sequenced DNA fragments (i.e. reads) are clustered into Operational Taxonomic Units (OTUs)

based on a given sequence similarity cutoff (usually 95%, 97% or 99%). Each OTU is represented by

a consensus sequence and this sequence is aligned against a reference 16S rRNA bacterial database.

Thousands of OTUs are typically observed in each sample, and data from all samples can be or-

ganized in a count data table. Marker gene analysis of WMS sequencing data results in similar

count data table. In order to understand how microbes work across treatments/conditions, one

fundamental step of data analysis is to identify those OTUs whose abundance levels differ across

treatments/conditions. Such analysis is usually referred to as differential abundance analysis in the

field of metagenomics (Paulson et al., 2013; Li, 2015).

There are several challenges in differential abundance analysis of microbiome data. First, there

are often considerable number of zeros in each sample. The observed zero counts might be due to

non-existence of certain microbes in a given sample or as a result of detection limit because not all

microbes existing in a sample are guaranteed to be observed using the current technology (Wooley

and Ye, 2010; McMurdie and Holmes, 2014). Second, microbiome data is one of those “small n,

large p” cases, where n refers to the number of biological replicates and p refers to the number

of OTUs measured in each sample. Due to the high cost of metagenomics experiments, only a

few biological replicates can be afforded while thousands of OTUs are measured simultaneously for
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each sample. Using a small number of biological replicates tends to result in unstable parameter

estimation, and statistical methods that rely on asymptotic properties may not work well. Besides,

distribution of OTU counts could be highly skewed due to a few extremely abundant OTUs in some

samples. Taking all these challenges into consideration, robust statistical methods are needed to

draw reliable inferences from differential abundance analysis.

Several statistical methods have been developed for differential abundance analysis of micro-

biome data. Rodriguez-Brito et al. (2006) proposed a permutation-based approach that estimates

the median difference between two samples and obtains the associated p-value through bootstrap-

ping. Other non-parametric methods, such as Wilcoxon-Mann-Whitney test for assessing differen-

tial abundance between two groups or Kruskal-Wallis test for multiple-group comparison, were also

applied to the microbiome data analysis (White et al., 2009; Parks and Beiko, 2010; Segata et al.,

2011; Parks et al., 2014). However, those non-parametric or permutation-based methods have a

number of limitations. One major drawback is that small sample size results in low power and gran-

ular distribution of p-values, and the latter introduces problems for the control of multiple testing

error. Another problem is that they do not take into account the excessive zeros in microbiome

data. Methods within the generalized linear model framework without considering excessive zeros

were also applied for functional comparison of metagenomes, such as ShotgunFunctionalizeR (Kris-

tiansson et al., 2009). More recently, zero-inflated model based methods have been proposed to

deal with the challenge of excessive zeros in microbiome data. MetagenomeSeq is an R package that

applies a zero-inflated Gaussian method to address the issue of extra zeros (Paulson et al., 2013).

Sohn et al. (2015) considered a ratio-based approach for identifying differential abundant (RAIDA)

taxa, which was based on a modified zero-inflated log-normal model. Those studies, however, suffer

from the fact that they proposed continuous distributions to model count data, which are discrete

in nature. These methods thus require data transformation, say log-transformation on the count

data in OTU table, where zero counts need to be replaced by arbitrary values such as ones to

avoid logarithm of zero. Such arbitrary modifications do not match the natural variation in data.

Furthermore, the RAIDA method might not be appropriate for comparison of environmentally dif-
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ferent samples since the majority of taxa were assumed not differentially abundant (Sohn et al.,

2015). For metagenomeSeq, McMurdie and Holmes (2014) argued that it tends to produce high

false positive rate. Chen and Li (2016) provided a two-part mixed-effect Beta regression model

by transforming read counts into compositional data. A potential problem for compositional data,

which is obtained by normalizing the abundances of all microbes in the sample by dividing by the

total read counts, is that the read sequence count is not statistically stable for skewed data. Instead

of working with transformed data, more recent attention has focused on studying the OTU count

data directly. Zhang et al. (2017) used a negative binomial mixed model to account for the corre-

lation among samples for each OTU without considering the extra zero nature of the microbiome

data. Chen et al. (2017) developed a zero-inflated negative binomial model for each OTU separately

and considered covariates of interest in modeling both negative binomial mean and zero-inflation

part. Existing studies considering excessive zeros have only focused on fitting a zero-inflated or

two-part model for each OTU. However, there are also considerable number of OTUs that have

non-zero counts across all samples, and forcing a zero-component for such OTUs results in unstable

numerical results since the parameter related to the proportion of zero counts lies on the boundary

of the parameter space.

We use a real dataset to illustrate the characteristic of excessive zeros in microbiome data. One

of the studies presented by Lundberg et al. (2012) investigates the relationship between the root

rhizosphere compartment microbiota and plant genotypes. There are a total of 44 samples and

18774 OTUs for this study. Figure 2.1 presents a histogram of proportion of zero counts in each

OTU. In Figure 2.1, apparently numerous number of OTUs contain excessive zeros (more than

75% OTUs have zero counts in at least 90% of 44 samples). Additionally, there is great variation

in the proportion of zero counts among OTUs, with about 1% OTUs having no zero counts at

all. Figure 2.2 presents count frequencies of four specific OTUs with zero-inflation detected to be

significant based on likelihood ratio tests between zero-inflated and non-inflated models. Besides

zero-inflation, Figure 2.2 shows that the proportions of zeros vary between different OTUs and also

vary among different genotypes for the same OTU.
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Figure 2.1: Histogram of the proportion of zero counts in each OTU in the Arabidopsis root

rhizosphere microbiome dataset.
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Figure 2.2: Count frequency distribution of four specific OTUs in the Arabidopsis root rhizosphere

microbiome dataset. Each row corresponds to an OTU and each column corresponds to a genotype

(Ler, Mt, Oy, Sha, and Tsu). The value n in each figure title is the number of biological replicates

in the corresponding genotype group. The horizontal axis corresponds to the observed count and

the vertical axis corresponds to frequency.
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Two types of statistical models have commonly been applied to deal with count data with

extra zeros: zero-inflated models and hurdle models (also known as the two part models) (Hilbe,

2011). Mathematically it can be shown that zero-inflated models are special cases of hurdle models;

yet hurdle models are more general as they may be used to specify zero-inflation as well as zero-

deflation. In addition, it has been shown that estimates based on hurdle models tend to be more

computationally stable especially in the case of small amount of zeros (Xu et al., 2015). Hence, in

this paper, we propose to use Poisson Hurdle models to deal with excessive zeros in the framework

of hierarchical models. Hierarchical models have been widely applied for “-omics” data analysis

such as transcriptomic data generated by RNA-sequencing experiments (Newton et al., 2004; Do

et al., 2005). Such models allow for borrowing information across variables such as genes or OTUs

and result in improved statistical inference. Ji and Liu (2010) demonstrated that hierarchical

models are efficient when analyzing high-throughput data. We develop a fully Bayesian approach

for differential abundance analysis while controlling false discovery rate (FDR). Our method offers

the flexibility of not only examining the mean abundance difference across treatments but also

other biological relevant null hypotheses in terms of model parameters. For example, we can also

test the treatment effect on the proportion of zeros.

The remainder of this manuscript is organized as follows. Section 2.2 describes our proposed

method. In Section 2.3, we show results from several simulation studies that compare our proposed

method with existing methods. In Section 2.4, we analyze two real datasets using our proposed

method. Section 2.5 provides some discussions.

2.2 Model

2.2.1 Hierarchical poisson hurdle model

In this section, we describe our proposed hierarchical Poisson Hurdle model for analyzing mi-

crobiome data. A Poisson Hurdle model is a mixture model of two components. One component

is a degenerate distribution with a point mass at zero that models the zero counts, and the other

component is a truncated Poisson distribution that models the non-zero counts. Let Ygij be the
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read count for the gth (g = 1, 2, · · · , G) OTU of the jth (j = 1, 2, · · · , ni) biological replicate in the

ith (i = 1, 2, · · · , I) treatment group. Let Zgij be a Bernoulli random variable indicating which of

the two components in the mixture Ygij comes from. Zgij takes value one if and only if the observed

count Ygij is positive, i.e., it comes from the zero truncated Poisson component. Thus, our model

of the indicator Zgij and the read count Ygij is

Zgij | pgi ∼ Ber(pgi),

Ygij | Zgij , µgij ∼


0, if Zgij = 0,

TP (µgij) , if Zgij = 1,

(2.1)

where TP(µ) represents a zero truncated Poisson distribution with probability mass function (pmf)

expressed as fTP (y|µ) =
fp(y|µ)

1−fp(0|µ) , and fp(·|µ) is the pmf of a Poisson distribution with mean µ. The

parameter pgi is the probability of the non-zero component and the parameter µgij characterizes

the abundance given Ygij is positive. Following common practice in the generalized linear model

framework, we model pgi and µgij by αgi and βgi through logit and log link functions respectively

as follows:

logit(pgi) = log

(
pgi

1− pgi

)
= αgi,

log(µgij) = log(sij) + βgi,

(2.2)

where sij represents the normalization factor of replicate j in treatment group i and is used to adjust

for potential systematic variations between samples due to technical issues such as sequencing depth.

We estimate the normalization factor using the method in DESeq (Anders and Huber, 2010). In

brief, we calculate the ratio of each observed count versus the geometric mean count across all

samples for the corresponding OTU, and the normalization factor for a sample is calculated as the

median of these ratios across all OTUs in that sample. We prefer this method over the total sum

normalization, which sums up the total number of read counts in each sample. The reason is that

it has been shown that total sum normalization would lead to biased estimation for RNA-seq data

and result in potential bias for microbiome data (Paulson et al., 2013).

The treatments could affect an OTU by affecting the probability of having a positive count, or

the abundance given that the count is positive, or both. For each OTU g (g = 1, 2, · · · , G), we are
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interested in testing the following hypothesis: Hg
0 : αg1 = · · · = αgI and βg1 = · · · = βgI versus

Hg
1 : not Hg

0 .

As the above null hypothesis involves two conditions, we use two indicators to study these

two conditions respectively. First, let ηαg be an indicator related to condition αg1 = · · · = αgI

in the null hypothesis. If ηαg = 0 then the probability of having a positive count is not affected

by the treatment, i.e., αg1 = · · · = αgI . We model this indicator using a Bernoulli distribution

ηαg | πα0 ∼ Ber(1 − πα0) with πα0 equal to the chance of condition αg1 = · · · = αgI . Hence, a

mixture model is utilized for parameters (αg1, · · · , αgI)
′

conditional on the indicator ηαg:

(αg1, · · · , αgI)
′

=


α̃g0(1, 1, · · · , 1)

′
, if ηαg = 0,

(α̃g1, · · · , α̃gI)
′
, if ηαg = 1,

α̃g0 | φ0, τ0 ∼ N(φ0, τ
2
0 ),

α̃gi | φi, τi ∼ N(φi, τ
2
i ),

(2.3)

where g = 1, 2, · · · , G, i = 1, 2, · · · , I and φ0, τ0, φi, τi are hyper-parameters. Similarly, we define

indicator ηβg so that ηβg = 0 if βg1 = · · · = βgI . Indicator ηβg is assumed to have a Bernoulli

distribution ηβg | πβ0 ∼ Ber(1 − πβ0) with πβ0 as the chance of condition βg1 = · · · = βgI . The

parameters (βg1, · · · , βgI)
′

are modeled using a mixture distribution:

(βg1, · · · , βgI)
′

=


β̃g0(1, 1, · · · , 1)

′
, if ηβg = 0,(

β̃g1, · · · , β̃gI
)′

, if ηβg = 1,

β̃g0 | θ0, σ0 ∼ N(θ0, σ
2
0),

β̃gi | θi, σi ∼ N(θi, σ
2
i ),

(2.4)

where θ0, σ0, θi, σi are hyper-parameters.

In our model, ηαg and ηβg can be interpreted as latent random variables indicating whether

the treatment affects the probability of having positive count and the abundance given that the

count is positive, respectively. Thus if either ηαg = 1 or ηβg = 1 we reject the null hypothesis and

conclude there is a treatment effect on the OTU g.
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2.2.2 Parameter estimation

There are a total of 4(I + 1) + 2 unknown parameters in our hierarchical mixture model:

Θ = {φ0, φ1, · · · , φI , τ0, τ1, · · · , τI , θ0, θ1, · · · , θI , σ0, σ1, · · · , σI , πα0, πβ0} . (2.5)

We propose a fully Bayesian approach for the parameter estimation. For all unknown hyper

parameters, we assume independent non-informative priors as follows:

φk ∼ N(0, 104), θk ∼ N(0, 104),

τk ∼ IG(0.001, 0.001), σk ∼ IG(0.001, 0.001),

πα0 ∼ Unif(0, 1), πβ0 ∼ Unif(0, 1),

(2.6)

where k = 0, 1, · · · , I.

Markov Chain Monte Carlo (MCMC) Gibbs sampling is implemented to make posterior infer-

ence using rjags (Plummer et al., 2003). The posterior estimates of parameters, including all the

latent indicators ηαg and ηβg, were obtained from posterior samples. More specifically, we run two

independent MCMC chains with different initial values, and each chain ran 70,000 iterations. After

20,000 burn-in iterations, we draw samples at every 25 iterations and obtain a sample of size 2,000

for posterior inference. Convergence was checked via Gelman-Rubin criteria (Gelman and Rubin,

1992). Details about MCMC sampling procedure are available at 2.2.2.1.

2.2.2.1 Markov chain monte carlo implementation

In this section, we provide a detailed description of a Markov Chain Monte Carlo (MCMC)

algorithm to implement our proposed model in Section 2.1. More specifically, we use an overall

Gibbs sampling algorithm. In each Gibbs step, parameters are updated either by using conjugacies

from the model structure or by applying the univariate stepping-out slice sampling proposed by

Neal (2003).
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For our proposd model, the likelihood function with observed data Y can be expressed in the

Equation (2.7):

L(Θ|Y ) =

G∏
g=1

I∏
i=1

ni∏
j=1

{
[(1− pgi(αgi))](1−Zgij)

[
pgi(αgi)

1− exp(µgij(βgi))
fp(ygij ;µgij(βgi))

]Zgij}

×
G∏
g=1

{[
πα0fN (α̃g0;φ0, τ

2
0 )
](1−ηαg) [

(1− πα0)

I∏
i=1

fN (α̃gi;φi, τ
2
i )

]ηαg}

×
G∏
g=1

{[
πβ0fN (β̃g0; θ0, σ

2
0)
](1−ηβg) [

(1− πβ0)

I∏
i=1

fN (β̃gi; θi, σ
2
i )

]ηβg}
.

(2.7)

To draw Bayesian inference, we not only sample the parameters in the set

Θ = {φ0, φ1, · · · , φI , τ0, τ1, · · · , τI , θ0, θ1, · · · , θI , σ0, σ1, · · · , σI , πα0, πβ0} ,

but also update the following parameters for each OTU g (g = 1, 2, · · · , G)

{ηβg, ηαg, αg0, αg1, · · · , αgI , βg0, βg1, · · · , βgI} .

In this section, without loss of generality, we use the notation f(θ| ·) to denote the generic

notation of density function for any parameter θ of interest conditioning on everything else. Each

of the following full conditional distributions is sampled in one iteration of the Gibbs sampling:

1. For parameter θ0, we consider a non-informative Normal distribution as prior,

θ0 ∼ N(a0, b
2
0) namely fN (θ0; a0, b0) ∝ 1√

2πb20
exp

(
− 1

2b20
(θ0 − a0)2

)
, where a0 = 0,

b20 = 104. Then the full conditional distribution can be written as:

f(θ0| ·) ∝

{
G∏
g=1

fN (β̃g0|ηβg = 0, θ0, σ0)

}{
fN (θ0; a0, b

2
0)
}

∝ exp

{
−

G∑
g=1

I(ηβg = 0)
(β̃g0 − θ0)2

2σ2
0

}
exp

{
− (θ0 − a0)2

2× b20

}
,

i.e., θ0| · ∼ N (m, v) ,

where

v =

[∑G
g=1 I(ηβg = 0)

σ2
0

+
1

b20

]−1

,m = v

[∑G
g=1 I(ηβg = 0)β̃g0

σ2
0

+
a0
b20

]
.
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2. For parameters (θ1, θ2, · · · , θI)
′
, we assume an independent non-informative normal distribu-

tion as prior, i.e.,

(θ1, θ2, · · · , θI)
′ ∼

I∏
i=1

N(ai, b
2
i ),

and fN (θi; ai, bi) ∝ 1√
2πb2i

exp
(
− 1

2b2i
(θi − ai)2

)
, where ai = 0, b2i = 104. Then the full condi-

tional distribution can be written as:

f(θ| ·) ∝

{
G∏
g=1

I∏
i=1

fN (βgi|ηβg = 1, θi, σi)

}{
fN (θi; a0, b

2
0)
}

∝
I∏
i=1

exp

{
−

G∑
g=1

I(ηβg = 1)
(β̃gi − θi)2

2σ2
i

}
exp

{
− (θi − a0)2

2× b20

}
,

i.e., θi| · ∼ N (m, v) ,

where

v =

[∑G
g=1 I(ηβg = 1)

σ2
i

+
1

b20

]−1

,m = v

[∑G
g=1 I(ηβg = 1)β̃gi

σ2
i

+
a0
b20

]
, i = 1, 2, · · · , I.

3. Assuming a conjugate prior σ20 ∼ IG(a0, b0) for parameter σ0 yields a full conditional distri-

bution of the form:

f(σ2
0 | ·) ∝

{
G∏
g=1

fN (β̃g0|ηβg = 0, θ0, σ
2
0)

}{
fIG(σ2

0 ; a0, b0)
}

∝ (σ2
0)−

∑G
g=1 I(ηβg=0)/2 exp

{
−

G∑
g=1

I(ηβg = 0)
(β̃g0 − θ0)2

2σ2
0

}
(σ2

0)−a0−1 exp

(
− b0
σ2
0

)
,

i.e., σ2
0 | · ∼ IG

(
a0 +

1

2

G∑
g=1

I(ηβg = 0), b0 +
1

2

G∑
g=1

I(ηβg = 0)(β̃g0 − θ0)2

)
,

where fIG(σ20; a0, b0) ∝ (σ20)−a0−1 exp(− b0
σ2
0
), and a0 = b0 = 0.001.

4. For parameters (σ21, σ
2
2, · · · , σ2I )

′
, we consider the independent conjugate prior

(σ21, σ
2
2, · · · , σ2I )

′ ∼
∏I
i=1 IG(ai, bi), and fIG(σ2i ; ai, bi) ∝ (σ2i )

−ai−1 exp(− bi
σ2
i
),

where ai = bi = 0.001. Then the full conditional distribution is:

f(σ2| ·) ∝

{
G∏
g=1

I∏
i=1

fN (β̃gi|ηβg = 1, θi, σ
2
i )

}{
fIG(σ2

i ; a0, b0)
}

∝
I∏
i=1

(σ2
i )−

∑G
g=1 I(ηβg=1)/2 exp

{
−

G∑
g=1

I(ηβg = 1)
(β̃gi − θi)2

2σ2
i

}
(σ2
i )−a0−1 exp

(
− b0
σ2
i

)
,

i.e., σ2
i | · ∼ IG

(
ai +

1

2

G∑
g=1

I(ηβg = 1), bi +
1

2

G∑
g=1

I(ηβg = 1)(β̃gi − θi)2
)
, i = 1, 2, · · · , I.
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5. We consider a non-informative Normal distribution prior for the parameter φ0, i.e.,

φ0 ∼ N(a0, b
2
0) namely fN (φ0; a0, b0) ∝ 1√

2πb20
exp

(
− 1

2b20
(φ0 − a0)2

)
, where

a0 = 0, b20 = 104. Then the full conditional distribution is:

f(φ0| ·) ∝

{
G∏
g=1

fN (α̃g0|ηαg = 0, φ0, τ0)

}{
fN (φ0; a0, b

2
0)
}

∝ exp

{
−

G∑
g=1

I(ηαg = 0)
(α̃g0 − φ0)2

2τ20

}
exp

{
− (φ0 − a0)2

2× b20

}
,

i.e., φ0| · ∼ N (m, v) ,

where

v =

[∑G
g=1 I(ηαg = 0)

τ20
+

1

b20

]−1

,m = v

[∑G
g=1 I(ηαg = 0)

τ20
+
a0
b20

]
.

6. The full conditional distribution of parameters (φ1, φ2, · · · , φI)
′

is factorized into the product

of independent terms, since we consider the independent non-informative normal distribution

as prior,

(φ1, φ2, · · · , φI)
′ ∼

I∏
i=1

N(ai, b
2
i ),

and fN (θi; ai, bi) ∝ 1√
2πb2i

exp
(
− 1

2b2i
(φi − ai)2

)
, where ai = 0, b2i = 104. The full conditional

distribution is:

f(φ| ·) ∝

{
G∏
g=1

I∏
i=1

fN (α̃gi|ηαg = 1, φi, τi)

}{
fN (φi; a0, b

2
0)
}

∝
I∏
i=1

exp

{
−

G∑
g=1

I(ηαg = 1)
(α̃gi − φi)2

2τ2i

}
exp

{
− (φi − ai)2

2× b2i

}
,

i.e., φi| · ∼ N (m, v) ,

where

v =

[∑G
g=1 I(ηαg = 1)

τ2i
+

1

b2i

]−1

,m = v

[∑G
g=1 I(ηαg = 1)

τ2i
+
ai
b2i

]
, i = 1, 2, · · · , I.
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7. For parameter τ0, we consider a conjugate prior τ20 ∼ IG(a0, b0). Then the full conditional

distribution is:

f(τ20 | ·) ∝

{
G∏
g=1

fN (α̃g0|ηαg = 0, φ0, τ
2
0 )

}{
fIG(τ20 ; a0, b0)

}
∝ (τ20 )−

∑G
g=1 I(ηαg=0)/2 exp

{
−

G∑
g=1

I(ηαg = 0)
(α̃g0 − φ0)2

2τ20

}
(τ20 )−a0−1 exp

(
− b0
τ20

)
,

i.e., τ20 | · ∼ IG

(
a0 +

1

2

G∑
g=1

I(ηαg = 0), b0 +
1

2

G∑
g=1

I(ηαg = 0)(α̃g0 − φ0)2

)
.

8. For parameters (τ21 , τ
2
2 , · · · , τ2I )

′
, we consider the independent conjugate prior

(τ21 , τ
2
2 , · · · , τ2I )

′ ∼
∏I
i=1 IG(ai, bi), and fIG(τ2i ; ai, bi) ∝ (τ2i )−ai−1 exp(− bi

σ2
i
), where

ai = bi = 0.001. Then the full conditional distribution is:

f(τ2| ·) ∝

{
G∏
g=1

I∏
i=1

fN (α̃gi|ηαg = 1, φi, τ
2
i )

}{
fIG(τ2i ; a0, b0)

}
∝

I∏
i=1

(τ2i )−
∑G
g=1 I(ηαg=1)/2 exp

{
−

G∑
g=1

I(ηαg = 1)
(α̃gi − φi)2

2τ2i

}
(τ2i )−ai−1 exp

(
− bi
τ2i

)
,

i.e., τ2i | · ∼ IG

(
ai +

1

2

G∑
g=1

I(ηαg = 1), bi +
1

2

G∑
g=1

I(ηαg = 1)(α̃gi − φi)2
)
, i = 1, 2, · · · , I.

9. The full conditional distribution for the parameters ηβg (g = 1, 2, · · · , G) can be obtained by:

f(ηβg = 1| ·) ∝
I∏
i=1

fN (β̃gi|ηβg = 1, θi, σ
2
i )f(ηβg = 1|πβ0)

∝ (1− πβ0)

I∏
i=1

fN (β̃gi|ηβg = 1, θi, σ
2
i ),

f(ηβg = 0| ·) ∝ fN (β̃g0|ηβg = 0, θ0, σ
2
0)f(ηβg = 0|πβ0)

∝ πβ0fN (β̃g0|ηβg = 0, θ0, σ
2
0).

Therefore, each ηβg can be sampled from a Bernoulli distribution given by:

ηβg ∼ Ber

(
(1− πβ0)

∏I
i=1 fN (β̃gi|ηβg = 1, θi, σ

2
i )

(1− πβ0)
∏I
i=1 fN (β̃gi|ηβg = 1, θi, σ2

i ) + πβ0fN (β̃g0|ηβg = 0, θ0, σ2
0)

)
.
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10. Similarly, the full conditional distribution of parameter ηαg (g = 1, 2, · · · , G) can be obtained

by:

f(ηαg = 1| ·) ∝
I∏
i=1

fN (α̃gi|ηαg = 1, φi, τ
2
i )f(ηαg = 1|πα0)

∝ (1− πα0)

I∏
i=1

fN (α̃gi|ηαg = 1, φi, τ
2
i ),

f(ηαg = 0| ·) ∝ fN (α̃g0|ηαg = 0, ξ0, τ
2
0 )f(ηαg = 0|πα0)

∝ πα0fN (α̃g0|ηαg = 0, φ0, τ
2
0 ).

Hence, each ηαg can be sampled from the following Bernoulli distribution:

ηαg ∼ Ber

(
(1− πα0)

∏I
i=1 fN (α̃gi|ηαg = 1, φi, τ

2
i )

(1− πα0)
∏I
i=1 fN (α̃gi|ηαg = 1, φi, τ2i ) + πα0fN (α̃g0|ηαg = 0, φ0, τ20 )

)
.

11. The full conditional distribution of the paramters βgi (g = 1, 2, · · · , G, i = 0, 1, 2, · · · , I) can

be written as:

f(β̃g0|ηβg = 0, ·) ∝
I∏
i=1

ni∏
j=1

f(ygij |αg, βg0)f(β̃g0|ηβg = 0, θ0, σ
2
0)

∝


I∏
i=1

ni∏
j=1

1

1− exp[− exp(log(sij) + β̃g0)]

(exp[log(sij) + β̃g0])ygij

ygij !
exp[− exp(log(sij) + β̃g0)]


Zgij

×

{
exp

(
− (β̃g0 − θ0)2

2σ2
0

)}
,

and

f(βgi|ηβg = 1, ·) ∝
I∏
i=1

ni∏
j=1

f(ygij |αg, βgi)f(βgi|ηβg = 1, θi, σ
2
i )

∝


I∏
i=1

ni∏
j=1

1

1− exp[− exp(log(sij) + βgi)]

(exp[log(sij) + βgi])
ygij

ygij !
exp[− exp(log(sij) + βgi)]


Zgij

×
{

exp

(
− (βi − θi)2

2σ2
i

)}
.

Since the full conditional distribution does not have a standard form, we use a slice sampler

to update βgi or β̃g0.
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12. The full conditional distribution of the paramters αgi (g = 1, 2, · · · , G, i = 0, 1, 2, · · · , I) can

be written as:

f(α̃g0| ηαg = 0, φ0, τ0)

∝
I∏
i=1

ni∏
j=1

{
exp(α̃g0)

1 + exp(α̃g0)

}1−Zgij { 1

1 + exp(α̃g0)

}Zgij
fN (αg0|ηαg = 0, φ0, τ0)

∝
I∏
i=1

ni∏
j=1

{
exp(α̃g0)

1 + exp(α̃g0)

}1−Zgij { 1

1 + exp(α̃g0)

}Zgij
×
{

exp

(
− (α̃g0 − ξ0)2

2τ20

)}
,

and

f(αgi|ηαg = 1, φi, τi) ∝
ni∏
j=1

{
exp(αgi)

1 + exp(αgi)

}1−Zgij { 1

1 + exp(αgi)

}Zgij
fN (αgi|ηαg = 1, φ0, τ0)

∝
ni∏
j=1

{
exp(αgi)

1 + exp(αgi)

}1−Zgij { 1

1 + exp(αgi)

}Zgij
×
{

exp

(
− (αgi − φi)2

2τ2i

)}
.

.

Similarly, since the full conditional distribution does not have a standard form, we use a slice

sampler to update αgi or α̃g0.

13. For parameter πα0, we specify a Uniform(0,1) distribution as prior. The full conditional

distribution is obtained by:

f(πα0| ·) ∝
G∏
g=1

f(ηαg|πα0)f(πα0) ∝
∏
g=1

π
1−ηαg
α0 (1− πα0)ηαg

∝ π
∑G
g=1(1−ηαg)

α0 (1− πα0)
∑G
g=1 ηαg ,

i.e., πα0| · ∼ Beta

(
G∑
g=1

(1− ηαg) + 1,

G∑
g=1

ηαg + 1

)
.

14. For parameter πβ0, we specify a Uniform(0,1) distribution as prior. The full conditional

distribution is obtained by:

f(πβ0| ·) ∝
G∏
g=1

f(ηβg|πβ0)f(πβ0) ∝
∏
g=1

π
1−ηβg
β (1− πβ0)ηβg

∝ π
∑G
g=1(1−ηgβ)

β (1− πβ0)
∑G
g=1 ηαg ,

i.e., πβ0| · ∼ Beta

(
G∑
g=1

(1− ηβg) + 1,

G∑
g=1

ηβg + 1

)
.

We sampled each parameter from the full conditional distributions described above. Each

parameter in Θ was verified to achieve convergence using standard Bayesian model convergence

diagnostics, including trace plots, autocorrelation statistics and Gelman-Rubin criteria.
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2.2.3 Bayesian FDR

One advantage of Bayesian inference is that both hypothesis testing and estimation of quantities

of interest can be easily performed by using the joint posterior distribution of model parameters.

For example, our null hypothesis for each OTU g could be assessed by using the posterior probabil-

ity pg = Pr(ηαg = 0 and ηβg = 0|Y ). In practice, such a posterior probability can be used directly

to make decisions of hypothesis testing while controlling a certain type of error. In high-dimensional

hypothesis testing such as in genomic studies, controlling the proportion of false positives among

the “significant” discoveries is of interest since a large number of hypotheses are examined simul-

taneously. The false discovery rate (FDR) proposed by Benjamini and Hochberg (1995) has been

widely used as the error rate to control in large-scale multiple testing problems (Genovese and

Wasserman, 2002; Storey, 2002). The Bayesian version of FDR could be estimated through poste-

rior probabilities under our current framework. More specifically, for each OTU g (g = 1, 2, · · · , G),

the posterior probability that it is not differentially abundant is estimated via

p̂g =
1

N

N∑
n=1

I
(
η(n)αg = 0 and η

(n)
βg = 0|Y

)
, (2.8)

where N is the number of MCMC samples, and I(x) is an indicator function. Then the posterior

probability that the gth OTU is differentially abundant is estimated through 1−p̂g. We consider the

decision rule that classifies the gth OTU as being differentially abundant if the posterior probability

p̂g < c?, where c? is the cutoff value that needs to be chosen in order to achieve a target false

discovery rate, say γ, i.e.

c? = sup
{
c : F̂DR(c) < γ

}
, (2.9)

where F̂DR(c) =
∑G
g=1 p̂gI(p̂g<c)∑G
g=1 I(p̂g<c)

. Then following Newton et al. (2004), the Bayesian FDR controlled

at γ level can be obtained by the following expression:

B̂FDR(γ) =

∑G
g=1 p̂gI(p̂g < c?)∑G
g=1 I(p̂g < c?)

. (2.10)
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2.3 Simulation Studies

Simulation studies were conducted to assess the performance of our proposed approach and

other methods for differential abundance analysis of microbiome data. For each simulation setting,

50 datasets were simulated based on the Poisson Hurdle model described in Section 2.2.1. As in

the Arabidopsis dataset described in the next section, this dataset contains 1853 OTUs and 44

samples from five different genotypes. The parameters used to generate datasets were obtained

from estimation of the Arabidopsis dataset based on our proposed model, and the values of these

parameters are listed in Table 2.1. The normalization factor sij in Equation (2.2) was set to be a

fixed value, i.e. sij = 1 for all i = 1, 2, · · · , I and j = 1, 2, · · · , ni.

Table 2.1: Parameter values estimated based on the Arabidopsis dataset and used in simulation

studies.

Parameter Values

(φ0, φ1, φ2, · · · , φ5) (2, -0.7, 0.2, 0.3, 0.25, -0.2)

(θ0, θ1, θ2, · · · , θ5) (-0.7, 1.5, 1.5, 1.5, 1.5, 1.5)

(τ0, τ1, τ2, · · · , τ5) (1.3, 0.1, 0.1, 0.1, 0.1, 0.1)

(σ0, σ1, σ2, · · · , σ5) (0.85, 0.8, 0.8, 0.75, 0.8, 0.8)

n1, n2, · · · , n5 (8,8,8,10,10,8)

Besides our proposed method that we call PHSeq, other methods under comparison in the

simulation studies include edgeR (Robinson et al., 2010), DESeq (Anders and Huber, 2010), DE-

Seq2 (Love et al., 2014), metagenomeSeq (MGSeq) (Paulson et al., 2013) and Kruskal-Wallis (KW)

(Segata et al., 2011). Among these methods, edgeR, DESeq, and DESeq2 are methods widely

applied for RNA-seq differential expression analysis and these methods are based on negative bino-

mial models and do not take zero-inflation into account; metagenomeSeq is designed for microbiome

data that models zero-inflation using a zero-inflated Gaussian model; and Kruskal-Wallis test is a

non-parametric test for comparing multiple groups.

We evaluated the performance of different methods using the Receive Operating Characteristic

(ROC) curve averaged over 50 simulated datasets and the value of the corresponding Area Under
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the Curve (AUC). For each simulated dataset, the OTUs were ranked by either the p-values (non-

Bayesian methods) or the posterior probabilities (our proposed method). Then the true positive

rates (TPRs) were calculated for a list of false positive rates (FPRs) for each dataset and then

averaged across 50 simulated datasets at each given level of FPR. The higher the ROC curve, the

larger the AUC value, and the better the ranking of OTUs for the corresponding method. Figure 2.4

presents the resulting average ROC curves together with the AUC values when FPR < 0.1 under

four different simulation settings that differ for the combination of πα0 and πβ0. In all simulation

settings, it is obvious that our proposed method performs much better than all the other methods.

The AUC value for our proposed method was about 50% higher than the next best performing

method. The methods edgeR, DESeq, and DESeq2 are all developed based on a negative binomial

model with shrinkage estimation of the dispersion parameter, and they perform similarly and work

better than the non-parametric method, Kruskal-Wallis test. The metagenomeSeq method, which

is designed for handling extra zeros in metagenomic data using a log-transformation followed by a

zero-inflated Gaussian mixture model (Paulson et al., 2013), had a similar performance to edgeR,

DESeq, and DESeq2 for relatively large FPR level, but not for lower level of FPR.

We also examined the control of the false discovery rate (FDR) for each method because the

error control is also practically important for differential abundance analysis. We applied the FDR

controlling procedure described in Section 2.2.3 for our proposed method, and Benjamini-Hochberg

procedure (Benjamini and Hochberg, 1995) was applied to control FDR for the other five methods

under comparison. Figure 2.6 presents the plots of actual FDR versus the nominal level of FDR

for all methods in all simulation settings. Overall our proposed method controlled the FDR to

the nominal level, while metagenomeSeq failed to control FDR, i.e. produced a high number

of false positives. This was consistent with McMurdie and Holmes’s conclusion (McMurdie and

Holmes, 2014) that metagenomeSeq tended to lead to higher false positive rate if there are not

enough biological replicates, since this approach relies on the transformation of discrete data to

approximate a continuous distribution. DESeq, DESeq2, edgeR and Kruskal-Wallis test were able

to control the false discovery rate while being a bit conservative.
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The simulation results show that our proposed Bayesian approach based on hierarchical Poisson

Hurdle model outperformed all other methods in terms of both ranking differentially abundant

OTUs and controlling FDR.

To test the robustness of our method, we performed another simulation study where data were

not generated based on our model. In this simulation, data were generated from zero-truncated

negative binomial distribution with dispersion parameter fixed as 0.05 for each OTU, and the

mean of zero-truncated negative binomial were matched with the mean of zero-truncated Poisson

distribution at the scenario that πα0 = 0.6, πβ0 = 0.8, while other parameters as the same as listed

in Table 2.1.

The results from this simulation setting are presented in Figure 2.8. Although the performance

of our method was not as good as in the previous settings, our method was still much better than

others in terms of both ROC curves and FDR control.

2.4 Real Data Analysis

We applied our method to two published datasets that study how the microbiome associated

with plant root change across different conditions. The first dataset is from Arabidopsis (Lundberg

et al., 2012) and the other one is from grass (Naylor et al., 2017). For the Arabidopsis study, we used

a subset of samples for our analysis. Samples corresponding to the rhizosphere compartment and

the soil type Mason Farm with soil and sand mixed in the proportion of 2:1 were considered in our

current analysis. This gave us a total of 44 samples across 5 genotypes (treatment conditions). Then

OTUs with low abundance (the proportion of non-zero counts samples was less than 10%) were

excluded (Chen and Li, 2016). This resulted in 1853 remaining OTUs used in following differential

abundance analysis. For the grass dataset, samples from endophytic compartment and soil type A

were selected. The treatments considered in this study were the combination between two levels

of watering regimes (drought and well-water control) and four cultivated rice varieties. Similar

pre-processing procedure was conducted to filter lowly abundant OTUs. This leaded to 3447 OTUs
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Figure 2.4: ROC curves for our proposed method and five other methods under comparison. Each

ROC curve was an average over 50 simulated datasets. The AUC values were calculated as the

percentage of the total area in the range of FPR < 0.1. The percentage in each parenthesis was

the associated standard deviation among the 50 simulated datasets.
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Figure 2.6: FDR plots. Each line corresponds to the averages of false discovery proportions across

50 datasets at each given level of FDR. The Y = x line is shown as dashed grey lines in all four

panels. Our proposed method (PHSeq) overlaps the Y = x line in all four panels.
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Figure 2.8: Robustness of the hierarchical Poisson Hurdle model under model mis-specification.

(a) ROC curve were generated similarly as for Figure 2.4. Each ROC curve was an average over

50 simulated datasets. The AUC values were calculated as the percentage of the total area in the

range of FPR < 0.1. The percentage in each parenthesis was the associated standard deviation

among the 50 simulated datasets. (b) FDR plots. Each line corresponds to the average of false

discovery proportions across 50 datasets at each given level of FDR. The Y = x line is shown as

dashed grey line.
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from 32 samples remaining for the following analysis. The summary of those two datasets is listed

in the Table 2.2.

Table 2.2: Number of samples, OTUs and treatments in each real dataset after filtering.

Dataset Treatment/genotype No. of OTUs after filtering No. of samples

Arabidopsis Five genotypes 1853 44

Grass Eight treatments 3447 32

We performed our proposed approach and compared with Kruskal-Wallis, edgeR, DESeq, DE-

Seq2 and metagenomeSeq methods. Table 2.3 exhibited the results of the numbers of detected

OTUs as differentially abundant when FDR was controlled at 5%. As it shows, our proposed

method found the largest number of differentially abundant OTUs. Figure 2.9 displays the Venn

diagrams between Poisson Hurdle model, edgeR and metagenomeSeq methods applied on grass

dataset.

Table 2.3: The numbers of OTUs for real data analysis detected as significant found by each method

when control FDR at 5% level.

Dataset Kruskal-Wallis edgeR DESeq DESeq2 metagenomeSeq PHSeq

Arabidopsis 0 2 0 0 3 187

Grass 0 83 9 0 1438 2733

2.5 Discussion

In this paper, we present a Bayesian approach based on hierarchical Poisson Hurdle model for

differential abundance analysis of the microbiome count data. The mixture of a point mass at zero

and a zero-truncated Poisson distribution for positive counts takes the natural characteristic of ex-

cess zeros in microbiome data into account. The Poisson Hurdle model also naturally handles data

with zero-deflation and this provides more flexibility in modeling different OTUs than other meth-

ods. In addition, the hierarchical Bayesian framework allows information borrowing across OTUs.
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Figure 2.9: Number of OTUs detected as differentially abundant by Poisson Hurdle model (PHSeq),

edgeR and metageomeSeq (MGSeq) methods when FDR controlled at 5% level in the analysis of

the grass dataset.

Several simulation studies demonstrated that our approach had better performance compared to

the conventional methods, which only analyze individual OTU separately, in terms of power and

FDR control simultaneously.

A two-part method for modeling individual OTU at a time has been developed for OTU analysis

in the literature (Wagner et al., 2011), where they only considered a two-group comparison problem.

More recently, Chen and Li (2016) proposed the two-part mixed effect Beta regression model for

microbiome. However, Chen and Li’s (Chen and Li, 2016) method was designed for compositional

data that is considered continuous rather than for the discrete count data. The compositional

nature imposes the correlation among the OTUs (needs to satisfy the unit sum constraint) and

also depends on the methods of normalization. This may affect the performance of the method

especially the FDR control.

In our proposed method, we developed this two-part model based on count data without trans-

formation. The OTUs were automatically clustered into two groups indicated by the latent variables
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in this hierarchical structure, which would be used to rank the importance of OTUs, providing some

insights on the OTUs that are more likely to be associated with the treatment effects. Our extensive

simulations show that our method is stable and powerful.

Our framework is very general and a few extensions are possible. In this manuscript, we

focused on the test of treatment effects on both the proportion of zero counts and mean of the

OTU abundance simultaneously. With the Bayesian inference, our proposed framework can be

applied to test other biologically relevant null hypotheses by using the joint posterior samples. For

example, we can test the treatment effects on the OTU abundance Hg
0 : βg1 = · · · = βgI and the

treatment effects associated with proportion of zero count Hg
0 : αg1 = · · · = αgI , respectively. In

addition, our model is very flexible, which is able to include different covariates in two different

components of the mixture model.

In conclusion, our proposed framework provides a powerful statistical tool for the differential

abundance analysis of microbiome data. Although we focus on the count data from 16S rRNA

sequencing, the proposed method is applicable to the shotgun metagenomic sequencing which is

commonly used in microbiome studies.
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CHAPTER 3. CAUSAL MEDIATION ANALYSIS OF

HIGH-DIMENSIONAL MICROBIOME SEQUENCING DATA

The rapid development of high-throughput sequencing technologies has revolutionized the filed

of metagenomics and provided researchers insights on studying the relationship between microbial

communities, environment and associated biological outcome. The measured microbes are specu-

lated to mediate the effects of environment on biological outcome. In agriculture, if the pathways

between the microbes and the outcome can be elucidated, it might be possible to intervene upon

the microbiome to maximize the plant performance. This motivates a causal mediation inference.

However, existing causal mediation approaches cannot be directly applied to the setting with a large

number of discrete mediators. In this project, we propose a testing procedure for the mediation

effects of high-dimensional count mediators. To accommodate the setting with high-dimensional

count mediators and a small sample size, we develop a novel screening procedure based on the

ranking of indirect effect to reduce the dimension to a moderate size. Then the causal inference

is conducted using a Bayesian variable selection framework that detects important mediators. By

combining the ideas from independence screening process, Bayesian variable selection and causal

inference, our proposed method sheds insights on disentangling indirect from direct effect pathway.

Extensive simulation studies are carried out to assess the performance of our proposed approach.

We also apply the method to a real dataset example and pinpoint a set of taxa significantly medi-

ating the effect of treatment on the outcome.

3.1 Introduction

The recent rapid advancement of metagenomics, which is the study of genetic material of

microbes from the environment without culturing (Handelsman et al., 1998; Thomas et al., 2012),

provides a promising opportunity for researchers to investigate the roles of microbes in diverse fields.
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With the advent of next generation sequencing technologies, millions of DNA reads are generated

simultaneously. These sequence reads are further clustered based on their sequence similarity to

form Operational Taxonomic Units (OTUs) (also known as taxa). Nowadays, researchers focus on

not only demonstrating the components of microbial communities, but also how they can impact a

outcome (Zhao, 2013; Fritz et al., 2013; Vorholt et al., 2017; Xia and Sun, 2017). From a statistical

point of view, jointly modeling different types of genomic data and their relationships with the

outcome and environmental conditions can be described using a causal diagram and be formalized

using a causal mediation model (Lin et al., 2014b).

Our motivating example is a study for understanding of metabolic responses to different nitrogen

levels in Sorghum. Our interest lies in the effect of environmental treatment conditions (measured

in high vs low nitrogen levels) on biofuel feedstock yields (measured in metabolite). More specifi-

cally, we are interested in whether this effect might be mediated by the microbial communities at

individual taxonomic levels (measured as the OTU counts). Previous studies have demonstrated

that the production of plant metabolites might be impacted by several factors, including environ-

mental conditions (Council et al., 2012; Gelli et al., 2014) and the complex microbial communities

(Witowski and Baker, 2012; Chaparro et al., 2012; Kembel et al., 2014). Additionally, several

studies have reported that different environmental conditions would assemble different types of

microbes (Lundberg et al., 2012; Edwards et al., 2015). Therefore, identifying which taxa mediate

the effect of environmental condition on the production of metabolite is an pivotal area of research

as it can allow investigators to modify the microbiome abundance for the optimum plant growth

or other favorable plant phenotypes in modern plant breeding programs (Tkacz and Poole, 2015).

To date, several statistical methods based on microbiome data have been proposed to study the

relationships between microbial communities and their corresponding covariates, including environ-

mental conditions and outcome of interest. In general, these approaches can be roughly categorized

into two groups. The first group focuses on exploring the association between microbiome and

outcome of interest. In this group, there are two common used approaches in the literature. One is

comparing the microbial communities among different environmental conditions without adjusting
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for covariates, such as the permutation MANOVA (McArdle and Anderson, 2001; La Rosa et al.,

2012). The other is a regression model approach where microbiome data are treated as either pre-

dictors or outcomes in the model (Lin et al., 2014a; Randolph et al., 2018; Shi et al., 2016; Tang

et al., 2016; Xia et al., 2013; Chen and Li, 2013; Zhao et al., 2015). However, such association

type of analysis suffers from one problem that it can only study the relationship between two vari-

ables at a time. In other words, it can only study the relationship between microbial communities

and treatment conditions, between microbial communities and outcome, or between outcome and

treatment conditions. These methods cannot be directly applied to a mediation analysis where

three components (e.g., environmental conditions, microbial communities and outcome) need to be

analyzed jointly.

The second group of approaches is the causal mediation type of analysis. Several methodologies

have been developed recently for this purpose. Zhang et al. (2018) have proposed phylogeny-based

distance metrics to test the overall mediation effect of the microbial communities instead of on

individual taxonomic level. However, from a biological point of view, the ability to pinpoint specific

individual taxon with mediation effect would help researchers to have a better understanding of the

biological mechanisms and to target microbiome-based intervention in the future. A compositional

mediation analysis has also been studied by Sohn and Li (2017). This approach analyzes mediation

effect at taxonomic level but requires transforming the taxon count data into compositional data.

Such transformation usually relies on a pre-decided reference baseline. Typically, the overall sum

of sequence counts in each biological sample is the choice of reference. However, the total sum

of reads is not robust to outliers. In addition, it is computationally expensive to make statistical

inferences based on these two approaches as it is not possible to derive the asymptotic distribution

for the test statistics. Hence, extra effort is needed, such as permutation used in Chen’s paper

(Zhang et al., 2018) and bootstrap used in Li’s paper (Sohn and Li, 2017).

Therefore, there is an urgent need to have an appropriate mediation analysis method in place

of testing the microbiome mediation effects. Nevertheless, despite these two recent studies which

focused on microbiome mediation effects there are still several statistical challenges to overcome.
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First of all, microbiome data are usually summarized as sequencing reads at taxonomic level, i.e. the

nature of relative abundance of each taxon is an integer. Secondly, microbiome data are usually

high-dimensional as millions of sequencing reads can be generated from a single sample. However,

the sample size can be extremely small as it is still expensive to conduct biological experiments,

i.e. it is a small n large p problem. For instance, in our motivating example, there are 34 biological

samples and about 4000 OTUs. Taken together, it is crucial to take into account these challenges

inherent in microbiome data analysis.

Additionally, most existing mediation analyses are concerned with single or a limited number of

mediators (VanderWeele and Vansteelandt, 2014; Imai et al., 2010a; Robins and Greenland, 1992).

However, there is very little information available on the topic about high-dimensional mediation

effects. Although Zhang et al. (2016) and Huang and Pan (2016) study the causal mediation

under high-dimensional setup, both studies assume that the mediating variables are continuous.

Therefore, existing methods cannot be readily applicable to our OTU count data, as they do not

account for sparsity (i.e. excessive zeros), high-dimensionality and the count nature of mediators.

To address the aforementioned issues, in this paper, we develop a mediation analysis approach

to identify taxa with mediation effect under high-dimensional setup using a fully Bayesian variable

selection methodology. Our key ideas are to adopt a screening methodology to reduce the potential

mediators to a moderate range, then to employ the Bayesian variable selection method. To test

for mediation effects at individual mediator level, we introduce latent random variables indicating

whether treatment conditions have an effect on the abundance of mediator and whether mediator

is associated with outcome after adjusting for the treatment effects. Extensive simulation studies

demonstrate that our proposed method has reasonable statistical power.

The rest of this paper is organized as follows. In section 2, we introduce the screening process

and the high-dimensional mediation model and propose the testing and inference procedure. In

section 3, we examine the performance of screening procedure and mediation model via extensive

simulation studies. In section 4, we apply our proposed method to study the mediating effect of
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taxa on the causal effect of nitrogen levels on metabolites. Section 5 summaries the method and

discusses some further research topics.

3.2 Methods

Let Mgij denote the observed read count for taxon g, treatment i, and biological replicate j,

where j = 1, 2, · · · , ni, i = 1, 2, · · · , I, g = 1, 2, · · · , G, and ni is the total number of replicates for

treatment i. Yij is the continuous outcome of interest. Tij denotes the treatment, which is randomly

assigned to subjects. The treatment is assumed to have only two levels (i.e. I = 2, T1j = 0, T2j = 1)

for simplicity. However, our proposed method can be easily generalized to situations where there

are more than two treatment conditions. In our real data example, Yij denotes the concentration

of metabolite on the logarithm scale. Treatment Tij will be nitrogen level (full vs low nitrogen).

Figure 3.1 depicts the high-dimensional multiple mediators in a conceptual form. Here we assume a

parallel multiple mediators model (Hayes, 2017), meaning no mediator causally influences another

even though they might be correlated. We assume that the effect of treatment T on outcome

Y is mediated through the microbiome M , i.e. the path T → M → Y in Figure 3.1, where

M = {M1ij , · · · ,MGij}. Thus the mediation effects can be assessed under the following general

framework:

f(E(Mgij)) = βgi (3.1)

Yij |M , Tij = τ0 + τ1Tij +

G∑
g=1

γgMgij + εij , i = 1, 2; g = 1, 2, · · · , G, (3.2)

where τ1 represents the direct effect of the treatment T on the outcome Y ; εij are uncorrelated

random errors with mean zero and variance one. E(·) denotes the expectation, and f(·) is a function

that describes the relationship between the treatment T and the expectation of the abundance of

microbiome data M .
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Figure 3.1: Illustration of the causal mediation model: Zgβ is an indicator for whether treatment

Tij has an effect on the abundance of gth taxon, and and Zgγ is an indicator for whether gth taxon

affects the outcome, g = 1, 2, · · · , G. τ1 is the direct effect of the treatment Tij on the outcome Yij .

Our goal is to identify a set of taxa that would mediate the treatment effect on the outcome. To

assess the mediation effects, we consider a two-stage statistical algorithm: a screening procedure is

first conducted to reduce the dimensionality of taxa to a moderate size (but still larger than the

sample size), then a Bayesian inference is performed on this reduced feature space to detect taxa

with mediation effect.

3.2.1 First stage - screening methods

The purpose of the first stage is to screen out the non-informative taxa to reduce the dimen-

sionality. As mentioned before, although the scale of the microbiome data is very large due to

high-throughput characterizations of sequencing technology, a considerable amount of taxa have

low abundance due to sequencing error or sampling process. In addition, much of the variation

across samples may just be noise instead of biological signals. Therefore, dimension reduction is

imperative, as a traditional regression approach cannot be applied to Equation (3.2) if the sample

size is smaller than the number of taxa. To deal with the sparse feature of the microbiome data,

we will consider two screening methods.
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The first screening method (referred to as Screening method I in the rest of the paper) is to

apply the sure independence screening (SIS) (Fan and Lv, 2008) by ranking the maximum marginal

association of taxon with the outcome in Equation (3.2) to detect a set of potential taxa of interest.

The details of this procedure are described as follows:

1. Identify a subset I = {1 ≤ k ≤ G : Mgij is among top p taxon with largest effects on Y },

where p is a pre-specified integer. More specifically, for each taxon g, conduct the following

linear regression model:

yij = α0 + αTij + αgMgij + εij , (3.3)

where and εij
iid∼ N(0, σ2). In practice, the taxa abundance Mgij are first standardized to have

mean zero and unit variance across samples before fitting the regression models to ensure that

the coefficients are in the same range.

2. Rank the absolute value of the ordinary least square estimation of α̂g decreasingly and then

pick up the top p corresponding OTUs.

The SIS screening approach ranks OTU by marginal correlation with the outcome only, which

does not consider the effect of treatment. Considering our goal for detecting taxa with mediation

effect, i.e. the treatment has an effect on the abundance of microbiome then the microbiome impact

the outcome, it is reasonable to incorporate the effect of treatment on OTUs (Equation (3.1)) into

our screening stage. We thus propose another screening algorithm by ranking OTUs based on the

magnitude of the indirect effect (referred to as Screening method II). The rationale is to rank the

taxon based on the measured magnitude of the indirect effect, a function related to parameter β

in Equation (3.1) and γ in (3.2).

1. For each taxon g, perform a Negative binomial regression model (considering the overdisper-

sion feature in sequencing data) with treatment T as explanatory variable, i.e.

Mgij ∼ NB (exp(αg0 + αg1Tij), θg) , (3.4)
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and let α
(1)
g = exp(αg0 + αg1)− exp(αg0), and the corresponding MLE (maximum likelihood

estimates) is denoted as α̂
(1)
g .

2. Then for each taxon g, conduct the following linear regression model:

yij = α0 + αTij + α(2)
g Mgij + εij , εij

iid∼ N(0, σ2) (3.5)

The resulting OLS estimator for α
(2)
g is written as α̂

(2)
g .

3. Let α̂g = |α̂(1)
g α̂

(2)
g |, then rank the value of α̂g from largest to smallest and select the top p

OTUs.

3.2.2 Second stage - mediation effect detection

The second stage of our approach is to detect the taxa that mediate the treatment effect on

the outcome. To achieve this, we need to test whether there is a significant effect of the treatment

T on mediators M , and whether these mediators are significantly associated with the outcome Y ,

controlling for the treatment T .

From examining real microbiome count data, we found that the variance of abundances is larger

than corresponding expected mean even after the first stage screening (see Figure˜3.2). To account

for the overdispersion issue, a generalized linear model with a Negative binomial distribution is used

in Equation (3.1) to establish the relationship between microbial community and environmental

conditions.

Assume p out of G taxa are picked up from the first stage. Under the assumption of the

conditional independence among the taxonomic count, each read count Mgij can be modeled as:

Mgij ∼ NB (µgij , exp(φg)) , (3.6)

where NB(µ, exp(φ)) indicates a Negative binomial distribution with mean µ and variance µ +

µ2 exp(φ). As shown in Equation (3.6), it involves taxon-specific overdispersion parameters φg

and mean parameters µgij that depend on the treatment i. These mean parameters are of our
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Figure 3.2: Scatter plot between means and variances of abundances from a real dataset after

first screening stage. There are 33 samples, and p = 50 OTUs are selected in the first stage

using screening method II. The gray dashed line represents the relationship where means equal

to the variances of abundances. The fitted simple linear regression (solid line in the figure) is:

E log(σ2) = 0.6 + 1.37 log(µ) + 0.03(log(µ))2 with R2 = 0.97, where µ and σ2 denote the mean

and variance of abundances of these 50 OTUs, respectively. The p-value of the coefficient for the

quadratic term (log(µ))2 is 0.0003.



55

primary interest and can be further related to the treatment under the generalized linear regression

framework. In other words, the treatment conditions could be incorporated into the model as:

log (µgij) = βgi + log(sij), (3.7)

where sij represent the normalization factor for adjusting the bias owing to the variation in se-

quencing depth of replicate j in ith treatment. In our analysis, we used the geometric mean values

(Anders and Huber, 2010), which is implemented in the DESeq Bioconductor package.

In order to share information across OTUs to improve estimation of taxonomic abundances, we

propose the following hierarchical model:

Zgβ | πβ0
i.i.d∼ Ber(1− πβ0),

(βg1, · · · , βgI)
′

=


β̃g0(1, 1, · · · , 1)

′
, if Zgβ = 0,(

β̃g1, · · · , β̃gI
)′

, if Zgβ = 1.

β̃gi ∼ N(θi, σ
2
βi),

φg ∼ N(ηφ, σ
2
φ),

(3.8)

where φg and β̃gi are assumed to be independent with each other.

The association between mediators and outcome controlling for the treatment can be expressed

as:

Yij |Mij, Tij ∼ N

τ0 + τ1Tij +

p∑
g=1

γgMgij , σ
2
y

 , (3.9)

where Mij = (M1ij ,M2ij , · · · ,Mpij)
T . We also assume σ2y , σ

2
βi and σ2φ are mutually independent

with each other.

In our proposed model, a latent random variable Zgβ in Equation (3.8) is introduced for each

OTU, indicating whether the treatment has an effect on the abundance of g-th OTU or not.

Additionally, the hierarchical structure has the advantage of accommodating a general correlation

between taxa. Moreover, τ1 is the parameter relating treatment variable Tij to outcome variable Yij

through direct effect after adjusting for all potential mediators Mij in Equation (3.9). Parameter
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γg relates the gth mediator (taxon) to the outcome adjusting for the treatment effect T and the rest

of the mediators. Thus the indirect effect, the effect of treatment on outcome through mediators,

is denoted by the path T →M → Y as in Figure 3.1.

In this paper, our main focus is on detecting whether a taxon has a mediation effect or not.

A taxon is identified as a mediator if the following two conditions are met: (1) treatment Tij is

associated with Mgij ; and (2) conditional on Tij and on other taxon except Mgij , the outcome Yij

is associated with Mgij . The overall null hypothesis that a taxon does not have a mediation effect

can be further formalized in terms of two null hypotheses testing for each taxon, i.e.

H
(1)
g0 : Tij ⊥Mgij or H

(2)
g0 : Yij ⊥Mgij |Tij ,M(−g)ij , (3.10)

where M(−g)ij =
{
M1ij ,M1ij , · · · ,M(g−1)ij ,M(g+1)ij , · · · ,Mpij

}
.

It was suggested by Yuan and MacKinnon (2009) and Koopman et al. (2015) that the Bayesian

approach would increase the statistical power in the mediation analysis, especially for cases with

multiple mediators and small sample size. Considering the complexity of our data structure, we

will perform a Bayesian approach for inference. Under the assumption that most of the taxa

will not have mediation effect, we conduct a Bayesian variable selection using the shrinking and

diffusing priors proposed by Narisetty et al. (2014). Under the Bayesian framework, the following

independent priors are assigned for all parameters involved in Equations (3.8 - 3.9):

πβ0 ∼ Unif(0, 1),

θi ∼ N(0, 104), σ2βi ∼ IG(0.0001, 0.0001), i = 0, 1, 2,

ηφ ∼ N(0, 104), σ2η ∼ IG(0.0001, 0.0001),

τ1 ∼ N(0, 104), σ2y ∼ IG(0.0001, 0.0001),

γg ∼ (1− Zgγ)N(0, σ2yσ
2
γ0) + ZgγN(0, σ2yσ

2
γ1),

Zgγ ∼ Ber(pg), pg ∼ Beta(0.2, 0.5),

(3.11)

where the default values in (Narisetty et al., 2014) are used for parameters σ2γ0 = 1/n, σ2γ1 =

max{100×σ2γ0,
0.1p

(1−0.1)ρ}, where ρ = φ(
√

2.1 ∗ log(p+ 2); 0, 1) is the density function of the standard

normal distribution evaluated at
√

2.1 ∗ log(p+ 2), and p is the total number of taxa after screening.
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Note that the hyperparameters pg, σ
2
γ0 and σ2γ1 have important roles in the process of Bayesian

variable selection. Parameter pg reflects the sparsity of the model that relates OTUs to the outcome

(i.e. Equation (3.9)), as the gth mediator would have impact on the outcome if Zgγ takes value

one. The size of zero regression coefficients γg in Equation (3.9) is determined by the parameter

σ2γ0. Similarly, σ2γ1 represents the size of nonzero regression coefficients γg. We place priors on pg to

allow the values to be informed by the data rather than setting prespecified values. The advantage

of these data-driven hyperparameters will provide data-driven estimates of the posterior inclusion

probabilities for the potential mediators. For the remaining hyperparameters, we assign conditional

conjugate non-informative priors.

Consequently, under the proposed Bayesian framework, the null hypothesis for each taxon g

described in Equation (3.10) can be rewritten in terms of latent variables Zgβ and Zgγ together

with the alternative hypothesis as:

Hg0 : ZgβZgγ = 0 vs Hg1 : ZgβZgγ 6= 0, (3.12)

for g = 1, 2, · · · , p.

3.2.3 Parameter estimation

Markov Chain Monte Carlo (MCMC) is the prominent approach used in Bayesian parameter

estimation. In a nutshell, we use an overall Gibbs sampling framework and the univariate stepping-

out slice sampler within Gibbs steps when a full conditional distribution is inaccessible (Neal, 2003;

Cruz et al., 2014). The full conditional distributions are presented at the end of this chapter. We

implemented the proposed algorithm using R software (R Core Team, 2017).
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3.2.3.1 Markov chain monte carlo implementation

Based on the Equation (3.8), the full likelihood function for the differentially abundant related

parameters can be written as:

p (M |ηφ, σφ, θ0, σβ0, θ1, σβ1, θ2, σβ2, πβ0)

∝
p∏
g=1

 1√
2πσ2φ

exp

(
−

(φg − ηφ)2

2σ2φ

)
2∏
l=0

1√
2πσ2βl

exp

(
−

(β̃gl − θl)2

2σ2βl

)
(1− πβ0)Zgβπ

(1−Zgβ)
β0


×

p∏
g=1

2∏
i=1

ni∏
j=1

{[
fNB

(
Mgij ; exp(β̃g0 + log(sij)), exp(φg)

)]1−Zgβ
[
fNB

(
Mgij ; exp(β̃gi + log(sij)), exp(φg)

)]Zgβ}
,

(3.13)

where fNB(y;µ, θ) is the probability mass function of negative binomial distribution with mean

µ and variance µ + µ2θ. Then the posterior distribution of the parameters can be updated using

MCMC as follows:

1. Update ηφ. The full conditional distribution of ηφ is a normal distribution with mean

1
1/104+p/σ2

η

∑p
g=1 φg

σ2
η

, and variance
(

1
104

+ p
σ2
η

)−1
.

2. Update σ2η. The full conditional distribution of σ2η is an inverse gamma distribution with

shape parameter 0.0001 + 0.5 ∗ p and rate parameter 0.0001 +
∑p
g=1(φg−ηφ)2

2 .

3. Update θ0. The full conditional distribution of θl is a normal distribution with mean

1

1
104

+
∑p
g=1(1−Zgβ)

σ2
β0

∑p
g=1(1− Zgβ)β̃g0

σ2β0

and variance

(
1

104
+

∑p
g=1(1− Zgβ)

σ2β0

)−1
.

4. Update σ2β0. The full conditional distribution of σ2β0 is an inverse gamma distribution with

shape parameter 0.0001+0.5∗
∑p

g=1(1−Zgβ) and scale parameter 0.0001+

∑p
g=1(1− Zgβ)(β̃g0 − θ0)2

2
.
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5. Update θl, l = 1, 2. The full conditional distribution of θl is a normal distribution with mean

1

1
104

+
∑p
g=1 Zgβ

σ2
βl

∑p
g=1(1−Zgβ)β̃gl

σ2
βl

and variance

(
1

104
+

∑p
g=1 Zgβ

σ2βl

)−1
.

6. Update σ2βl, l = 1, 2. The full conditional distribution of σ2βl is an inverse gamma distribution

with shape parameter 0.0001+0.5∗
∑p

g=1 Zgβ and scale parameter 0.0001+

∑p
g=1 Zgβ(β̃gl − θl)2

2
.

7. Independently update β̃gl, φg using slice sampler, for l = 0, 1, 2 and g = 1, 2, · · · , p.

8. Update Zgβ, g = 1, 2, · · · , p. The full conditional distribution of Zgβ is:

P (Zgβ = 1|πβ0)

=
(1− πβ0)

∏2
i=1

∏ni
j=1 fNB (Mgij ;µgi, exp(φg))

(1− πβ0)
∏2
i=1

∏ni
j=1 fNB (Mgij ;µgi, exp(φg)) + πβ0

∏2
i=1

∏ni
j=1 fNB (Mgij ;µg0, exp(φg))

,

(3.14)

where µgi = exp(β̃gi + log(sij)) and µg0 = exp(β̃g0 + log(sij)).

9. Update πβ0. The full conditional distribution of πβ0 is a beta distribution, i.e.

πβ0|· ∼ Beta

1 +

p∑
g=1

(1− Zgβ), 1 +

p∑
g=1

Zgβ

 . (3.15)

The implementation of the regression model was adapted from Narisetty et al. (2014). More

specifically, the full conditional distribution of γ? = (τ0, τ1,γ) = (τ, γ1, · · · , γp) is expressed as:

γ?|· ∼ N
(
(M?′M? +D−1k )−1M?′Y, σ2y(M

?′M? +D−1k )−1
)
, (3.16)

where M? = [1,T ′,M ], D−1k is a diagonal matrix with diagonal (104, 104, σ2γZ1γ
, · · · , σ2γZpγ ). A

block updating algorithm (Ishwaran et al., 2005) is utilized to speed up computation time.

The conditional distribution of Zgγ is given by

P (Zgγ = 1|γ, σ2y , σ2γ) =
pgφ(γg; 0, σ2yσ

2
γ1)

pgφ(γg; 0, σ2yσ
2
γ1) + (1− pg)φ(γg; 0, σ2yσ

2
γ0)

. (3.17)

The full conditional distribution of σ2y is the inverse gamma distribution with shape parameter

0.0001 + 0.5 ∗n+ p ∗ 0.5 and the scale parameter 0.0001 + 0.5 ∗ γ′Dkγ + (Y − τ0− τ1T −Mγ)′(Y −

τ0 − τ1T −Mγ) ∗ 0.5, where Dk is a diagonal matrix with diagonal (σ2γZ1γ
, · · · , σ2γZpγ ).



60

3.2.4 Controlling the false discovery rate

As multiple hypotheses are tested simultaneously, it is crucial to control the false discovery

rate (FDR). In this paper, we adapt the approach proposed by Newton et al. (2004) to control

the posterior expected false discovery rate. Briefly, let dg ∈ {0, 1} indicate the gth OTU having

mediation effect. A natural decision rule would rely on the posterior probability of having mediation

effect, i.e. dg = I(v̂g > α), for the given threshold α, where v̂g = P (ZgβZgγ 6= 0|data). Let

D =
∑p

g=1 dg denote the number of OTUs with mediation effect. Then the posterior expected

FDR, the fraction of false positives, can be expressed as 1
D

∑p
g=1(1 − v̂g)dg. Newton et al. (2004)

proposed to pick up the value α so that the posterior expected FDR could achieve a desired level,

say 0.05, i.e. 1
D

∑p
g=1(1− v̂g)dg ≤ 0.05.

3.3 Results

3.3.1 Simulation studies

In this section, we will conduct several simulation studies to examine the performance of the

proposed method. The performance is assessed with the receiver operating characteristic (ROC)

curve, and FDR control. ROC curve, a figure with true positive rate versus the false positive rate,

is widely used to measure the ranking of a method for signal detection.

In the following simulation studies, the model parameters used to generate data are estimated

based on our model Equation (3.8) - (3.9) from the real data. For simplicity, we fix the normalization

factor sij to be constant value one for all samples. Let A ⊂ {1, 2, · · · , p} denote the indices of the

differentially abundant OTUs, L ⊂ {1, 2, · · · , p} denote the indices of the OTUs affecting the

outcome Y after adjusting the treatment T , and M = A ∩ L denote the indices of the mediating

OTUs. The size of each set is denoted as | · |, e.g. the size of mediating OTUs is denoted as |M|.
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3.3.2 First stage simulation study

First, we conduct simulation studies to numerically compare the screening method I with the

screening method II.

Consider n1 = n2 = 25, G = 4000, πβ0 = 0.8, i.e. there are 800 differentially abundant OTUs.

Let the size of mediators (|M|) vary from 100 to 300 and fix the number of OTUs associated with

the outcome (i.e. |L|) to be 1000. Without loss of generality, we assume that the first |A| OTUs

are differentially abundant, i.e. A = {1, · · · , n|A|}, M = {1, 2, · · · , |M|}, L = {1, · · · , |M|, n|A| +

1, · · · , n|A|+ |L|− |M|}. All simulations are based on 100 independent simulated datasets. In each

simulation, we use 5000 burn-in iterations for the Gibbs sampler followed by 5000 iterations for

estimating the posterior probabilities.

The simulation procedure is described as follows:

1. Generate the OTU count matrix M . For each OTU g 6∈ M:

Mgij ∼


NB (exp(βg0), exp(φg)) , if Zg = 0

NB (exp(βgi), exp(φg)) , if Zg = 1, g 6∈ M

where two cases are considered here: case i)βg0 ∼ N(0.3, 1.4), βg1 ∼ N(0.2, 1.3), βg2 ∼

N(0.3, 1.4), φg ∼ N(−2, 1.4), and case ii) βg0 ∼ N(0.3, 0.5), βg1 ∼ N(0.2, 0.5), βg2 ∼

N(0.3, 0.5), φg ∼ N(−2, 1.4).

2. Generate the outcome Y .

Yij ∼ N

τ1Tij +

p∑
g=1

γgMgij , 1

 , (3.18)

where τ1 = 1 and

γg =


0, if g 6∈ L

∼ N(0, 0.04), if g ∈ L \M
,

where γg are the coefficients for the abundances of OTUs after standardizing (i.e. with mean

zero and variance one).
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3. For the rest g ∈ M, generate |M| OTUs from NB(exp(βmgi ), exp(φmg )) based on Table 3.1,

where each set of parameters has |M|/10 OTUs.

Table 3.1: Parameters values for OTUs with mediation effects. Those values were estimated from

real data based on our proposed model.

βmg0 βmg1 γg
3.7 0.76 -0.12

3.6 0.66 0.12

1.45 0.07 -0.1

0.12 9.06 -0.13

1.01 0.003 -0.17

9.1 3.83 -0.16

1.13 0.005 0.2

1.39 0.049 0.12

10.39 1856 0.22

6.87 2.72 0.15

For each simulated dataset, we apply both screening method I and screening method II respec-

tively and compute the number of mediators that are correctly identified by each method. Figure

3.3 depicts the simulation results. Overall, our proposed novel screening method II are able to select

more mediators compared to screening method I, especially for the case ii) where the treatment

effects on the mediators are larger compared to other differentially abundant taxa (see the second

row in the Figure 3.3).

3.3.3 Second stage simulation study

In this section, we conduct several simulation studies to assess the performance of our proposed

causal mediation model (Equation (3.8) - (3.9)). We assume there are p OTUs selected from the

first stage. The same procedure as described before is utilized to generate the simulated dataset,

except in the first step, the set of parameters are set to be: βg0 ∼ N(0.4, 3.0), βg1 ∼ N(0.2, 2.2),

βg2 ∼ N(−0.7, 2.4). The reason that we change the parameters values is that these parameters were

estimated based on our proposed model applied to the real data after first stage screening. The

sample size is fixed to be n = 50, and three cases with different size of total number of OTUs (i.e.
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Figure 3.3: Compare the screening method I against screening method II varying size of mediators

from 100 to 300. X-axis corresponds to the different size of p (i.e. the number of the OTUs pre-

specified to be selected) out of 4000 OTUs. Y-axis denotes the number of the mediating OTUs are

selected. The first row shows the results for case i) and the second row presents the results for case

ii)
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p = 50, p = 100 and p = 200) are considered. For each case, we vary the size of mediators, number

of differentially abundant OTUs, and the size of OTUs that are associated with the outcome. More

specifically, we consider the following four scenarios: i) the treatment affects the relative abundance

of some OTUs and all these differentially abundant OTUs impact the outcome, i.e. |L \M| = 0

and |A \ M| = 0, ii) the treatment affects the relative abundance of some OTUs and there are

additional five non-differentially abundant OTUs, except all differentially abundant OTUs, have an

effect on the outcome, i.e. |L \M| = 5 and |A \M| = 0, iii) there are additional five differentially

abundant OTUs that are not associated with the outcome, i.e. |L \ M| = 0 and |A \ M| = 5,

and iv) there are additional five differentially abundant OTUs that are not associated with the

outcome and additional five non-differentially abundant OTUs that have an effect on the outcome,

i.e. |L \M| = 5 and |A \M| = 5. Hence, for each value p, there are total 12 simulation settings.

For each setting, we conduct 100 simulations.

Figure 3.4 shows the ROC curves from our simulation studies. From the figure we can see that

our proposed model works well in terms of ranking the taxa in all scenarios. As we increase the

number of differentially abundant OTUs while keeping the size of mediators fixed, such as the third

column and fourth column in Figure 3.4, the performance for p = 50 is slightly worse compared to

the other cases p = 100, 200.

Figure 3.5 presents the summary of results from the FDR analysis. In all simulation settings,

the false discovery proportions averaged over 100 simulated datasets are close or below the nominal

FDR level, which indicates that FDR is well-controlled. As it shows that the performance of the

proposed model with different size (i.e p = 50, 100 and p = 200) are similar in the case that

all differentially abundant OTUs are mediators. However, as increasing the size of differentially

abundant of OTUs, the FDR is not controlled but close to the desired level for p = 200 case,

especially when the number of mediators increases to be 40.
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Figure 3.4: ROC curves averaged across 100 simulations for second stage under different scenarios.

Each row corresponds to the size of mediators from 20 to 40. The first column denotes that

L = A =M, i.e. all differentially abundant OTUs have mediation effect and all OTUs that have an

effect on outcome adjusting for treatment effect are mediators. The second column denotes that all

differentially abundant OTUs have mediation effect and there are five additional non-differentially

abundant OTUs that have an effect on outcome adjusting for treatment effect. The third column

represents that there are five differentially abundant OTUs that are not associated with outcome

adjusting for treatment effect. The forth column describes that there are five differentially abundant

OTUs that are not associated with outcome adjusting for treatment effect and there are five non-

differentially abundant OTUs that has effect on outcome adjusting for treatment effect.
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Figure 3.5: Examination of FDR control. Each row correspond to a different size of mediators (20,

30, and 40). Each line corresponds to the plot of average false discovery proportions across 100

simulated datasets versus the nominal level of FDR. The first column denotes that L = A = M,

i.e. all differentially abundant OTUs have meditation effect and all OTUs that have an effect

on outcome adjusting for treatment effect are mediators. The second column denotes that all

differentially abundant OTUs have mediation effect and there are five non-differentially abundant

OTUs that have an effect on outcome adjusting for treatment effect. The third column represents

that there are five differentially abundant OTUs that are not associated with outcome adjusting for

treatment effect. The forth column describes that there are five differentially abundant OTUs that

are not associated with outcome adjusting for treatment effect and there are five non-differentially

abundant OTUs that have an effect on outcome adjusting for treatment effect.
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Table 3.2: Number of potential mediating taxa detected using screening method I and screening

method II in the real dataset when FDR was controlled at 5% level.

Screening method I Screening method II

Metabolite Collection date p = 50 p = 100 p = 200 p = 50 p = 100 p = 200

Abscisic acid July 0 0 0 17 5 0

Abscisic acid September 3 0 0 13 80 0

Indole 3 acetic acid July 0 0 0 19 0 0

Indole 3 acetic acid September 0 4 0 0 0 0

Indole 3 carboxylic July July 0 0 0 0 7 0

Jasmonic acid July 1 0 0 0 25 0

Jasmonic acid September 0 0 0 0 14 11

Phaseic acid July 1 0 0 0 14 39

Salicylic acid July 0 0 0 7 6 0

trans zeatin riboside July 1 0 0 17 0 0

X12 oxo phytodienoic acid September 0 0 0 0 20 0

3.4 Real Data Application

We applied our proposed approach to a real data example. In this study, Sorghum were grown

under low and full nitrogen conditions and roots were sampled at two time points. Eight different

metabolites were examined. In this project, to reduce the variability in the time and metabolites,

we conducted separate mediation analysis for each metabolite at each time point. First, we filtered

out the low abundance OTUs with zero counts across all samples at each time point. Then we

applied our proposed procedure: selected the top p (p = 50, 100, 200) OTUs using screening method

I and screening method II separately. Then applied causal mediation model to the selected OTUs

with mediation effect on the the metabolite. Table 3.2 displayed the number of potential mediating

OTUs that were detected using screening method I and screening II respectively when FDR was

controlled at 5% level. Table 3.2 did not include that cases that no OTUs were detected with

mediation effect. The results in Table 3.2 indicated that screening method II was able to select

more number of potential mediators compared to screening method I.
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3.5 Discussion

In this project, we developed a novel two-stage statistical approach to jointly test for the media-

tion effects. We proposed an original screening procedure followed with Bayesian variable selection

to account for the high-dimensional overdispersed count nature of microbiome data. We evaluated

the proposed method using simulation studies and applied to a real data example. Applying me-

diation analysis in microbiome data analysis can provide an important tool for helping researchers

to identify novel taxa associated with observed outcomes. Other investigators also have assessed

approaches to study the causality for the microbiome data; however we are unaware of others that

have tested the mediation effects on individual taxa count level. Therefore, it is difficult to compare

our method to others.

Although the proposed method focuses on testing the mediation effects, the estimation of indi-

rect effect for individual OTU can also be obtained from the posterior distributions. Our method

can be easily generalized to situations where there are more than two treatment levels, or where

there are more than one treatment factors. In addition, typically, making causal inference relies on

a couple of assumptions, such as no unmeasured confounders. It is usually difficult to assess these

assumptions for complicated experiment design. Therefore, sensitivity analysis can be conducted

to partially addresses such concern (Imai et al., 2010b).
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CHAPTER 4. A HIERARCHICAL BAYESIAN LATENT CLASS

MIXTURE MODEL WITH CENSORING FOR DETECTION OF

TEMPORAL CHANGES IN ANTIBIOTIC RESISTANCE

The control of antimicrobial resistance (AMR) is a high priority for researchers and public health

officials. One critical component of this control effort is surveillance for emerging or increasing

resistance, as evidenced by the growth in the number and scale of surveillance programs around

the world. Traditional detection of temporal changes in antibiotic resistance relies only on the

analyses of proportion of resistance based on dichotomized Minimum Inhibitory Concentration

(MIC) values, which ignores changes in the mean MIC below or above the MIC cutoff. We develop

and validate a hierarchical Bayesian latent class mixture model approach which is able to detect

temporal changes in the mean log2(MIC) as well as proportion of resistance together. Our model

appropriately addresses challenges in analyses of AMR MIC values, including the left-, right- or

interval-censoring and the latent class mixture distribution nature of the observed MIC values. We

show that our method has less bias in mean estimation and more power in detection of changes

compared to naive method ignoring censorship. We demonstrate our method with application

to analyses of Salmonella enterica I,4,[5],12:i:- and Salmonella serotype Typhimurium with the

antibiotic chloramphenical in CDC NARMS human dataset and show that evidence of temporal

changes in mean log2(MIC) exist in spite of no changes or changes of adverse direction in the

proportion of resistance.

4.1 Introduction

The control of antimicrobial resistance (AMR) is a high priority for researchers and public

health officials. One critical component of this control effort is surveillance for emerging or increas-

ing resistance, as evidenced by the number and scale of surveillance programs around the world
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(Deckert et al., 2010; Gagliotti et al., 2011). In the United States (US), the National Antimicro-

bial Monitoring System (NARMS) has been in place since 1996 and includes data collected by

the US Centers for Disease Control and Prevention (CDC), the US Food and Drug Administra-

tion (FDA) and the US Department of Agriculture (USDA) (US Centers for Disease Control , US

Food and Drug Administration, US Department of Agriculture, 2016b). NARMS collects isolates

of Salmonella spp., Escherichia coli and Campylobacter spp. . The antimicrobial resistance data

for the CDC surveillance program are obtained from bacteria isolated from patients who attend

public health departments or hospitals that are part of the CDC NARMS surveillance network.

These bacterial isolates are tested for the ability to grow in the presence of antibiotics. Gener-

ally, the approach to AMR determination can be described as follows: each antibiotic is serially

diluted and incubated with the bacterium, and the lowest dilution that inhibits bacterial growth is

called the Minimum Inhibitory Concentration (MIC) (US Centers for Disease Control , US Food

and Drug Administration, US Department of Agriculture, 2016b); then after determination of the

MIC value, each isolate is categorized as susceptible or resistant to the tested antibiotic based

on a clinical break-point value. Some antibiotics also have an intermediate category. In the US,

breakpoints for NARMS data are provided by the Clinical and Laboratory Standards Institute.

When breakpoints do not exist, the categorizations may be developed by other methods (Clinical

and Laboratory Standards Institute, 2015; US Centers for Disease Control , US Food and Drug

Administration, US Department of Agriculture, 2016b).

It is critically important for public health to monitor trends in antimicrobial resistance using

AMR data generated by surveillance programs. One aim of surveillance programs is to enable

detection of emerging resistance in a timely manner and to enable antimicrobial stewardship pro-

grams to be implemented properly and accurately (Atlanta and Human Service, 2016). To date,

the predominate approach to assessing changes in AMR has focused on assessing changes in the

proportion of resistant isolates for a particular antibiotic over time. Several statistical methods

have been employed and all use testing approaches such as the Cochran-Armitage trend test, lo-

gistic regression model with time as a co-variate (Aerts et al., 2011; Cummings et al., 2016; Hanon
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et al., 2015), or the Mann-Kendall non-parametric method to test monotonic trend over time (US

Centers for Disease Control , US Food and Drug Administration, US Department of Agriculture,

2016a). These statistical methods are based on dichotomized MIC data: resistant vs. non-resistant

(susceptible and, when applicable, intermediate combined). However as Mazloom et al. (2017)

pointed out, methods based on categorizations cause information loss. Further, the focus on pro-

portion changes, means that the change in mean MIC of isolates occurring above or below the

resistant breakpoints (MIC creep/decline) are not part of current surveillance monitoring (Ruiz

et al., 2016). Similarly, reliance on dichotomized MIC data, means that correlations in mean MIC

can not be readily monitored, despite the fact that such information would aid in the identification

of emerging joint resistance patterns. Currently, these aspects of AMR surveillance data are not

routinely monitored because accurate and robust approaches to estimation of the mean MIC are

not available.

Appropriate mean MIC estimation must address the natural characteristic of MIC values, which

are obtained from serial dilution experiments (Figure 4.1). Observed MIC values are often interval

censored, for example, an observed MIC of 8 mg/ml for the organism A in Figure 4.1 actually

implies the true MIC is > 4 mg/ml and ≤ 8 mg/ml. Observed MIC values might also be left or

right censored at the starting or ending dilutions (Figure 4.2). This means the exact MIC values

are unknown (Hamilton and Rinaldi, 1988). Estimation of the MIC mean without adjusting for

censoring is biased and likely overestimates bacterial resistance to an antibiotic (Annis and Craig,

2005). An additional issue is the modeling of the underlying distribution of true MIC values. With

respect to MIC data, bacteria samples typically consist of a mixture of two components, which

weakly correspond to resistant and non-resistant populations. The true MIC value is believed to

follow a log normal distribution (Mouton, 2002) for each component.

Others have previously reported approaches to estimation of the mean MIC. Van de Kassteele

et al. (2012) proposed a model for estimation of mean log2(MIC) that incorporated the censored

nature of the data and adjusted for such bias using the interval censored normal distribution as the

underlying distribution. However, they did not consider the mixture of resistant and non-resistant
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Figure 4.1: Schematic of Minimum Inhibitory Concentration determination. Yellow dots are bac-

teria growing in the blue broth with increasing concentrations at antibiotic(mg/ml). The growth

of organism A is stopped by the concentration of 8 mg/ml i.e., the observed MIC is 8. The growth

of organism B is not inhibited by even the highest dilution (dots in the 16 tube), so the observed

MIC is “> 16”.
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Figure 4.2: Illustration of censored data. Under the assumption that the underlying distribution

of MIC value follows a bi-modal mixture normal distributions, the observed MIC value “<= 2”

indicates the observed MIC value is left censored. In this example “> 32” indicates that the MIC

value belongs to the right censored category. If the observed MIC value is reported as exactly equal

to a concentration value, such as 2, 3, 8, 16, it is then considered as interval censored.

populations in observed data. Craig (2000) suggested that the underlying distribution of log2(MIC)

can be modeled by a mixture of normal distributions, which weakly represents resistant and non-

resistant populations. Jaspers et al. (2014b,a, 2016) described a similar approach to estimate the

distribution of wild type and non-wild type bacteria populations determined by epidemiological

cut-off rather than clinical breakpoints. These previously published approaches suggested that

log2(MIC) mean could be estimated, however, none of the above approaches evaluated the temporal

trend in mean log2(MIC) which is clearly a critical need for surveillance programs.

Therefore, building upon this prior work, the objective of this report is to describe an approach

to detect temporal change in mean log2(MIC) using a Bayesian hierarchical model with a mixture

of normal distributions for mean log2(MIC) from censored MIC data. The proposed model enables

testing of temporal trends in mean log2(MIC) in resistant and non-resistant populations while re-

taining the ability to assess changes in the proportion of resistant bacteria over time. We illustrate

our approach to assessing temporal changes in the mean log2(MIC) and compare the results to an

approach ignoring censorship which we refer to as a “naive” approach. We also illustrate that the
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model can be used to assess changes in the proportion of resistant data. The examples use data

obtained from Salmonella I,4,[5],12:i:- and Salmonella Typhimurium collected from 1996 to 2014 by

the CDC NARMS surveillance programs. Inclusion of such analyses into current surveillance pro-

grams would add additional dimensions to monitoring AMR and increase the value of information

extracted from surveillance systems.

4.2 Methods

4.2.1 Bayesian hierarchical model

To account for censoring statistically, each observed MIC value is assumed to represent an

interval of true MIC values rather than a single discrete point value (see Figure 4.2). Here we

suppose the observed MIC values can be transformed into a log2 scale.

Let y∗ij denote the observed log2(MIC) value of the jth isolate at the ith year. Table 4.1 presents

the conversion of observed MIC values to a continuous scale interval (lij , uij) for each isolate and

each antibiotic (on log scale) with censorship. The corresponding unobserved true MIC value in

the interval (lij , uij) is denoted as yij , where i = 1, 2, · · · , I and j = 1, 2, · · · , ni. Here ni is the

total number of isolates tested at the ith year, and I is the total number of years of interest (in

CDC NARMS dataset I = 19). The distribution of yij can be considered as a mixture of the two

bacterial populations (resistant and non-resistant). Let cij denote the unobserved random variable

representing the bacterial population from which the MIC value yij is draw. A hierarchical model

is proposed to fit the data:

cij
∣∣pi ind∼ Ber(pi),

yij
∣∣cij , β1i, β0i, σ21, σ20 ind∼


N(β1i, σ

2
1), if cij = 1,

N(β0i, σ
2
0), if cij = 0,

(4.1)

where i = 1, 2, · · · , I, j = 1, 2, · · · , ni. Ber(p) denotes a Bernoulli distribution with probability p,

and N(µ, σ2) denotes a normal distribution with mean µ and variance σ2. cij = 1, with probability

pi, if yij comes from the resistant population, and cij = 0, with probability 1−pi, if yij comes from
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the non-resistant population. The parameters β1i represent the mean log2(MIC) for the resistant

component in ith year, and the parameters β0i denotes the mean log2(MIC) for the non-resistant

in ith year. Considering the heterogeneity of bacteria isolates in the CDC NARMS dataset, which

might be caused due to different sampling collection methods from year to year or different labs were

used to test isolates, a hierarchical modeling methodology is adopted to borrow information about

log2(MIC) mean values across years and to integrate uncertainty gained from each individual year.

In this way, it would adjust for multiple comparison testing as well based on Gelman’s methodology

(Gelman et al., 2012).

We model these populations averages with two independent normal distributions, respectively:

β1i
∣∣µ1, τ21 i.i.d∼ N(µ1, τ

2
1 ),

β0i
∣∣µ0, τ20 i.i.d∼ N(µ0, τ

2
0 ),

(4.2)

where i = 1, 2, · · · , I. The proportion of resistant population at ith year is modeled through a logit

link function:

logit(pi) = log

(
pi

1− pi

)
= αi, i = 1, 2, · · · , I,

αi
iid∼ N(θ, ν2).

(4.3)

Table 4.1: Examples of converting the Minimum inhibitory Concentration (MIC) reported in the

CDC NARMS human data to the corresponding censorship in our model

MIC values(mg/ml) y∗ij Censor Type lij uij
≤ 2 ≤ 1 left censored −∞ 1

= 4 = 2 interval censored 1 2

> 16 > 4 right censored 4 ∞

4.2.1.1 Prior distributions for the Bayesian hierarchical model parameters

The full Bayesian analysis requires the joint prior distribution of all unknown parameters in

the hierarchical model expression (4.1), (4.2) and (4.3). The vector of parameters of interest is

(µ1, µ0, τ
2
1 , τ

2
0 , θ, ν

2, σ20, σ
2
1)T . Inverse gamma distribution is assigned to the variance of hierarchical

part τ21 , τ20 , σ21, σ20 and ν2 with both shape and scale parameters to be 0.0001. We assume an
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independent non-informative prior for the mean parameter for hierarchical part µl ∼ N(0, 104), l =

0, 1, and θ ∼ N(0, 104).

Bayesian hierarchical model can be fitted using two distinct data approaches. An all-data

approach where data from all years are used to estimate the posterior distribution of the parameters,

or a precedent-data approach where only data precedent to the years of interest is used. In the

most recent year of any surveillance program these methods are equivalent, however, retrospective

analysis of yearly changes will be different for the methods.

4.2.1.2 Implementation of Bayesian hierarchical model

Bayesian hierarchical model was implemented in a full Bayesian framework using Markov Chain

Monte Carlo (MCMC) Gibbs sampling methodology (see Full Conditional Distribution Derivation).

Gibbs sampling algorithm was adapted for censorship in finite mixture model (Komárek, 2009; Dey

et al., 2000). The statistical inference for the linear model with time trend was based on joint

posterior distributions. All computation was implemented using R software version 3.3.2 (R Core

Team, 2016).

The initial values were estimated from AMR data collected over 19 years (1996 - 2014) for the

NARMS program (https://wwwn.cdc.gov/narmsnow/), which is administered by the US Centers

for Disease Control (CDC) NARMS collects data from numerous bacteria: Salmonella spp., E.Coli,

Campylobacter spp., and Shigella. However, we limited our analysis to data related to Salmonella

spp. . The isolate average of log2(MIC) for non-resistant population ignoring censorship in each

tested year was calculated as the initial values for β0i, and the isolate average of log2(MIC) values

for resistant population in each year was evaluated as initial values for β1i (i = 1, 2, · · · , I). The

sample means and sample standard deviations of β1i (i = 1, 2, · · · , I) were calculated as the initial

values for µ1 and τ1, respectively. Similarly, the initial values for µ0 and τ0 were obtained from β0i

(i = 1, 2, · · · , I). The initial values for the proportion of resistant population pi were calculated by

the number of resistant isolates divided by the total number of isolates in each year. The initial

https://wwwn.cdc.gov/narmsnow/


77

values for αi (i = 1, 2, · · · , I) were taken by performing an logit inverse transformation on those

values of proportion of resistant population pi.

10000 MCMC iterations were ran and after burn-in 3000 MCMC iterations were collected to

make inference. The parameters in the model were estimated by the mean of posterior distribu-

tion. The 2.5th and 97.5th percentiles of those 3000 samples of posterior estimates were used for

determination of the 95% credible interval (CI).

4.2.1.3 Full Conditional Distribution Derivation

We outlined the Gibbs sampling procedure as follows. Without specification, use notation |· to

indicate full conditional distribution, i.e. conditional on all other parameters and the data:

1. Obtain draws of latent unobserved continuous observation yij by inverse cumulative distri-

bution function sampling method, i.e. sampling from the full conditional normal distribution

and constrained by the limits of interval lij and uij , i = 1, 2, · · · , I, j = 1, 2, · · · , ni. More

specifically,

• if the observation is interval censored, yij is updated via

yij = Φ−1{Φ(lij) + U [Φ(uij)− Φ(lij)]} (4.4)

where U ∼ Unif(0, 1), Φ(·) is the Cumulative distribution function (cdf) function for

standard normal distribution, and Φ−1(·) is the inverse of cdf function.

• if the observation is right censored, yij is updated via

yij = Φ−1{Φ(lij) + U [1− Φ(lij)]} (4.5)

• if the observation is left censored, yij is updated via

yij = Φ−1{Φ(lij) + UΦ(lij)} (4.6)

2. Draw samples of cij from their full conditional distribution

cij |·
ind∼ Ber(hij), (4.7)
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where hij =
piφ1(yij |β1i,σ2

1)

piφ1(yij |β1i,σ2
1)+(1−pi)φ0(yij |β0i,σ2

0)
, j = 1, 2, · · · , ni, i = 1, 2, · · · , I. φ(x|m, v) de-

notes the density function of normal distribution with mean m and variance v.

3. Sample the hierarchical MIC value µl from full conditional distribution

µl|·
ind∼ N(m, v), (4.8)

where v =
(
I
τ2l

+ 1
c′

)−1
, and m = v

(
1
τ2l

∑I
i=1 βli + µ

′

c′

)
, l = 1, 0, µ

′
= 0, c

′
= 104.

4. Sample true MIC population mean in each year βli from full conditional distribution

βli|· ∼ N(M,V ), (4.9)

M = V

(
µl
τ2l

+

∑ni
j=1 I(cij = l)yij

σ2l

)
,V =

[∑ni
j=1 I(cij = l)

σ2l
+

1

τ2l

]−1
, (4.10)

where l = 1, 0.

5. Sample variance for continuous variable yij σ
2
l from full conditional distribution

σ2l |· ∼ IG

1

2

I∑
i=1

ni∑
j=1

I(cij = l),
1

2

I∑
i=1

ni∑
j=1

I(cij = l)(yij − βli)2
 , (4.11)

where l = 1, 0.

6. Sample variance for hierarchical part τ2l from full conditional distribution

τ2l |· ∼ IG

(
a+

I

2
, b+

1

2

I∑
i=1

(βli − µl)2
)
, (4.12)

where l = 1, 0, a = 0.0001, b = 0.0001.

7. Sample parameter θ from full conditional distribution

θ|· ∼ N(M,V ), V =

(
I

ν2
+

1

104

)−1
,M = V

(∑I
i=1 αi
ν2

)
. (4.13)

8. Sample parameter ν2 from full conditional distribution

ν2|· ∼ IG

(
I

2
,
1

2

I∑
i=1

(αi − θ)2
)
. (4.14)

9. Sample parameter for log-odds for proportion αi for i = 1, 2, · · · , I using random walk

π(αi) ∝
ni∑
j=1

(
exp(αiI(cij = 1))

1 + exp(αi)

)
exp

(
−(αi − θ)2

2 ∗ ν2

)
(4.15)
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4.2.2 A Bayesian hierarchical model with linear time trend assumption

In this section, we are going to consider a simplifier model for the temporal trend. More

specifically, a linear relationship with respect to time is assumed for the log2(MIC) value in the

non-resistant and resistant population, and proportion of bacteria in the resistant population. The

linear time trend model, using the same notation as the Bayesian hierarchical model (expression

(4.1) and expression (4.3)) at the sample unit level, however, the mean log2(MIC) values are modeled

as:

β1i
ind∼ N(µ10 + µ11ti, τ

2
1 )

β0i
ind∼ N(µ00 + µ01ti, τ

2
0 )

αi = γ0 + γ1ti

(4.16)

where i = 1, 2, · · · , I. The parameter γ1 in expression (4.16) can be interpreted as the odds

ratio (OR) of proportion of bacteria in resistant population on logarithmic scale. In other words,

exp(γ1) > 1 indicates the odds of being in the resistant population are increasing with time while

exp(γ1) < 1 indicates the odds of isolates being in the resistant population are decreasing with time.

The parameter µ11 represents the slope for the mean of log2(MIC) for the resistant population, while

µ01 representes the slope on time for the mean log2(MIC) for non-resistant population. For either

parameter, a positive value indicates the corresponding mean log2(MIC) is increasing with time.

Similarly, we conducted the Bayesian inference using this linear time trend model expression

(4.16).

4.2.3 Model validation using simulation

4.2.3.1 Bias in mean log2(MIC) estimation

Simulation studies were conducted to document the extent of bias in mean log2(MIC) estimation

using expression (4.1) compared to an approach to mean log2(MIC) estimation that ignores censor-

ship. The exercise simulated a population consisting of observations either left-censored or interval

censored i.e., a non-resistant population. More specifically, considering a hypothetical dataset nor-

mally distributed with known mean and variance, each realization/observed value is censored based
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on a serial experiment as would occur for AMR data. If a realization was less than the starting

dilution, this realization was considered to be left censored, otherwise, it is interval censored type.

For these data, we applied expression (4.1) to estimate the mean log2(MIC) and a naive method of

mean log2(MIC) calculation that ignores censoring for each simulated data set. This procedure was

repeated for 5000 independent datasets. Two metrics were examined, average bias and root mean

square error. Average bias was the difference between estimated mean value and the true normal

mean averaging across 5000 datasets. This metric measures the average repeated estimates deviates

from the true value. Root mean square error (RMSE) was the square root of the averaging the

squared difference between the estimated mean value and true normal mean. This metric indicates

how close, on average, the estimate is to the true value. For both metrics, smaller value indicates

less bias.

4.2.3.2 Detecting mean log2(MIC) differences

Here we assessed the power for detecting mean log2(MIC) difference using proposed Bayesian

method and naive t-test at 5% significance level. Specifically, the 95% quantile credible interval

from the posterior distribution using the proposed Beyesian method were used to make inference

about changes in the mean log2(MIC). These results were compared to that obtained from a two-

sample t-test where the mean log2(MIC) and standard error where obtained by naive calculation of

the MIC using the censored data. 5000 simulation datasets were generated, with each containing

five years of data, with equal sample size per year. Four cases of underlying normal distributions

were considered: case 1: normal distributions with mean from 1.7 to 2.1 increased by 0.1 with

standard deviance 1; case 2: normal distributions with mean from 1.7 to 2.7 increased by 0.25 with

standard deviance 0.5; case 3: normal distributions with mean from 1.0 to 3.0 increased by 0.5 with

standard deviance 1; case 4: normal distributions with mean from 1.0 to 3.0 increased by 0.5 with

standard deviance 0.5. In all cases the cutoff value were set to be fixed at 2. Sample size varied

from 5 to 30 in our simulation study. To summarize the comparison for each sample size we sum

the number of t-tests with p value less than 0.05, and the number of credible intervals for the mean
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difference that did not included zero over 5000 simulated datasets, and reported the results as a

proportion out of 5000 simulations.

4.2.4 Testing for temporal changes in mean log2(MIC) using NARMS data

A key promise of the approach proposed is the ability to monitor changes in mean log2(MIC)

and test hypotheses about changes in the mean log2(MIC) through evaluating contrasts of mean

log2(MIC) values with associated 95% credible intervals between consecutive years. Here we de-

scribe a variety of approaches to assessing temporal changes in log2(MIC) mean using the proposed

models.

4.2.4.1 Comparison of consecutive year mean difference estimates

The mean log2(MIC) in the resistant and non-resistant populations respectively can be com-

pared between consecutive years using the posterior sample distribution and 95% credible interval.

If this interval contains zero, this indicates insufficient evidence to conclude a meaningful difference

of the means between those two years. We illustrate this approach using all available data and then

with only precedent data.

To evaluate changes in the mean log2(MIC) over years, we calculate the posterior mean and

95% CI for the mean difference between consecutive years, β0i − β0i−1, i = 2, · · · , I. If this 95%

CI contains zero for a particular consecutive year pair, implies that there is insufficient evidence to

reject the null hypothesis of no difference in mean log2(MIC) of non-resistant population between

that particular consecutive years. If all values in this 95% CI are greater than zero for a particular

year pair, indicates that the mean log2(MIC) in non-resistant population is increasing, and vice

versa. Concerns about multiple comparisons are already addressed with due to the incorporation

of the Gelman methodology. The mean of the posterior estimates of the proportion of bacteria in

the resistant population between consecutive years, pi− pi−1, for i = 2, · · · , I and 95% CIs, can be

calculated to test the null hypothesis that no changes in proportion of resistant population between

each consecutive year pairs, H0i : pi − pi−1 = 0, for i = 2, · · · , I.
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We compare the mean differences obtained from above approaches, to the results of a two-

sample t-test calculated based on the naive method which calculates the mean of the observed

log2(MIC) value and its standard error. Specifically, in order to compare the MIC value between

two consecutive years, the Bayesian approach used the associated posterior sample distribution and

95% quantile credible interval to make inference based on inclusion of zero in the interval, while

the naive t-test would just estimate the mean and standard error only using the MIC values from

those two years under consideration.

4.3 Results

4.3.1 Estimating mean log2(MIC) using the Bayesian hierarchical model

Here we illustrate the results of the mean estimation using Bayesian hierarchical approach with

all available data for two organisms from the CDC NARMS human data. The first organism

is Salmonella enterica I,4,[5],12:i:- with the antibiotic chloramphenicol. Figure 4.3 displays the

observed naive mean log2(MIC) for the 1029 Salmonella enterica I,4,[5],12:i:- isolates collected

from 1996 to 2014. In Figure 4.3, the naive mean log2(MIC) was calculated by averaging the

observed log2(MIC) values of non-resistant population based on breakpoints in each year. The

observed MIC value for each isolate was approximated by ignoring censorship. For example, if

the observed MIC value was ≤ 2, then value 2 was treated as the corresponding MIC value. As

shown by the simulation exercises (more detail in the following section), these estimates of the

mean log2(MIC) created without adjustment for censoring are biased and overestimates bacterial

resistance to an antibiotic (Annis and Craig, 2005). More valid estimates of mean log2(MIC) based

on the Bayesian model are presented in Table 4.2. Consistent with the observed data, we see that

the proportion of bacteria classified as resistant does not show a consistent pattern. However,

unique to our approach also provides estimates of the mean log2(MIC) in the non-resistant and

resistant populations. Based on visual inspection, the mean log2(MIC) appears to be increasing.

As these estimates are not biased by ignoring censoring, unlike those in Figure 4.3, these means

estimates can be used for testing hypotheses about trend.
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Figure 4.3: The changes in naive mean log2(MIC) (left y -axis) and proportion of bacteria in

resistant group (right y-axis) for Salmonella enterica I,4,[5],12:i:- and antibiotic chloramphenicol

from 1996 - 2014 (x-axis). The grey bars represent the percentage of resistant group in each year.

Each dot is the naive mean value of log2(MIC) in the non-resistant group in each year ignoring

censoring, i.e. if the observed MIC value was ≤ 2, value 2 was treated as the MIC value (Data from

CDC NARMS).
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Table 4.2: Posterior means and 95% credible intervals for the mean log2(MIC) (β0 and β1) and

proportion (p) from Bayesian hierarchical model using Salmonella serotype I 4,[5],12:i:- and the

antibiotic chloramphenicol. pi represents the proportion of resistant component at ith year, β0i
represents the MIC mean on log2 scale for non-resistant population at ith year, and β1i represents

the MIC mean on log2 scale for resistant population at ith year

Year β̂0i 95% CIs of β̂0i β̂1i 95% CIs of β̂1i p̂i 95% CIs of p̂i

1996 1.265 (0.240, 1.971) 6.257 (4.455, 8.264) 0.027 (0.004, 0.071)

1997 1.433 (0.745, 1.996) 6.243 (4.455, 8.188) 0.026 (0.005, 0.065)

1998 1.436 (0.328, 2.308) 6.267 (4.436, 8.386) 0.025 (0.003, 0.060)

1999 1.546 (1.100, 1.940) 6.235 (4.389, 8.263) 0.024 (0.003, 0.059)

2000 1.040 (0.069, 1.618) 6.236 (4.427, 8.208) 0.024 (0.004, 0.054)

2001 1.710 (1.414, 1.981) 6.670 (6.130, 7.891) 0.031 (0.008, 0.086)

2002 1.699 (1.533, 1.862) 5.651 (5.128, 7.874) 0.026 (0.006, 0.060)

2003 1.799 (1.647, 1.955) 6.206 (4.262, 8.185) 0.021 (0.003, 0.045)

2004 1.847 (1.691, 2.003) 7.100 (6.078, 8.188) 0.026 (0.007, 0.058)

2005 1.706 (1.536, 1.873) 6.224 (4.379, 8.214) 0.021 (0.003, 0.042)

2006 1.659 (1.567, 1.752) 6.391 (6.071, 8.017) 0.023 (0.007, 0.042)

2007 1.849 (1.741, 1.960) 7.119 (6.014, 7.813) 0.022 (0.005, 0.044)

2008 2.025 (1.921, 2.129) 6.168 (5.442, 8.474) 0.037 (0.016, 0.078)

2009 1.835 (1.725, 1.950) 5.809 (5.394, 7.914) 0.046 (0.019, 0.108)

2010 2.121 (2.016, 2.227) 5.672 (5.164, 7.759) 0.022 (0.005, 0.044)

2011 1.928 (1.822, 2.031) 6.483 (5.992, 8.064) 0.021 (0.005, 0.041)

2012 1.943 (1.861, 2.027) 6.171 (4.062, 8.086) 0.017 (0.002, 0.033)

2013 2.192 (2.109, 2.275) 5.792 (5.466, 8.363) 0.025 (0.009, 0.043)

2014 2.127 (2.040, 2.214) 5.895 (5.547, 7.513) 0.029 (0.011, 0.056)

We conducted the same analysis on Salmonella serotype Typhimurium with the antibiotic

chloramphenicol. Figure 4.4 displays the observed estimates of the naive mean log2(MIC) for the

6773 isolates collected between 1996 and 2014 from the CDC NARMS human dataset. Table 4.3

presents the estimated mean log2(MIC) values and 95% CIs for the non-resistant population and

the resistant population, as well as the proportion estimates of resistant population in each year.

For example, in Table 4.3, for 1996 the naive estimate of mean log2(MIC) 2.215, while using the

Bayesian model the estimated mean log2(MIC) for the non-resistant population was 1.662.

4.3.2 Model validation using simulation

4.3.2.1 Bias in mean log2(MIC) estimation

Here we compare our proposed method with the naive method of estimating the mean log2(MIC)

ignoring censorship in terms of bias in estimation. Representative results of the first simulation
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Figure 4.4: The changes in naive mean log2(MIC) (left y -axis) and proportion of bacteria in resis-

tance group (right y-axis) for Salmonella serotype Typhimurium and the antibiotic chloramphenicol

from 1996 - 2014 (x-axis). The grey bars represent the percentage of resistant group calculated

using a naive method that ignores censoring in each year. Each dot is the naive mean log2(MIC)

value in the non-resistant group in each year (Data from CDC NARMS).
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Table 4.3: Posterior means and 95% credible intervals for the mean log2(MIC) (β0 and β1) and

proportion (p) from Bayesian hierarchical model using Salmonella serotype Typhimurium and the

antibiotic chloramphenicol. pi represents the proportion of resistant component at ith year, β0i
represents the MIC mean on log2 scale for non-resistant population at ith year, and β1i represents

the MIC mean on log2 scale for resistant population at ith year

Year β̂0i 95% CIs of β̂0i β̂1i 95% CIs of β̂1i p̂i 95% CIs of p̂i

1996 1.662 (1.564, 1.758) 5.301 (5.294, 5.310) 0.374 (0.327, 0.428)

1997 1.464 (1.357, 1.570) 5.006 (5.001, 5.012) 0.328 (0.279, 0.376)

1998 1.042 (0.864, 1.189) 5.145 (5.132, 5.178) 0.335 (0.290, 0.376)

1999 1.710 (1.630, 1.788) 5.219 (5.209, 5.242) 0.279 (0.239, 0.331)

2000 1.332 (1.209, 1.449) 5.013 (5.007, 5.028) 0.293 (0.247, 0.344)

2001 1.797 (1.715, 1.880) 5.088 (5.077, 5.099) 0.307 (0.262, 0.360)

2002 1.799 (1.734, 1.863) 5.301 (5.288, 5.309) 0.234 (0.198, 0.274)

2003 1.837 (1.773, 1.903) 5.075 (5.065, 5.085) 0.277 (0.236, 0.317)

2004 1.948 (1.883, 2.015) 5.208 (5.201, 5.215) 0.244 (0.202, 0.287)

2005 1.759 (1.697, 1.824) 5.028 (5.021, 5.035) 0.242 (0.202, 0.278)

2006 1.810 (1.748, 1.871) 5.069 (5.046, 5.083) 0.224 (0.184, 0.268)

2007 2.043 (1.980, 2.105) 5.118 (5.111, 5.130) 0.249 (0.212, 0.290)

2008 1.964 (1.899, 2.028) 5.076 (5.066, 5.084) 0.235 (0.192, 0.274)

2009 1.991 (1.926, 2.056) 5.053 (5.037, 5.064) 0.210 (0.174, 0.250)

2010 2.137 (2.072, 2.205) 5.143 (5.130, 5.167) 0.209 (0.169, 0.249)

2011 1.947 (1.879, 2.016) 5.159 (5.143, 5.198) 0.205 (0.162, 0.250)

2012 1.972 (1.897, 2.045) 5.124 (5.106, 5.139) 0.190 (0.148, 0.235)

2013 2.107 (2.040, 2.174) 5.097 (5.084, 5.133) 0.149 (0.116, 0.188)

2014 1.929 (1.855, 2.003) 5.012 (5.003, 5.032) 0.172 (0.129, 0.216)

exercise are presented in Table 4.4. As expected the results document that use of naive method

to calculate the mean log2(MIC) is associated with more biased estimation of the mean with the

extent of bias increasing as the proportion of censored observations increases. In this simulation,

one sample of log2(MIC) values was generated from a normal distribution with mean increasing

from 1.5 to 1.9, and left censored at value 1. As the sample size increased from 10 to 200, the

average bias of the estimate from our Bayesian model decreases. In contrast, the average bias from

the naive method was larger (between 0.52 and 0.59) than the Bayesian method (between -0.17 and

0.00), and did not decrease with sample size. The bias in the naive estimate is also always positive

i.e. overestimation, compared the the Bayesian methods which tends to slightly underestimate

the mean (negative estimates). As the mean log2(MIC) value increased from 1.5 to 1.9, which

is equivalent to increasing the proportion of interval censored observations, the extent of average

bias did not change meaningfully for either the Bayesian and naive method. Table 4.5 reports the

performance of the model using root mean square error (RMSE), which measures the variation in
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bias. In all simulations, the RMSE for the Bayesian method becomes substantially smaller as the

sample size increases, but this was not true for naive method.

Table 4.4: Assessment of estimation average bias for naive method ignoring censoring and the

proposed Bayesian method. Average bias values based on 5000 simulated datasets. The variance

of the normal distribution and the cutoff value for censoring are both set to be 1. The mean of

normal distribution is increased from 1.5 to 1.9 by 0.1

Mean 1.5 Mean 1.6 Mean 1.7 Mean 1.8 Mean 1.9

Sample Size naive method Bayesian naive method Bayesian naive method Bayesian naive method Bayesian naive method Bayesian

10 0.573 -0.176 0.560 -0.143 0.557 -0.096 0.540 -0.084 0.534 -0.062

15 0.573 -0.078 0.557 -0.070 0.555 -0.046 0.537 -0.048 0.529 -0.036

20 0.569 -0.060 0.560 -0.043 0.547 -0.037 0.540 -0.028 0.533 -0.022

25 0.576 -0.035 0.561 -0.033 0.548 -0.026 0.537 -0.024 0.531 -0.018

30 0.572 -0.033 0.561 -0.025 0.548 -0.021 0.543 -0.013 0.532 -0.013

50 0.574 -0.015 0.560 -0.014 0.549 -0.011 0.538 -0.012 0.535 -0.003

100 0.573 -0.009 0.562 -0.004 0.550 -0.004 0.540 -0.003 0.529 -0.006

150 0.573 -0.006 0.559 -0.005 0.548 -0.004 0.536 -0.006 0.533 0.000

200 0.574 -0.003 0.559 -0.004 0.548 -0.002 0.540 -0.001 0.529 -0.003

Table 4.5: Assessment of root mean square error (RMSE) for naive method ignoring censoring and

the proposed Bayesian method. RMSE value based on 5000 simulated datasets. The variance of

the normal distribution and the cutoff value for censoring are both set to be 1. The mean of normal

distribution is increased from 1.5 to 1.9 by 0.1

Mean 1.5 Mean 1.6 Mean 1.7 Mean 1.8 Mean 1.9

Sample Size naive method Bayesian naive method Bayesian naive method Bayesian naive method Bayesian naive method Bayesian

10 0.642 0.716 0.635 0.691 0.634 0.588 0.619 0.463 0.616 0.411

15 0.619 0.355 0.609 0.360 0.607 0.319 0.594 0.320 0.585 0.296

20 0.604 0.290 0.598 0.272 0.587 0.263 0.583 0.259 0.577 0.254

25 0.605 0.245 0.592 0.244 0.580 0.227 0.571 0.226 0.566 0.224

30 0.595 0.215 0.586 0.212 0.575 0.207 0.571 0.203 0.561 0.200

50 0.589 0.162 0.575 0.159 0.566 0.157 0.555 0.155 0.553 0.154

100 0.580 0.112 0.570 0.110 0.558 0.108 0.549 0.106 0.538 0.107

150 0.578 0.091 0.564 0.088 0.553 0.088 0.542 0.090 0.539 0.087

200 0.578 0.080 0.563 0.078 0.552 0.076 0.544 0.076 0.534 0.075

4.3.2.2 Detecting mean MIC differences

The results of a second simulation exercise, which aimed to evaluate if the Bayesian model was

associated with greater power to detect changes in mean log2(MIC), are presented in Table 4.6.

The proposed Bayesian model has greater power to detect true difference between consecutive

mean log2(MIC) when compared to naive t-test ignoring censorship. This is evidenced by the

higher proportion of the 5000 simulated datasets where the true differences in mean log2(MIC)

were detected for the Baysian model compared to the naive t-test. For example, when the sample
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size was 10, the difference in means was detected in 6.1% of simulations using Bayesian method

compared to only 3.7% of simulations when means calculated using the naive method and tested

using a t-test. This advantage in power of difference detection of the Bayesian model is due to the

fact that the model considered all data together to provide a more precise estimation of the means

and difference between means, whereas the naive method only uses the two years being compared.

This is another advantage of the proposed method compared to naive analyses ignoring censorship,

in addition to having smaller bias in estimation.

Table 4.6: Power for detecting mean MIC difference using proposed Bayesian method and naive

t-test at 5% significance level. 5000 simulation datasets were generated, with each containing five

years of data, with equal sample size per year. Four cases of underlying normal distributions were

considered: case 1: normal distributions with mean from 1.7 to 2.1 increased by 0.1 with standard

deviance 1; case 2: normal distributions with mean from 1.7 to 2.7 increased by 0.25 with standard

deviance 0.5; case 3: normal distributions with mean from 1.0 to 3.0 increased by 0.5 with standard

deviance 1; case 4: normal distributions with mean from 1.0 to 3.0 increased by 0.5 with standard

deviance 0.5. In all cases the cutoff value were set to be fixed at 2. Reported power in table is

the proportion of cases that has been detected as significant between Year 2 and Year 1 by each

method among 5000 simulated datasets

Sample size 10 Sample size 15 Sample size 20 Sample size 25 Sample size 30

tTest Bayes tTest Bayes tTest Bayes tTest Bayes tTest Bayes

Case 1 0.037 0.061 0.055 0.062 0.061 0.065 0.102 0.110 0.121 0.124

Case 2 0.110 0.178 0.180 0.205 0.234 0.245 0.294 0.302 0.332 0.348

Case 3 0.066 0.144 0.143 0.224 0.194 0.244 0.242 0.280 0.279 0.317

Case 4 0.076 0.209 0.166 0.224 0.195 0.233 0.247 0.275 0.300 0.332

4.3.3 Estimation of temporal changes in mean log2(MIC) using NARMS data

4.3.3.1 Estimation of mean difference between consecutive years

In this section we illustrate the utility of our proposed method of mean log2(MIC) estimation

for surveillance programs by assessing changes in the mean log2(MIC) in non-resistant bacteria

populations. The estimation and testing results for the changes in mean log2(MIC) value and the

proportion of resistant sub population between consecutive years for Salmonella enterica I,4,[5],12:i:-

with the antibiotic chloramphenical are presented in Table 4.7. For changes in mean log2(MIC)
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value of the non-resistant population, we present a comparison results from three testing methods:

the naive two sample t-test, the proposed Bayesian model with all data up to date, and the proposed

Bayesian model with only data precedent to the years of interest. The purpose of the analyses with

precedent data is to provide an alternative comparison to naive t-test for timely identification of

the yearly trend. These results are presented in the 2nd, 3rd and 4th columns of Table 4.7. If

the associated 95% CI of a difference in mean log2(MIC) did not contain the null value zero, this

would be interpreted to imply evidence that the mean log2(MIC) differs between the consecutive

years. It can be observed that although the inference based on Bayesian models would be similar

to the two sample t-test for most of the consecutive year comparisons, the Bayesian model did

identify a positive change as early as between 2000 and 2001, whereas the t-test only detected the

trend from year 2006 - 2007. It is also critical to recall that the two sample t-test approach is

based upon a biased estimate of the mean and variance of the mean calculated using the naive

method. Although we present this comparison, it is important to acknowledge that the means used

as the basis for this t-test results are biased and should not be employed for testing at all. The

5th to 8th columns presents additional results from the Bayesian model with all-data regarding the

resistant population. We can see that there was insufficient evidence to reject the null hypothesis

of no change in the proportion of resistant population between consecutive years in Salmonella I

4,[5],12:i:- and chloramphenicol as all of those intervals containing zero. These results agree with

the patterns observed in Figure 4.3 that the proportion of resistance did not show any obvious

trend while the mean log2(MIC) in non-resistant population had an obviously increasing trend over

years. The Bayesian model was able to identify this increasing trend in mean MIC creep as early

as in year 2001.

We conducted the same analyses on Salmonella serotype Typhimurium with the antibiotic

chloramphenicol and results are presented in Table 4.8. For all but one pair, there was no evidence

of meaningful changes between consecutive years detected for the proportion of bacteria in the

resistant population since the associated 95% credible intervals contains zero. The proportion of

bacteria in the resistant population was detected as decreasing from 2001 to 2002 as the associated
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95% CI lies on the left side of zero. The mean log2(MIC) value for non-resistant population

increased by 0.13 from 2012 to 2013 and decreased again in 2014 based on the Model 1 estimation.

The results in Table 4.8 also implied that the mean log2(MIC) for non-resistant population was

increasing between 2001 - 2002, 2006 - 2007 and 2009 - 2010 since all 95% CIs were greater than 0.

The same increasing or decreasing trends within those time periods were also observed in Figure 4.4.

4.3.3.2 Estimation of linear time trend for mean log2(MIC) and comparison of

linear time trend assessment for proportion resistant

Table 4.9 presents the results using the linear time trend model for I 4,[5],12:i:-. The estimated

slope for the co-variate variable time for mean log2(MIC) value in non-resistant population was

0.058(0.029, 0.096), indicating that mean log2(MIC) for non-resistant population was increasing

from 1996 to 2014, while there was no statistically significant evidence that the proportion of

bacteria in the resistant population was changing over the years since the 95% credible interval for

the coefficient for time for proportion of resistant population including zero (0.006(−0.101, 0.109)).

With respect to the proportion analysis, the results of the Model 2 were consistent with the results

from logistic regression model and in the Mann-Kendall test in terms of proportion of resistance.

The two-sided p value provided from Mann-Kendall test was 0.09, implying that there was no

enough evidence to reject the null hypothesis that there is no monotonic trend of the proportion of

resistant sub population over the years at 5% significant level.

For Typhimurium with the antibiotic chloramphenicol, the results for linear time trend model

are presented on Table 4.10. From Table 4.10, it can be seen that the results from our linear time

trend, logistic regression, Mann-Kendall test, provide the same conclusion that the proportion of

bacteria in the resistant population was decreasing from 1996 - 2014. using our linear time trend

model, was also able to detect that the mean log2(MIC) value for non-resistant population was

increasing over the years (µ̂01 = 0.037(0.021, 0.054)), such information could not be obtained from

current methods which do not estimate mean MIC.
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Table 4.9: Linear model for time trend analysis for Salmonella serotype I, 4,[5],12:i:- and the an-

tibiotic chloramphenicol from 1996 to 2014. The first column is posterior mean with corresponding

95% credible intervals for the parameters in the linear model to capture time trend. The second

column is the generalized linear model with logit link when we treat the isolates as dichotomous

based on breakpoints. The third column is the p value using Mann-Kendall trend test on the pro-

portion of resistant componenet based on breakpoints. The 95% credible interval for the slope for

susceptible β01 was greater than zero indicating the MIC mean values susceptible component were

increasing over years, while 0 lied in the 95% credible interval for the slope for resistant component

implies that there was no statistically changes in resistant component over years. Both our linear

time trend model and the logistic regression model based on breakpoints didn’t provide statistical

significant evidence on the proportion of resistant component changes over years since the credible

interval or confidence interval for slope for proportion of resistant component contained 0

Posterior Mean

(95%CIs)

Ests(95% confidence

interval)

Mann-Kendall test p

value

Intercept for susceptible
1.1267( 0.6297,

1.4915)
NA NA

Slope for susceptible
0.0576( 0.0292,

0.0961)
NA NA

Intercept for resistant
5.4721( 4.8059,

7.4893)
NA NA

Slope for resistant
0.0006(-0.0679,

0.1149)
NA NA

Intercept for proportion for

resistant

-3.7933(-5.1993,-

2.3848)
-3.774(-5.273, -2.275) NA

Slope for proportion for

resistant

0.0073(-0.0878,

0.1110)
0.008(-0.093, 0.111) 0.0934
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Table 4.10: Linear model for time trend analysis for Salmonella serotype Typhimurium and the an-

tibiotic chloramphenicol from 1996 to 2014. The first column is posterior mean with corresponding

95% credible intervals for the parameters in the linear model to capture time trend. The second

column is the generalized linear model with logit link when we treat the isolates as dichotomous

based on breakpoints. The third column is the p value for Mann-Kendall trend test on the propor-

tion of resistant componenet based on breakpoints in CDC NARMS human data. Again the 95%

credible interval for the slope for susceptible component didn’t contain zero, actually was greater

than 0, indicated that the mean MIC values were increasing over the years. The 95% credible

interval for slope for proportion for resistant component was lesser than zero, indicated that the

proportions of resistant component were decreasing over years, which were consistent with logistic

regression and Mann-kendall test

Posterior Mean

(95%CIs)

Ests(95% confidence

interval)

Mann-Kendall test p

value

Intercept for susceptible
1.4368( 1.2367,

1.6222)
NA NA

Slope for susceptible
0.0367( 0.0207,

0.0543)
NA NA

Intercept for resistant
5.1695( 5.0209,

5.3258)
NA NA

Slope for resistant
0.0114(-0.0020,

0.0247)
NA NA

Intercept for proportion for

resistant

-0.5202(-0.6259,-

0.4242)
-0.48(-0.604, -0.376) NA

Slope for proportion for

resistant

-0.0608(-0.0705,-

0.0509)
-0.06(-0.073, -0.051) 9.6827e-07
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4.4 Discussion

Our goal with this project is to address a deficiency in the available approaches to analysis

of AMR data using MIC values. Antibiotic resistance is a worldwide serious issue, and enormous

resources are being devoted to monitoring the changes in MIC occurring. We propose here a

Bayesian hierarchical model, and document that it enables additional information about changes

in mean MIC to be monitored by surveillance while still allowing monitoring of the proportion

of resistant bacteria. Therefore, the approach enables increased information to be gathered by

surveillance programs. The proposed approach is founded on the concept of finding a valid and

robust estimate of the mean MIC that addresses the censored nature of MIC data. We have

documented that ignoring MIC creates a systematically biased estimate of the mean, i.e., the bias

is not reduced by increasing sample size. In this paper, we proposed an approach that is not only

able to detect the prevalence of resistant bacteria changes over time, but also to monitor the mean

MIC value of the non-resistant and resistant populations over time. In this way, the proposed

methods provide public health officials with an analysis approach to detect MIC creep or decline in

the subpopuations of resistant or non-resistant populations. Considering the variation of the MIC

values shown in the dataset, which might result from testing methods being different across states

or labs, we allowed the mean log2(MIC) to vary across different years and applied the Bayesian

hierarchical model to yield a more robust estimation via shrinking the estimates toward a common

mean value in our Bayesian hierarchical model. This would lead to a more conservative conclusion

when we are trying to make inference.

Under our framework, there are actually two levels of latent parameters. One is due to the cen-

sorship, the true underlying continuous values for each censored observed MIC value are unknown;

the other is sub population of bacteria does the isolate arise from - resistant or non-resistant. By in-

corporating the censorship and heterogeneity of the data, the Bayesian hierarchical model proposed

here would result in a more accurate estimation. This is a fundamental step to further statistical

analysis and inference making involved.
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However, there are also some assumptions in our analysis. We assumed normal distribution for

non-resistant and resistant populations, although this assumption is supported by data observed

and prior data (Craig, 2000). This assumption might be violated in some situations, and in those

situations a more flexible semi-parametric or non-parametric methods, such as spline fitting, might

be used to replace normal assumptions. Another assumption we made is the independence in

proportion of resistant population and the mean of MIC value in each sub-population between

years. If this assumption is not appropriate, then it would be possible to include a correlation

structure between those variables.

In conclusion, we proposed a framework of analyzing such longitudinal log2(MIC) value data

using Bayesian hierarchical approach, and not only estimated the mean of log2(MIC) values properly

and accurately, but also conducted the hypothesis testing of log2(MIC) changes over years for

given bacteria and antibiotics. Actually, our proposed framework can be easily extended to other

interesting topics, such as studying the correlation between multiple antimicrobial (multi-drug

resistance), and antibiotics resistance patterns among Salmonella isolated from different species,

like swine, chicken and beef, and so on. In those cases, rather than a univariate mixture model, a

multivariate mixed normal model would be further developed.
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CHAPTER 5. GENERAL CONCLUSION

5.1 Summary

In this dissertation, we develop several statistical methods in metagenomics and antimicrobial

resistance analysis. In chapter 2 and chapter 3, we present two statistical methods proposed for 16S

rRNA microbiome data, aiming to answer the two central themes in metagenomics studies. One is

to detect the potential microbiome whose relative abundance has been affected by the surrounding

environmental conditions and the other is to establish the relationship between microbes and bio-

logical phenotype. While we study the application of the models to the specific microbiome data,

the proposed frameworks will be applicable to fields requiring analysis of sparse high-dimensional

count data. In addition, the mixture latent model developed to monitor the antimicrobial resistance

that changes over time is also well suited to other areas involving censorship. This is discussed in

chapter 4.

In chapter 2, we utilize a Hurdle model to address the excessive zeros issue in the microbiome

data. To deal with the overdispersion issue, we employ the Poisson log normal hierarchical model to

borrow information across taxa. Such hierarchical structure also accounts for the inherent variation

and correlation between taxa which boosts the statistical power. Two independent latent indicators

are introduced in the model to adjust for the multiple testing problems. Through comprehensive

simulation studies, our proposed method outperforms the existing methods in terms of statistical

power and false discovery rate control.

In chapter 3, we explore the relationship between microbial community, biological outcome, and

environmental condition through a causal mediation approach. To accommodate the setting with

a large number of count mediators and a small sample size, we develop a novel sure independence

screening procedure and then adopt a Bayesian variable selection strategy to select key differentially
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abundant taxa that are associated with the outcome after adjusting the treatment effect. Simulation

studies illustrate the performance of the proposed method.

In chapter 4, we propose a hierarchical Bayesian latent class mixture model to monitor the tem-

poral trends of the prevalence of both resistant and non-resistant bacteria using minimum inhibitory

concentration values. By taking the censorship into account, simulation studies demonstrate that

our method has less bias in mean estimation and more power in detection of changes compared to

a naive method ignoring censorship.

5.2 Future Work

Although we have demonstrated our proposed statistical methods using extensive simulation

studies, there are still enumerous open problems that need further investigation.

In chapter 2, in order to classify OTUs into two groups (differentially abundant vs non-

differentially abundant), two independent latent indicators are generated for each OTU. One is

to indicate whether the occurrence of OTU is impacted by the treatment conditions, while the

other represents whether the treatment conditions have an effect on the OTU abundance. This

states that, for an OTU of interest, if two independent Bernoulli trials with two different prior

success probabilities both take value 1, then this OTU is differentially abundant regardless of the

results for any other OTUs. However, from a biological perspective, taxa interact with each other

in the community to perform biological functions. That implies encoding such interaction into the

hypothesis testing is feasible. A potential solution would be use the idea of the Markov random-field

model proposed by Wei and Pan (2010). In their paper, they used the Gaussian-Markov random

field model to incorporate the gene network interaction information in the hypothesis testing. It

might be useful to adapt a this Markov network idea here because the microbiome network is similar

to gene network (Layeghifard et al., 2017). The second extension of this project is from a computa-

tion point of view. Although Bayesian methodology is attractive in the analysis of metagenomics,

a computationally efficient algorithm to speed up the Bayesian analysis is necessary. Therefore,

parallelized computation algorithm is of importance in practice.
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As for chapter 3, there are two extensions which might be further developed that are motivated

by the real data example. The first one is to build a multivariate causal mediation model. In

our data example, eight metabolites were measured from the same root. Therefore it is desirable

to develop an appropriate multivariate causal mediation framework while accounting for the high-

dimensional overdispersed count nature of microbiome data. The second extension is to dynamically

test the mediation effect. As the microbiome composition varies over time, as observed in the

real data, it is necessary to develop new methods to capture the time effect for each taxon. In

addition, from a theoretical perspective, there are some possible directions for future research. For

instance, no unmeasured confounding assumption is crucial for identifiability in the causal inference

framework. Due to the biological complexity and the inherent hierarchical phylogenetic structure

among taxa, the correlation between taxa sets might violate the identifiability assumptions. To

address the potential confounding issue, further statistical methodology is required to account for

the high-dimensional count mediators as the traditional theory proposed by Imai et al. (2010b) is

limited to a single mediator case.

The Bayesian model proposed in chapter 4 can be also extended to study the correlation be-

tween multiple antimicrobial (i.e. multi-drug resistance problem), and antibiotic resistance patterns

among Salmonella isolated from different species, like pork, chicken, beef, and so on.
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